source: rtems/cpukit/score/cpu/mips/include/rtems/score/cpu.h @ f2e282d

5
Last change on this file since f2e282d was 0be1e54, checked in by Andreas Dachsberger <andreas.dachsberger@…>, on 03/26/19 at 09:44:58

doxygen: score: Add m68k CPU architecture group

Update #3706.

  • Property mode set to 100644
File size: 30.7 KB
Line 
1/**
2 *  @file
3 *
4 *  @brief Mips CPU Dependent Header File
5 */
6
7/*
8 *  Conversion to MIPS port by Alan Cudmore <alanc@linuxstart.com> and
9 *           Joel Sherrill <joel@OARcorp.com>.
10 *
11 *    These changes made the code conditional on standard cpp predefines,
12 *    merged the mips1 and mips3 code sequences as much as possible,
13 *    and moved some of the assembly code to C.  Alan did much of the
14 *    initial analysis and rework.  Joel took over from there and
15 *    wrote the JMR3904 BSP so this could be tested.  Joel also
16 *    added the new interrupt vectoring support in libcpu and
17 *    tried to better support the various interrupt controllers.
18 *
19 */
20
21/*
22 *  Original MIP64ORION port by Craig Lebakken <craigl@transition.com>
23 *           COPYRIGHT (c) 1996 by Transition Networks Inc.
24 *
25 *    To anyone who acknowledges that this file is provided "AS IS"
26 *    without any express or implied warranty:
27 *      permission to use, copy, modify, and distribute this file
28 *      for any purpose is hereby granted without fee, provided that
29 *      the above copyright notice and this notice appears in all
30 *      copies, and that the name of Transition Networks not be used in
31 *      advertising or publicity pertaining to distribution of the
32 *      software without specific, written prior permission.
33 *      Transition Networks makes no representations about the suitability
34 *      of this software for any purpose.
35 *
36 *  COPYRIGHT (c) 1989-2012.
37 *  On-Line Applications Research Corporation (OAR).
38 *
39 *  The license and distribution terms for this file may be
40 *  found in the file LICENSE in this distribution or at
41 *  http://www.rtems.org/license/LICENSE.
42 */
43
44#ifndef _RTEMS_SCORE_CPU_H
45#define _RTEMS_SCORE_CPU_H
46
47/**
48 *  @addtogroup RTEMSScoreCPUMIPS
49 */
50/**@{*/
51
52#ifdef __cplusplus
53extern "C" {
54#endif
55
56#include <rtems/score/basedefs.h>
57#include <rtems/score/mips.h>
58
59/* conditional compilation parameters */
60
61/*
62 *  Does the CPU follow the simple vectored interrupt model?
63 *
64 *  If TRUE, then RTEMS allocates the vector table it internally manages.
65 *  If FALSE, then the BSP is assumed to allocate and manage the vector
66 *  table
67 *
68 *  MIPS Specific Information:
69 *
70 *  Up to and including RTEMS 4.10, the MIPS port used simple vectored
71 *  interrupts. But this was changed to the PIC model after 4.10.
72 */
73#define CPU_SIMPLE_VECTORED_INTERRUPTS FALSE
74
75/*
76 *  Does the RTEMS invoke the user's ISR with the vector number and
77 *  a pointer to the saved interrupt frame (1) or just the vector
78 *  number (0)?
79 *
80 */
81
82#define CPU_ISR_PASSES_FRAME_POINTER TRUE
83
84
85
86/*
87 *  Does the CPU have hardware floating point?
88 *
89 *  If TRUE, then the RTEMS_FLOATING_POINT task attribute is supported.
90 *  If FALSE, then the RTEMS_FLOATING_POINT task attribute is ignored.
91 *
92 *  If there is a FP coprocessor such as the i387 or mc68881, then
93 *  the answer is TRUE.
94 *
95 *  The macro name "MIPS_HAS_FPU" should be made CPU specific.
96 *  It indicates whether or not this CPU model has FP support.  For
97 *  example, it would be possible to have an i386_nofp CPU model
98 *  which set this to false to indicate that you have an i386 without
99 *  an i387 and wish to leave floating point support out of RTEMS.
100 */
101
102#if ( MIPS_HAS_FPU == 1 )
103#define CPU_HARDWARE_FP     TRUE
104#else
105#define CPU_HARDWARE_FP     FALSE
106#endif
107
108/*
109 *  Are all tasks RTEMS_FLOATING_POINT tasks implicitly?
110 *
111 *  If TRUE, then the RTEMS_FLOATING_POINT task attribute is assumed.
112 *  If FALSE, then the RTEMS_FLOATING_POINT task attribute is followed.
113 *
114 *  So far, the only CPU in which this option has been used is the
115 *  HP PA-RISC.  The HP C compiler and gcc both implicitly use the
116 *  floating point registers to perform integer multiplies.  If
117 *  a function which you would not think utilize the FP unit DOES,
118 *  then one can not easily predict which tasks will use the FP hardware.
119 *  In this case, this option should be TRUE.
