source: rtems/cpukit/score/cpu/i386/rtems/score/cpu.h @ 143696a

5
Last change on this file since 143696a was 143696a, checked in by Sebastian Huber <sebastian.huber@…>, on 10/16/15 at 06:15:03

basedefs.h: Add and use RTEMS_NO_RETURN

  • Property mode set to 100644
File size: 19.2 KB
Line 
1/**
2 * @file
3 *
4 * @brief Intel I386 CPU Dependent Source
5 *
6 * This include file contains information pertaining to the Intel
7 * i386 processor.
8 */
9
10/*
11 *  COPYRIGHT (c) 1989-2011.
12 *  On-Line Applications Research Corporation (OAR).
13 *
14 *  The license and distribution terms for this file may be
15 *  found in the file LICENSE in this distribution or at
16 *  http://www.rtems.org/license/LICENSE.
17 */
18
19#ifndef _RTEMS_SCORE_CPU_H
20#define _RTEMS_SCORE_CPU_H
21
22#ifndef ASM
23#include <string.h> /* for memcpy */
24#endif
25
26#ifdef __cplusplus
27extern "C" {
28#endif
29
30#include <rtems/score/types.h>
31#include <rtems/score/i386.h>
32
33#ifndef ASM
34#include <rtems/score/interrupts.h>     /* formerly in libcpu/cpu.h> */
35#include <rtems/score/registers.h>      /* formerly part of libcpu */
36#endif
37
38/* conditional compilation parameters */
39
40#define CPU_INLINE_ENABLE_DISPATCH       TRUE
41
42/*
43 *  Does the CPU follow the simple vectored interrupt model?
44 *
45 *  If TRUE, then RTEMS allocates the vector table it internally manages.
46 *  If FALSE, then the BSP is assumed to allocate and manage the vector
47 *  table
48 *
49 *  PowerPC Specific Information:
50 *
51 *  The PowerPC and x86 were the first to use the PIC interrupt model.
52 *  They do not use the simple vectored interrupt model.
53 */
54#define CPU_SIMPLE_VECTORED_INTERRUPTS FALSE
55
56/*
57 *  i386 has an RTEMS allocated and managed interrupt stack.
58 */
59
60#define CPU_HAS_SOFTWARE_INTERRUPT_STACK TRUE
61#define CPU_HAS_HARDWARE_INTERRUPT_STACK FALSE
62#define CPU_ALLOCATE_INTERRUPT_STACK     TRUE
63
64/*
65 *  Does the RTEMS invoke the user's ISR with the vector number and
66 *  a pointer to the saved interrupt frame (1) or just the vector
67 *  number (0)?
68 */
69
70#define CPU_ISR_PASSES_FRAME_POINTER 0
71
72/*
73 *  Some family members have no FP, some have an FPU such as the i387
74 *  for the i386, others have it built in (i486DX, Pentium).
75 */
76
77#ifdef __SSE__
78#define CPU_HARDWARE_FP                  TRUE
79#define CPU_SOFTWARE_FP                  FALSE
80
81#define CPU_ALL_TASKS_ARE_FP             TRUE
82#define CPU_IDLE_TASK_IS_FP              TRUE
83#define CPU_USE_DEFERRED_FP_SWITCH       FALSE
84#else /* __SSE__ */
85
86#if ( I386_HAS_FPU == 1 )
87#define CPU_HARDWARE_FP     TRUE    /* i387 for i386 */
88#else
89#define CPU_HARDWARE_FP     FALSE
90#endif
91#define CPU_SOFTWARE_FP     FALSE
92
93#define CPU_ALL_TASKS_ARE_FP             FALSE
94#define CPU_IDLE_TASK_IS_FP              FALSE
95#if defined(RTEMS_SMP)
96  #define CPU_USE_DEFERRED_FP_SWITCH     FALSE
97#else
98  #define CPU_USE_DEFERRED_FP_SWITCH     TRUE
99#endif
100#endif /* __SSE__ */
101
102#define CPU_STACK_GROWS_UP               FALSE
103#define CPU_STRUCTURE_ALIGNMENT
104
105#define CPU_TIMESTAMP_USE_INT64_INLINE TRUE
106
107/*
108 *  Does this port provide a CPU dependent IDLE task implementation?
