source: rtems/cpukit/score/cpu/m68k/rtems/score/cpu.h @ decff899

5
Last change on this file since decff899 was decff899, checked in by Sebastian Huber <sebastian.huber@…>, on 02/17/16 at 13:26:29

score: Add CPU_MAXIMUM_PROCESSORS

Maximum number of processors of all systems supported by this CPU port.

  • Property mode set to 100644
File size: 19.4 KB
Line 
1/**
2 * @file
3 *
4 * @brief Motorola M68K CPU Dependent Source
5 *
6 * This include file contains information pertaining to the Motorola
7 * m68xxx processor family.
8 */
9
10/*
11 *  COPYRIGHT (c) 1989-2011.
12 *  On-Line Applications Research Corporation (OAR).
13 *
14 *  The license and distribution terms for this file may be
15 *  found in the file LICENSE in this distribution or at
16 *  http://www.rtems.org/license/LICENSE.
17 */
18
19#ifndef _RTEMS_SCORE_CPU_H
20#define _RTEMS_SCORE_CPU_H
21
22#ifdef __cplusplus
23extern "C" {
24#endif
25
26#include <rtems/score/types.h>
27#include <rtems/score/m68k.h>
28
29/* conditional compilation parameters */
30
31#define CPU_INLINE_ENABLE_DISPATCH       TRUE
32
33/*
34 *  Does the CPU follow the simple vectored interrupt model?
35 *
36 *  If TRUE, then RTEMS allocates the vector table it internally manages.
37 *  If FALSE, then the BSP is assumed to allocate and manage the vector
38 *  table
39 *
40 *  M68K Specific Information:
41 *
42 *  XXX document implementation including references if appropriate
43 */
44#define CPU_SIMPLE_VECTORED_INTERRUPTS TRUE
45
46/*
47 *  Use the m68k's hardware interrupt stack support and have the
48 *  interrupt manager allocate the memory for it.
49 */
50
51#if ( M68K_HAS_SEPARATE_STACKS == 1)
52#define CPU_HAS_SOFTWARE_INTERRUPT_STACK 0
53#define CPU_HAS_HARDWARE_INTERRUPT_STACK 1
54#else
55#define CPU_HAS_SOFTWARE_INTERRUPT_STACK 1
56#define CPU_HAS_HARDWARE_INTERRUPT_STACK 0
57#endif
58#define CPU_ALLOCATE_INTERRUPT_STACK     1
59
60/*
61 *  Does the RTEMS invoke the user's ISR with the vector number and
62 *  a pointer to the saved interrupt frame (1) or just the vector
63 *  number (0)?
64 */
65
66#define CPU_ISR_PASSES_FRAME_POINTER 0
67
68/*
69 *  Some family members have no FP, some have an FPU such as the
70 *  MC68881/MC68882 for the MC68020, others have it built in (MC68030, 040).
71 *
72 *  NOTE:  If on a CPU without hardware FP, then one can use software
73 *         emulation.  The gcc software FP emulation code has data which
74 *         must be contexted switched on a per task basis.
75 */
76
77#if ( M68K_HAS_FPU == 1 ) || ( M68K_HAS_EMAC == 1 )
78  #define CPU_HARDWARE_FP TRUE
79  #define CPU_SOFTWARE_FP FALSE
80#else
81  #define CPU_HARDWARE_FP FALSE
82  #if defined( __GNUC__ )
83    #define CPU_SOFTWARE_FP TRUE
84  #else
85    #define CPU_SOFTWARE_FP FALSE
86  #endif
87#endif
88
89/*
90 *  All tasks are not by default floating point tasks on this CPU.
91 *  The IDLE task does not have a floating point context on this CPU.
92 *  It is safe to use the deferred floating point context switch
93 *  algorithm on this CPU.
94 */
95
96#define CPU_ALL_TASKS_ARE_FP             FALSE
97#define CPU_IDLE_TASK_IS_FP              FALSE
98#define CPU_USE_DEFERRED_FP_SWITCH       TRUE
99
100#define CPU_PROVIDES_IDLE_THREAD_BODY    TRUE
101#define CPU_STACK_GROWS_UP               FALSE
102
103/* FIXME: Is this the right value? */
104#define CPU_CACHE_LINE_BYTES 16
105
106#define CPU_STRUCTURE_ALIGNMENT RTEMS_ALIGNED( CPU_CACHE_LINE_BYTES )
107
108/*
109 *  Define what is required to specify how the network to host conversion
110 *  routines are handled.
