source: rtems/cpukit/score/cpu/m68k/rtems/score/cpu.h @ 27bfcd8

5
Last change on this file since 27bfcd8 was 27bfcd8, checked in by Sebastian Huber <sebastian.huber@…>, on Jan 25, 2017 at 1:32:02 PM

score: Delete _CPU_Context_Fp_start()

Since the FP area pointer is passed by reference in
_CPU_Context_Initialize_fp() the optional FP area adjustment via
_CPU_Context_Fp_start() is superfluous. It is also wrong with respect
to memory management, e.g. pointer passed to _Workspace_Free() may be
not the one returned by _Workspace_Allocate().

Close #1400.

  • Property mode set to 100644
File size: 18.9 KB
Line 
1/**
2 * @file
3 *
4 * @brief Motorola M68K CPU Dependent Source
5 *
6 * This include file contains information pertaining to the Motorola
7 * m68xxx processor family.
8 */
9
10/*
11 *  COPYRIGHT (c) 1989-2011.
12 *  On-Line Applications Research Corporation (OAR).
13 *
14 *  The license and distribution terms for this file may be
15 *  found in the file LICENSE in this distribution or at
16 *  http://www.rtems.org/license/LICENSE.
17 */
18
19#ifndef _RTEMS_SCORE_CPU_H
20#define _RTEMS_SCORE_CPU_H
21
22#ifdef __cplusplus
23extern "C" {
24#endif
25
26#include <rtems/score/types.h>
27#include <rtems/score/m68k.h>
28
29/* conditional compilation parameters */
30
31/*
32 *  Does the CPU follow the simple vectored interrupt model?
33 *
34 *  If TRUE, then RTEMS allocates the vector table it internally manages.
35 *  If FALSE, then the BSP is assumed to allocate and manage the vector
36 *  table
37 *
38 *  M68K Specific Information:
39 *
40 *  XXX document implementation including references if appropriate
41 */
42#define CPU_SIMPLE_VECTORED_INTERRUPTS TRUE
43
44/*
45 *  Use the m68k's hardware interrupt stack support and have the
46 *  interrupt manager allocate the memory for it.
47 */
48
49#if ( M68K_HAS_SEPARATE_STACKS == 1)
50#define CPU_HAS_SOFTWARE_INTERRUPT_STACK 0
51#define CPU_HAS_HARDWARE_INTERRUPT_STACK 1
52#else
53#define CPU_HAS_SOFTWARE_INTERRUPT_STACK 1
54#define CPU_HAS_HARDWARE_INTERRUPT_STACK 0
55#endif
56#define CPU_ALLOCATE_INTERRUPT_STACK     1
57
58/*
59 *  Does the RTEMS invoke the user's ISR with the vector number and
60 *  a pointer to the saved interrupt frame (1) or just the vector
61 *  number (0)?
62 */
63
64#define CPU_ISR_PASSES_FRAME_POINTER FALSE
65
66/*
67 *  Some family members have no FP, some have an FPU such as the
68 *  MC68881/MC68882 for the MC68020, others have it built in (MC68030, 040).
69 *
70 *  NOTE:  If on a CPU without hardware FP, then one can use software
71 *         emulation.  The gcc software FP emulation code has data which
72 *         must be contexted switched on a per task basis.
73 */
74
75#if ( M68K_HAS_FPU == 1 ) || ( M68K_HAS_EMAC == 1 )
76  #define CPU_HARDWARE_FP TRUE
77  #define CPU_SOFTWARE_FP FALSE
78#else
79  #define CPU_HARDWARE_FP FALSE
80  #if defined( __GNUC__ )
81    #define CPU_SOFTWARE_FP TRUE
82  #else
83    #define CPU_SOFTWARE_FP FALSE
84  #endif
85#endif
86
87/*
88 *  All tasks are not by default floating point tasks on this CPU.
89 *  The IDLE task does not have a floating point context on this CPU.
90 *  It is safe to use the deferred floating point context switch
91 *  algorithm on this CPU.