109 *
110 *  If TRUE, then the routine _CPU_Thread_Idle_body
111 *  must be provided and is the default IDLE thread body instead of
112 *  _CPU_Thread_Idle_body.
113 *
114 *  If FALSE, then use the generic IDLE thread body if the BSP does
115 *  not provide one.
116 */
117
118#define CPU_PROVIDES_IDLE_THREAD_BODY    TRUE
119
120/*
121 *  Define what is required to specify how the network to host conversion
122 *  routines are handled.
123 */
124
125#define CPU_BIG_ENDIAN                           FALSE
126#define CPU_LITTLE_ENDIAN                        TRUE
127
128#define CPU_PER_CPU_CONTROL_SIZE 0
129
130#define I386_CONTEXT_CONTROL_EFLAGS_OFFSET 0
131#define I386_CONTEXT_CONTROL_ESP_OFFSET 4
132#define I386_CONTEXT_CONTROL_EBP_OFFSET 8
133#define I386_CONTEXT_CONTROL_EBX_OFFSET 12
134#define I386_CONTEXT_CONTROL_ESI_OFFSET 16
135#define I386_CONTEXT_CONTROL_EDI_OFFSET 20
136
137#ifdef RTEMS_SMP
138  #define I386_CONTEXT_CONTROL_IS_EXECUTING_OFFSET 24
139#endif
140
141/* structures */
142
143#ifndef ASM
144
145typedef struct {
146  /* There is no CPU specific per-CPU state */
147} CPU_Per_CPU_control;
148
149/*
150 *  Basic integer context for the i386 family.
151 */
152
153typedef struct {
154  uint32_t    eflags;   /* extended flags register                   */
155  void       *esp;      /* extended stack pointer register           */
156  void       *ebp;      /* extended base pointer register            */
157  uint32_t    ebx;      /* extended bx register                      */
158  uint32_t    esi;      /* extended source index register            */
159  uint32_t    edi;      /* extended destination index flags register */
160#ifdef RTEMS_SMP
161  volatile bool is_executing;
162#endif
163}   Context_Control;
164
165#define _CPU_Context_Get_SP( _context ) \
166  (_context)->esp
167
168#ifdef RTEMS_SMP
169  static inline bool _CPU_Context_Get_is_executing(
170    const Context_Control *context
171  )
172  {
173    return context->is_executing;
174  }
175
176  static inline void _CPU_Context_Set_is_executing(
177    Context_Control *context,
178    bool is_executing
179  )
180  {
181    context->is_executing = is_executing;
182  }
183#endif
184
185/*
186 *  FP context save area for the i387 numeric coprocessors.
187 */
188#ifdef __SSE__
189/* All FPU and SSE registers are volatile; hence, as long
190 * as we are within normally executing C code (including
191 * a task switch) there is no need for saving/restoring
192 * any of those registers.
193 * We must save/restore the full FPU/SSE context across
194 * interrupts and exceptions, however:
195 *   -  after ISR execution a _Thread_Dispatch() may happen
196 *      and it is therefore necessary to save the FPU/SSE
197 *      registers to be restored when control is returned
198 *      to the interrupted task.
199 *   -  gcc may implicitly use FPU/SSE instructions in
200 *      an ISR.
201 *
202 * Even though there is no explicit mentioning of the FPU
203 * control word in the SYSV ABI (i386) being non-volatile
204 * we maintain MXCSR and the FPU control-word for each task.
205 */
206typedef struct {
207        uint32_t  mxcsr;
208        uint16_t  fpucw;
209} Context_Control_fp;
210
211#else
212
213typedef struct {
214  uint8_t     fp_save_area[108];    /* context size area for I80387 */
215                                    /*  28 bytes for environment    */
216} Context_Control_fp;
217
218#endif
219
220
221/*
222 *  The following structure defines the set of information saved
223 *  on the current stack by RTEMS upon receipt of execptions.
224 *
225 * idtIndex is either the interrupt number or the trap/exception number.
226 * faultCode is the code pushed by the processor on some exceptions.