111 */
112
113#define CPU_BIG_ENDIAN                           TRUE
114#define CPU_LITTLE_ENDIAN                        FALSE
115
116#define CPU_PER_CPU_CONTROL_SIZE 0
117
118#define CPU_MAXIMUM_PROCESSORS 32
119
120#if ( CPU_HARDWARE_FP == TRUE ) && !defined( __mcoldfire__ )
121  #if defined( __mc68060__ )
122    #define M68K_FP_STATE_SIZE 16
123  #else
124    #define M68K_FP_STATE_SIZE 216
125  #endif
126#endif
127
128#ifndef ASM
129
130/* structures */
131
132typedef struct {
133  /* There is no CPU specific per-CPU state */
134} CPU_Per_CPU_control;
135
136/*
137 *  Basic integer context for the m68k family.
138 */
139
140typedef struct {
141  uint32_t    sr;                /* (sr) status register */
142  uint32_t    d2;                /* (d2) data register 2 */
143  uint32_t    d3;                /* (d3) data register 3 */
144  uint32_t    d4;                /* (d4) data register 4 */
145  uint32_t    d5;                /* (d5) data register 5 */
146  uint32_t    d6;                /* (d6) data register 6 */
147  uint32_t    d7;                /* (d7) data register 7 */
148  void       *a2;                /* (a2) address register 2 */
149  void       *a3;                /* (a3) address register 3 */
150  void       *a4;                /* (a4) address register 4 */
151  void       *a5;                /* (a5) address register 5 */
152  void       *a6;                /* (a6) address register 6 */
153  void       *a7_msp;            /* (a7) master stack pointer */
154  #if defined( __mcoldfire__ ) && ( M68K_HAS_FPU == 1 )
155    uint8_t   fpu_dis;
156  #endif
157} Context_Control;
158
159#define _CPU_Context_Get_SP( _context ) \
160  (_context)->a7_msp
161
162/*
163 *  Floating point context areas and support routines
164 */
165
166#if ( CPU_SOFTWARE_FP == TRUE )
167  /*
168   *  This is the same as gcc's view of the software FP condition code
169   *  register _fpCCR.  The implementation of the emulation code is
170   *  in the gcc-VERSION/config/m68k directory.  This structure is
171   *  correct as of gcc 2.7.2.2.
172   */
173  typedef struct {
174    uint16_t _exception_bits;
175    uint16_t _trap_enable_bits;
176    uint16_t _sticky_bits;
177    uint16_t _rounding_mode;
178    uint16_t _format;
179    uint16_t _last_operation;
180    union {
181      float sf;
182      double df;
183    } _operand1;
184    union {
185      float sf;
186      double df;
187    } _operand2;
188  } Context_Control_fp;
189
190  /*
191   *  This software FP implementation is only for GCC.
192   */
193  #define _CPU_Context_Fp_start( _base, _offset ) \
194     ((void *) _Addresses_Add_offset( (_base), (_offset) ) )
195
196  #define _CPU_Context_Initialize_fp( _fp_area ) \
197     { \
198       Context_Control_fp *_fp; \
199       _fp = *(Context_Control_fp **)_fp_area; \
200       _fp->_exception_bits = 0; \
201       _fp->_trap_enable_bits = 0; \
202       _fp->_sticky_bits = 0; \
203       _fp->_rounding_mode = 0;  /* ROUND_TO_NEAREST */ \
204       _fp->_format = 0;         /* NIL */ \
205       _fp->_last_operation = 0; /* NOOP */ \
206       _fp->_operand1.df = 0; \
207       _fp->_operand2.df = 0; \
208     }
209#endif
210
211#if ( CPU_HARDWARE_FP == TRUE )
212  #if defined( __mcoldfire__ )
213    /* We need memset() to initialize the FP context */
214    #include <string.h>
215
216    #if ( M68K_HAS_FPU == 1 )
217      /*
218       * The Cache Control Register (CACR) has write-only access.  It is also
219       * used to enable and disable the FPU.  We need to maintain a copy of
220       * this register to allow per thread values.
