source: rtems/cpukit/score/cpu/lm32/include/rtems/score/cpu.h @ 248ca7a

5
Last change on this file since 248ca7a was 511dc4b, checked in by Sebastian Huber <sebastian.huber@…>, on 06/19/18 at 07:09:51

Rework initialization and interrupt stack support

Statically initialize the interrupt stack area
(_Configuration_Interrupt_stack_area_begin,
_Configuration_Interrupt_stack_area_end, and
_Configuration_Interrupt_stack_size) via <rtems/confdefs.h>. Place the
interrupt stack area in a special section ".rtemsstack.interrupt". Let
BSPs define the optimal placement of this section in their linker
command files (e.g. in a fast on-chip memory).

This change makes makes the CPU_HAS_SOFTWARE_INTERRUPT_STACK and
CPU_HAS_HARDWARE_INTERRUPT_STACK CPU port defines superfluous, since the
low level initialization code has all information available via global
symbols.

This change makes the CPU_ALLOCATE_INTERRUPT_STACK CPU port define
superfluous, since the interrupt stacks are allocated by confdefs.h for
all architectures. There is no need for BSP-specific linker command
file magic (except the section placement), see previous ARM linker
command file as a bad example.

Remove _CPU_Install_interrupt_stack(). Initialize the hardware
interrupt stack in _CPU_Initialize() if necessary (e.g.
m68k_install_interrupt_stack()).

The optional _CPU_Interrupt_stack_setup() is still useful to customize
the registration of the interrupt stack area in the per-CPU information.

The initialization stack can reuse the interrupt stack, since

  • interrupts are disabled during the sequential system initialization, and
  • the boot_card() function does not return.

This stack resuse saves memory.

Changes per architecture:

arm:

  • Mostly replace the linker symbol based configuration of stacks with the standard <rtems/confdefs.h> configuration via CONFIGURE_INTERRUPT_STACK_SIZE. The size of the FIQ, ABT and UND mode stack is still defined via linker symbols. These modes are rarely used in applications and the default values provided by the BSP should be sufficient in most cases.
  • Remove the bsp_processor_count linker symbol hack used for the SMP support. This is possible since the interrupt stack area is now allocated by the linker and not allocated from the heap. This makes some configure.ac stuff obsolete. Remove the now superfluous BSP variants altcycv_devkit_smp and realview_pbx_a9_qemu_smp.

bfin:

  • Remove unused magic linker command file allocation of initialization stack. Maybe a previous linker command file copy and paste problem? In the start.S the initialization stack is set to a hard coded value.

lm32, m32c, mips, nios2, riscv, sh, v850:

  • Remove magic linker command file allocation of initialization stack. Reuse interrupt stack for initialization stack.

m68k:

  • Remove magic linker command file allocation of initialization stack. Reuse interrupt stack for initialization stack.

powerpc:

  • Remove magic linker command file allocation of initialization stack. Reuse interrupt stack for initialization stack.
  • Used dedicated memory region (REGION_RTEMSSTACK) for the interrupt stack on BSPs using the shared linkcmds.base (replacement for REGION_RWEXTRA).

sparc:

  • Remove the hard coded initialization stack. Use the interrupt stack for the initialization stack on the boot processor. This saves 16KiB of RAM.

Update #3459.