92 */
93
94#define CPU_ALL_TASKS_ARE_FP             FALSE
95#define CPU_IDLE_TASK_IS_FP              FALSE
96#define CPU_USE_DEFERRED_FP_SWITCH       TRUE
97#define CPU_ENABLE_ROBUST_THREAD_DISPATCH FALSE
98
99#define CPU_PROVIDES_IDLE_THREAD_BODY    TRUE
100#define CPU_STACK_GROWS_UP               FALSE
101
102/* FIXME: Is this the right value? */
103#define CPU_CACHE_LINE_BYTES 16
104
105#define CPU_STRUCTURE_ALIGNMENT RTEMS_ALIGNED( CPU_CACHE_LINE_BYTES )
106
107#define CPU_MAXIMUM_PROCESSORS 32
108
109#if ( CPU_HARDWARE_FP == TRUE ) && !defined( __mcoldfire__ )
110  #if defined( __mc68060__ )
111    #define M68K_FP_STATE_SIZE 16
112  #else
113    #define M68K_FP_STATE_SIZE 216
114  #endif
115#endif
116
117#ifndef ASM
118
119/* structures */
120
121/*
122 *  Basic integer context for the m68k family.
123 */
124
125typedef struct {
126  uint32_t    sr;                /* (sr) status register */
127  uint32_t    d2;                /* (d2) data register 2 */
128  uint32_t    d3;                /* (d3) data register 3 */
129  uint32_t    d4;                /* (d4) data register 4 */
130  uint32_t    d5;                /* (d5) data register 5 */
131  uint32_t    d6;                /* (d6) data register 6 */
132  uint32_t    d7;                /* (d7) data register 7 */
133  void       *a2;                /* (a2) address register 2 */
134  void       *a3;                /* (a3) address register 3 */
135  void       *a4;                /* (a4) address register 4 */
136  void       *a5;                /* (a5) address register 5 */
137  void       *a6;                /* (a6) address register 6 */
138  void       *a7_msp;            /* (a7) master stack pointer */
139  #if defined( __mcoldfire__ ) && ( M68K_HAS_FPU == 1 )
140    uint8_t   fpu_dis;
141  #endif
142} Context_Control;
143
144#define _CPU_Context_Get_SP( _context ) \
145  (_context)->a7_msp
146
147/*
148 *  Floating point context areas and support routines
149 */
150
151#if ( CPU_SOFTWARE_FP == TRUE )
152  /*
153   *  This is the same as gcc's view of the software FP condition code
154   *  register _fpCCR.  The implementation of the emulation code is
155   *  in the gcc-VERSION/config/m68k directory.  This structure is
156   *  correct as of gcc 2.7.2.2.
157   */
158  typedef struct {
159    uint16_t _exception_bits;
160    uint16_t _trap_enable_bits;
161    uint16_t _sticky_bits;
162    uint16_t _rounding_mode;
163    uint16_t _format;
164    uint16_t _last_operation;
165    union {
166      float sf;
167      double df;
168    } _operand1;
169    union {
170      float sf;
171      double df;
172    } _operand2;
173  } Context_Control_fp;
174
175  #define _CPU_Context_Initialize_fp( _fp_area ) \
176     { \
177       Context_Control_fp *_fp; \
178       _fp = *(Context_Control_fp **)_fp_area; \
179       _fp->_exception_bits = 0; \
180       _fp->_trap_enable_bits = 0; \
181       _fp->_sticky_bits = 0; \
182       _fp->_rounding_mode = 0;  /* ROUND_TO_NEAREST */ \
183       _fp->_format = 0;         /* NIL */ \
184       _fp->_last_operation = 0; /* NOOP */ \
185       _fp->_operand1.df = 0; \
186       _fp->_operand2.df = 0; \
187     }
188#endif
189
190#if ( CPU_HARDWARE_FP == TRUE )
191  #if defined( __mcoldfire__ )
192    /* We need memset() to initialize the FP context */
193    #include <string.h>
194
195    #if ( M68K_HAS_FPU == 1 )
196      /*
197       * The Cache Control Register (CACR) has write-only access.  It is also
198       * used to enable and disable the FPU.  We need to maintain a copy of
199       * this register to allow per thread values.
200       */
201      extern uint32_t _CPU_cacr_shadow;
202    #endif
203
204    /* We assume that each ColdFire core with a FPU has also an EMAC unit */
205    typedef struct {
206      uint32_t emac_macsr;
207      uint32_t emac_acc0;
208      uint32_t emac_acc1;
209      uint32_t emac_acc2;
210      uint32_t emac_acc3;
211      uint32_t emac_accext01;
212      uint32_t emac_accext23;
213      uint32_t emac_mask;
214      #if ( M68K_HAS_FPU == 1 )
215        uint16_t fp_state_format;
216        uint16_t fp_state_fpcr;
217        double fp_state_op;
218        uint32_t fp_state_fpsr;
219
220        /*
221         * We need to save the FP Instruction Address Register (FPIAR), because
222         * a context switch can occur within a FP exception before the handler
223         * was able to save this register.