120 *
121 *  If CPU_HARDWARE_FP is FALSE, then this should be FALSE as well.
122 *
123 *  Mips Note: It appears the GCC can implicitly generate FPU
124 *  and Altivec instructions when you least expect them.  So make
125 *  all tasks floating point.
126 */
127
128#define CPU_ALL_TASKS_ARE_FP CPU_HARDWARE_FP
129
130/*
131 *  Should the IDLE task have a floating point context?
132 *
133 *  If TRUE, then the IDLE task is created as a RTEMS_FLOATING_POINT task
134 *  and it has a floating point context which is switched in and out.
135 *  If FALSE, then the IDLE task does not have a floating point context.
136 *
137 *  Setting this to TRUE negatively impacts the time required to preempt
138 *  the IDLE task from an interrupt because the floating point context
139 *  must be saved as part of the preemption.
140 */
141
142#define CPU_IDLE_TASK_IS_FP      FALSE
143
144/*
145 *  Should the saving of the floating point registers be deferred
146 *  until a context switch is made to another different floating point
147 *  task?
148 *
149 *  If TRUE, then the floating point context will not be stored until
150 *  necessary.  It will remain in the floating point registers and not
151 *  disturned until another floating point task is switched to.
152 *
153 *  If FALSE, then the floating point context is saved when a floating
154 *  point task is switched out and restored when the next floating point
155 *  task is restored.  The state of the floating point registers between
156 *  those two operations is not specified.
157 *
158 *  If the floating point context does NOT have to be saved as part of
159 *  interrupt dispatching, then it should be safe to set this to TRUE.
160 *
161 *  Setting this flag to TRUE results in using a different algorithm
162 *  for deciding when to save and restore the floating point context.
163 *  The deferred FP switch algorithm minimizes the number of times
164 *  the FP context is saved and restored.  The FP context is not saved
165 *  until a context switch is made to another, different FP task.
166 *  Thus in a system with only one FP task, the FP context will never
167 *  be saved or restored.
168 */
169
170#define CPU_USE_DEFERRED_FP_SWITCH       TRUE
171
172#define CPU_ENABLE_ROBUST_THREAD_DISPATCH FALSE
173
174/*
175 *  Does the stack grow up (toward higher addresses) or down
176 *  (toward lower addresses)?
177 *
178 *  If TRUE, then the grows upward.
179 *  If FALSE, then the grows toward smaller addresses.
180 */
181
182/* our stack grows down */
183#define CPU_STACK_GROWS_UP               FALSE
184
185/* FIXME: Is this the right value? */
186#define CPU_CACHE_LINE_BYTES 16
187
188#define CPU_STRUCTURE_ALIGNMENT RTEMS_ALIGNED( CPU_CACHE_LINE_BYTES )
189
190/*
191 *  The following defines the number of bits actually used in the
192 *  interrupt field of the task mode.  How those bits map to the
193 *  CPU interrupt levels is defined by the routine _CPU_ISR_Set_level().
194 */
195
196#define CPU_MODES_INTERRUPT_MASK   0x000000ff
197
198#define CPU_SIZEOF_POINTER 4
199
200#define CPU_MAXIMUM_PROCESSORS 32
201
202/*
203 *  Processor defined structures
204 *
205 *  Examples structures include the descriptor tables from the i386
206 *  and the processor control structure on the i960ca.
207 */
208
209/* may need to put some structures here.  */
210
211/*
212 * Contexts
213 *
214 *  Generally there are 2 types of context to save.
215 *     1. Interrupt registers to save
216 *     2. Task level registers to save
217 *
218 *  This means we have the following 3 context items:
219 *     1. task level context stuff::  Context_Control
220 *     2. floating point task stuff:: Context_Control_fp
221 *     3. special interrupt level context :: Context_Control_interrupt
222 *
223 *  On some processors, it is cost-effective to save only the callee
224 *  preserved registers during a task context switch.  This means
225 *  that the ISR code needs to save those registers which do not
226 *  persist across function calls.  It is not mandatory to make this
227 *  distinctions between the caller/callee saves registers for the
228 *  purpose of minimizing context saved during task switch and on interrupts.
229 *  If the cost of saving extra registers is minimal, simplicity is the
230 *  choice.  Save the same context on interrupt entry as for tasks in
231 *  this case.
232 *
233 *  Additionally, if gdb is to be made aware of RTEMS tasks for this CPU, then
234 *  care should be used in designing the context area.
235 *
236 *  On some CPUs with hardware floating point support, the Context_Control_fp
237 *  structure will not be used or it simply consist of an array of a
238 *  fixed number of bytes.   This is done when the floating point context
239 *  is dumped by a "FP save context" type instruction and the format
240 *  is not really defined by the CPU.  In this case, there is no need
241 *  to figure out the exact format -- only the size.  Of course, although
242 *  this is enough information for RTEMS, it is probably not enough for
243 *  a debugger such as gdb.  But that is another problem.
