source: rtems/cpukit/score/cpu/m32c/rtems/score/cpu.h @ 24bf11e

4.115
Last change on this file since 24bf11e was 24bf11e, checked in by Sebastian Huber <sebastian.huber@…>, on 02/12/14 at 09:31:38

score: Add CPU counter support

Add a CPU counter interface to allow access to a free-running counter.
It is useful to measure short time intervals. This can be used for
example to enable profiling of critical low-level functions.

Add two busy wait functions rtems_counter_delay_ticks() and
rtems_counter_delay_nanoseconds() implemented via the CPU counter.

  • Property mode set to 100644
File size: 39.0 KB
Line 
1/**
2 * @file
3 *
4 * @brief M32C CPU Dependent Source
5 */
6
7/*
8 *  This include file contains information pertaining to the XXX
9 *  processor.
10 *
11 *  @note This file is part of a porting template that is intended
12 *  to be used as the starting point when porting RTEMS to a new
13 *  CPU family.  The following needs to be done when using this as
14 *  the starting point for a new port:
15 *
16 *  + Anywhere there is an XXX, it should be replaced
17 *    with information about the CPU family being ported to.
18 *
19 *  + At the end of each comment section, there is a heading which
20 *    says "Port Specific Information:".  When porting to RTEMS,
21 *    add CPU family specific information in this section
22 */
23
24/*
25 *  COPYRIGHT (c) 1989-2008.
26 *  On-Line Applications Research Corporation (OAR).
27 *
28 *  The license and distribution terms for this file may be
29 *  found in the file LICENSE in this distribution or at
30 *  http://www.rtems.com/license/LICENSE.
31 */
32
33#ifndef _RTEMS_SCORE_CPU_H
34#define _RTEMS_SCORE_CPU_H
35
36#ifdef __cplusplus
37extern "C" {
38#endif
39
40#include <rtems/score/types.h>
41#include <rtems/score/m32c.h>
42
43/* conditional compilation parameters */
44
45#define RTEMS_USE_16_BIT_OBJECT
46
47/**
48 * Should the calls to @ref _Thread_Enable_dispatch be inlined?
49 *
50 * If TRUE, then they are inlined.
51 * If FALSE, then a subroutine call is made.
52 *
53 * This conditional is an example of the classic trade-off of size
54 * versus speed.  Inlining the call (TRUE) typically increases the
55 * size of RTEMS while speeding up the enabling of dispatching.
56 *
57 * NOTE: In general, the @ref _Thread_Dispatch_disable_level will
58 * only be 0 or 1 unless you are in an interrupt handler and that
59 * interrupt handler invokes the executive.]  When not inlined
60 * something calls @ref _Thread_Enable_dispatch which in turns calls
61 * @ref _Thread_Dispatch.  If the enable dispatch is inlined, then
62 * one subroutine call is avoided entirely.
63 *
64 * Port Specific Information:
65 *
66 * XXX document implementation including references if appropriate
67 */
68#define CPU_INLINE_ENABLE_DISPATCH       FALSE
69
70/**
71 * Should the body of the search loops in _Thread_queue_Enqueue_priority
72 * be unrolled one time?  In unrolled each iteration of the loop examines
73 * two "nodes" on the chain being searched.  Otherwise, only one node
74 * is examined per iteration.
75 *
76 * If TRUE, then the loops are unrolled.
77 * If FALSE, then the loops are not unrolled.
78 *
79 * The primary factor in making this decision is the cost of disabling
80 * and enabling interrupts (_ISR_Flash) versus the cost of rest of the
81 * body of the loop.  On some CPUs, the flash is more expensive than
82 * one iteration of the loop body.  In this case, it might be desirable
83 * to unroll the loop.  It is important to note that on some CPUs, this
84 * code is the longest interrupt disable period in RTEMS.  So it is
85 * necessary to strike a balance when setting this parameter.
86 *
87 * Port Specific Information:
88 *
89 * XXX document implementation including references if appropriate
90 */
91#define CPU_UNROLL_ENQUEUE_PRIORITY      TRUE
92
93/**
94 * Does RTEMS manage a dedicated interrupt stack in software?
95 *
96 * If TRUE, then a stack is allocated in @ref _ISR_Handler_initialization.
97 * If FALSE, nothing is done.
98 *
99 * If the CPU supports a dedicated interrupt stack in hardware,
100 * then it is generally the responsibility of the BSP to allocate it
101 * and set it up.
102 *
103 * If the CPU does not support a dedicated interrupt stack, then
104 * the porter has two options: (1) execute interrupts on the
105 * stack of the interrupted task, and (2) have RTEMS manage a dedicated
106 * interrupt stack.
107 *
108 * If this is TRUE, @ref CPU_ALLOCATE_INTERRUPT_STACK should also be TRUE.
109 *
110 * Only one of @ref CPU_HAS_SOFTWARE_INTERRUPT_STACK and
111 * @ref CPU_HAS_HARDWARE_INTERRUPT_STACK should be set to TRUE.  It is
112 * possible that both are FALSE for a particular CPU.  Although it
113 * is unclear what that would imply about the interrupt processing
114 * procedure on that CPU.
115 *
116 * Port Specific Information:
117 *
118 * XXX document implementation including references if appropriate
119 */
120#define CPU_HAS_SOFTWARE_INTERRUPT_STACK FALSE
121
122/**
123 * Does the CPU follow the simple vectored interrupt model?
124 *
125 * If TRUE, then RTEMS allocates the vector table it internally manages.