221       */
222      extern uint32_t _CPU_cacr_shadow;
223    #endif
224
225    /* We assume that each ColdFire core with a FPU has also an EMAC unit */
226    typedef struct {
227      uint32_t emac_macsr;
228      uint32_t emac_acc0;
229      uint32_t emac_acc1;
230      uint32_t emac_acc2;
231      uint32_t emac_acc3;
232      uint32_t emac_accext01;
233      uint32_t emac_accext23;
234      uint32_t emac_mask;
235      #if ( M68K_HAS_FPU == 1 )
236        uint16_t fp_state_format;
237        uint16_t fp_state_fpcr;
238        double fp_state_op;
239        uint32_t fp_state_fpsr;
240
241        /*
242         * We need to save the FP Instruction Address Register (FPIAR), because
243         * a context switch can occur within a FP exception before the handler
244         * was able to save this register.
245         */
246        uint32_t fp_fpiar;
247
248        double fp_data [8];
249      #endif
250    } Context_Control_fp;
251
252    #define _CPU_Context_Fp_start( _base, _offset ) \
253      ((void *) _Addresses_Add_offset( (_base), (_offset) ))
254
255    /*
256     * The reset value for all context relevant registers except the FP data
257     * registers is zero.  The reset value of the FP data register is NAN.  The
258     * restore of the reset FP state will reset the FP data registers, so the
259     * initial value of them can be arbitrary here.
260     */
261    #define _CPU_Context_Initialize_fp( _fp_area ) \
262      memset( *(_fp_area), 0, sizeof( Context_Control_fp ) )
263  #else
264    /*
265     *  FP context save area for the M68881/M68882 and 68060 numeric
266     *  coprocessors.
267     */
268    typedef struct {
269      /*
270       * M68K_FP_STATE_SIZE bytes for FSAVE/FRESTORE
271       * 96 bytes for FMOVEM FP0-7
272       * 12 bytes for FMOVEM CREGS
273       * 4 bytes for non-null flag
274       */
275      uint8_t fp_save_area [M68K_FP_STATE_SIZE + 112];
276    } Context_Control_fp;
277
278    #define _CPU_Context_Fp_start( _base, _offset ) \
279       ( \
280         (void *) _Addresses_Add_offset( \
281            (_base), \
282            (_offset) + CPU_CONTEXT_FP_SIZE - 4 \
283         ) \
284       )
285
286    #define _CPU_Context_Initialize_fp( _fp_area ) \
287       { \
288         uint32_t   *_fp_context = (uint32_t *)*(_fp_area); \
289         *(--(_fp_context)) = 0; \
290         *(_fp_area) = (void *)(_fp_context); \
291       }
292  #endif
293#endif
294
295/*
296 *  The following structures define the set of information saved
297 *  on the current stack by RTEMS upon receipt of each exc/interrupt.
298 *  These are not used by m68k handlers.
299 *  The exception frame is for rdbg.
300 */
301
302typedef struct {
303  uint32_t   vecnum; /* vector number */
304} CPU_Interrupt_frame;
305
306typedef struct {
307  uint32_t   vecnum; /* vector number */
308  uint32_t   sr; /* status register */
309  uint32_t   pc; /* program counter */
310  uint32_t   d0, d1, d2, d3, d4, d5, d6, d7;
311  uint32_t   a0, a1, a2, a3, a4, a5, a6, a7;
312} CPU_Exception_frame;
313
314/* variables */
315
316extern void*                     _VBR;
317
318#endif /* ASM */
319
320/* constants */
321
322/*
323 *  This defines the number of levels and the mask used to pick those
324 *  bits out of a thread mode.
325 */
326
327#define CPU_MODES_INTERRUPT_LEVEL  0x00000007 /* interrupt level in mode */
328#define CPU_MODES_INTERRUPT_MASK   0x00000007 /* interrupt level in mode */
329
330/*
331 *  context size area for floating point
332 */
333
334#define CPU_CONTEXT_FP_SIZE sizeof( Context_Control_fp )
335
336/*
337 *  extra stack required by the MPCI receive server thread
338 */
339
340#define CPU_MPCI_RECEIVE_SERVER_EXTRA_STACK 1024
341
342/*
343 *  m68k family supports 256 distinct vectors.
344 */
345
346#define CPU_INTERRUPT_NUMBER_OF_VECTORS      256
347#define CPU_INTERRUPT_MAXIMUM_VECTOR_NUMBER  (CPU_INTERRUPT_NUMBER_OF_VECTORS - 1)
348
349/*
350 *  This is defined if the port has a special way to report the ISR nesting
351 *  level.  Most ports maintain the variable _ISR_Nest_level.
352 */
353
354#define CPU_PROVIDES_ISR_IS_IN_PROGRESS FALSE
355
356/*
357 *  Minimum size of a thread's stack.