224         */
225        uint32_t fp_fpiar;
226
227        double fp_data [8];
228      #endif
229    } Context_Control_fp;
230
231    /*
232     * The reset value for all context relevant registers except the FP data
233     * registers is zero.  The reset value of the FP data register is NAN.  The
234     * restore of the reset FP state will reset the FP data registers, so the
235     * initial value of them can be arbitrary here.
236     */
237    #define _CPU_Context_Initialize_fp( _fp_area ) \
238      memset( *(_fp_area), 0, sizeof( Context_Control_fp ) )
239  #else
240    /*
241     *  FP context save area for the M68881/M68882 and 68060 numeric
242     *  coprocessors.
243     */
244    typedef struct {
245      /*
246       * M68K_FP_STATE_SIZE bytes for FSAVE/FRESTORE
247       * 96 bytes for FMOVEM FP0-7
248       * 12 bytes for FMOVEM CREGS
249       * 4 bytes for non-null flag
250       */
251      uint8_t fp_save_area [M68K_FP_STATE_SIZE + 112];
252    } Context_Control_fp;
253
254    /*
255     * The floating-point context is saved/restored via FSAVE/FRESTORE which
256     * use a growing down stack.  Initialize the stack and adjust the FP area
257     * pointer accordingly.
258     */
259    #define _CPU_Context_Initialize_fp( _fp_area ) \
260       { \
261         uint32_t *_fp_context = _Addresses_Add_offset( \
262           *(_fp_area), CPU_CONTEXT_FP_SIZE - 4); \
263         *(--(_fp_context)) = 0; \
264         *(_fp_area) = (void *)(_fp_context); \
265       }
266  #endif
267#endif
268
269/*
270 *  The following structures define the set of information saved
271 *  on the current stack by RTEMS upon receipt of each exc/interrupt.
272 *  These are not used by m68k handlers.
273 *  The exception frame is for rdbg.
274 */
275
276typedef struct {
277  uint32_t   vecnum; /* vector number */
278} CPU_Interrupt_frame;
279
280typedef struct {
281  uint32_t   vecnum; /* vector number */
282  uint32_t   sr; /* status register */
283  uint32_t   pc; /* program counter */
284  uint32_t   d0, d1, d2, d3, d4, d5, d6, d7;
285  uint32_t   a0, a1, a2, a3, a4, a5, a6, a7;
286} CPU_Exception_frame;
287
288/* variables */
289
290extern void*                     _VBR;
291
292#endif /* ASM */
293
294/* constants */
295
296/*
297 *  This defines the number of levels and the mask used to pick those
298 *  bits out of a thread mode.
299 */
300
301#define CPU_MODES_INTERRUPT_LEVEL  0x00000007 /* interrupt level in mode */
302#define CPU_MODES_INTERRUPT_MASK   0x00000007 /* interrupt level in mode */
303
304/*
305 *  context size area for floating point
306 */
307
308#define CPU_CONTEXT_FP_SIZE sizeof( Context_Control_fp )
309
310/*
311 *  extra stack required by the MPCI receive server thread
312 */
313
314#define CPU_MPCI_RECEIVE_SERVER_EXTRA_STACK 1024
315
316/*
317 *  m68k family supports 256 distinct vectors.
318 */
319
320#define CPU_INTERRUPT_NUMBER_OF_VECTORS      256
321#define CPU_INTERRUPT_MAXIMUM_VECTOR_NUMBER  (CPU_INTERRUPT_NUMBER_OF_VECTORS - 1)
322
323/*
324 *  This is defined if the port has a special way to report the ISR nesting
325 *  level.  Most ports maintain the variable _ISR_Nest_level.
326 */
327
328#define CPU_PROVIDES_ISR_IS_IN_PROGRESS FALSE
329
330/*
331 *  Minimum size of a thread's stack.
332 */
333
334#define CPU_STACK_MINIMUM_SIZE           M68K_CPU_STACK_MINIMUM_SIZE
335
336/*
337 *  Maximum priority of a thread. Note based from 0 which is the idle task.
