source: rtems/cpukit/score/cpu/mips/include/rtems/score/cpu.h

Last change on this file was a660e9dc, checked in by Sebastian Huber <sebastian.huber@…>, on 09/08/22 at 08:37:05

Do not use RTEMS_INLINE_ROUTINE

Directly use "static inline" which is available in C99 and later. This brings
the RTEMS implementation closer to standard C.

Close #3935.

  • Property mode set to 100644
File size: 31.0 KB
Line 
1/* SPDX-License-Identifier: BSD-2-Clause */
2
3/**
4 *  @file
5 *
6 *  @brief Mips CPU Dependent Header File
7 */
8
9/*
10 *  Conversion to MIPS port by Alan Cudmore <alanc@linuxstart.com> and
11 *           Joel Sherrill <joel@OARcorp.com>.
12 *
13 *    These changes made the code conditional on standard cpp predefines,
14 *    merged the mips1 and mips3 code sequences as much as possible,
15 *    and moved some of the assembly code to C.  Alan did much of the
16 *    initial analysis and rework.  Joel took over from there and
17 *    wrote the JMR3904 BSP so this could be tested.  Joel also
18 *    added the new interrupt vectoring support in libcpu and
19 *    tried to better support the various interrupt controllers.
20 *
21 */
22
23/*
24 *  Original MIP64ORION port by Craig Lebakken <craigl@transition.com>
25 *           COPYRIGHT (c) 1996 by Transition Networks Inc.
26 *
27 *    To anyone who acknowledges that this file is provided "AS IS"
28 *    without any express or implied warranty:
29 *      permission to use, copy, modify, and distribute this file
30 *      for any purpose is hereby granted without fee, provided that
31 *      the above copyright notice and this notice appears in all
32 *      copies, and that the name of Transition Networks not be used in
33 *      advertising or publicity pertaining to distribution of the
34 *      software without specific, written prior permission.
35 *      Transition Networks makes no representations about the suitability
36 *      of this software for any purpose.
37 *
38 *  COPYRIGHT (c) 1989-2012.
39 *  On-Line Applications Research Corporation (OAR).
40 *
41 * Redistribution and use in source and binary forms, with or without
42 * modification, are permitted provided that the following conditions
43 * are met:
44 * 1. Redistributions of source code must retain the above copyright
45 *    notice, this list of conditions and the following disclaimer.
46 * 2. Redistributions in binary form must reproduce the above copyright
47 *    notice, this list of conditions and the following disclaimer in the
48 *    documentation and/or other materials provided with the distribution.
49 *
50 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
51 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
52 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
53 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
54 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
55 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
56 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
57 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
58 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
59 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
60 * POSSIBILITY OF SUCH DAMAGE.
61 */
62
63#ifndef _RTEMS_SCORE_CPU_H
64#define _RTEMS_SCORE_CPU_H
65
66/**
67 *  @addtogroup RTEMSScoreCPUMIPS
68 */
69/**@{*/
70
71#ifdef __cplusplus
72extern "C" {
73#endif
74
75#include <rtems/score/basedefs.h>
76#include <rtems/score/mips.h>
77
78/* conditional compilation parameters */
79
80/*
81 *  Does the CPU follow the simple vectored interrupt model?
82 *
83 *  If TRUE, then RTEMS allocates the vector table it internally manages.
84 *  If FALSE, then the BSP is assumed to allocate and manage the vector
85 *  table
86 *
87 *  MIPS Specific Information:
88 *
89 *  Up to and including RTEMS 4.10, the MIPS port used simple vectored
90 *  interrupts. But this was changed to the PIC model after 4.10.
91 */
92#define CPU_SIMPLE_VECTORED_INTERRUPTS FALSE
93
94/*
95 *  Does the RTEMS invoke the user's ISR with the vector number and
96 *  a pointer to the saved interrupt frame (1) or just the vector
97 *  number (0)?
98 *
99 */
100
101#define CPU_ISR_PASSES_FRAME_POINTER TRUE
102
103
104
105/*
106 *  Does the CPU have hardware floating point?
107 *
108 *  If TRUE, then the RTEMS_FLOATING_POINT task attribute is supported.
109 *  If FALSE, then the RTEMS_FLOATING_POINT task attribute is ignored.
110 *
111 *  If there is a FP coprocessor such as the i387 or mc68881, then
112 *  the answer is TRUE.
113 *
114 *  The macro name "MIPS_HAS_FPU" should be made CPU specific.
115 *  It indicates whether or not this CPU model has FP support.  For
116 *  example, it would be possible to have an i386_nofp CPU model
117 *  which set this to false to indicate that you have an i386 without
118 *  an i387 and wish to leave floating point support out of RTEMS.
119 */
120
121#if ( MIPS_HAS_FPU == 1 )
122#define CPU_HARDWARE_FP     TRUE
123#else
124#define CPU_HARDWARE_FP     FALSE
125#endif
126
127/*
128 *  Are all tasks RTEMS_FLOATING_POINT tasks implicitly?