358 */
359
360#define CPU_STACK_MINIMUM_SIZE           M68K_CPU_STACK_MINIMUM_SIZE
361
362/*
363 *  Maximum priority of a thread. Note based from 0 which is the idle task.
364 */
365#define CPU_PRIORITY_MAXIMUM             M68K_CPU_PRIORITY_MAXIMUM
366
367#define CPU_SIZEOF_POINTER 4
368
369/*
370 *  m68k is pretty tolerant of alignment.  Just put things on 4 byte boundaries.
371 */
372
373#define CPU_ALIGNMENT                    4
374#define CPU_HEAP_ALIGNMENT               CPU_ALIGNMENT
375#define CPU_PARTITION_ALIGNMENT          CPU_ALIGNMENT
376
377/*
378 *  On m68k thread stacks require no further alignment after allocation
379 *  from the Workspace.
380 */
381
382#define CPU_STACK_ALIGNMENT        0
383
384#ifndef ASM
385
386/* macros */
387
388/*
389 *  ISR handler macros
390 *
391 *  These macros perform the following functions:
392 *     + initialize the RTEMS vector table
393 *     + disable all maskable CPU interrupts
394 *     + restore previous interrupt level (enable)
395 *     + temporarily restore interrupts (flash)
396 *     + set a particular level
397 */
398
399#define _CPU_Initialize_vectors()
400
401#define _CPU_ISR_Disable( _level ) \
402  m68k_disable_interrupts( _level )
403
404#define _CPU_ISR_Enable( _level ) \
405  m68k_enable_interrupts( _level )
406
407#define _CPU_ISR_Flash( _level ) \
408  m68k_flash_interrupts( _level )
409
410#define _CPU_ISR_Set_level( _newlevel ) \
411   m68k_set_interrupt_level( _newlevel )
412
413uint32_t   _CPU_ISR_Get_level( void );
414
415/* end of ISR handler macros */
416
417/*
418 *  Context handler macros
419 *
420 *  These macros perform the following functions:
421 *     + initialize a context area
422 *     + restart the current thread
423 *     + calculate the initial pointer into a FP context area
424 *     + initialize an FP context area
425 */
426
427void _CPU_Context_Initialize(
428  Context_Control *the_context,
429  void *stack_area_begin,
430  size_t stack_area_size,
431  uint32_t new_level,
432  void (*entry_point)( void ),
433  bool is_fp,
434  void *tls_area
435);
436
437/* end of Context handler macros */
438
439/*
440 *  _CPU_Thread_Idle_body
441 *
442 *  This routine is the CPU dependent IDLE thread body.
443 *
444 *  NOTE:  It need only be provided if CPU_PROVIDES_IDLE_THREAD_BODY
445 *         is TRUE.
446 */
447
448void *_CPU_Thread_Idle_body( uintptr_t ignored );
449
450/*
451 *  Fatal Error manager macros
452 *
453 *  These macros perform the following functions:
454 *    + disable interrupts and halt the CPU
455 */
456
457#if ( defined(__mcoldfire__) )
458#define _CPU_Fatal_halt( _source, _error ) \
459  { __asm__ volatile( "move.w %%sr,%%d0\n\t" \
460                  "or.l %2,%%d0\n\t" \
461                  "move.w %%d0,%%sr\n\t" \
462                  "move.l %1,%%d0\n\t" \
463                  "move.l #0xDEADBEEF,%%d1\n\t" \
464                  "halt" \
465                  : "=g" (_error) \
466                  : "0" (_error), "d"(0x0700) \
467                  : "d0", "d1" ); \
468  }
469#else
470#define _CPU_Fatal_halt( _source, _error ) \
471  { __asm__ volatile( "movl  %0,%%d0; " \
472                  "orw   #0x0700,%%sr; " \
473                  "stop  #0x2700" : "=d" ((_error)) : "0" ((_error)) ); \
474  }
475#endif
476
477/* end of Fatal Error manager macros */
478
479/*
480 *  Bitfield handler macros
481 *
482 *  These macros perform the following functions:
483 *     + scan for the highest numbered (MSB) set in a 16 bit bitfield
484 *
485 *  NOTE:
486 *
487 *    It appears that on the M68020 bitfield are always 32 bits wide
488 *    when in a register.  This code forces the bitfield to be in
489 *    memory (it really always is anyway). This allows us to
490 *    have a real 16 bit wide bitfield which operates "correctly."