  • Property mode set to 100644
File size: 28.2 KB
Line 
1/**
2 * @file
3 *
4 * @brief LM32 CPU Department Source
5 *
6 * This include file contains information pertaining to the LM32
7 * processor.
8 */
9
10/*
11 *  COPYRIGHT (c) 1989-2008.
12 *  On-Line Applications Research Corporation (OAR).
13 *
14 *  The license and distribution terms for this file may be
15 *  found in the file LICENSE in this distribution or at
16 *  http://www.rtems.org/license/LICENSE.
17 */
18
19#ifndef _RTEMS_SCORE_CPU_H
20#define _RTEMS_SCORE_CPU_H
21
22#ifdef __cplusplus
23extern "C" {
24#endif
25
26#include <rtems/score/basedefs.h>
27#include <rtems/score/lm32.h>
28
29/* conditional compilation parameters */
30
31/**
32 * Does the CPU follow the simple vectored interrupt model?
33 *
34 * If TRUE, then RTEMS allocates the vector table it internally manages.
35 * If FALSE, then the BSP is assumed to allocate and manage the vector
36 * table
37 *
38 * Port Specific Information:
39 *
40 * XXX document implementation including references if appropriate
41 */
42#define CPU_SIMPLE_VECTORED_INTERRUPTS TRUE
43
44/**
45 * Does the RTEMS invoke the user's ISR with the vector number and
46 * a pointer to the saved interrupt frame (1) or just the vector
47 * number (0)?
48 *
49 * Port Specific Information:
50 *
51 * XXX document implementation including references if appropriate
52 */
53#define CPU_ISR_PASSES_FRAME_POINTER TRUE
54
55/**
56 * @def CPU_HARDWARE_FP
57 *
58 * Does the CPU have hardware floating point?
59 *
60 * If TRUE, then the RTEMS_FLOATING_POINT task attribute is supported.
61 * If FALSE, then the RTEMS_FLOATING_POINT task attribute is ignored.
62 *
63 * If there is a FP coprocessor such as the i387 or mc68881, then
64 * the answer is TRUE.
65 *
66 * The macro name "NO_CPU_HAS_FPU" should be made CPU specific.
67 * It indicates whether or not this CPU model has FP support.  For
68 * example, it would be possible to have an i386_nofp CPU model
69 * which set this to false to indicate that you have an i386 without
70 * an i387 and wish to leave floating point support out of RTEMS.
71 */
72
73/**
74 * @def CPU_SOFTWARE_FP
75 *
76 * Does the CPU have no hardware floating point and GCC provides a
77 * software floating point implementation which must be context
78 * switched?
79 *
80 * This feature conditional is used to indicate whether or not there
81 * is software implemented floating point that must be context
82 * switched.  The determination of whether or not this applies
83 * is very tool specific and the state saved/restored is also
84 * compiler specific.
85 *
86 * Port Specific Information:
87 *
88 * XXX document implementation including references if appropriate
89 */
90#define CPU_HARDWARE_FP     FALSE
91#define CPU_SOFTWARE_FP     FALSE
92
93/**
94 * Are all tasks RTEMS_FLOATING_POINT tasks implicitly?
95 *
96 * If TRUE, then the RTEMS_FLOATING_POINT task attribute is assumed.
97 * If FALSE, then the RTEMS_FLOATING_POINT task attribute is followed.
98 *
99 * So far, the only CPUs in which this option has been used are the
100 * HP PA-RISC and PowerPC.  On the PA-RISC, The HP C compiler and
101 * gcc both implicitly used the floating point registers to perform
102 * integer multiplies.  Similarly, the PowerPC port of gcc has been
103 * seen to allocate floating point local variables and touch the FPU
104 * even when the flow through a subroutine (like vfprintf()) might
105 * not use floating point formats.
106 *
107 * If a function which you would not think utilize the FP unit DOES,
108 * then one can not easily predict which tasks will use the FP hardware.
109 * In this case, this option should be TRUE.
110 *
111 * If @ref CPU_HARDWARE_FP is FALSE, then this should be FALSE as well.
112 *
113 * Port Specific Information:
114 *
115 * XXX document implementation including references if appropriate
116 */
117#define CPU_ALL_TASKS_ARE_FP     FALSE
118
119/**
120 * Should the IDLE task have a floating point context?
121 *
122 * If TRUE, then the IDLE task is created as a RTEMS_FLOATING_POINT task
123 * and it has a floating point context which is switched in and out.
124 * If FALSE, then the IDLE task does not have a floating point context.
125 *
126 * Setting this to TRUE negatively impacts the time required to preempt
127 * the IDLE task from an interrupt because the floating point context
128 * must be saved as part of the preemption.
129 *
130 * Port Specific Information:
131 *
132 * XXX document implementation including references if appropriate
133 */