244 */
245
246#ifndef ASM
247
248/* WARNING: If this structure is modified, the constants in cpu.h must be updated. */
249#if (__mips == 1) || (__mips == 32)
250#define __MIPS_REGISTER_TYPE     uint32_t
251#define __MIPS_FPU_REGISTER_TYPE uint32_t
252#elif __mips == 3
253#define __MIPS_REGISTER_TYPE     uint64_t
254#define __MIPS_FPU_REGISTER_TYPE uint64_t
255#else
256#error "mips register size: unknown architecture level!!"
257#endif
258typedef struct {
259    __MIPS_REGISTER_TYPE s0;
260    __MIPS_REGISTER_TYPE s1;
261    __MIPS_REGISTER_TYPE s2;
262    __MIPS_REGISTER_TYPE s3;
263    __MIPS_REGISTER_TYPE s4;
264    __MIPS_REGISTER_TYPE s5;
265    __MIPS_REGISTER_TYPE s6;
266    __MIPS_REGISTER_TYPE s7;
267    __MIPS_REGISTER_TYPE sp;
268    __MIPS_REGISTER_TYPE fp;
269    __MIPS_REGISTER_TYPE ra;
270    __MIPS_REGISTER_TYPE c0_sr;
271    __MIPS_REGISTER_TYPE c0_epc;
272} Context_Control;
273
274#define _CPU_Context_Get_SP( _context ) \
275  (uintptr_t) (_context)->sp
276
277/* WARNING: If this structure is modified, the constants in cpu.h
278 *          must also be updated.
279 */
280
281typedef struct {
282#if ( CPU_HARDWARE_FP == TRUE )
283    __MIPS_FPU_REGISTER_TYPE fp0;
284    __MIPS_FPU_REGISTER_TYPE fp1;
285    __MIPS_FPU_REGISTER_TYPE fp2;
286    __MIPS_FPU_REGISTER_TYPE fp3;
287    __MIPS_FPU_REGISTER_TYPE fp4;
288    __MIPS_FPU_REGISTER_TYPE fp5;
289    __MIPS_FPU_REGISTER_TYPE fp6;
290    __MIPS_FPU_REGISTER_TYPE fp7;
291    __MIPS_FPU_REGISTER_TYPE fp8;
292    __MIPS_FPU_REGISTER_TYPE fp9;
293    __MIPS_FPU_REGISTER_TYPE fp10;
294    __MIPS_FPU_REGISTER_TYPE fp11;
295    __MIPS_FPU_REGISTER_TYPE fp12;
296    __MIPS_FPU_REGISTER_TYPE fp13;
297    __MIPS_FPU_REGISTER_TYPE fp14;
298    __MIPS_FPU_REGISTER_TYPE fp15;
299    __MIPS_FPU_REGISTER_TYPE fp16;
300    __MIPS_FPU_REGISTER_TYPE fp17;
301    __MIPS_FPU_REGISTER_TYPE fp18;
302    __MIPS_FPU_REGISTER_TYPE fp19;
303    __MIPS_FPU_REGISTER_TYPE fp20;
304    __MIPS_FPU_REGISTER_TYPE fp21;
305    __MIPS_FPU_REGISTER_TYPE fp22;
306    __MIPS_FPU_REGISTER_TYPE fp23;
307    __MIPS_FPU_REGISTER_TYPE fp24;
308    __MIPS_FPU_REGISTER_TYPE fp25;
309    __MIPS_FPU_REGISTER_TYPE fp26;
310    __MIPS_FPU_REGISTER_TYPE fp27;
311    __MIPS_FPU_REGISTER_TYPE fp28;
312    __MIPS_FPU_REGISTER_TYPE fp29;
313    __MIPS_FPU_REGISTER_TYPE fp30;
314    __MIPS_FPU_REGISTER_TYPE fp31;
315    uint32_t fpcs;
316#endif
317} Context_Control_fp;
318
319/*
320 *  This struct reflects the stack frame employed in ISR_Handler.  Note
321 *  that the ISR routine save some of the registers to this frame for
322 *  all interrupts and exceptions.  Other registers are saved only on
323 *  exceptions, while others are not touched at all.  The untouched
324 *  registers are not normally disturbed by high-level language
325 *  programs so they can be accessed when required.
326 *
327 *  The registers and their ordering in this struct must directly
328 *  correspond to the layout and ordering of * shown in iregdef.h,
329 *  as cpu_asm.S uses those definitions to fill the stack frame.
330 *  This struct provides access to the stack frame for C code.
331 *
332 *  Similarly, this structure is used by debugger stubs and exception
333 *  processing routines so be careful when changing the format.
334 *
335 *  NOTE: The comments with this structure and cpu_asm.S should be kept
336 *        in sync.  When in doubt, look in the  code to see if the
337 *        registers you're interested in are actually treated as expected.
338 *        The order of the first portion of this structure follows the
339 *        order of registers expected by gdb.