491 */
492
493#define CPU_USE_GENERIC_BITFIELD_CODE FALSE
494#define CPU_USE_GENERIC_BITFIELD_DATA FALSE
495
496#if ( M68K_HAS_BFFFO != 1 )
497/*
498 *  Lookup table for BFFFO simulation
499 */
500extern const unsigned char _CPU_m68k_BFFFO_table[256];
501#endif
502
503#if ( M68K_HAS_BFFFO == 1 )
504
505#define _CPU_Bitfield_Find_first_bit( _value, _output ) \
506  __asm__ volatile( "bfffo (%1),#0,#16,%0" : "=d" (_output) : "a" (&_value));
507
508#elif ( __mcfisaaplus__ )
509  /* This is simplified by the fact that RTEMS never calls it with _value=0 */
510#define _CPU_Bitfield_Find_first_bit( _value, _output ) \
511    __asm__ volatile ( \
512       "   swap     %0\n"        \
513       "   ff1.l    %0\n"        \
514       : "=d" ((_output))        \
515       : "0" ((_value))          \
516       : "cc" ) ;
517
518#else
519/* duplicates BFFFO results for 16 bits (i.e., 15-(_priority) in
520   _CPU_Priority_bits_index is not needed), handles the 0 case, and
521   does not molest _value -- jsg */
522#if ( defined(__mcoldfire__) )
523
524#define _CPU_Bitfield_Find_first_bit( _value, _output ) \
525  { \
526    register int dumby; \
527    \
528    __asm__ volatile ( \
529       "   clr.l   %1\n"         \
530       "   move.w  %2,%1\n"      \
531       "   lsr.l   #8,%1\n"      \
532       "   beq.s   1f\n"         \
533       "   move.b  (%3,%1),%0\n" \
534       "   bra.s   0f\n"         \
535       "1: move.w  %2,%1\n"      \
536       "   move.b  (%3,%1),%0\n" \
537       "   addq.l  #8,%0\n"      \
538       "0: and.l   #0xff,%0\n"   \
539       : "=&d" ((_output)), "=&d" ((dumby))    \
540       : "d" ((_value)), "ao" ((_CPU_m68k_BFFFO_table)) \
541       : "cc" ) ; \
542  }
543#elif ( M68K_HAS_EXTB_L == 1 )
544#define _CPU_Bitfield_Find_first_bit( _value, _output ) \
545  { \
546    register int dumby; \
547    \
548    __asm__ volatile ( "   move.w  %2,%1\n"        \
549       "   lsr.w   #8,%1\n"        \
550       "   beq.s   1f\n"           \
551       "   move.b  (%3,%1.w),%0\n" \
552       "   extb.l  %0\n"           \
553       "   bra.s   0f\n"           \
554       "1: moveq.l #8,%0\n"        \
555       "   add.b   (%3,%2.w),%0\n" \
556       "0:\n"                      \
557       : "=&d" ((_output)), "=&d" ((dumby)) \
558       : "d" ((_value)), "ao" ((_CPU_m68k_BFFFO_table)) \
559       : "cc" ) ; \
560  }
561#else
562#define _CPU_Bitfield_Find_first_bit( _value, _output ) \
563  { \
564    register int dumby; \
565    \
566    __asm__ volatile ( "   move.w  %2,%1\n"        \
567       "   lsr.w   #8,%1\n"        \
568       "   beq.s   1f\n"           \
569       "   move.b  (%3,%1.w),%0\n" \
570       "   and.l   #0x000000ff,%0\n"\
571       "   bra.s   0f\n"           \
572       "1: moveq.l #8,%0\n"        \
573       "   add.b   (%3,%2.w),%0\n" \
574       "0:\n"                      \
575       : "=&d" ((_output)), "=&d" ((dumby)) \
576       : "d" ((_value)), "ao" ((_CPU_m68k_BFFFO_table)) \
577       : "cc" ) ; \
578  }
579#endif
580
581#endif
582
583/* end of Bitfield handler macros */
584
585/*
586 *  Priority handler macros
587 *
588 *  These macros perform the following functions:
589 *    + return a mask with the bit for this major/minor portion of
590 *      of thread priority set.
591 *    + translate the bit number returned by "Bitfield_find_first_bit"
592 *      into an index into the thread ready chain bit maps
593 */
594
595#define _CPU_Priority_Mask( _bit_number ) \
596  ( 0x8000 >> (_bit_number) )
597
598#define _CPU_Priority_bits_index( _priority ) \
599  (_priority)
600
601/* end of Priority handler macros */
602
603/* functions */
604
605/*
606 *  _CPU_Initialize
607 *
608 *  This routine performs CPU dependent initialization.