129 *
130 *  If TRUE, then the RTEMS_FLOATING_POINT task attribute is assumed.
131 *  If FALSE, then the RTEMS_FLOATING_POINT task attribute is followed.
132 *
133 *  So far, the only CPU in which this option has been used is the
134 *  HP PA-RISC.  The HP C compiler and gcc both implicitly use the
135 *  floating point registers to perform integer multiplies.  If
136 *  a function which you would not think utilize the FP unit DOES,
137 *  then one can not easily predict which tasks will use the FP hardware.
138 *  In this case, this option should be TRUE.
139 *
140 *  If CPU_HARDWARE_FP is FALSE, then this should be FALSE as well.
141 *
142 *  Mips Note: It appears the GCC can implicitly generate FPU
143 *  and Altivec instructions when you least expect them.  So make
144 *  all tasks floating point.
145 */
146
147#define CPU_ALL_TASKS_ARE_FP CPU_HARDWARE_FP
148
149/*
150 *  Should the IDLE task have a floating point context?
151 *
152 *  If TRUE, then the IDLE task is created as a RTEMS_FLOATING_POINT task
153 *  and it has a floating point context which is switched in and out.
154 *  If FALSE, then the IDLE task does not have a floating point context.
155 *
156 *  Setting this to TRUE negatively impacts the time required to preempt
157 *  the IDLE task from an interrupt because the floating point context
158 *  must be saved as part of the preemption.
159 */
160
161#define CPU_IDLE_TASK_IS_FP      FALSE
162
163/*
164 *  Should the saving of the floating point registers be deferred
165 *  until a context switch is made to another different floating point
166 *  task?
167 *
168 *  If TRUE, then the floating point context will not be stored until
169 *  necessary.  It will remain in the floating point registers and not
170 *  disturned until another floating point task is switched to.
171 *
172 *  If FALSE, then the floating point context is saved when a floating
173 *  point task is switched out and restored when the next floating point
174 *  task is restored.  The state of the floating point registers between
175 *  those two operations is not specified.
176 *
177 *  If the floating point context does NOT have to be saved as part of
178 *  interrupt dispatching, then it should be safe to set this to TRUE.
179 *
180 *  Setting this flag to TRUE results in using a different algorithm
181 *  for deciding when to save and restore the floating point context.
182 *  The deferred FP switch algorithm minimizes the number of times
183 *  the FP context is saved and restored.  The FP context is not saved
184 *  until a context switch is made to another, different FP task.
185 *  Thus in a system with only one FP task, the FP context will never
186 *  be saved or restored.
187 */
188
189#define CPU_USE_DEFERRED_FP_SWITCH       TRUE
190
191#define CPU_ENABLE_ROBUST_THREAD_DISPATCH FALSE
192
193/*
194 *  Does the stack grow up (toward higher addresses) or down
195 *  (toward lower addresses)?
196 *
197 *  If TRUE, then the grows upward.
198 *  If FALSE, then the grows toward smaller addresses.
199 */
200
201/* our stack grows down */
202#define CPU_STACK_GROWS_UP               FALSE
203
204/* FIXME: Is this the right value? */
205#define CPU_CACHE_LINE_BYTES 16
206
207#define CPU_STRUCTURE_ALIGNMENT RTEMS_ALIGNED( CPU_CACHE_LINE_BYTES )
208
209/*
210 *  The following defines the number of bits actually used in the
211 *  interrupt field of the task mode.  How those bits map to the
212 *  CPU interrupt levels is defined by the routine _CPU_ISR_Set_level().
213 */
214
215#define CPU_MODES_INTERRUPT_MASK   0x000000ff
216
217#define CPU_SIZEOF_POINTER 4
218
219#define CPU_MAXIMUM_PROCESSORS 32
220
221/*
222 *  Processor defined structures
223 *
224 *  Examples structures include the descriptor tables from the i386
225 *  and the processor control structure on the i960ca.
226 */
227
228/* may need to put some structures here.  */
229
230/*
231 * Contexts
232 *
233 *  Generally there are 2 types of context to save.
234 *     1. Interrupt registers to save
235 *     2. Task level registers to save
236 *
237 *  This means we have the following 3 context items:
238 *     1. task level context stuff::  Context_Control
239 *     2. floating point task stuff:: Context_Control_fp
240 *     3. special interrupt level context :: Context_Control_interrupt
241 *
242 *  On some processors, it is cost-effective to save only the callee
243 *  preserved registers during a task context switch.  This means
244 *  that the ISR code needs to save those registers which do not
245 *  persist across function calls.  It is not mandatory to make this
246 *  distinctions between the caller/callee saves registers for the
247 *  purpose of minimizing context saved during task switch and on interrupts.
248 *  If the cost of saving extra registers is minimal, simplicity is the
249 *  choice.  Save the same context on interrupt entry as for tasks in
250 *  this case.
251 *
252 *  Additionally, if gdb is to be made aware of RTEMS tasks for this CPU, then
253 *  care should be used in designing the context area.