340 */
341
342typedef struct
343{
344  __MIPS_REGISTER_TYPE  r0;       /*  0 -- NOT FILLED IN */
345  __MIPS_REGISTER_TYPE  at;       /*  1 -- saved always */
346  __MIPS_REGISTER_TYPE  v0;       /*  2 -- saved always */
347  __MIPS_REGISTER_TYPE  v1;       /*  3 -- saved always */
348  __MIPS_REGISTER_TYPE  a0;       /*  4 -- saved always */
349  __MIPS_REGISTER_TYPE  a1;       /*  5 -- saved always */
350  __MIPS_REGISTER_TYPE  a2;       /*  6 -- saved always */
351  __MIPS_REGISTER_TYPE  a3;       /*  7 -- saved always */
352  __MIPS_REGISTER_TYPE  t0;       /*  8 -- saved always */
353  __MIPS_REGISTER_TYPE  t1;       /*  9 -- saved always */
354  __MIPS_REGISTER_TYPE  t2;       /* 10 -- saved always */
355  __MIPS_REGISTER_TYPE  t3;       /* 11 -- saved always */
356  __MIPS_REGISTER_TYPE  t4;       /* 12 -- saved always */
357  __MIPS_REGISTER_TYPE  t5;       /* 13 -- saved always */
358  __MIPS_REGISTER_TYPE  t6;       /* 14 -- saved always */
359  __MIPS_REGISTER_TYPE  t7;       /* 15 -- saved always */
360  __MIPS_REGISTER_TYPE  s0;       /* 16 -- saved on exceptions */
361  __MIPS_REGISTER_TYPE  s1;       /* 17 -- saved on exceptions */
362  __MIPS_REGISTER_TYPE  s2;       /* 18 -- saved on exceptions */
363  __MIPS_REGISTER_TYPE  s3;       /* 19 -- saved on exceptions */
364  __MIPS_REGISTER_TYPE  s4;       /* 20 -- saved on exceptions */
365  __MIPS_REGISTER_TYPE  s5;       /* 21 -- saved on exceptions */
366  __MIPS_REGISTER_TYPE  s6;       /* 22 -- saved on exceptions */
367  __MIPS_REGISTER_TYPE  s7;       /* 23 -- saved on exceptions */
368  __MIPS_REGISTER_TYPE  t8;       /* 24 -- saved always */
369  __MIPS_REGISTER_TYPE  t9;       /* 25 -- saved always */
370  __MIPS_REGISTER_TYPE  k0;       /* 26 -- NOT FILLED IN, kernel tmp reg */
371  __MIPS_REGISTER_TYPE  k1;       /* 27 -- NOT FILLED IN, kernel tmp reg */
372  __MIPS_REGISTER_TYPE  gp;       /* 28 -- saved always */
373  __MIPS_REGISTER_TYPE  sp;       /* 29 -- saved on exceptions NOT RESTORED */
374  __MIPS_REGISTER_TYPE  fp;       /* 30 -- saved always */
375  __MIPS_REGISTER_TYPE  ra;       /* 31 -- saved always */
376  __MIPS_REGISTER_TYPE  c0_sr;    /* 32 -- saved always, some bits are */
377                                  /*    manipulated per-thread          */
378  __MIPS_REGISTER_TYPE  mdlo;     /* 33 -- saved always */
379  __MIPS_REGISTER_TYPE  mdhi;     /* 34 -- saved always */
380  __MIPS_REGISTER_TYPE  badvaddr; /* 35 -- saved on exceptions, read-only */
381  __MIPS_REGISTER_TYPE  cause;    /* 36 -- saved on exceptions NOT restored */
382  __MIPS_REGISTER_TYPE  epc;      /* 37 -- saved always, read-only register */
383                                  /*        but logically restored */
384  __MIPS_FPU_REGISTER_TYPE f0;    /* 38 -- saved if FP enabled */
385  __MIPS_FPU_REGISTER_TYPE f1;    /* 39 -- saved if FP enabled */
386  __MIPS_FPU_REGISTER_TYPE f2;    /* 40 -- saved if FP enabled */
387  __MIPS_FPU_REGISTER_TYPE f3;    /* 41 -- saved if FP enabled */
388  __MIPS_FPU_REGISTER_TYPE f4;    /* 42 -- saved if FP enabled */
389  __MIPS_FPU_REGISTER_TYPE f5;    /* 43 -- saved if FP enabled */
390  __MIPS_FPU_REGISTER_TYPE f6;    /* 44 -- saved if FP enabled */
391  __MIPS_FPU_REGISTER_TYPE f7;    /* 45 -- saved if FP enabled */
392  __MIPS_FPU_REGISTER_TYPE f8;    /* 46 -- saved if FP enabled */
393  __MIPS_FPU_REGISTER_TYPE f9;    /* 47 -- saved if FP enabled */
394  __MIPS_FPU_REGISTER_TYPE f10;   /* 48 -- saved if FP enabled */
395  __MIPS_FPU_REGISTER_TYPE f11;   /* 49 -- saved if FP enabled */
396  __MIPS_FPU_REGISTER_TYPE f12;   /* 50 -- saved if FP enabled */
397  __MIPS_FPU_REGISTER_TYPE f13;   /* 51 -- saved if FP enabled */
398  __MIPS_FPU_REGISTER_TYPE f14;   /* 52 -- saved if FP enabled */
399  __MIPS_FPU_REGISTER_TYPE f15;   /* 53 -- saved if FP enabled */
400  __MIPS_FPU_REGISTER_TYPE f16;   /* 54 -- saved if FP enabled */
401  __MIPS_FPU_REGISTER_TYPE f17;   /* 55 -- saved if FP enabled */
402  __MIPS_FPU_REGISTER_TYPE f18;   /* 56 -- saved if FP enabled */