126 * If FALSE, then the BSP is assumed to allocate and manage the vector
127 * table
128 *
129 * Port Specific Information:
130 *
131 * XXX document implementation including references if appropriate
132 */
133#define CPU_SIMPLE_VECTORED_INTERRUPTS TRUE
134
135/**
136 * Does this CPU have hardware support for a dedicated interrupt stack?
137 *
138 * If TRUE, then it must be installed during initialization.
139 * If FALSE, then no installation is performed.
140 *
141 * If this is TRUE, @ref CPU_ALLOCATE_INTERRUPT_STACK should also be TRUE.
142 *
143 * Only one of @ref CPU_HAS_SOFTWARE_INTERRUPT_STACK and
144 * @ref CPU_HAS_HARDWARE_INTERRUPT_STACK should be set to TRUE.  It is
145 * possible that both are FALSE for a particular CPU.  Although it
146 * is unclear what that would imply about the interrupt processing
147 * procedure on that CPU.
148 *
149 * Port Specific Information:
150 *
151 * XXX document implementation including references if appropriate
152 */
153#define CPU_HAS_HARDWARE_INTERRUPT_STACK TRUE
154
155/**
156 * Does RTEMS allocate a dedicated interrupt stack in the Interrupt Manager?
157 *
158 * If TRUE, then the memory is allocated during initialization.
159 * If FALSE, then the memory is allocated during initialization.
160 *
161 * This should be TRUE is CPU_HAS_SOFTWARE_INTERRUPT_STACK is TRUE.
162 *
163 * Port Specific Information:
164 *
165 * XXX document implementation including references if appropriate
166 */
167#define CPU_ALLOCATE_INTERRUPT_STACK TRUE
168
169/**
170 * Does the RTEMS invoke the user's ISR with the vector number and
171 * a pointer to the saved interrupt frame (1) or just the vector
172 * number (0)?
173 *
174 * Port Specific Information:
175 *
176 * XXX document implementation including references if appropriate
177 */
178#define CPU_ISR_PASSES_FRAME_POINTER 0
179
180/**
181 * @def CPU_HARDWARE_FP
182 *
183 * Does the CPU have hardware floating point?
184 *
185 * If TRUE, then the RTEMS_FLOATING_POINT task attribute is supported.
186 * If FALSE, then the RTEMS_FLOATING_POINT task attribute is ignored.
187 *
188 * If there is a FP coprocessor such as the i387 or mc68881, then
189 * the answer is TRUE.
190 *
191 * The macro name "M32C_HAS_FPU" should be made CPU specific.
192 * It indicates whether or not this CPU model has FP support.  For
193 * example, it would be possible to have an i386_nofp CPU model
194 * which set this to false to indicate that you have an i386 without
195 * an i387 and wish to leave floating point support out of RTEMS.
196 */
197
198/**
199 * @def CPU_SOFTWARE_FP
200 *
201 * Does the CPU have no hardware floating point and GCC provides a
202 * software floating point implementation which must be context
203 * switched?
204 *
205 * This feature conditional is used to indicate whether or not there
206 * is software implemented floating point that must be context
207 * switched.  The determination of whether or not this applies
208 * is very tool specific and the state saved/restored is also
209 * compiler specific.
210 *
211 * Port Specific Information:
212 *
213 * XXX document implementation including references if appropriate
214 */
215#if ( M32C_HAS_FPU == 1 )
216#define CPU_HARDWARE_FP     TRUE
217#else
218#define CPU_HARDWARE_FP     FALSE
219#endif
220#define CPU_SOFTWARE_FP     FALSE
221
222#define CPU_CONTEXT_FP_SIZE 0
223
224/**
225 * Are all tasks RTEMS_FLOATING_POINT tasks implicitly?
226 *
227 * If TRUE, then the RTEMS_FLOATING_POINT task attribute is assumed.
228 * If FALSE, then the RTEMS_FLOATING_POINT task attribute is followed.
229 *
230 * So far, the only CPUs in which this option has been used are the
231 * HP PA-RISC and PowerPC.  On the PA-RISC, The HP C compiler and
232 * gcc both implicitly used the floating point registers to perform
233 * integer multiplies.  Similarly, the PowerPC port of gcc has been
234 * seen to allocate floating point local variables and touch the FPU
235 * even when the flow through a subroutine (like vfprintf()) might
236 * not use floating point formats.
237 *
238 * If a function which you would not think utilize the FP unit DOES,
239 * then one can not easily predict which tasks will use the FP hardware.
240 * In this case, this option should be TRUE.
241 *
242 * If @ref CPU_HARDWARE_FP is FALSE, then this should be FALSE as well.
243 *
244 * Port Specific Information:
245 *
246 * XXX document implementation including references if appropriate
247 */
248#define CPU_ALL_TASKS_ARE_FP     TRUE
249
250/**
251 * Should the IDLE task have a floating point context?
252 *
253 * If TRUE, then the IDLE task is created as a RTEMS_FLOATING_POINT task
254 * and it has a floating point context which is switched in and out.
255 * If FALSE, then the IDLE task does not have a floating point context.
256 *
257 * Setting this to TRUE negatively impacts the time required to preempt
258 * the IDLE task from an interrupt because the floating point context
259 * must be saved as part of the preemption.
260 *
261 * Port Specific Information:
262 *
263 * XXX document implementation including references if appropriate
264 */
265#define CPU_IDLE_TASK_IS_FP      FALSE
266
267/**
268 * Should the saving of the floating point registers be deferred
269 * until a context switch is made to another different floating point
270 * task?
271 *
272 * If TRUE, then the floating point context will not be stored until
273 * necessary.  It will remain in the floating point registers and not
274 * disturned until another floating point task is switched to.