254 *
255 *  On some CPUs with hardware floating point support, the Context_Control_fp
256 *  structure will not be used or it simply consist of an array of a
257 *  fixed number of bytes.   This is done when the floating point context
258 *  is dumped by a "FP save context" type instruction and the format
259 *  is not really defined by the CPU.  In this case, there is no need
260 *  to figure out the exact format -- only the size.  Of course, although
261 *  this is enough information for RTEMS, it is probably not enough for
262 *  a debugger such as gdb.  But that is another problem.
263 */
264
265#ifndef ASM
266
267/* WARNING: If this structure is modified, the constants in cpu.h must be updated. */
268#if (__mips == 1) || (__mips == 32)
269#define __MIPS_REGISTER_TYPE     uint32_t
270#define __MIPS_FPU_REGISTER_TYPE uint32_t
271#elif __mips == 3
272#define __MIPS_REGISTER_TYPE     uint64_t
273#define __MIPS_FPU_REGISTER_TYPE uint64_t
274#else
275#error "mips register size: unknown architecture level!!"
276#endif
277typedef struct {
278    __MIPS_REGISTER_TYPE s0;
279    __MIPS_REGISTER_TYPE s1;
280    __MIPS_REGISTER_TYPE s2;
281    __MIPS_REGISTER_TYPE s3;
282    __MIPS_REGISTER_TYPE s4;
283    __MIPS_REGISTER_TYPE s5;
284    __MIPS_REGISTER_TYPE s6;
285    __MIPS_REGISTER_TYPE s7;
286    __MIPS_REGISTER_TYPE sp;
287    __MIPS_REGISTER_TYPE fp;
288    __MIPS_REGISTER_TYPE ra;
289    __MIPS_REGISTER_TYPE c0_sr;
290    __MIPS_REGISTER_TYPE c0_epc;
291} Context_Control;
292
293#define _CPU_Context_Get_SP( _context ) \
294  (uintptr_t) (_context)->sp
295
296/* WARNING: If this structure is modified, the constants in cpu.h
297 *          must also be updated.
298 */
299
300typedef struct {
301#if ( CPU_HARDWARE_FP == TRUE )
302    __MIPS_FPU_REGISTER_TYPE fp0;
303    __MIPS_FPU_REGISTER_TYPE fp1;
304    __MIPS_FPU_REGISTER_TYPE fp2;
305    __MIPS_FPU_REGISTER_TYPE fp3;
306    __MIPS_FPU_REGISTER_TYPE fp4;
307    __MIPS_FPU_REGISTER_TYPE fp5;
308    __MIPS_FPU_REGISTER_TYPE fp6;
309    __MIPS_FPU_REGISTER_TYPE fp7;
310    __MIPS_FPU_REGISTER_TYPE fp8;
311    __MIPS_FPU_REGISTER_TYPE fp9;
312    __MIPS_FPU_REGISTER_TYPE fp10;
313    __MIPS_FPU_REGISTER_TYPE fp11;
314    __MIPS_FPU_REGISTER_TYPE fp12;
315    __MIPS_FPU_REGISTER_TYPE fp13;
316    __MIPS_FPU_REGISTER_TYPE fp14;
317    __MIPS_FPU_REGISTER_TYPE fp15;
318    __MIPS_FPU_REGISTER_TYPE fp16;
319    __MIPS_FPU_REGISTER_TYPE fp17;
320    __MIPS_FPU_REGISTER_TYPE fp18;
321    __MIPS_FPU_REGISTER_TYPE fp19;
322    __MIPS_FPU_REGISTER_TYPE fp20;
323    __MIPS_FPU_REGISTER_TYPE fp21;
324    __MIPS_FPU_REGISTER_TYPE fp22;
325    __MIPS_FPU_REGISTER_TYPE fp23;
326    __MIPS_FPU_REGISTER_TYPE fp24;
327    __MIPS_FPU_REGISTER_TYPE fp25;
328    __MIPS_FPU_REGISTER_TYPE fp26;
329    __MIPS_FPU_REGISTER_TYPE fp27;
330    __MIPS_FPU_REGISTER_TYPE fp28;
331    __MIPS_FPU_REGISTER_TYPE fp29;
332    __MIPS_FPU_REGISTER_TYPE fp30;
333    __MIPS_FPU_REGISTER_TYPE fp31;
334    uint32_t fpcs;
335#endif
336} Context_Control_fp;
337
338/*
339 *  This struct reflects the stack frame employed in ISR_Handler.  Note
340 *  that the ISR routine save some of the registers to this frame for
341 *  all interrupts and exceptions.  Other registers are saved only on
342 *  exceptions, while others are not touched at all.  The untouched
343 *  registers are not normally disturbed by high-level language
344 *  programs so they can be accessed when required.
345 *
346 *  The registers and their ordering in this struct must directly
347 *  correspond to the layout and ordering of * shown in iregdef.h,
348 *  as cpu_asm.S uses those definitions to fill the stack frame.