403  __MIPS_FPU_REGISTER_TYPE f19;   /* 57 -- saved if FP enabled */
404  __MIPS_FPU_REGISTER_TYPE f20;   /* 58 -- saved if FP enabled */
405  __MIPS_FPU_REGISTER_TYPE f21;   /* 59 -- saved if FP enabled */
406  __MIPS_FPU_REGISTER_TYPE f22;   /* 60 -- saved if FP enabled */
407  __MIPS_FPU_REGISTER_TYPE f23;   /* 61 -- saved if FP enabled */
408  __MIPS_FPU_REGISTER_TYPE f24;   /* 62 -- saved if FP enabled */
409  __MIPS_FPU_REGISTER_TYPE f25;   /* 63 -- saved if FP enabled */
410  __MIPS_FPU_REGISTER_TYPE f26;   /* 64 -- saved if FP enabled */
411  __MIPS_FPU_REGISTER_TYPE f27;   /* 65 -- saved if FP enabled */
412  __MIPS_FPU_REGISTER_TYPE f28;   /* 66 -- saved if FP enabled */
413  __MIPS_FPU_REGISTER_TYPE f29;   /* 67 -- saved if FP enabled */
414  __MIPS_FPU_REGISTER_TYPE f30;   /* 68 -- saved if FP enabled */
415  __MIPS_FPU_REGISTER_TYPE f31;   /* 69 -- saved if FP enabled */
416  __MIPS_REGISTER_TYPE     fcsr;  /* 70 -- saved on exceptions */
417                                  /*    (oddly not documented on MGV) */
418  __MIPS_REGISTER_TYPE     feir;  /* 71 -- saved on exceptions */
419                                  /*    (oddly not documented on MGV) */
420
421  /* GDB does not seem to care about anything past this point */
422
423  __MIPS_REGISTER_TYPE  tlbhi;    /* 72 - NOT FILLED IN, doesn't exist on */
424                                  /*         all MIPS CPUs (at least MGV) */
425#if __mips == 1
426  __MIPS_REGISTER_TYPE  tlblo;    /* 73 - NOT FILLED IN, doesn't exist on */
427                                  /*         all MIPS CPUs (at least MGV) */
428#endif
429#if  (__mips == 3) || (__mips == 32)
430  __MIPS_REGISTER_TYPE  tlblo0;   /* 73 - NOT FILLED IN, doesn't exist on */
431                                  /*         all MIPS CPUs (at least MGV) */
432#endif
433
434  __MIPS_REGISTER_TYPE  inx;      /* 74 -- NOT FILLED IN, doesn't exist on */
435                                  /*         all MIPS CPUs (at least MGV) */
436  __MIPS_REGISTER_TYPE  rand;     /* 75 -- NOT FILLED IN, doesn't exist on */
437                                  /*         all MIPS CPUs (at least MGV) */
438  __MIPS_REGISTER_TYPE  ctxt;     /* 76 -- NOT FILLED IN, doesn't exist on */
439                                  /*         all MIPS CPUs (at least MGV) */
440  __MIPS_REGISTER_TYPE  exctype;  /* 77 -- NOT FILLED IN (not enough info) */
441  __MIPS_REGISTER_TYPE  mode;     /* 78 -- NOT FILLED IN (not enough info) */
442  __MIPS_REGISTER_TYPE  prid;     /* 79 -- NOT FILLED IN (not need to do so) */
443  __MIPS_REGISTER_TYPE  tar ;     /* 80 -- target address register, filled on exceptions */
444  /* end of __mips == 1 so NREGS == 81 */
445#if  (__mips == 3) || (__mips == 32)
446  __MIPS_REGISTER_TYPE  tlblo1;   /* 81 -- NOT FILLED IN */
447  __MIPS_REGISTER_TYPE  pagemask; /* 82 -- NOT FILLED IN */
448  __MIPS_REGISTER_TYPE  wired;    /* 83 -- NOT FILLED IN */
449  __MIPS_REGISTER_TYPE  count;    /* 84 -- NOT FILLED IN */
450  __MIPS_REGISTER_TYPE  compare;  /* 85 -- NOT FILLED IN */
451  __MIPS_REGISTER_TYPE  config;   /* 86 -- NOT FILLED IN */
452  __MIPS_REGISTER_TYPE  lladdr;   /* 87 -- NOT FILLED IN */
453  __MIPS_REGISTER_TYPE  watchlo;  /* 88 -- NOT FILLED IN */
454  __MIPS_REGISTER_TYPE  watchhi;  /* 89 -- NOT FILLED IN */
455  __MIPS_REGISTER_TYPE  ecc;      /* 90 -- NOT FILLED IN */
456  __MIPS_REGISTER_TYPE  cacheerr; /* 91 -- NOT FILLED IN */
457  __MIPS_REGISTER_TYPE  taglo;    /* 92 -- NOT FILLED IN */
458  __MIPS_REGISTER_TYPE  taghi;    /* 93 -- NOT FILLED IN */
459  __MIPS_REGISTER_TYPE  errpc;    /* 94 -- NOT FILLED IN */
460  __MIPS_REGISTER_TYPE  xctxt;    /* 95 -- NOT FILLED IN */
461 /* end of __mips == 3 so NREGS == 96 */
462#endif
463
464} CPU_Interrupt_frame;
465
466typedef CPU_Interrupt_frame CPU_Exception_frame;
467
468/*
469 *  This variable is optional.  It is used on CPUs on which it is difficult
470 *  to generate an "uninitialized" FP context.  It is filled in by
471 *  _CPU_Initialize and copied into the task's FP context area during
472 *  _CPU_Context_Initialize.