275 *
276 * If FALSE, then the floating point context is saved when a floating
277 * point task is switched out and restored when the next floating point
278 * task is restored.  The state of the floating point registers between
279 * those two operations is not specified.
280 *
281 * If the floating point context does NOT have to be saved as part of
282 * interrupt dispatching, then it should be safe to set this to TRUE.
283 *
284 * Setting this flag to TRUE results in using a different algorithm
285 * for deciding when to save and restore the floating point context.
286 * The deferred FP switch algorithm minimizes the number of times
287 * the FP context is saved and restored.  The FP context is not saved
288 * until a context switch is made to another, different FP task.
289 * Thus in a system with only one FP task, the FP context will never
290 * be saved or restored.
291 *
292 * Port Specific Information:
293 *
294 * XXX document implementation including references if appropriate
295 */
296#define CPU_USE_DEFERRED_FP_SWITCH       TRUE
297
298/**
299 * Does this port provide a CPU dependent IDLE task implementation?
300 *
301 * If TRUE, then the routine @ref _CPU_Thread_Idle_body
302 * must be provided and is the default IDLE thread body instead of
303 * @ref _CPU_Thread_Idle_body.
304 *
305 * If FALSE, then use the generic IDLE thread body if the BSP does
306 * not provide one.
307 *
308 * This is intended to allow for supporting processors which have
309 * a low power or idle mode.  When the IDLE thread is executed, then
310 * the CPU can be powered down.
311 *
312 * The order of precedence for selecting the IDLE thread body is:
313 *
314 *   -#  BSP provided
315 *   -#  CPU dependent (if provided)
316 *   -#  generic (if no BSP and no CPU dependent)
317 *
318 * Port Specific Information:
319 *
320 * XXX document implementation including references if appropriate
321 */
322#define CPU_PROVIDES_IDLE_THREAD_BODY    TRUE
323
324/**
325 * Does the stack grow up (toward higher addresses) or down
326 * (toward lower addresses)?
327 *
328 * If TRUE, then the grows upward.
329 * If FALSE, then the grows toward smaller addresses.
330 *
331 * Port Specific Information:
332 *
333 * XXX document implementation including references if appropriate
334 */
335#define CPU_STACK_GROWS_UP               TRUE
336
337/**
338 * The following is the variable attribute used to force alignment
339 * of critical RTEMS structures.  On some processors it may make
340 * sense to have these aligned on tighter boundaries than
341 * the minimum requirements of the compiler in order to have as
342 * much of the critical data area as possible in a cache line.
343 *
344 * The placement of this macro in the declaration of the variables
345 * is based on the syntactically requirements of the GNU C
346 * "__attribute__" extension.  For example with GNU C, use
347 * the following to force a structures to a 32 byte boundary.
348 *
349 *     __attribute__ ((aligned (32)))
350 *
351 * NOTE: Currently only the Priority Bit Map table uses this feature.
352 *       To benefit from using this, the data must be heavily
353 *       used so it will stay in the cache and used frequently enough
354 *       in the executive to justify turning this on.
355 *
356 * Port Specific Information:
357 *
358 * XXX document implementation including references if appropriate
359 */
360#define CPU_STRUCTURE_ALIGNMENT          __attribute__ ((aligned (2)))
361
362#define CPU_TIMESTAMP_USE_STRUCT_TIMESPEC TRUE
363
364/**
365 * @defgroup CPUEndian Processor Dependent Endianness Support
366 *
367 * This group assists in issues related to processor endianness.
368 *
369 */
370/**@{**/
371
372/**
373 * Define what is required to specify how the network to host conversion
374 * routines are handled.
375 *
376 * NOTE: @a CPU_BIG_ENDIAN and @a CPU_LITTLE_ENDIAN should NOT have the
377 * same values.
378 *
379 * @see CPU_LITTLE_ENDIAN
380 *
381 * Port Specific Information:
382 *
383 * XXX document implementation including references if appropriate
384 */
385#define CPU_BIG_ENDIAN                           TRUE
386
387/**
388 * Define what is required to specify how the network to host conversion
389 * routines are handled.
390 *
391 * NOTE: @ref CPU_BIG_ENDIAN and @ref CPU_LITTLE_ENDIAN should NOT have the
392 * same values.
393 *
394 * @see CPU_BIG_ENDIAN
395 *
396 * Port Specific Information:
397 *
398 * XXX document implementation including references if appropriate
399 */
400#define CPU_LITTLE_ENDIAN                        FALSE
401
402/** @} */
403
404/**
405 * @ingroup CPUInterrupt
406 *
407 * The following defines the number of bits actually used in the
408 * interrupt field of the task mode.  How those bits map to the
409 * CPU interrupt levels is defined by the routine @ref _CPU_ISR_Set_level.
410 *
411 * Port Specific Information:
412 *
413 * XXX document implementation including references if appropriate
414 */
415#define CPU_MODES_INTERRUPT_MASK   0x00000001
416
417#define CPU_PER_CPU_CONTROL_SIZE 0
418
419/*
420 *  Processor defined structures required for cpukit/score.
421 *
422 *  Port Specific Information:
423 *
424 *  XXX document implementation including references if appropriate
425 */
426
427/* may need to put some structures here.  */
428
429typedef struct {
430  /* There is no CPU specific per-CPU state */
431} CPU_Per_CPU_control;
432
433/**
434 * @defgroup CPUContext Processor Dependent Context Management
435 *
436 * From the highest level viewpoint, there are 2 types of context to save.