349 *  This struct provides access to the stack frame for C code.
350 *
351 *  Similarly, this structure is used by debugger stubs and exception
352 *  processing routines so be careful when changing the format.
353 *
354 *  NOTE: The comments with this structure and cpu_asm.S should be kept
355 *        in sync.  When in doubt, look in the  code to see if the
356 *        registers you're interested in are actually treated as expected.
357 *        The order of the first portion of this structure follows the
358 *        order of registers expected by gdb.
359 */
360
361typedef struct
362{
363  __MIPS_REGISTER_TYPE  r0;       /*  0 -- NOT FILLED IN */
364  __MIPS_REGISTER_TYPE  at;       /*  1 -- saved always */
365  __MIPS_REGISTER_TYPE  v0;       /*  2 -- saved always */
366  __MIPS_REGISTER_TYPE  v1;       /*  3 -- saved always */
367  __MIPS_REGISTER_TYPE  a0;       /*  4 -- saved always */
368  __MIPS_REGISTER_TYPE  a1;       /*  5 -- saved always */
369  __MIPS_REGISTER_TYPE  a2;       /*  6 -- saved always */
370  __MIPS_REGISTER_TYPE  a3;       /*  7 -- saved always */
371  __MIPS_REGISTER_TYPE  t0;       /*  8 -- saved always */
372  __MIPS_REGISTER_TYPE  t1;       /*  9 -- saved always */
373  __MIPS_REGISTER_TYPE  t2;       /* 10 -- saved always */
374  __MIPS_REGISTER_TYPE  t3;       /* 11 -- saved always */
375  __MIPS_REGISTER_TYPE  t4;       /* 12 -- saved always */
376  __MIPS_REGISTER_TYPE  t5;       /* 13 -- saved always */
377  __MIPS_REGISTER_TYPE  t6;       /* 14 -- saved always */
378  __MIPS_REGISTER_TYPE  t7;       /* 15 -- saved always */
379  __MIPS_REGISTER_TYPE  s0;       /* 16 -- saved on exceptions */
380  __MIPS_REGISTER_TYPE  s1;       /* 17 -- saved on exceptions */
381  __MIPS_REGISTER_TYPE  s2;       /* 18 -- saved on exceptions */
382  __MIPS_REGISTER_TYPE  s3;       /* 19 -- saved on exceptions */
383  __MIPS_REGISTER_TYPE  s4;       /* 20 -- saved on exceptions */
384  __MIPS_REGISTER_TYPE  s5;       /* 21 -- saved on exceptions */
385  __MIPS_REGISTER_TYPE  s6;       /* 22 -- saved on exceptions */
386  __MIPS_REGISTER_TYPE  s7;       /* 23 -- saved on exceptions */
387  __MIPS_REGISTER_TYPE  t8;       /* 24 -- saved always */
388  __MIPS_REGISTER_TYPE  t9;       /* 25 -- saved always */
389  __MIPS_REGISTER_TYPE  k0;       /* 26 -- NOT FILLED IN, kernel tmp reg */
390  __MIPS_REGISTER_TYPE  k1;       /* 27 -- NOT FILLED IN, kernel tmp reg */
391  __MIPS_REGISTER_TYPE  gp;       /* 28 -- saved always */
392  __MIPS_REGISTER_TYPE  sp;       /* 29 -- saved on exceptions NOT RESTORED */
393  __MIPS_REGISTER_TYPE  fp;       /* 30 -- saved always */
394  __MIPS_REGISTER_TYPE  ra;       /* 31 -- saved always */
395  __MIPS_REGISTER_TYPE  c0_sr;    /* 32 -- saved always, some bits are */
396                                  /*    manipulated per-thread          */
397  __MIPS_REGISTER_TYPE  mdlo;     /* 33 -- saved always */
398  __MIPS_REGISTER_TYPE  mdhi;     /* 34 -- saved always */
399  __MIPS_REGISTER_TYPE  badvaddr; /* 35 -- saved on exceptions, read-only */
400  __MIPS_REGISTER_TYPE  cause;    /* 36 -- saved on exceptions NOT restored */
401  __MIPS_REGISTER_TYPE  epc;      /* 37 -- saved always, read-only register */
402                                  /*        but logically restored */
403  __MIPS_FPU_REGISTER_TYPE f0;    /* 38 -- saved if FP enabled */
404  __MIPS_FPU_REGISTER_TYPE f1;    /* 39 -- saved if FP enabled */
405  __MIPS_FPU_REGISTER_TYPE f2;    /* 40 -- saved if FP enabled */
406  __MIPS_FPU_REGISTER_TYPE f3;    /* 41 -- saved if FP enabled */
407  __MIPS_FPU_REGISTER_TYPE f4;    /* 42 -- saved if FP enabled */
408  __MIPS_FPU_REGISTER_TYPE f5;    /* 43 -- saved if FP enabled */
409  __MIPS_FPU_REGISTER_TYPE f6;    /* 44 -- saved if FP enabled */
410  __MIPS_FPU_REGISTER_TYPE f7;    /* 45 -- saved if FP enabled */