338 */
339#define CPU_PRIORITY_MAXIMUM             M68K_CPU_PRIORITY_MAXIMUM
340
341#define CPU_SIZEOF_POINTER 4
342
343/*
344 *  m68k is pretty tolerant of alignment.  Just put things on 4 byte boundaries.
345 */
346
347#define CPU_ALIGNMENT                    4
348#define CPU_HEAP_ALIGNMENT               CPU_ALIGNMENT
349#define CPU_PARTITION_ALIGNMENT          CPU_ALIGNMENT
350
351/*
352 *  On m68k thread stacks require no further alignment after allocation
353 *  from the Workspace.
354 */
355
356#define CPU_STACK_ALIGNMENT        0
357
358#ifndef ASM
359
360/* macros */
361
362/*
363 *  ISR handler macros
364 *
365 *  These macros perform the following functions:
366 *     + initialize the RTEMS vector table
367 *     + disable all maskable CPU interrupts
368 *     + restore previous interrupt level (enable)
369 *     + temporarily restore interrupts (flash)
370 *     + set a particular level
371 */
372
373#define _CPU_Initialize_vectors()
374
375#define _CPU_ISR_Disable( _level ) \
376  m68k_disable_interrupts( _level )
377
378#define _CPU_ISR_Enable( _level ) \
379  m68k_enable_interrupts( _level )
380
381#define _CPU_ISR_Flash( _level ) \
382  m68k_flash_interrupts( _level )
383
384RTEMS_INLINE_ROUTINE bool _CPU_ISR_Is_enabled( uint32_t level )
385{
386  return ( level & 0x0700 ) == 0;
387}
388
389#define _CPU_ISR_Set_level( _newlevel ) \
390   m68k_set_interrupt_level( _newlevel )
391
392uint32_t   _CPU_ISR_Get_level( void );
393
394/* end of ISR handler macros */
395
396/*
397 *  Context handler macros
398 *
399 *  These macros perform the following functions:
400 *     + initialize a context area
401 *     + restart the current thread
402 *     + calculate the initial pointer into a FP context area
403 *     + initialize an FP context area
404 */
405
406void _CPU_Context_Initialize(
407  Context_Control *the_context,
408  void *stack_area_begin,
409  size_t stack_area_size,
410  uint32_t new_level,
411  void (*entry_point)( void ),
412  bool is_fp,
413  void *tls_area
414);
415
416/* end of Context handler macros */
417
418/*
419 *  _CPU_Thread_Idle_body
420 *
421 *  This routine is the CPU dependent IDLE thread body.
422 *
423 *  NOTE:  It need only be provided if CPU_PROVIDES_IDLE_THREAD_BODY
424 *         is TRUE.
425 */
426
427void *_CPU_Thread_Idle_body( uintptr_t ignored );
428
429/*
430 *  Fatal Error manager macros
431 *
432 *  These macros perform the following functions:
433 *    + disable interrupts and halt the CPU
434 */
435
436#if ( defined(__mcoldfire__) )
437#define _CPU_Fatal_halt( _source, _error ) \
438  { __asm__ volatile( "move.w %%sr,%%d0\n\t" \
439                  "or.l %2,%%d0\n\t" \
440                  "move.w %%d0,%%sr\n\t" \
441                  "move.l %1,%%d0\n\t" \
442                  "move.l #0xDEADBEEF,%%d1\n\t" \
443                  "halt" \
444                  : "=g" (_error) \
445                  : "0" (_error), "d"(0x0700) \
446                  : "d0", "d1" ); \
447  }
448#else
449#define _CPU_Fatal_halt( _source, _error ) \
450  { __asm__ volatile( "movl  %0,%%d0; " \
451                  "orw   #0x0700,%%sr; " \
452                  "stop  #0x2700" : "=d" ((_error)) : "0" ((_error)) ); \
453  }
454#endif
455
456/* end of Fatal Error manager macros */
457
458/*
459 *  Bitfield handler macros
460 *
461 *  These macros perform the following functions:
462 *     + scan for the highest numbered (MSB) set in a 16 bit bitfield
463 *
464 *  NOTE:
465 *
466 *    It appears that on the M68020 bitfield are always 32 bits wide
467 *    when in a register.  This code forces the bitfield to be in
468 *    memory (it really always is anyway). This allows us to
469 *    have a real 16 bit wide bitfield which operates "correctly."