473 */
474
475extern Context_Control_fp _CPU_Null_fp_context;
476
477/*
478 *  Nothing prevents the porter from declaring more CPU specific variables.
479 */
480
481/* XXX: if needed, put more variables here */
482
483/*
484 *  The size of the floating point context area.  On some CPUs this
485 *  will not be a "sizeof" because the format of the floating point
486 *  area is not defined -- only the size is.  This is usually on
487 *  CPUs with a "floating point save context" instruction.
488 */
489
490#define CPU_CONTEXT_FP_SIZE sizeof( Context_Control_fp )
491
492/*
493 *  Amount of extra stack (above minimum stack size) required by
494 *  system initialization thread.  Remember that in a multiprocessor
495 *  system the system intialization thread becomes the MP server thread.
496 */
497
498#define CPU_MPCI_RECEIVE_SERVER_EXTRA_STACK 0
499
500/*
501 *  Should be large enough to run all RTEMS tests.  This ensures
502 *  that a "reasonable" small application should not have any problems.
503 */
504
505#define CPU_STACK_MINIMUM_SIZE          (8 * 1024)
506
507/*
508 *  CPU's worst alignment requirement for data types on a byte boundary.  This
509 *  alignment does not take into account the requirements for the stack.
510 */
511
512#define CPU_ALIGNMENT              8
513
514/*
515 *  This number corresponds to the byte alignment requirement for the
516 *  heap handler.  This alignment requirement may be stricter than that
517 *  for the data types alignment specified by CPU_ALIGNMENT.  It is
518 *  common for the heap to follow the same alignment requirement as
519 *  CPU_ALIGNMENT.  If the CPU_ALIGNMENT is strict enough for the heap,
520 *  then this should be set to CPU_ALIGNMENT.
521 *
522 *  NOTE:  This does not have to be a power of 2.  It does have to
523 *         be greater or equal to than CPU_ALIGNMENT.
524 */
525
526#define CPU_HEAP_ALIGNMENT         CPU_ALIGNMENT
527
528/*
529 *  This number corresponds to the byte alignment requirement for the
530 *  stack.  This alignment requirement may be stricter than that for the
531 *  data types alignment specified by CPU_ALIGNMENT.  If the CPU_ALIGNMENT
532 *  is strict enough for the stack, then this should be set to 0.
533 *
534 *  NOTE:  This must be a power of 2 either 0 or greater than CPU_ALIGNMENT.
535 */
536
537#define CPU_STACK_ALIGNMENT        CPU_ALIGNMENT
538
539#define CPU_INTERRUPT_STACK_ALIGNMENT CPU_CACHE_LINE_BYTES
540
541void mips_vector_exceptions( CPU_Interrupt_frame *frame );
542
543/*
544 *  ISR handler macros
545 */
546
547/*
548 *  Declare the function that is present in the shared libcpu directory,
549 *  that returns the processor dependent interrupt mask.
550 */
551
552uint32_t mips_interrupt_mask( void );
553
554/*
555 *  Disable all interrupts for an RTEMS critical section.  The previous
556 *  level is returned in _level.
557 */
558
559#define _CPU_ISR_Disable( _level ) \
560  do { \
561    unsigned int _scratch; \
562    mips_get_sr( _scratch ); \
563    mips_set_sr( _scratch & ~SR_INTERRUPT_ENABLE_BITS ); \
564    _level = _scratch & SR_INTERRUPT_ENABLE_BITS; \
565  } while(0)
566
567/*
568 *  Enable interrupts to the previous level (returned by _CPU_ISR_Disable).
569 *  This indicates the end of an RTEMS critical section.  The parameter
570 *  _level is not modified.