437 *
438 *    -# Interrupt registers to save
439 *    -# Task level registers to save
440 *
441 * Since RTEMS handles integer and floating point contexts separately, this
442 * means we have the following 3 context items:
443 *
444 *    -# task level context stuff::  Context_Control
445 *    -# floating point task stuff:: Context_Control_fp
446 *    -# special interrupt level context :: CPU_Interrupt_frame
447 *
448 * On some processors, it is cost-effective to save only the callee
449 * preserved registers during a task context switch.  This means
450 * that the ISR code needs to save those registers which do not
451 * persist across function calls.  It is not mandatory to make this
452 * distinctions between the caller/callee saves registers for the
453 * purpose of minimizing context saved during task switch and on interrupts.
454 * If the cost of saving extra registers is minimal, simplicity is the
455 * choice.  Save the same context on interrupt entry as for tasks in
456 * this case.
457 *
458 * Additionally, if gdb is to be made aware of RTEMS tasks for this CPU, then
459 * care should be used in designing the context area.
460 *
461 * On some CPUs with hardware floating point support, the Context_Control_fp
462 * structure will not be used or it simply consist of an array of a
463 * fixed number of bytes.   This is done when the floating point context
464 * is dumped by a "FP save context" type instruction and the format
465 * is not really defined by the CPU.  In this case, there is no need
466 * to figure out the exact format -- only the size.  Of course, although
467 * this is enough information for RTEMS, it is probably not enough for
468 * a debugger such as gdb.  But that is another problem.
469 *
470 * Port Specific Information:
471 *
472 * XXX document implementation including references if appropriate
473 */
474/**@{**/
475
476/**
477 * @ingroup Management
478 *
479 * This defines the minimal set of integer and processor state registers
480 * that must be saved during a voluntary context switch from one thread
481 * to another.
482 */
483typedef struct {
484  /** This will contain the stack pointer. */
485  uint32_t sp;
486  /** This will contain the frame base pointer. */
487  uint32_t fb;
488} Context_Control;
489
490/**
491 * @ingroup Management
492 *
493 * This macro returns the stack pointer associated with @a _context.
494 *
495 * @param[in] _context is the thread context area to access
496 *
497 * @return This method returns the stack pointer.
498 */
499#define _CPU_Context_Get_SP( _context ) \
500  (_context)->sp
501
502/**
503 * @ingroup Management
504 *
505 * This defines the set of integer and processor state registers that must
506 * be saved during an interrupt.  This set does not include any which are
507 * in @ref Context_Control.
508 */
509typedef struct {
510    /**
511     * This field is a hint that a port will have a number of integer
512     * registers that need to be saved when an interrupt occurs or
513     * when a context switch occurs at the end of an ISR.
514     */
515    uint32_t   special_interrupt_register;
516} CPU_Interrupt_frame;
517
518/** @} */
519
520/**
521 * @defgroup CPUInterrupt Processor Dependent Interrupt Management
522 *
523 * On some CPUs, RTEMS supports a software managed interrupt stack.
524 * This stack is allocated by the Interrupt Manager and the switch
525 * is performed in @ref _ISR_Handler.  These variables contain pointers
526 * to the lowest and highest addresses in the chunk of memory allocated
527 * for the interrupt stack.  Since it is unknown whether the stack
528 * grows up or down (in general), this give the CPU dependent
529 * code the option of picking the version it wants to use.
530 *
531 * NOTE: These two variables are required if the macro
532 *       @ref CPU_HAS_SOFTWARE_INTERRUPT_STACK is defined as TRUE.
533 *
534 * Port Specific Information:
535 *
536 * XXX document implementation including references if appropriate
537 *
538 */
539/**@{**/
540
541/*
542 *  Nothing prevents the porter from declaring more CPU specific variables.
543 *
544 *  Port Specific Information:
545 *
546 *  XXX document implementation including references if appropriate
547 */
548
549/* XXX: if needed, put more variables here */
550
551/**
552 * Amount of extra stack (above minimum stack size) required by
553 * MPCI receive server thread.  Remember that in a multiprocessor
554 * system this thread must exist and be able to process all directives.
555 *
556 * Port Specific Information:
557 *
558 * XXX document implementation including references if appropriate
559 */
560#define CPU_MPCI_RECEIVE_SERVER_EXTRA_STACK 0
561
562/**
563 * This defines the number of entries in the @ref _ISR_Vector_table managed
564 * by RTEMS.
565 *
566 * Port Specific Information:
567 *
568 * XXX document implementation including references if appropriate
569 */
570#define CPU_INTERRUPT_NUMBER_OF_VECTORS      32
571
572/** This defines the highest interrupt vector number for this port. */
573#define CPU_INTERRUPT_MAXIMUM_VECTOR_NUMBER  (CPU_INTERRUPT_NUMBER_OF_VECTORS - 1)
574
575/**
576 * This is defined if the port has a special way to report the ISR nesting
577 * level.  Most ports maintain the variable @a _ISR_Nest_level.
578 */
579#define CPU_PROVIDES_ISR_IS_IN_PROGRESS FALSE
580
581/** @} */
582
583/**
584 * @ingroup CPUContext
585 *
586 * Should be large enough to run all RTEMS tests.  This ensures
587 * that a "reasonable" small application should not have any problems.
588 *
589 * Port Specific Information:
590 *
591 * XXX document implementation including references if appropriate
592 */
593#define CPU_STACK_MINIMUM_SIZE          (2048L)
594
595#ifdef __m32cm_cpu__
596  #define CPU_SIZEOF_POINTER 4
597#else
598  #define CPU_SIZEOF_POINTER 2
599#endif
600
601/**
602 * CPU's worst alignment requirement for data types on a byte boundary.  This
603 * alignment does not take into account the requirements for the stack.