609 */
610
611void _CPU_Initialize(void);
612
613/*
614 *  _CPU_ISR_install_raw_handler
615 *
616 *  This routine installs a "raw" interrupt handler directly into the
617 *  processor's vector table.
618 */
619
620void _CPU_ISR_install_raw_handler(
621  uint32_t    vector,
622  proc_ptr    new_handler,
623  proc_ptr   *old_handler
624);
625
626/*
627 *  _CPU_ISR_install_vector
628 *
629 *  This routine installs an interrupt vector.
630 */
631
632void _CPU_ISR_install_vector(
633  uint32_t         vector,
634  proc_ptr         new_handler,
635  proc_ptr        *old_handler
636);
637
638/*
639 *  _CPU_Install_interrupt_stack
640 *
641 *  This routine installs the hardware interrupt stack pointer.
642 */
643
644void _CPU_Install_interrupt_stack( void );
645
646/*
647 *  _CPU_Context_switch
648 *
649 *  This routine switches from the run context to the heir context.
650 */
651
652void _CPU_Context_switch(
653  Context_Control  *run,
654  Context_Control  *heir
655);
656
657void _CPU_Context_Restart_self(
658  Context_Control  *the_context
659) RTEMS_NO_RETURN;
660
661/*
662 *  _CPU_Context_save_fp
663 *
664 *  This routine saves the floating point context passed to it.
665 */
666
667void _CPU_Context_save_fp(
668  Context_Control_fp **fp_context_ptr
669);
670
671/*
672 *  _CPU_Context_restore_fp
673 *
674 *  This routine restores the floating point context passed to it.
675 */
676
677void _CPU_Context_restore_fp(
678  Context_Control_fp **fp_context_ptr
679);
680
681static inline void _CPU_Context_volatile_clobber( uintptr_t pattern )
682{
683  /* TODO */
684}
685
686static inline void _CPU_Context_validate( uintptr_t pattern )
687{
688  while (1) {
689    /* TODO */
690  }
691}
692
693/**
694 *  This method prints the CPU exception frame.
695 *
696 *  @param[in] frame points to the frame to be printed
697 */
698void _CPU_Exception_frame_print(
699  const CPU_Exception_frame *frame
700);
701
702typedef uint32_t CPU_Counter_ticks;
703
704CPU_Counter_ticks _CPU_Counter_read( void );
705
706static inline CPU_Counter_ticks _CPU_Counter_difference(
707  CPU_Counter_ticks second,
708  CPU_Counter_ticks first
709)
710{
711  return second - first;
712}
713
714#if (M68K_HAS_FPSP_PACKAGE == 1)
715/*
716 *  Hooks for the Floating Point Support Package (FPSP) provided by Motorola
717 *
718 *  NOTES:
719 *
720 *  Motorola 68k family CPU's before the 68040 used a coprocessor
721 *  (68881 or 68882) to handle floating point.  The 68040 has internal
722 *  floating point support -- but *not* the complete support provided by
723 *  the 68881 or 68882.  The leftover functions are taken care of by the
724 *  M68040 Floating Point Support Package.  Quoting from the MC68040
725 *  Microprocessors User's Manual, Section 9, Floating-Point Unit (MC68040):
726 *
727 *    "When used with the M68040FPSP, the MC68040 FPU is fully
728 *    compliant with IEEE floating-point standards."
729 *
730 *  M68KFPSPInstallExceptionHandlers is in libcpu/m68k/MODEL/fpsp and
731 *  is invoked early in the application code to ensure that proper FP
732 *  behavior is installed.  This is not left to the BSP to call, since
733 *  this would force all applications using that BSP to use FPSP which
734 *  is not necessarily desirable.
735 *
736 *  There is a similar package for the 68060 but RTEMS does not yet
737 *  support the 68060.
738 */
739
740void M68KFPSPInstallExceptionHandlers (void);
741
742extern int (*_FPSP_install_raw_handler)(
743  uint32_t   vector,
744  proc_ptr new_handler,
745  proc_ptr *old_handler
746);
747
748#endif
749
750
751#endif
752
753#ifdef __cplusplus
754}
755#endif
756
757#endif
Note: See TracBrowser for help on using the repository browser.