571 */
572
573#define _CPU_ISR_Enable( _level )  \
574  do { \
575    unsigned int _scratch; \
576    mips_get_sr( _scratch ); \
577    mips_set_sr( (_scratch & ~SR_INTERRUPT_ENABLE_BITS) | (_level & SR_INTERRUPT_ENABLE_BITS) ); \
578  } while(0)
579
580/*
581 *  This temporarily restores the interrupt to _level before immediately
582 *  disabling them again.  This is used to divide long RTEMS critical
583 *  sections into two or more parts.  The parameter _level is not
584 *  modified.
585 */
586
587#define _CPU_ISR_Flash( _xlevel ) \
588  do { \
589    unsigned int _scratch2 = _xlevel; \
590    _CPU_ISR_Enable( _scratch2 ); \
591    _CPU_ISR_Disable( _scratch2 ); \
592    _xlevel = _scratch2; \
593  } while(0)
594
595RTEMS_INLINE_ROUTINE bool _CPU_ISR_Is_enabled( uint32_t level )
596{
597  return ( level & SR_INTERRUPT_ENABLE_BITS ) != 0;
598}
599
600/*
601 *  Map interrupt level in task mode onto the hardware that the CPU
602 *  actually provides.  Currently, interrupt levels which do not
603 *  map onto the CPU in a generic fashion are undefined.  Someday,
604 *  it would be nice if these were "mapped" by the application
605 *  via a callout.  For example, m68k has 8 levels 0 - 7, levels
606 *  8 - 255 would be available for bsp/application specific meaning.
607 *  This could be used to manage a programmable interrupt controller
608 *  via the rtems_task_mode directive.
609 *
610 *  On the MIPS, 0 is all on.  Non-zero is all off.  This only
611 *  manipulates the IEC.
612 */
613
614uint32_t   _CPU_ISR_Get_level( void );  /* in cpu.c */
615
616void _CPU_ISR_Set_level( uint32_t   );  /* in cpu.c */
617
618/* end of ISR handler macros */
619
620/* Context handler macros */
621
622/*
623 *  Initialize the context to a state suitable for starting a
624 *  task after a context restore operation.  Generally, this
625 *  involves:
626 *
627 *     - setting a starting address
628 *     - preparing the stack
629 *     - preparing the stack and frame pointers
630 *     - setting the proper interrupt level in the context
631 *     - initializing the floating point context
632 *
633 *  This routine generally does not set any unnecessary register
634 *  in the context.  The state of the "general data" registers is
635 *  undefined at task start time.
636 *
637 *  NOTE: This is_fp parameter is TRUE if the thread is to be a floating
638 *        point thread.  This is typically only used on CPUs where the
639 *        FPU may be easily disabled by software such as on the SPARC
640 *        where the PSR contains an enable FPU bit.
641 *
642 *  The per-thread status register holds the interrupt enable, FP enable
643 *  and global interrupt enable for that thread.  It means each thread can
644 *  enable its own set of interrupts.  If interrupts are disabled, RTEMS
645 *  can still dispatch via blocking calls.  This is the function of the
646 *  "Interrupt Level", and on the MIPS, it controls the IEC bit and all
647 *  the hardware interrupts as defined in the SR.  Software ints
648 *  are automatically enabled for all threads, as they will only occur under
649 *  program control anyhow.  Besides, the interrupt level parm is only 8 bits,
650 *  and controlling the software ints plus the others would require 9.
651 *
652 *  If the Interrupt Level is 0, all ints are on.  Otherwise, the
653 *  Interrupt Level should supply a bit pattern to impose on the SR
654 *  interrupt bits; bit 0 applies to the mips1 IEC bit/mips3 EXL&IE, bits 1 thru 6
655 *  apply to the SR register Intr bits from bit 10 thru bit 15.  Bit 7 of
656 *  the Interrupt Level parameter is unused at this time.
657 *
658 *  These are the only per-thread SR bits, the others are maintained
659 *  globally & explicitly preserved by the Context Switch code in cpu_asm.s
660 */
661
662
663#if (__mips == 3) || (__mips == 32)
664#define _INTON          SR_IE
665#if __mips_fpr==64
666#define _EXTRABITS      SR_FR
667#else
668#define _EXTRABITS      0
669#endif /* __mips_fpr==64 */
670#endif /* __mips == 3 */
671#if __mips == 1
672#define _INTON          SR_IEC
673#define _EXTRABITS      0  /* make sure we're in user mode on MIPS1 processors */
674#endif /* __mips == 1 */
675
676
677void _CPU_Context_Initialize(
678  Context_Control  *the_context,
679  uintptr_t        *stack_base,
680  uint32_t          size,
681  uint32_t          new_level,
682  void             *entry_point,
683  bool              is_fp,
684  void             *tls_area
685);
686
687
688/*
689 *  This routine is responsible for somehow restarting the currently
690 *  executing task.  If you are lucky, then all that is necessary
691 *  is restoring the context.  Otherwise, there will need to be
692 *  a special assembly routine which does something special in this
693 *  case.  Context_Restore should work most of the time.  It will
694 *  not work if restarting self conflicts with the stack frame
695 *  assumptions of restoring a context.
696 */
697
698#define _CPU_Context_Restart_self( _the_context ) \
699   _CPU_Context_restore( (_the_context) );
700
701/*
702 *  This routine initializes the FP context area passed to it to.