134#define CPU_IDLE_TASK_IS_FP      FALSE
135
136/**
137 * Should the saving of the floating point registers be deferred
138 * until a context switch is made to another different floating point
139 * task?
140 *
141 * If TRUE, then the floating point context will not be stored until
142 * necessary.  It will remain in the floating point registers and not
143 * disturned until another floating point task is switched to.
144 *
145 * If FALSE, then the floating point context is saved when a floating
146 * point task is switched out and restored when the next floating point
147 * task is restored.  The state of the floating point registers between
148 * those two operations is not specified.
149 *
150 * If the floating point context does NOT have to be saved as part of
151 * interrupt dispatching, then it should be safe to set this to TRUE.
152 *
153 * Setting this flag to TRUE results in using a different algorithm
154 * for deciding when to save and restore the floating point context.
155 * The deferred FP switch algorithm minimizes the number of times
156 * the FP context is saved and restored.  The FP context is not saved
157 * until a context switch is made to another, different FP task.
158 * Thus in a system with only one FP task, the FP context will never
159 * be saved or restored.
160 *
161 * Port Specific Information:
162 *
163 * XXX document implementation including references if appropriate
164 */
165#define CPU_USE_DEFERRED_FP_SWITCH       TRUE
166
167#define CPU_ENABLE_ROBUST_THREAD_DISPATCH FALSE
168
169/**
170 * Does this port provide a CPU dependent IDLE task implementation?
171 *
172 * If TRUE, then the routine @ref _CPU_Thread_Idle_body
173 * must be provided and is the default IDLE thread body instead of
174 * @ref _CPU_Thread_Idle_body.
175 *
176 * If FALSE, then use the generic IDLE thread body if the BSP does
177 * not provide one.
178 *
179 * This is intended to allow for supporting processors which have
180 * a low power or idle mode.  When the IDLE thread is executed, then
181 * the CPU can be powered down.
182 *
183 * The order of precedence for selecting the IDLE thread body is:
184 *
185 *   -#  BSP provided
186 *   -#  CPU dependent (if provided)
187 *   -#  generic (if no BSP and no CPU dependent)
188 *
189 * Port Specific Information:
190 *
191 * XXX document implementation including references if appropriate
192 */
193#define CPU_PROVIDES_IDLE_THREAD_BODY    TRUE
194
195/**
196 * Does the stack grow up (toward higher addresses) or down
197 * (toward lower addresses)?
198 *
199 * If TRUE, then the grows upward.
200 * If FALSE, then the grows toward smaller addresses.
201 *
202 * Port Specific Information:
203 *
204 * XXX document implementation including references if appropriate
205 */
206#define CPU_STACK_GROWS_UP               FALSE
207
208/* L2 cache lines are 32 bytes in Milkymist SoC */
209#define CPU_CACHE_LINE_BYTES 32
210
211#define CPU_STRUCTURE_ALIGNMENT RTEMS_ALIGNED( CPU_CACHE_LINE_BYTES )
212
213/**
214 * @ingroup CPUInterrupt
215 * The following defines the number of bits actually used in the
216 * interrupt field of the task mode.  How those bits map to the
217 * CPU interrupt levels is defined by the routine @ref _CPU_ISR_Set_level.
218 *
219 * Port Specific Information:
220 *
221 * XXX document implementation including references if appropriate
222 */
223#define CPU_MODES_INTERRUPT_MASK   0x00000001
224
225#define CPU_MAXIMUM_PROCESSORS 32
226
227/*
228 *  Processor defined structures required for cpukit/score.
229 *
230 *  Port Specific Information:
231 *
232 *  XXX document implementation including references if appropriate
233 */
234
235/* may need to put some structures here.  */
236
237/**
238 * @defgroup CPUContext Processor Dependent Context Management
239 *
240 * From the highest level viewpoint, there are 2 types of context to save.
241 *
242 *    -# Interrupt registers to save
243 *    -# Task level registers to save
244 *
245 * Since RTEMS handles integer and floating point contexts separately, this
246 * means we have the following 3 context items:
247 *
248 *    -# task level context stuff::  Context_Control
249 *    -# floating point task stuff:: Context_Control_fp
250 *    -# special interrupt level context :: CPU_Interrupt_frame
251 *
252 * On some processors, it is cost-effective to save only the callee
253 * preserved registers during a task context switch.  This means
254 * that the ISR code needs to save those registers which do not
255 * persist across function calls.  It is not mandatory to make this