604 *
605 * Port Specific Information:
606 *
607 * XXX document implementation including references if appropriate
608 */
609#define CPU_ALIGNMENT              2
610
611/**
612 * This number corresponds to the byte alignment requirement for the
613 * heap handler.  This alignment requirement may be stricter than that
614 * for the data types alignment specified by @ref CPU_ALIGNMENT.  It is
615 * common for the heap to follow the same alignment requirement as
616 * @ref CPU_ALIGNMENT.  If the @ref CPU_ALIGNMENT is strict enough for
617 * the heap, then this should be set to @ref CPU_ALIGNMENT.
618 *
619 * NOTE:  This does not have to be a power of 2 although it should be
620 *        a multiple of 2 greater than or equal to 2.  The requirement
621 *        to be a multiple of 2 is because the heap uses the least
622 *        significant field of the front and back flags to indicate
623 *        that a block is in use or free.  So you do not want any odd
624 *        length blocks really putting length data in that bit.
625 *
626 *        On byte oriented architectures, @ref CPU_HEAP_ALIGNMENT normally will
627 *        have to be greater or equal to than @ref CPU_ALIGNMENT to ensure that
628 *        elements allocated from the heap meet all restrictions.
629 *
630 * Port Specific Information:
631 *
632 * XXX document implementation including references if appropriate
633 */
634#define CPU_HEAP_ALIGNMENT         4
635
636/**
637 * This number corresponds to the byte alignment requirement for memory
638 * buffers allocated by the partition manager.  This alignment requirement
639 * may be stricter than that for the data types alignment specified by
640 * @ref CPU_ALIGNMENT.  It is common for the partition to follow the same
641 * alignment requirement as @ref CPU_ALIGNMENT.  If the @ref CPU_ALIGNMENT is
642 * strict enough for the partition, then this should be set to
643 * @ref CPU_ALIGNMENT.
644 *
645 * NOTE:  This does not have to be a power of 2.  It does have to
646 *        be greater or equal to than @ref CPU_ALIGNMENT.
647 *
648 * Port Specific Information:
649 *
650 * XXX document implementation including references if appropriate
651 */
652#define CPU_PARTITION_ALIGNMENT    CPU_ALIGNMENT
653
654/**
655 * This number corresponds to the byte alignment requirement for the
656 * stack.  This alignment requirement may be stricter than that for the
657 * data types alignment specified by @ref CPU_ALIGNMENT.  If the
658 * @ref CPU_ALIGNMENT is strict enough for the stack, then this should be
659 * set to 0.
660 *
661 * NOTE: This must be a power of 2 either 0 or greater than @ref CPU_ALIGNMENT.
662 *
663 * Port Specific Information:
664 *
665 * XXX document implementation including references if appropriate
666 */
667#define CPU_STACK_ALIGNMENT        0
668
669/*
670 *  ISR handler macros
671 */
672
673/**
674 * @ingroup CPUInterrupt
675 *
676 * Support routine to initialize the RTEMS vector table after it is allocated.
677 *
678 * Port Specific Information:
679 *
680 * XXX document implementation including references if appropriate
681 */
682#define _CPU_Initialize_vectors()
683
684/**
685 * @ingroup CPUInterrupt
686 *
687 * Disable all interrupts for an RTEMS critical section.  The previous
688 * level is returned in @a _isr_cookie.
689 *
690 * @param[out] _isr_cookie will contain the previous level cookie
691 *
692 * Port Specific Information:
693 *
694 * XXX document implementation including references if appropriate
695 */
696#define _CPU_ISR_Disable( _isr_cookie ) \
697  do { \
698    int _flg; \
699    m32c_get_flg( _flg ); \
700    _isr_cookie = _flg; \
701    __asm__ volatile( "fclr I" ); \
702  } while(0)
703
704/**
705 * @ingroup CPUInterrupt
706 *
707 * Enable interrupts to the previous level (returned by _CPU_ISR_Disable).
708 * This indicates the end of an RTEMS critical section.  The parameter
709 * @a _isr_cookie is not modified.
710 *
711 * @param[in] _isr_cookie contain the previous level cookie
712 *
713 * Port Specific Information:
714 *
715 * XXX document implementation including references if appropriate
716 */
717#define _CPU_ISR_Enable(_isr_cookie) \
718  do { \
719    int _flg = (int) (_isr_cookie); \
720    m32c_set_flg( _flg ); \
721  } while(0)
722
723/**
724 * @ingroup CPUInterrupt
725 *
726 * This temporarily restores the interrupt to @a _isr_cookie before immediately
727 * disabling them again.  This is used to divide long RTEMS critical
728 * sections into two or more parts.  The parameter @a _isr_cookie is not
729 * modified.
730 *
731 * @param[in] _isr_cookie contain the previous level cookie
732 *
733 * Port Specific Information:
734 *
735 * XXX document implementation including references if appropriate
736 */
737#define _CPU_ISR_Flash( _isr_cookie ) \
738  do { \
739    int _flg = (int) (_isr_cookie); \
740    m32c_set_flg( _flg ); \
741    __asm__ volatile( "fclr I" ); \
742  } while(0)
743
744/**
745 * @ingroup CPUInterrupt
746 *
747 * This routine and @ref _CPU_ISR_Get_level
748 * Map the interrupt level in task mode onto the hardware that the CPU
749 * actually provides.  Currently, interrupt levels which do not
750 * map onto the CPU in a generic fashion are undefined.  Someday,
751 * it would be nice if these were "mapped" by the application
752 * via a callout.  For example, m68k has 8 levels 0 - 7, levels
753 * 8 - 255 would be available for bsp/application specific meaning.
754 *This could be used to manage a programmable interrupt controller
755 * via the rtems_task_mode directive.