470 */
471
472#define CPU_USE_GENERIC_BITFIELD_CODE FALSE
473
474#if ( M68K_HAS_BFFFO != 1 )
475/*
476 *  Lookup table for BFFFO simulation
477 */
478extern const unsigned char _CPU_m68k_BFFFO_table[256];
479#endif
480
481#if ( M68K_HAS_BFFFO == 1 )
482
483#define _CPU_Bitfield_Find_first_bit( _value, _output ) \
484  __asm__ volatile( "bfffo (%1),#0,#16,%0" : "=d" (_output) : "a" (&_value));
485
486#elif ( __mcfisaaplus__ )
487  /* This is simplified by the fact that RTEMS never calls it with _value=0 */
488#define _CPU_Bitfield_Find_first_bit( _value, _output ) \
489    __asm__ volatile ( \
490       "   swap     %0\n"        \
491       "   ff1.l    %0\n"        \
492       : "=d" ((_output))        \
493       : "0" ((_value))          \
494       : "cc" ) ;
495
496#else
497/* duplicates BFFFO results for 16 bits (i.e., 15-(_priority) in
498   _CPU_Priority_bits_index is not needed), handles the 0 case, and
499   does not molest _value -- jsg */
500#if ( defined(__mcoldfire__) )
501
502#define _CPU_Bitfield_Find_first_bit( _value, _output ) \
503  { \
504    register int dumby; \
505    \
506    __asm__ volatile ( \
507       "   clr.l   %1\n"         \
508       "   move.w  %2,%1\n"      \
509       "   lsr.l   #8,%1\n"      \
510       "   beq.s   1f\n"         \
511       "   move.b  (%3,%1),%0\n" \
512       "   bra.s   0f\n"         \
513       "1: move.w  %2,%1\n"      \
514       "   move.b  (%3,%1),%0\n" \
515       "   addq.l  #8,%0\n"      \
516       "0: and.l   #0xff,%0\n"   \
517       : "=&d" ((_output)), "=&d" ((dumby))    \
518       : "d" ((_value)), "ao" ((_CPU_m68k_BFFFO_table)) \
519       : "cc" ) ; \
520  }
521#elif ( M68K_HAS_EXTB_L == 1 )
522#define _CPU_Bitfield_Find_first_bit( _value, _output ) \
523  { \
524    register int dumby; \
525    \
526    __asm__ volatile ( "   move.w  %2,%1\n"        \
527       "   lsr.w   #8,%1\n"        \
528       "   beq.s   1f\n"           \
529       "   move.b  (%3,%1.w),%0\n" \
530       "   extb.l  %0\n"           \
531       "   bra.s   0f\n"           \
532       "1: moveq.l #8,%0\n"        \
533       "   add.b   (%3,%2.w),%0\n" \
534       "0:\n"                      \
535       : "=&d" ((_output)), "=&d" ((dumby)) \
536       : "d" ((_value)), "ao" ((_CPU_m68k_BFFFO_table)) \
537       : "cc" ) ; \
538  }
539#else
540#define _CPU_Bitfield_Find_first_bit( _value, _output ) \
541  { \
542    register int dumby; \
543    \
544    __asm__ volatile ( "   move.w  %2,%1\n"        \
545       "   lsr.w   #8,%1\n"        \
546       "   beq.s   1f\n"           \
547       "   move.b  (%3,%1.w),%0\n" \
548       "   and.l   #0x000000ff,%0\n"\
549       "   bra.s   0f\n"           \
550       "1: moveq.l #8,%0\n"        \
551       "   add.b   (%3,%2.w),%0\n" \
552       "0:\n"                      \
553       : "=&d" ((_output)), "=&d" ((dumby)) \
554       : "d" ((_value)), "ao" ((_CPU_m68k_BFFFO_table)) \
555       : "cc" ) ; \
556  }
557#endif
558
559#endif
560
561/* end of Bitfield handler macros */
562
563/*
564 *  Priority handler macros
565 *
566 *  These macros perform the following functions:
567 *    + return a mask with the bit for this major/minor portion of
568 *      of thread priority set.
569 *    + translate the bit number returned by "Bitfield_find_first_bit"
570 *      into an index into the thread ready chain bit maps
571 */
572
573#define _CPU_Priority_Mask( _bit_number ) \
574  ( 0x8000 >> (_bit_number) )
575
576#define _CPU_Priority_bits_index( _priority ) \
577  (_priority)
578
579/* end of Priority handler macros */
580
581/* functions */
582
583/*
584 *  _CPU_Initialize
585 *
586 *  This routine performs CPU dependent initialization.