256 * distinctions between the caller/callee saves registers for the
257 * purpose of minimizing context saved during task switch and on interrupts.
258 * If the cost of saving extra registers is minimal, simplicity is the
259 * choice.  Save the same context on interrupt entry as for tasks in
260 * this case.
261 *
262 * Additionally, if gdb is to be made aware of RTEMS tasks for this CPU, then
263 * care should be used in designing the context area.
264 *
265 * On some CPUs with hardware floating point support, the Context_Control_fp
266 * structure will not be used or it simply consist of an array of a
267 * fixed number of bytes.   This is done when the floating point context
268 * is dumped by a "FP save context" type instruction and the format
269 * is not really defined by the CPU.  In this case, there is no need
270 * to figure out the exact format -- only the size.  Of course, although
271 * this is enough information for RTEMS, it is probably not enough for
272 * a debugger such as gdb.  But that is another problem.
273 *
274 * Port Specific Information:
275 *
276 * XXX document implementation including references if appropriate
277 */
278/**@{**/
279
280/**
281 * This defines the minimal set of integer and processor state registers
282 * that must be saved during a voluntary context switch from one thread
283 * to another.
284 */
285typedef struct {
286  uint32_t r11;
287  uint32_t r12;
288  uint32_t r13;
289  uint32_t r14;
290  uint32_t r15;
291  uint32_t r16;
292  uint32_t r17;
293  uint32_t r18;
294  uint32_t r19;
295  uint32_t r20;
296  uint32_t r21;
297  uint32_t r22;
298  uint32_t r23;
299  uint32_t r24;
300  uint32_t r25;
301  uint32_t gp;
302  uint32_t fp;
303  uint32_t sp;
304  uint32_t ra;
305  uint32_t ie;
306  uint32_t epc;
307} Context_Control;
308
309/**
310 *
311 * This macro returns the stack pointer associated with @a _context.
312 *
313 * @param[in] _context is the thread context area to access
314 *
315 * @return This method returns the stack pointer.
316 */
317#define _CPU_Context_Get_SP( _context ) \
318  (_context)->sp
319
320/**
321 * This defines the complete set of floating point registers that must
322 * be saved during any context switch from one thread to another.
323 */
324typedef struct {
325} Context_Control_fp;
326
327/**
328 * This defines the set of integer and processor state registers that must
329 * be saved during an interrupt.  This set does not include any which are
330 * in @ref Context_Control.
331 */
332typedef struct {
333  uint32_t r1;
334  uint32_t r2;
335  uint32_t r3;
336  uint32_t r4;
337  uint32_t r5;
338  uint32_t r6;
339  uint32_t r7;
340  uint32_t r8;
341  uint32_t r9;
342  uint32_t r10;
343  uint32_t ra;
344  uint32_t ba;
345  uint32_t ea;
346} CPU_Interrupt_frame;
347
348/**
349 * This variable is optional.  It is used on CPUs on which it is difficult
350 * to generate an "uninitialized" FP context.  It is filled in by
351 * @ref _CPU_Initialize and copied into the task's FP context area during
352 * @ref _CPU_Context_Initialize.
353 *
354 * Port Specific Information:
355 *
356 * XXX document implementation including references if appropriate
357 */
358#if 0
359extern Context_Control_fp _CPU_Null_fp_context;
360#endif
361
362/** @} */
363
364/**
365 * @defgroup CPUInterrupt Processor Dependent Interrupt Management
366 */
367/**@{**/
368
369/*
370 * Nothing prevents the porter from declaring more CPU specific variables.
371 *
372 * Port Specific Information:
373 *
374 * XXX document implementation including references if appropriate
375 */
376
377/* XXX: if needed, put more variables here */
378
379/**
380 * @ingroup CPUContext
381 * The size of the floating point context area.  On some CPUs this
382 * will not be a "sizeof" because the format of the floating point
383 * area is not defined -- only the size is.  This is usually on
384 * CPUs with a "floating point save context" instruction.
385 *
386 * Port Specific Information:
387 *
388 * XXX document implementation including references if appropriate
389 */
390#define CPU_CONTEXT_FP_SIZE sizeof( Context_Control_fp )
391
392/**
393 * Amount of extra stack (above minimum stack size) required by
394 * MPCI receive server thread.  Remember that in a multiprocessor
395 * system this thread must exist and be able to process all directives.
396 *
397 * Port Specific Information:
398 *
399 * XXX document implementation including references if appropriate
400 */
401#define CPU_MPCI_RECEIVE_SERVER_EXTRA_STACK 0
402
403/**