411  __MIPS_FPU_REGISTER_TYPE f8;    /* 46 -- saved if FP enabled */
412  __MIPS_FPU_REGISTER_TYPE f9;    /* 47 -- saved if FP enabled */
413  __MIPS_FPU_REGISTER_TYPE f10;   /* 48 -- saved if FP enabled */
414  __MIPS_FPU_REGISTER_TYPE f11;   /* 49 -- saved if FP enabled */
415  __MIPS_FPU_REGISTER_TYPE f12;   /* 50 -- saved if FP enabled */
416  __MIPS_FPU_REGISTER_TYPE f13;   /* 51 -- saved if FP enabled */
417  __MIPS_FPU_REGISTER_TYPE f14;   /* 52 -- saved if FP enabled */
418  __MIPS_FPU_REGISTER_TYPE f15;   /* 53 -- saved if FP enabled */
419  __MIPS_FPU_REGISTER_TYPE f16;   /* 54 -- saved if FP enabled */
420  __MIPS_FPU_REGISTER_TYPE f17;   /* 55 -- saved if FP enabled */
421  __MIPS_FPU_REGISTER_TYPE f18;   /* 56 -- saved if FP enabled */
422  __MIPS_FPU_REGISTER_TYPE f19;   /* 57 -- saved if FP enabled */
423  __MIPS_FPU_REGISTER_TYPE f20;   /* 58 -- saved if FP enabled */
424  __MIPS_FPU_REGISTER_TYPE f21;   /* 59 -- saved if FP enabled */
425  __MIPS_FPU_REGISTER_TYPE f22;   /* 60 -- saved if FP enabled */
426  __MIPS_FPU_REGISTER_TYPE f23;   /* 61 -- saved if FP enabled */
427  __MIPS_FPU_REGISTER_TYPE f24;   /* 62 -- saved if FP enabled */
428  __MIPS_FPU_REGISTER_TYPE f25;   /* 63 -- saved if FP enabled */
429  __MIPS_FPU_REGISTER_TYPE f26;   /* 64 -- saved if FP enabled */
430  __MIPS_FPU_REGISTER_TYPE f27;   /* 65 -- saved if FP enabled */
431  __MIPS_FPU_REGISTER_TYPE f28;   /* 66 -- saved if FP enabled */
432  __MIPS_FPU_REGISTER_TYPE f29;   /* 67 -- saved if FP enabled */
433  __MIPS_FPU_REGISTER_TYPE f30;   /* 68 -- saved if FP enabled */
434  __MIPS_FPU_REGISTER_TYPE f31;   /* 69 -- saved if FP enabled */
435  __MIPS_REGISTER_TYPE     fcsr;  /* 70 -- saved on exceptions */
436                                  /*    (oddly not documented on MGV) */
437  __MIPS_REGISTER_TYPE     feir;  /* 71 -- saved on exceptions */
438                                  /*    (oddly not documented on MGV) */
439
440  /* GDB does not seem to care about anything past this point */
441
442  __MIPS_REGISTER_TYPE  tlbhi;    /* 72 - NOT FILLED IN, doesn't exist on */
443                                  /*         all MIPS CPUs (at least MGV) */
444#if __mips == 1
445  __MIPS_REGISTER_TYPE  tlblo;    /* 73 - NOT FILLED IN, doesn't exist on */
446                                  /*         all MIPS CPUs (at least MGV) */
447#endif
448#if  (__mips == 3) || (__mips == 32)
449  __MIPS_REGISTER_TYPE  tlblo0;   /* 73 - NOT FILLED IN, doesn't exist on */
450                                  /*         all MIPS CPUs (at least MGV) */
451#endif
452
453  __MIPS_REGISTER_TYPE  inx;      /* 74 -- NOT FILLED IN, doesn't exist on */
454                                  /*         all MIPS CPUs (at least MGV) */
455  __MIPS_REGISTER_TYPE  rand;     /* 75 -- NOT FILLED IN, doesn't exist on */
456                                  /*         all MIPS CPUs (at least MGV) */
457  __MIPS_REGISTER_TYPE  ctxt;     /* 76 -- NOT FILLED IN, doesn't exist on */
458                                  /*         all MIPS CPUs (at least MGV) */
459  __MIPS_REGISTER_TYPE  exctype;  /* 77 -- NOT FILLED IN (not enough info) */
460  __MIPS_REGISTER_TYPE  mode;     /* 78 -- NOT FILLED IN (not enough info) */
461  __MIPS_REGISTER_TYPE  prid;     /* 79 -- NOT FILLED IN (not need to do so) */
462  __MIPS_REGISTER_TYPE  tar ;     /* 80 -- target address register, filled on exceptions */
463  /* end of __mips == 1 so NREGS == 81 */
464#if  (__mips == 3) || (__mips == 32)
465  __MIPS_REGISTER_TYPE  tlblo1;   /* 81 -- NOT FILLED IN */
466  __MIPS_REGISTER_TYPE  pagemask; /* 82 -- NOT FILLED IN */
467  __MIPS_REGISTER_TYPE  wired;    /* 83 -- NOT FILLED IN */
468  __MIPS_REGISTER_TYPE  count;    /* 84 -- NOT FILLED IN */
469  __MIPS_REGISTER_TYPE  compare;  /* 85 -- NOT FILLED IN */