756 *
757 * Port Specific Information:
758 *
759 * XXX document implementation including references if appropriate
760 */
761#define _CPU_ISR_Set_level( _new_level ) \
762  do { \
763    if (_new_level) __asm__ volatile( "fclr I" ); \
764    else            __asm__ volatile( "fset I" ); \
765  } while(0)
766
767/**
768 * @ingroup CPUInterrupt
769 *
770 * Return the current interrupt disable level for this task in
771 * the format used by the interrupt level portion of the task mode.
772 *
773 * NOTE: This routine usually must be implemented as a subroutine.
774 *
775 * Port Specific Information:
776 *
777 * XXX document implementation including references if appropriate
778 */
779uint32_t   _CPU_ISR_Get_level( void );
780
781/* end of ISR handler macros */
782
783/* Context handler macros */
784
785/**
786 * @ingroup CPUContext
787 *
788 * Initialize the context to a state suitable for starting a
789 * task after a context restore operation.  Generally, this
790 * involves:
791 *
792 *    - setting a starting address
793 *    - preparing the stack
794 *    - preparing the stack and frame pointers
795 *    - setting the proper interrupt level in the context
796 *    - initializing the floating point context
797 *
798 * This routine generally does not set any unnecessary register
799 * in the context.  The state of the "general data" registers is
800 * undefined at task start time.
801 *
802 * @param[in] _the_context is the context structure to be initialized
803 * @param[in] _stack_base is the lowest physical address of this task's stack
804 * @param[in] _size is the size of this task's stack
805 * @param[in] _isr is the interrupt disable level
806 * @param[in] _entry_point is the thread's entry point.  This is
807 *        always @a _Thread_Handler
808 * @param[in] _is_fp is TRUE if the thread is to be a floating
809 *       point thread.  This is typically only used on CPUs where the
810 *       FPU may be easily disabled by software such as on the SPARC
811 *       where the PSR contains an enable FPU bit.
812 * @param[in] tls_area is the thread-local storage (TLS) area
813 *
814 * Port Specific Information:
815 *
816 * XXX document implementation including references if appropriate
817 */
818void _CPU_Context_Initialize(
819  Context_Control  *the_context,
820  uint32_t         *stack_base,
821  size_t            size,
822  uint32_t          new_level,
823  void             *entry_point,
824  bool              is_fp,
825  void             *tls_area
826);
827
828/**
829 * This routine is responsible for somehow restarting the currently
830 * executing task.  If you are lucky, then all that is necessary
831 * is restoring the context.  Otherwise, there will need to be
832 * a special assembly routine which does something special in this
833 * case.  For many ports, simply adding a label to the restore path
834 * of @ref _CPU_Context_switch will work.  On other ports, it may be
835 * possibly to load a few arguments and jump to the restore path. It will
836 * not work if restarting self conflicts with the stack frame
837 * assumptions of restoring a context.
838 *
839 * Port Specific Information:
840 *
841 * XXX document implementation including references if appropriate
842 */
843void _CPU_Context_Restart_self(
844  Context_Control  *the_context
845);
846
847/**
848 * @ingroup CPUContext
849 *
850 * The purpose of this macro is to allow the initial pointer into
851 * a floating point context area (used to save the floating point
852 * context) to be at an arbitrary place in the floating point
853 * context area.
854 *
855 * This is necessary because some FP units are designed to have
856 * their context saved as a stack which grows into lower addresses.
857 * Other FP units can be saved by simply moving registers into offsets
858 * from the base of the context area.  Finally some FP units provide
859 * a "dump context" instruction which could fill in from high to low
860 * or low to high based on the whim of the CPU designers.
861 *
862 * @param[in] _base is the lowest physical address of the floating point
863 *        context area
864 * @param[in] _offset is the offset into the floating point area
865 *
866 * Port Specific Information:
867 *
868 * XXX document implementation including references if appropriate
869 */
870#define _CPU_Context_Fp_start( _base, _offset ) \
871   ( (void *) _Addresses_Add_offset( (_base), (_offset) ) )
872
873/**
874 * This routine initializes the FP context area passed to it to.
875 * There are a few standard ways in which to initialize the
876 * floating point context.  The code included for this macro assumes
877 * that this is a CPU in which a "initial" FP context was saved into
878 * @a _CPU_Null_fp_context and it simply copies it to the destination
879 * context passed to it.
880 *
881 * Other floating point context save/restore models include:
882 *   -# not doing anything, and
883 *   -# putting a "null FP status word" in the correct place in the FP context.
884 *
885 * @param[in] _destination is the floating point context area
886 *
887 * Port Specific Information:
888 *
889 * XXX document implementation including references if appropriate
890 */
891#define _CPU_Context_Initialize_fp( _destination ) \
892  { \
893   *(*(_destination)) = _CPU_Null_fp_context; \
894  }
895
896/* end of Context handler macros */
897
898/* Fatal Error manager macros */
899
900/**
901 * This routine copies _error into a known place -- typically a stack
902 * location or a register, optionally disables interrupts, and
903 * halts/stops the CPU.
904 *
905 * Port Specific Information:
906 *
907 * XXX document implementation including references if appropriate
908 */
909#define _CPU_Fatal_halt( _error ) \
910  { \
911  }
912
913/* end of Fatal Error manager macros */
914
915/* Bitfield handler macros */
916
917/**
918 * @defgroup CPUBitfield Processor Dependent Bitfield Manipulation
919 *
920 * This set of routines are used to implement fast searches for
921 * the most important ready task.
922 */
923/**@{**/
924
925/**
926 * This definition is set to TRUE if the port uses the generic bitfield
927 * manipulation implementation.