404 * This defines the number of entries in the @ref _ISR_Vector_table managed
405 * by RTEMS.
406 *
407 * Port Specific Information:
408 *
409 * XXX document implementation including references if appropriate
410 */
411#define CPU_INTERRUPT_NUMBER_OF_VECTORS      32
412
413/**
414 * This defines the highest interrupt vector number for this port.
415 */
416#define CPU_INTERRUPT_MAXIMUM_VECTOR_NUMBER  (CPU_INTERRUPT_NUMBER_OF_VECTORS - 1)
417
418/**
419 * This is defined if the port has a special way to report the ISR nesting
420 * level.  Most ports maintain the variable @a _ISR_Nest_level.
421 */
422#define CPU_PROVIDES_ISR_IS_IN_PROGRESS FALSE
423
424/** @} */
425
426/**
427 * @ingroup CPUContext
428 * Should be large enough to run all RTEMS tests.  This ensures
429 * that a "reasonable" small application should not have any problems.
430 *
431 * Port Specific Information:
432 *
433 * XXX document implementation including references if appropriate
434 */
435#define CPU_STACK_MINIMUM_SIZE          (1024*4)
436
437#define CPU_SIZEOF_POINTER 4
438
439/**
440 * CPU's worst alignment requirement for data types on a byte boundary.  This
441 * alignment does not take into account the requirements for the stack.
442 *
443 * Port Specific Information:
444 * The LM32 architecture manual simply states: "All memory accesses must be
445 * aligned to the size of the access", and there is no hardware support
446 * whatsoever for 64-bit numbers.
447 * (lm32_archman.pdf, July 2009, p. 15)
448 */
449#define CPU_ALIGNMENT              4
450
451/**
452 * This number corresponds to the byte alignment requirement for the
453 * heap handler.  This alignment requirement may be stricter than that
454 * for the data types alignment specified by @ref CPU_ALIGNMENT.  It is
455 * common for the heap to follow the same alignment requirement as
456 * @ref CPU_ALIGNMENT.  If the @ref CPU_ALIGNMENT is strict enough for
457 * the heap, then this should be set to @ref CPU_ALIGNMENT.
458 *
459 * NOTE:  This does not have to be a power of 2 although it should be
460 *        a multiple of 2 greater than or equal to 2.  The requirement
461 *        to be a multiple of 2 is because the heap uses the least
462 *        significant field of the front and back flags to indicate
463 *        that a block is in use or free.  So you do not want any odd
464 *        length blocks really putting length data in that bit.
465 *
466 *        On byte oriented architectures, @ref CPU_HEAP_ALIGNMENT normally will
467 *        have to be greater or equal to than @ref CPU_ALIGNMENT to ensure that
468 *        elements allocated from the heap meet all restrictions.
469 *
470 * Port Specific Information:
471 *
472 * XXX document implementation including references if appropriate
473 */
474#define CPU_HEAP_ALIGNMENT         CPU_ALIGNMENT
475
476/**
477 * This number corresponds to the byte alignment requirement for memory
478 * buffers allocated by the partition manager.  This alignment requirement
479 * may be stricter than that for the data types alignment specified by
480 * @ref CPU_ALIGNMENT.  It is common for the partition to follow the same
481 * alignment requirement as @ref CPU_ALIGNMENT.  If the @ref CPU_ALIGNMENT is
482 * strict enough for the partition, then this should be set to
483 * @ref CPU_ALIGNMENT.
484 *
485 * NOTE:  This does not have to be a power of 2.  It does have to
486 *        be greater or equal to than @ref CPU_ALIGNMENT.
487 *
488 * Port Specific Information:
489 *
490 * XXX document implementation including references if appropriate
491 */
492#define CPU_PARTITION_ALIGNMENT    CPU_ALIGNMENT
493
494/**
495 * This number corresponds to the byte alignment requirement for the
496 * stack.  This alignment requirement may be stricter than that for the
497 * data types alignment specified by @ref CPU_ALIGNMENT.
498 *
499 *
500 * Port Specific Information:
501 *
502 * Stack is software-managed
503 */
504#define CPU_STACK_ALIGNMENT        CPU_ALIGNMENT
505
506#define CPU_INTERRUPT_STACK_ALIGNMENT CPU_CACHE_LINE_BYTES
507
508/*
509 *  ISR handler macros
510 */
511
512/**
513 * @addtogroup CPUInterrupt
514 */
515/**@{**/
516
517/**
518 * Support routine to initialize the RTEMS vector table after it is allocated.
519 *
520 * Port Specific Information:
521 *
522 * XXX document implementation including references if appropriate
523 */
524#define _CPU_Initialize_vectors()
525
526/**
527 * Disable all interrupts for an RTEMS critical section.  The previous
528 * level is returned in @a _isr_cookie.
529 *