703 *  There are a few standard ways in which to initialize the
704 *  floating point context.  The code included for this macro assumes
705 *  that this is a CPU in which a "initial" FP context was saved into
706 *  _CPU_Null_fp_context and it simply copies it to the destination
707 *  context passed to it.
708 *
709 *  Other models include (1) not doing anything, and (2) putting
710 *  a "null FP status word" in the correct place in the FP context.
711 */
712
713#if ( CPU_HARDWARE_FP == TRUE )
714#define _CPU_Context_Initialize_fp( _destination ) \
715  { \
716   *(*(_destination)) = _CPU_Null_fp_context; \
717  }
718#endif
719
720/* end of Context handler macros */
721
722/* Fatal Error manager macros */
723
724/*
725 *  This routine copies _error into a known place -- typically a stack
726 *  location or a register, optionally disables interrupts, and
727 *  halts/stops the CPU.
728 */
729
730#define _CPU_Fatal_halt( _source, _error ) \
731  do { \
732    unsigned int _level; \
733    _CPU_ISR_Disable(_level); \
734    (void)_level; \
735    loop: goto loop; \
736  } while (0)
737
738
739extern void mips_break( int error );
740
741#define CPU_USE_GENERIC_BITFIELD_CODE TRUE
742
743/* functions */
744
745/*
746 *  _CPU_Initialize
747 *
748 *  This routine performs CPU dependent initialization.
749 */
750
751void _CPU_Initialize(void);
752
753void *_CPU_Thread_Idle_body( uintptr_t ignored );
754
755/*
756 *  _CPU_Context_switch
757 *
758 *  This routine switches from the run context to the heir context.
759 */
760
761void _CPU_Context_switch(
762  Context_Control  *run,
763  Context_Control  *heir
764);
765
766/*
767 *  _CPU_Context_restore
768 *
769 *  This routine is generally used only to restart self in an
770 *  efficient manner.  It may simply be a label in _CPU_Context_switch.
771 *
772 *  NOTE: May be unnecessary to reload some registers.
773 */
774
775void _CPU_Context_restore(
776  Context_Control *new_context
777) RTEMS_NO_RETURN;
778
779/*
780 *  _CPU_Context_save_fp
781 *
782 *  This routine saves the floating point context passed to it.
783 */
784
785void _CPU_Context_save_fp(
786  Context_Control_fp **fp_context_ptr
787);
788
789/*
790 *  _CPU_Context_restore_fp
791 *
792 *  This routine restores the floating point context passed to it.
793 */
794
795void _CPU_Context_restore_fp(
796  Context_Control_fp **fp_context_ptr
797);
798
799void _CPU_Exception_frame_print( const CPU_Exception_frame *frame );
800
801/*  The following routine swaps the endian format of an unsigned int.
802 *  It must be static because it is referenced indirectly.
803 *
804 *  This version will work on any processor, but if there is a better
805 *  way for your CPU PLEASE use it.  The most common way to do this is to:
806 *
807 *     swap least significant two bytes with 16-bit rotate
808 *     swap upper and lower 16-bits
809 *     swap most significant two bytes with 16-bit rotate
810 *
811 *  Some CPUs have special instructions which swap a 32-bit quantity in
812 *  a single instruction (e.g. i486).  It is probably best to avoid
813 *  an "endian swapping control bit" in the CPU.  One good reason is
814 *  that interrupts would probably have to be disabled to ensure that
815 *  an interrupt does not try to access the same "chunk" with the wrong
816 *  endian.  Another good reason is that on some CPUs, the endian bit
817 *  endianness for ALL fetches -- both code and data -- so the code
818 *  will be fetched incorrectly.
819 */
820
821static inline uint32_t CPU_swap_u32(
822  uint32_t value
823)
824{
825  uint32_t   byte1, byte2, byte3, byte4, swapped;
826
827  byte4 = (value >> 24) & 0xff;
828  byte3 = (value >> 16) & 0xff;
829  byte2 = (value >> 8)  & 0xff;
830  byte1 =  value        & 0xff;
831
832  swapped = (byte1 << 24) | (byte2 << 16) | (byte3 << 8) | byte4;
833  return( swapped );
834}
835
836#define CPU_swap_u16( value ) \
837  (((value&0xff) << 8) | ((value >> 8)&0xff))
838
839typedef uint32_t CPU_Counter_ticks;
840
841uint32_t _CPU_Counter_frequency( void );
842
843CPU_Counter_ticks _CPU_Counter_read( void );
844
845static inline CPU_Counter_ticks _CPU_Counter_difference(
846  CPU_Counter_ticks second,
847  CPU_Counter_ticks first
848)
849{
850  return second - first;
851}
852
853/** Type that can store a 32-bit integer or a pointer. */
854typedef uintptr_t CPU_Uint32ptr;
855
856#endif
857
858#ifdef __cplusplus
859}
860#endif
861
862/**@}*/
863#endif
Note: See TracBrowser for help on using the repository browser.