928 */
929#define CPU_USE_GENERIC_BITFIELD_CODE TRUE
930
931/**
932 * This definition is set to TRUE if the port uses the data tables provided
933 * by the generic bitfield manipulation implementation.
934 * This can occur when actually using the generic bitfield manipulation
935 * implementation or when implementing the same algorithm in assembly
936 * language for improved performance.  It is unlikely that a port will use
937 * the data if it has a bitfield scan instruction.
938 */
939#define CPU_USE_GENERIC_BITFIELD_DATA TRUE
940
941/**
942 * This routine sets @a _output to the bit number of the first bit
943 * set in @a _value.  @a _value is of CPU dependent type
944 * @a Priority_bit_map_Control.  This type may be either 16 or 32 bits
945 * wide although only the 16 least significant bits will be used.
946 *
947 * There are a number of variables in using a "find first bit" type
948 * instruction.
949 *
950 *   -# What happens when run on a value of zero?
951 *   -# Bits may be numbered from MSB to LSB or vice-versa.
952 *   -# The numbering may be zero or one based.
953 *   -# The "find first bit" instruction may search from MSB or LSB.
954 *
955 * RTEMS guarantees that (1) will never happen so it is not a concern.
956 * (2),(3), (4) are handled by the macros @ref _CPU_Priority_Mask and
957 * @ref _CPU_Priority_bits_index.  These three form a set of routines
958 * which must logically operate together.  Bits in the _value are
959 * set and cleared based on masks built by @ref _CPU_Priority_Mask.
960 * The basic major and minor values calculated by @ref _Priority_Major
961 * and @ref _Priority_Minor are "massaged" by @ref _CPU_Priority_bits_index
962 * to properly range between the values returned by the "find first bit"
963 * instruction.  This makes it possible for @ref _Priority_Get_highest to
964 * calculate the major and directly index into the minor table.
965 * This mapping is necessary to ensure that 0 (a high priority major/minor)
966 * is the first bit found.
967 *
968 * This entire "find first bit" and mapping process depends heavily
969 * on the manner in which a priority is broken into a major and minor
970 * components with the major being the 4 MSB of a priority and minor
971 * the 4 LSB.  Thus (0 << 4) + 0 corresponds to priority 0 -- the highest
972 * priority.  And (15 << 4) + 14 corresponds to priority 254 -- the next
973 * to the lowest priority.
974 *
975 * If your CPU does not have a "find first bit" instruction, then
976 * there are ways to make do without it.  Here are a handful of ways
977 * to implement this in software:
978 *
979@verbatim
980      - a series of 16 bit test instructions
981      - a "binary search using if's"
982      - _number = 0
983        if _value > 0x00ff
984          _value >>=8
985          _number = 8;
986
987        if _value > 0x0000f
988          _value >=8
989          _number += 4
990
991        _number += bit_set_table[ _value ]
992@endverbatim
993
994 *   where bit_set_table[ 16 ] has values which indicate the first
995 *     bit set
996 *
997 * @param[in] _value is the value to be scanned
998 * @param[in] _output is the first bit set
999 *
1000 * Port Specific Information:
1001 *
1002 * XXX document implementation including references if appropriate
1003 */
1004
1005#if (CPU_USE_GENERIC_BITFIELD_CODE == FALSE)
1006#define _CPU_Bitfield_Find_first_bit( _value, _output ) \
1007  { \
1008    (_output) = 0;   /* do something to prevent warnings */ \
1009  }
1010#endif
1011
1012/* end of Bitfield handler macros */
1013
1014/**
1015 * This routine builds the mask which corresponds to the bit fields
1016 * as searched by @ref _CPU_Bitfield_Find_first_bit.  See the discussion
1017 * for that routine.
1018 *
1019 * Port Specific Information:
1020 *
1021 * XXX document implementation including references if appropriate
1022 */
1023#if (CPU_USE_GENERIC_BITFIELD_CODE == FALSE)
1024
1025#define _CPU_Priority_Mask( _bit_number ) \
1026  ( 1 << (_bit_number) )
1027
1028#endif
1029
1030/**
1031 * This routine translates the bit numbers returned by
1032 * @ref _CPU_Bitfield_Find_first_bit into something suitable for use as
1033 * a major or minor component of a priority.  See the discussion
1034 * for that routine.
1035 *
1036 * @param[in] _priority is the major or minor number to translate
1037 *
1038 * Port Specific Information:
1039 *
1040 * XXX document implementation including references if appropriate
1041 */
1042#if (CPU_USE_GENERIC_BITFIELD_CODE == FALSE)
1043
1044#define _CPU_Priority_bits_index( _priority ) \
1045  (_priority)
1046
1047#endif
1048
1049/** @} */
1050
1051/* end of Priority handler macros */
1052
1053/* functions */
1054
1055/**
1056 * This routine performs CPU dependent initialization.
1057 *
1058 * Port Specific Information:
1059 *
1060 * XXX document implementation including references if appropriate
1061 */
1062void _CPU_Initialize(void);
1063
1064/**
1065 * @ingroup CPUInterrupt
1066 *
1067 * This routine installs a "raw" interrupt handler directly into the
1068 * processor's vector table.
1069 *
1070 * @param[in] vector is the vector number
1071 * @param[in] new_handler is the raw ISR handler to install
1072 * @param[in] old_handler is the previously installed ISR Handler
1073 *
1074 * Port Specific Information:
1075 *
1076 * XXX document implementation including references if appropriate
1077 */
1078void _CPU_ISR_install_raw_handler(
1079  uint32_t    vector,
1080  proc_ptr    new_handler,
1081  proc_ptr   *old_handler
1082);
1083
1084/**
1085 * @ingroup CPUInterrupt
1086 *
1087 * This routine installs an interrupt vector.