530 * @param[out] _isr_cookie will contain the previous level cookie
531 *
532 * Port Specific Information:
533 *
534 * XXX document implementation including references if appropriate
535 */
536#define _CPU_ISR_Disable( _isr_cookie ) \
537  lm32_disable_interrupts( _isr_cookie );
538
539/**
540 * Enable interrupts to the previous level (returned by _CPU_ISR_Disable).
541 * This indicates the end of an RTEMS critical section.  The parameter
542 * @a _isr_cookie is not modified.
543 *
544 * @param[in] _isr_cookie contain the previous level cookie
545 *
546 * Port Specific Information:
547 *
548 * XXX document implementation including references if appropriate
549 */
550#define _CPU_ISR_Enable( _isr_cookie ) \
551  lm32_enable_interrupts( _isr_cookie );
552
553/**
554 * This temporarily restores the interrupt to @a _isr_cookie before immediately
555 * disabling them again.  This is used to divide long RTEMS critical
556 * sections into two or more parts.  The parameter @a _isr_cookie is not
557 * modified.
558 *
559 * @param[in] _isr_cookie contain the previous level cookie
560 *
561 * Port Specific Information:
562 *
563 * XXX document implementation including references if appropriate
564 */
565#define _CPU_ISR_Flash( _isr_cookie ) \
566  lm32_flash_interrupts( _isr_cookie );
567
568RTEMS_INLINE_ROUTINE bool _CPU_ISR_Is_enabled( uint32_t level )
569{
570  return ( level & 0x0001 ) != 0;
571}
572
573/**
574 * This routine and @ref _CPU_ISR_Get_level
575 * Map the interrupt level in task mode onto the hardware that the CPU
576 * actually provides.  Currently, interrupt levels which do not
577 * map onto the CPU in a generic fashion are undefined.  Someday,
578 * it would be nice if these were "mapped" by the application
579 * via a callout.  For example, m68k has 8 levels 0 - 7, levels
580 * 8 - 255 would be available for bsp/application specific meaning.
581 * This could be used to manage a programmable interrupt controller
582 * via the rtems_task_mode directive.
583 *
584 * Port Specific Information:
585 *
586 * XXX document implementation including references if appropriate
587 */
588#define _CPU_ISR_Set_level( new_level ) \
589  { \
590    _CPU_ISR_Enable( ( new_level==0 ) ? 1 : 0 ); \
591  }
592
593/**
594 * Return the current interrupt disable level for this task in
595 * the format used by the interrupt level portion of the task mode.
596 *
597 * NOTE: This routine usually must be implemented as a subroutine.
598 *
599 * Port Specific Information:
600 *
601 * XXX document implementation including references if appropriate
602 */
603uint32_t   _CPU_ISR_Get_level( void );
604
605/* end of ISR handler macros */
606
607/** @} */
608
609/* Context handler macros */
610
611/**
612 * @ingroup CPUContext
613 * Initialize the context to a state suitable for starting a
614 * task after a context restore operation.  Generally, this
615 * involves:
616 *
617 *    - setting a starting address
618 *    - preparing the stack
619 *    - preparing the stack and frame pointers
620 *    - setting the proper interrupt level in the context
621 *    - initializing the floating point context
622 *
623 * This routine generally does not set any unnecessary register
624 * in the context.  The state of the "general data" registers is
625 * undefined at task start time.
626 *
627 * @param[in] _the_context is the context structure to be initialized
628 * @param[in] _stack_base is the lowest physical address of this task's stack
629 * @param[in] _size is the size of this task's stack
630 * @param[in] _isr is the interrupt disable level
631 * @param[in] _entry_point is the thread's entry point.  This is
632 *        always @a _Thread_Handler
633 * @param[in] _is_fp is TRUE if the thread is to be a floating
634 *       point thread.  This is typically only used on CPUs where the
635 *       FPU may be easily disabled by software such as on the SPARC
636 *       where the PSR contains an enable FPU bit.
637 *
638 * Port Specific Information:
639 *
640 * XXX document implementation including references if appropriate
641 */
642extern char _gp[];
643
644#define _CPU_Context_Initialize( _the_context, _stack_base, _size, \
645                                 _isr, _entry_point, _is_fp, _tls_area ) \
646   do { \
647     uint32_t _stack = (uint32_t)(_stack_base) + (_size) - 4; \
648     \
649     (void) _is_fp; /* avoid warning for being unused */ \
650     (void) _isr;  /* avoid warning for being unused */ \
651     (_the_context)->gp = (uint32_t)_gp; \
652     (_the_context)->fp = (uint32_t)_stack; \