470  __MIPS_REGISTER_TYPE  config;   /* 86 -- NOT FILLED IN */
471  __MIPS_REGISTER_TYPE  lladdr;   /* 87 -- NOT FILLED IN */
472  __MIPS_REGISTER_TYPE  watchlo;  /* 88 -- NOT FILLED IN */
473  __MIPS_REGISTER_TYPE  watchhi;  /* 89 -- NOT FILLED IN */
474  __MIPS_REGISTER_TYPE  ecc;      /* 90 -- NOT FILLED IN */
475  __MIPS_REGISTER_TYPE  cacheerr; /* 91 -- NOT FILLED IN */
476  __MIPS_REGISTER_TYPE  taglo;    /* 92 -- NOT FILLED IN */
477  __MIPS_REGISTER_TYPE  taghi;    /* 93 -- NOT FILLED IN */
478  __MIPS_REGISTER_TYPE  errpc;    /* 94 -- NOT FILLED IN */
479  __MIPS_REGISTER_TYPE  xctxt;    /* 95 -- NOT FILLED IN */
480 /* end of __mips == 3 so NREGS == 96 */
481#endif
482
483} CPU_Interrupt_frame;
484
485typedef CPU_Interrupt_frame CPU_Exception_frame;
486
487/*
488 *  This variable is optional.  It is used on CPUs on which it is difficult
489 *  to generate an "uninitialized" FP context.  It is filled in by
490 *  _CPU_Initialize and copied into the task's FP context area during
491 *  _CPU_Context_Initialize.
492 */
493
494extern Context_Control_fp _CPU_Null_fp_context;
495
496/*
497 *  Nothing prevents the porter from declaring more CPU specific variables.
498 */
499
500/* XXX: if needed, put more variables here */
501
502/*
503 *  The size of the floating point context area.  On some CPUs this
504 *  will not be a "sizeof" because the format of the floating point
505 *  area is not defined -- only the size is.  This is usually on
506 *  CPUs with a "floating point save context" instruction.
507 */
508
509#define CPU_CONTEXT_FP_SIZE sizeof( Context_Control_fp )
510
511/*
512 *  Amount of extra stack (above minimum stack size) required by
513 *  system initialization thread.  Remember that in a multiprocessor
514 *  system the system intialization thread becomes the MP server thread.
515 */
516
517#define CPU_MPCI_RECEIVE_SERVER_EXTRA_STACK 0
518
519/*
520 *  Should be large enough to run all RTEMS tests.  This ensures
521 *  that a "reasonable" small application should not have any problems.
522 */
523
524#define CPU_STACK_MINIMUM_SIZE          (8 * 1024)
525
526/*
527 *  CPU's worst alignment requirement for data types on a byte boundary.  This
528 *  alignment does not take into account the requirements for the stack.
529 */
530
531#define CPU_ALIGNMENT              8
532
533/*
534 *  This number corresponds to the byte alignment requirement for the
535 *  heap handler.  This alignment requirement may be stricter than that
536 *  for the data types alignment specified by CPU_ALIGNMENT.  It is
537 *  common for the heap to follow the same alignment requirement as
538 *  CPU_ALIGNMENT.  If the CPU_ALIGNMENT is strict enough for the heap,
539 *  then this should be set to CPU_ALIGNMENT.
540 *
541 *  NOTE:  This does not have to be a power of 2.  It does have to
542 *         be greater or equal to than CPU_ALIGNMENT.
543 */
544
545#define CPU_HEAP_ALIGNMENT         CPU_ALIGNMENT
546
547#define CPU_STACK_ALIGNMENT        CPU_ALIGNMENT
548
549#define CPU_INTERRUPT_STACK_ALIGNMENT CPU_CACHE_LINE_BYTES
550
551void mips_vector_exceptions( CPU_Interrupt_frame *frame );
552
553/*
554 *  ISR handler macros
555 */
556
557/*
558 *  Declare the function that is present in the shared libcpu directory,
559 *  that returns the processor dependent interrupt mask.
560 */
561
562uint32_t mips_interrupt_mask( void );
563
564/*
565 *  Disable all interrupts for an RTEMS critical section.  The previous
566 *  level is returned in _level.
567 */
568
569#define _CPU_ISR_Disable( _level ) \
570  do { \
571    unsigned int _scratch; \
572    mips_get_sr( _scratch ); \
573    mips_set_sr( _scratch & ~SR_INTERRUPT_ENABLE_BITS ); \
574    _level = _scratch & SR_INTERRUPT_ENABLE_BITS; \
575  } while(0)
576
577/*
578 *  Enable interrupts to the previous level (returned by _CPU_ISR_Disable).