1088 *
1089 * @param[in] vector is the vector number
1090 * @param[in] new_handler is the RTEMS ISR handler to install
1091 * @param[in] old_handler is the previously installed ISR Handler
1092 *
1093 * Port Specific Information:
1094 *
1095 * XXX document implementation including references if appropriate
1096 */
1097void _CPU_ISR_install_vector(
1098  uint32_t    vector,
1099  proc_ptr    new_handler,
1100  proc_ptr   *old_handler
1101);
1102
1103/**
1104 * @ingroup CPUInterrupt
1105 *
1106 * This routine installs the hardware interrupt stack pointer.
1107 *
1108 * NOTE:  It need only be provided if @ref CPU_HAS_HARDWARE_INTERRUPT_STACK
1109 *        is TRUE.
1110 *
1111 * Port Specific Information:
1112 *
1113 * XXX document implementation including references if appropriate
1114 */
1115void _CPU_Install_interrupt_stack( void );
1116
1117/**
1118 * This routine is the CPU dependent IDLE thread body.
1119 *
1120 * NOTE:  It need only be provided if @ref CPU_PROVIDES_IDLE_THREAD_BODY
1121 *        is TRUE.
1122 *
1123 * Port Specific Information:
1124 *
1125 * XXX document implementation including references if appropriate
1126 */
1127void *_CPU_Thread_Idle_body( uintptr_t ignored );
1128
1129/**
1130 * @ingroup CPUContext
1131 *
1132 * This routine switches from the run context to the heir context.
1133 *
1134 * @param[in] run points to the context of the currently executing task
1135 * @param[in] heir points to the context of the heir task
1136 *
1137 * Port Specific Information:
1138 *
1139 * XXX document implementation including references if appropriate
1140 */
1141void _CPU_Context_switch(
1142  Context_Control  *run,
1143  Context_Control  *heir
1144);
1145
1146/**
1147 * @ingroup CPUContext
1148 *
1149 * This routine is generally used only to restart self in an
1150 * efficient manner.  It may simply be a label in @ref _CPU_Context_switch.
1151 *
1152 * @param[in] new_context points to the context to be restored.
1153 *
1154 * NOTE: May be unnecessary to reload some registers.
1155 *
1156 * Port Specific Information:
1157 *
1158 * XXX document implementation including references if appropriate
1159 */
1160void _CPU_Context_restore(
1161  Context_Control *new_context
1162) RTEMS_COMPILER_NO_RETURN_ATTRIBUTE;
1163
1164static inline void _CPU_Context_volatile_clobber( uintptr_t pattern )
1165{
1166  /* TODO */
1167}
1168
1169static inline void _CPU_Context_validate( uintptr_t pattern )
1170{
1171  while (1) {
1172    /* TODO */
1173  }
1174}
1175
1176/* FIXME */
1177typedef CPU_Interrupt_frame CPU_Exception_frame;
1178
1179void _CPU_Exception_frame_print( const CPU_Exception_frame *frame );
1180
1181/**
1182 * @ingroup CPUEndian
1183 *
1184 * The following routine swaps the endian format of an unsigned int.
1185 * It must be static because it is referenced indirectly.
1186 *
1187 * This version will work on any processor, but if there is a better
1188 * way for your CPU PLEASE use it.  The most common way to do this is to:
1189 *
1190 *    swap least significant two bytes with 16-bit rotate
1191 *    swap upper and lower 16-bits
1192 *    swap most significant two bytes with 16-bit rotate
1193 *
1194 * Some CPUs have special instructions which swap a 32-bit quantity in
1195 * a single instruction (e.g. i486).  It is probably best to avoid
1196 * an "endian swapping control bit" in the CPU.  One good reason is
1197 * that interrupts would probably have to be disabled to ensure that
1198 * an interrupt does not try to access the same "chunk" with the wrong
1199 * endian.  Another good reason is that on some CPUs, the endian bit
1200 * endianness for ALL fetches -- both code and data -- so the code
1201 * will be fetched incorrectly.
1202 *
1203 * @param[in] value is the value to be swapped
1204 * @return the value after being endian swapped
1205 *
1206 * Port Specific Information:
1207 *
1208 * XXX document implementation including references if appropriate
1209 */
1210static inline uint32_t CPU_swap_u32(
1211  uint32_t value
1212)
1213{
1214  uint32_t byte1, byte2, byte3, byte4, swapped;
1215
1216  byte4 = (value >> 24) & 0xff;
1217  byte3 = (value >> 16) & 0xff;
1218  byte2 = (value >> 8)  & 0xff;
1219  byte1 =  value        & 0xff;
1220
1221  swapped = (byte1 << 24) | (byte2 << 16) | (byte3 << 8) | byte4;
1222  return swapped;
1223}
1224
1225/**
1226 * @ingroup CPUEndian
1227 *
1228 * This routine swaps a 16 bir quantity.
1229 *
1230 * @param[in] value is the value to be swapped
1231 * @return the value after being endian swapped
1232 */
1233#define CPU_swap_u16( value ) \
1234  (((value&0xff) << 8) | ((value >> 8)&0xff))
1235
1236typedef uint32_t CPU_Counter_ticks;
1237
1238CPU_Counter_ticks _CPU_Counter_read( void );
1239
1240static inline CPU_Counter_ticks _CPU_Counter_difference(
1241  CPU_Counter_ticks second,
1242  CPU_Counter_ticks first
1243)
1244{
1245  return second - first;
1246}
1247
1248#ifdef __cplusplus
1249}
1250#endif
1251
1252#endif
Note: See TracBrowser for help on using the repository browser.