653     (_the_context)->sp = (uint32_t)_stack; \
654     (_the_context)->ra = (uint32_t)(_entry_point); \
655   } while ( 0 )
656
657/**
658 * This routine is responsible for somehow restarting the currently
659 * executing task.  If you are lucky, then all that is necessary
660 * is restoring the context.  Otherwise, there will need to be
661 * a special assembly routine which does something special in this
662 * case.  For many ports, simply adding a label to the restore path
663 * of @ref _CPU_Context_switch will work.  On other ports, it may be
664 * possibly to load a few arguments and jump to the restore path. It will
665 * not work if restarting self conflicts with the stack frame
666 * assumptions of restoring a context.
667 *
668 * Port Specific Information:
669 *
670 * XXX document implementation including references if appropriate
671 */
672#define _CPU_Context_Restart_self( _the_context ) \
673   _CPU_Context_restore( (_the_context) );
674
675/**
676 * This routine initializes the FP context area passed to it to.
677 * There are a few standard ways in which to initialize the
678 * floating point context.  The code included for this macro assumes
679 * that this is a CPU in which a "initial" FP context was saved into
680 * @a _CPU_Null_fp_context and it simply copies it to the destination
681 * context passed to it.
682 *
683 * Other floating point context save/restore models include:
684 *   -# not doing anything, and
685 *   -# putting a "null FP status word" in the correct place in the FP context.
686 *
687 * @param[in] _destination is the floating point context area
688 *
689 * Port Specific Information:
690 *
691 * XXX document implementation including references if appropriate
692 */
693#define _CPU_Context_Initialize_fp( _destination )
694#if 0
695  { \
696   *(*(_destination)) = _CPU_Null_fp_context; \
697  }
698#endif
699
700/* end of Context handler macros */
701
702/* Fatal Error manager macros */
703
704/**
705 * This routine copies _error into a known place -- typically a stack
706 * location or a register, optionally disables interrupts, and
707 * halts/stops the CPU.
708 *
709 * Port Specific Information:
710 *
711 * XXX document implementation including references if appropriate
712 */
713#define _CPU_Fatal_halt( _source, _error ) \
714  { \
715  }
716
717/* end of Fatal Error manager macros */
718
719#define CPU_USE_GENERIC_BITFIELD_CODE TRUE
720
721/* functions */
722
723/**
724 * This routine performs CPU dependent initialization.
725 *
726 * Port Specific Information:
727 *
728 * XXX document implementation including references if appropriate
729 */
730void _CPU_Initialize(void);
731
732/**
733 * @addtogroup CPUInterrupt
734 */
735/**@{**/
736
737/**
738 * This routine installs a "raw" interrupt handler directly into the
739 * processor's vector table.
740 *
741 * @param[in] vector is the vector number
742 * @param[in] new_handler is the raw ISR handler to install
743 * @param[in] old_handler is the previously installed ISR Handler
744 *
745 * Port Specific Information:
746 *
747 * XXX document implementation including references if appropriate
748 */
749void _CPU_ISR_install_raw_handler(
750  uint32_t    vector,
751  proc_ptr    new_handler,
752  proc_ptr   *old_handler
753);
754
755/**
756 * This routine installs an interrupt vector.
757 *
758 * @param[in] vector is the vector number
759 * @param[in] new_handler is the RTEMS ISR handler to install
760 * @param[in] old_handler is the previously installed ISR Handler
761 *
762 * Port Specific Information:
763 *
764 * XXX document implementation including references if appropriate
765 */
766void _CPU_ISR_install_vector(
767  uint32_t    vector,
768  proc_ptr    new_handler,
769  proc_ptr   *old_handler
770);
771
772/** @} */
773
774/**
775 * This routine is the CPU dependent IDLE thread body.
776 *
777 * NOTE:  It need only be provided if @ref CPU_PROVIDES_IDLE_THREAD_BODY
778 *        is TRUE.
779 *
780 * Port Specific Information:
781 *
782 * XXX document implementation including references if appropriate
783 */
784void *_CPU_Thread_Idle_body( uintptr_t ignored );
785
786/**
787 * @ingroup CPUContext
788 * This routine switches from the run context to the heir context.
789 *
790 * @param[in] run points to the context of the currently executing task
791 * @param[in] heir points to the context of the heir task
792 *
793 * Port Specific Information:
794 *
795 * XXX document implementation including references if appropriate
796 */
797void _CPU_Context_switch(