579 *  This indicates the end of an RTEMS critical section.  The parameter
580 *  _level is not modified.
581 */
582
583#define _CPU_ISR_Enable( _level )  \
584  do { \
585    unsigned int _scratch; \
586    mips_get_sr( _scratch ); \
587    mips_set_sr( (_scratch & ~SR_INTERRUPT_ENABLE_BITS) | (_level & SR_INTERRUPT_ENABLE_BITS) ); \
588  } while(0)
589
590/*
591 *  This temporarily restores the interrupt to _level before immediately
592 *  disabling them again.  This is used to divide long RTEMS critical
593 *  sections into two or more parts.  The parameter _level is not
594 *  modified.
595 */
596
597#define _CPU_ISR_Flash( _xlevel ) \
598  do { \
599    unsigned int _scratch2 = _xlevel; \
600    _CPU_ISR_Enable( _scratch2 ); \
601    _CPU_ISR_Disable( _scratch2 ); \
602    _xlevel = _scratch2; \
603  } while(0)
604
605static inline bool _CPU_ISR_Is_enabled( uint32_t level )
606{
607  return ( level & SR_INTERRUPT_ENABLE_BITS ) != 0;
608}
609
610/*
611 *  Map interrupt level in task mode onto the hardware that the CPU
612 *  actually provides.  Currently, interrupt levels which do not
613 *  map onto the CPU in a generic fashion are undefined.  Someday,
614 *  it would be nice if these were "mapped" by the application
615 *  via a callout.  For example, m68k has 8 levels 0 - 7, levels
616 *  8 - 255 would be available for bsp/application specific meaning.
617 *  This could be used to manage a programmable interrupt controller
618 *  via the rtems_task_mode directive.
619 *
620 *  On the MIPS, 0 is all on.  Non-zero is all off.  This only
621 *  manipulates the IEC.
622 */
623
624uint32_t   _CPU_ISR_Get_level( void );  /* in cpu.c */
625
626void _CPU_ISR_Set_level( uint32_t   );  /* in cpu.c */
627
628/* end of ISR handler macros */
629
630/* Context handler macros */
631
632/*
633 *  Initialize the context to a state suitable for starting a
634 *  task after a context restore operation.  Generally, this
635 *  involves:
636 *
637 *     - setting a starting address
638 *     - preparing the stack
639 *     - preparing the stack and frame pointers
640 *     - setting the proper interrupt level in the context
641 *     - initializing the floating point context
642 *
643 *  This routine generally does not set any unnecessary register
644 *  in the context.  The state of the "general data" registers is
645 *  undefined at task start time.
646 *
647 *  NOTE: This is_fp parameter is TRUE if the thread is to be a floating
648 *        point thread.  This is typically only used on CPUs where the
649 *        FPU may be easily disabled by software such as on the SPARC
650 *        where the PSR contains an enable FPU bit.
651 *
652 *  The per-thread status register holds the interrupt enable, FP enable
653 *  and global interrupt enable for that thread.  It means each thread can
654 *  enable its own set of interrupts.  If interrupts are disabled, RTEMS
655 *  can still dispatch via blocking calls.  This is the function of the
656 *  "Interrupt Level", and on the MIPS, it controls the IEC bit and all
657 *  the hardware interrupts as defined in the SR.  Software ints
658 *  are automatically enabled for all threads, as they will only occur under
659 *  program control anyhow.  Besides, the interrupt level parm is only 8 bits,
660 *  and controlling the software ints plus the others would require 9.
661 *
662 *  If the Interrupt Level is 0, all ints are on.  Otherwise, the
663 *  Interrupt Level should supply a bit pattern to impose on the SR
664 *  interrupt bits; bit 0 applies to the mips1 IEC bit/mips3 EXL&IE, bits 1 thru 6
665 *  apply to the SR register Intr bits from bit 10 thru bit 15.  Bit 7 of
666 *  the Interrupt Level parameter is unused at this time.
667 *
668 *  These are the only per-thread SR bits, the others are maintained
669 *  globally & explicitly preserved by the Context Switch code in cpu_asm.s
670 */
671
672
673#if (__mips == 3) || (__mips == 32)
674#define _INTON          SR_IE
675#if __mips_fpr==64
676#define _EXTRABITS      SR_FR
677#else
678#define _EXTRABITS      0
679#endif /* __mips_fpr==64 */
680#endif /* __mips == 3 */
681#if __mips == 1
682#define _INTON          SR_IEC
683#define _EXTRABITS      0  /* make sure we're in user mode on MIPS1 processors */
684#endif /* __mips == 1 */
685
686
687void _CPU_Context_Initialize(
688  Context_Control  *the_context,
689  uintptr_t        *stack_base,
690  uint32_t          size,
691  uint32_t          new_level,
692  void             *entry_point,
693  bool              is_fp,
694  void             *tls_area
695);
696
697
698/*
699 *  This routine is responsible for somehow restarting the currently
700 *  executing task.  If you are lucky, then all that is necessary
701 *  is restoring the context.  Otherwise, there will need to be
702 *  a special assembly routine which does something special in this
703 *  case.  Context_Restore should work most of the time.  It will
704 *  not work if restarting self conflicts with the stack frame
705 *  assumptions of restoring a context.