587 */
588
589void _CPU_Initialize(void);
590
591/*
592 *  _CPU_ISR_install_raw_handler
593 *
594 *  This routine installs a "raw" interrupt handler directly into the
595 *  processor's vector table.
596 */
597
598void _CPU_ISR_install_raw_handler(
599  uint32_t    vector,
600  proc_ptr    new_handler,
601  proc_ptr   *old_handler
602);
603
604/*
605 *  _CPU_ISR_install_vector
606 *
607 *  This routine installs an interrupt vector.
608 */
609
610void _CPU_ISR_install_vector(
611  uint32_t         vector,
612  proc_ptr         new_handler,
613  proc_ptr        *old_handler
614);
615
616/*
617 *  _CPU_Install_interrupt_stack
618 *
619 *  This routine installs the hardware interrupt stack pointer.
620 */
621
622void _CPU_Install_interrupt_stack( void );
623
624/*
625 *  _CPU_Context_switch
626 *
627 *  This routine switches from the run context to the heir context.
628 */
629
630void _CPU_Context_switch(
631  Context_Control  *run,
632  Context_Control  *heir
633);
634
635void _CPU_Context_Restart_self(
636  Context_Control  *the_context
637) RTEMS_NO_RETURN;
638
639/*
640 *  _CPU_Context_save_fp
641 *
642 *  This routine saves the floating point context passed to it.
643 */
644
645void _CPU_Context_save_fp(
646  Context_Control_fp **fp_context_ptr
647);
648
649/*
650 *  _CPU_Context_restore_fp
651 *
652 *  This routine restores the floating point context passed to it.
653 */
654
655void _CPU_Context_restore_fp(
656  Context_Control_fp **fp_context_ptr
657);
658
659static inline void _CPU_Context_volatile_clobber( uintptr_t pattern )
660{
661  /* TODO */
662}
663
664static inline void _CPU_Context_validate( uintptr_t pattern )
665{
666  while (1) {
667    /* TODO */
668  }
669}
670
671/**
672 *  This method prints the CPU exception frame.
673 *
674 *  @param[in] frame points to the frame to be printed
675 */
676void _CPU_Exception_frame_print(
677  const CPU_Exception_frame *frame
678);
679
680typedef uint32_t CPU_Counter_ticks;
681
682CPU_Counter_ticks _CPU_Counter_read( void );
683
684static inline CPU_Counter_ticks _CPU_Counter_difference(
685  CPU_Counter_ticks second,
686  CPU_Counter_ticks first
687)
688{
689  return second - first;
690}
691
692#if (M68K_HAS_FPSP_PACKAGE == 1)
693/*
694 *  Hooks for the Floating Point Support Package (FPSP) provided by Motorola
695 *
696 *  NOTES:
697 *
698 *  Motorola 68k family CPU's before the 68040 used a coprocessor
699 *  (68881 or 68882) to handle floating point.  The 68040 has internal
700 *  floating point support -- but *not* the complete support provided by
701 *  the 68881 or 68882.  The leftover functions are taken care of by the
702 *  M68040 Floating Point Support Package.  Quoting from the MC68040
703 *  Microprocessors User's Manual, Section 9, Floating-Point Unit (MC68040):
704 *
705 *    "When used with the M68040FPSP, the MC68040 FPU is fully
706 *    compliant with IEEE floating-point standards."
707 *
708 *  M68KFPSPInstallExceptionHandlers is in libcpu/m68k/MODEL/fpsp and
709 *  is invoked early in the application code to ensure that proper FP
710 *  behavior is installed.  This is not left to the BSP to call, since
711 *  this would force all applications using that BSP to use FPSP which
712 *  is not necessarily desirable.
713 *
714 *  There is a similar package for the 68060 but RTEMS does not yet
715 *  support the 68060.
716 */
717
718void M68KFPSPInstallExceptionHandlers (void);
719
720extern int (*_FPSP_install_raw_handler)(
721  uint32_t   vector,
722  proc_ptr new_handler,
723  proc_ptr *old_handler
724);
725
726#endif
727
728
729#endif
730
731#ifdef __cplusplus
732}
733#endif
734
735#endif
Note: See TracBrowser for help on using the repository browser.