798  Context_Control  *run,
799  Context_Control  *heir
800);
801
802/**
803 * @addtogroup CPUContext
804 */
805/**@{**/
806
807/**
808 * This routine is generally used only to restart self in an
809 * efficient manner.  It may simply be a label in @ref _CPU_Context_switch.
810 *
811 * @param[in] new_context points to the context to be restored.
812 *
813 * NOTE: May be unnecessary to reload some registers.
814 *
815 * Port Specific Information:
816 *
817 * XXX document implementation including references if appropriate
818 */
819void _CPU_Context_restore(
820  Context_Control *new_context
821) RTEMS_NO_RETURN;
822
823/**
824 * This routine saves the floating point context passed to it.
825 *
826 * @param[in] fp_context_ptr is a pointer to a pointer to a floating
827 * point context area
828 *
829 * @return on output @a *fp_context_ptr will contain the address that
830 * should be used with @ref _CPU_Context_restore_fp to restore this context.
831 *
832 * Port Specific Information:
833 *
834 * XXX document implementation including references if appropriate
835 */
836void _CPU_Context_save_fp(
837  Context_Control_fp **fp_context_ptr
838);
839
840/**
841 * This routine restores the floating point context passed to it.
842 *
843 * @param[in] fp_context_ptr is a pointer to a pointer to a floating
844 * point context area to restore
845 *
846 * @return on output @a *fp_context_ptr will contain the address that
847 * should be used with @ref _CPU_Context_save_fp to save this context.
848 *
849 * Port Specific Information:
850 *
851 * XXX document implementation including references if appropriate
852 */
853void _CPU_Context_restore_fp(
854  Context_Control_fp **fp_context_ptr
855);
856
857static inline void _CPU_Context_volatile_clobber( uintptr_t pattern )
858{
859  /* TODO */
860}
861
862static inline void _CPU_Context_validate( uintptr_t pattern )
863{
864  while (1) {
865    /* TODO */
866  }
867}
868
869/** @} */
870
871/* FIXME */
872typedef CPU_Interrupt_frame CPU_Exception_frame;
873
874void _CPU_Exception_frame_print( const CPU_Exception_frame *frame );
875
876/**
877 * @ingroup CPUEndian
878 * The following routine swaps the endian format of an unsigned int.
879 * It must be static because it is referenced indirectly.
880 *
881 * This version will work on any processor, but if there is a better
882 * way for your CPU PLEASE use it.  The most common way to do this is to:
883 *
884 *    swap least significant two bytes with 16-bit rotate
885 *    swap upper and lower 16-bits
886 *    swap most significant two bytes with 16-bit rotate
887 *
888 * Some CPUs have special instructions which swap a 32-bit quantity in
889 * a single instruction (e.g. i486).  It is probably best to avoid
890 * an "endian swapping control bit" in the CPU.  One good reason is
891 * that interrupts would probably have to be disabled to ensure that
892 * an interrupt does not try to access the same "chunk" with the wrong
893 * endian.  Another good reason is that on some CPUs, the endian bit
894 * endianness for ALL fetches -- both code and data -- so the code
895 * will be fetched incorrectly.
896 *
897 * @param[in] value is the value to be swapped
898 * @return the value after being endian swapped
899 *
900 * Port Specific Information:
901 *
902 * XXX document implementation including references if appropriate
903 */
904static inline uint32_t CPU_swap_u32(
905  uint32_t value
906)
907{
908  uint32_t byte1, byte2, byte3, byte4, swapped;
909
910  byte4 = (value >> 24) & 0xff;
911  byte3 = (value >> 16) & 0xff;
912  byte2 = (value >> 8)  & 0xff;
913  byte1 =  value        & 0xff;
914
915  swapped = (byte1 << 24) | (byte2 << 16) | (byte3 << 8) | byte4;
916  return swapped;
917}
918
919/**
920 * @ingroup CPUEndian
921 * This routine swaps a 16 bir quantity.
922 *
923 * @param[in] value is the value to be swapped
924 * @return the value after being endian swapped
925 */
926static inline uint16_t CPU_swap_u16(uint16_t v)
927{
928    return v << 8 | v >> 8;
929}
930
931typedef uint32_t CPU_Counter_ticks;
932
933uint32_t _CPU_Counter_frequency( void );
934
935CPU_Counter_ticks _CPU_Counter_read( void );
936
937static inline CPU_Counter_ticks _CPU_Counter_difference(
938  CPU_Counter_ticks second,
939  CPU_Counter_ticks first
940)
941{
942  return second - first;
943}
944
945/** Type that can store a 32-bit integer or a pointer. */
946typedef uintptr_t CPU_Uint32ptr;
947
948#ifdef __cplusplus
949}
950#endif
951
952#endif
Note: See TracBrowser for help on using the repository browser.