706 */
707
708#define _CPU_Context_Restart_self( _the_context ) \
709   _CPU_Context_restore( (_the_context) );
710
711/*
712 *  This routine initializes the FP context area passed to it to.
713 *  There are a few standard ways in which to initialize the
714 *  floating point context.  The code included for this macro assumes
715 *  that this is a CPU in which a "initial" FP context was saved into
716 *  _CPU_Null_fp_context and it simply copies it to the destination
717 *  context passed to it.
718 *
719 *  Other models include (1) not doing anything, and (2) putting
720 *  a "null FP status word" in the correct place in the FP context.
721 */
722
723#if ( CPU_HARDWARE_FP == TRUE )
724#define _CPU_Context_Initialize_fp( _destination ) \
725  { \
726   *(*(_destination)) = _CPU_Null_fp_context; \
727  }
728#endif
729
730/* end of Context handler macros */
731
732extern void mips_break( int error );
733
734#define CPU_USE_GENERIC_BITFIELD_CODE TRUE
735
736#define CPU_USE_LIBC_INIT_FINI_ARRAY FALSE
737
738/* functions */
739
740/*
741 *  _CPU_Initialize
742 *
743 *  This routine performs CPU dependent initialization.
744 */
745
746void _CPU_Initialize(void);
747
748void *_CPU_Thread_Idle_body( uintptr_t ignored );
749
750/*
751 *  _CPU_Context_switch
752 *
753 *  This routine switches from the run context to the heir context.
754 */
755
756void _CPU_Context_switch(
757  Context_Control  *run,
758  Context_Control  *heir
759);
760
761/*
762 *  _CPU_Context_restore
763 *
764 *  This routine is generally used only to restart self in an
765 *  efficient manner.  It may simply be a label in _CPU_Context_switch.
766 *
767 *  NOTE: May be unnecessary to reload some registers.
768 */
769
770RTEMS_NO_RETURN void _CPU_Context_restore( Context_Control *new_context );
771
772/*
773 *  _CPU_Context_save_fp
774 *
775 *  This routine saves the floating point context passed to it.
776 */
777
778void _CPU_Context_save_fp(
779  Context_Control_fp **fp_context_ptr
780);
781
782/*
783 *  _CPU_Context_restore_fp
784 *
785 *  This routine restores the floating point context passed to it.
786 */
787
788void _CPU_Context_restore_fp(
789  Context_Control_fp **fp_context_ptr
790);
791
792void _CPU_Exception_frame_print( const CPU_Exception_frame *frame );
793
794/*  The following routine swaps the endian format of an unsigned int.
795 *  It must be static because it is referenced indirectly.
796 *
797 *  This version will work on any processor, but if there is a better
798 *  way for your CPU PLEASE use it.  The most common way to do this is to:
799 *
800 *     swap least significant two bytes with 16-bit rotate
801 *     swap upper and lower 16-bits
802 *     swap most significant two bytes with 16-bit rotate
803 *
804 *  Some CPUs have special instructions which swap a 32-bit quantity in
805 *  a single instruction (e.g. i486).  It is probably best to avoid
806 *  an "endian swapping control bit" in the CPU.  One good reason is
807 *  that interrupts would probably have to be disabled to ensure that
808 *  an interrupt does not try to access the same "chunk" with the wrong
809 *  endian.  Another good reason is that on some CPUs, the endian bit
810 *  endianness for ALL fetches -- both code and data -- so the code
811 *  will be fetched incorrectly.
812 */
813
814static inline uint32_t CPU_swap_u32(
815  uint32_t value
816)
817{
818  uint32_t   byte1, byte2, byte3, byte4, swapped;
819
820  byte4 = (value >> 24) & 0xff;
821  byte3 = (value >> 16) & 0xff;
822  byte2 = (value >> 8)  & 0xff;
823  byte1 =  value        & 0xff;
824
825  swapped = (byte1 << 24) | (byte2 << 16) | (byte3 << 8) | byte4;
826  return( swapped );
827}
828
829#define CPU_swap_u16( value ) \
830  (((value&0xff) << 8) | ((value >> 8)&0xff))
831
832typedef uint32_t CPU_Counter_ticks;
833
834uint32_t _CPU_Counter_frequency( void );
835
836CPU_Counter_ticks _CPU_Counter_read( void );
837
838/** Type that can store a 32-bit integer or a pointer. */
839typedef uintptr_t CPU_Uint32ptr;
840
841#endif
842
843#ifdef __cplusplus
844}
845#endif
846
847/**@}*/
848#endif
Note: See TracBrowser for help on using the repository browser.