227 *
228 * Since the first registers are directly pushed by the CPU they
229 * may not respect 16-byte stack alignment, which is, however,
230 * mandatory for the SSE register area.
231 * Therefore, these registers are stored at an aligned address
232 * and a pointer is stored in the CPU_Exception_frame.
233 * If the executive was compiled without SSE support then
234 * this pointer is NULL.
235 */
236
237struct Context_Control_sse;
238
239typedef struct {
240  struct Context_Control_sse *fp_ctxt;
241  uint32_t    edi;
242  uint32_t    esi;
243  uint32_t    ebp;
244  uint32_t    esp0;
245  uint32_t    ebx;
246  uint32_t    edx;
247  uint32_t    ecx;
248  uint32_t    eax;
249  uint32_t    idtIndex;
250  uint32_t    faultCode;
251  uint32_t    eip;
252  uint32_t    cs;
253  uint32_t    eflags;
254} CPU_Exception_frame;
255
256#ifdef __SSE__
257typedef struct Context_Control_sse {
258  uint16_t  fcw;
259  uint16_t  fsw;
260  uint8_t   ftw;
261  uint8_t   res_1;
262  uint16_t  fop;
263  uint32_t  fpu_ip;
264  uint16_t  cs;
265  uint16_t  res_2;
266  uint32_t  fpu_dp;
267  uint16_t  ds;
268  uint16_t  res_3;
269  uint32_t  mxcsr;
270  uint32_t  mxcsr_mask;
271  struct {
272        uint8_t fpreg[10];
273        uint8_t res_4[ 6];
274  } fp_mmregs[8];
275  uint8_t   xmmregs[8][16];
276  uint8_t   res_5[224];
277} Context_Control_sse
278__attribute__((aligned(16)))
279;
280#endif
281
282typedef void (*cpuExcHandlerType) (CPU_Exception_frame*);
283extern cpuExcHandlerType _currentExcHandler;
284extern void rtems_exception_init_mngt(void);
285
286/*
287 * This port does not pass any frame info to the
288 * interrupt handler.
289 */
290
291typedef void CPU_Interrupt_frame;
292
293typedef enum {
294  I386_EXCEPTION_DIVIDE_BY_ZERO      = 0,
295  I386_EXCEPTION_DEBUG               = 1,
296  I386_EXCEPTION_NMI                 = 2,
297  I386_EXCEPTION_BREAKPOINT          = 3,
298  I386_EXCEPTION_OVERFLOW            = 4,
299  I386_EXCEPTION_BOUND               = 5,
300  I386_EXCEPTION_ILLEGAL_INSTR       = 6,
301  I386_EXCEPTION_MATH_COPROC_UNAVAIL = 7,
302  I386_EXCEPTION_DOUBLE_FAULT        = 8,
303  I386_EXCEPTION_I386_COPROC_SEG_ERR = 9,
304  I386_EXCEPTION_INVALID_TSS         = 10,
305  I386_EXCEPTION_SEGMENT_NOT_PRESENT = 11,
306  I386_EXCEPTION_STACK_SEGMENT_FAULT = 12,
307  I386_EXCEPTION_GENERAL_PROT_ERR    = 13,
308  I386_EXCEPTION_PAGE_FAULT          = 14,
309  I386_EXCEPTION_INTEL_RES15         = 15,
310  I386_EXCEPTION_FLOAT_ERROR         = 16,
311  I386_EXCEPTION_ALIGN_CHECK         = 17,
312  I386_EXCEPTION_MACHINE_CHECK       = 18,
313  I386_EXCEPTION_ENTER_RDBG          = 50     /* to enter manually RDBG */
314
315} Intel_symbolic_exception_name;
316
317
318/*
319 *  context size area for floating point
320 *
321 *  NOTE:  This is out of place on the i386 to avoid a forward reference.
322 */
323
324#define CPU_CONTEXT_FP_SIZE sizeof( Context_Control_fp )
325
326/* variables */
327
328SCORE_EXTERN Context_Control_fp  _CPU_Null_fp_context;
329
330#endif /* ASM */
331
332/* constants */
333
334/*
335 *  This defines the number of levels and the mask used to pick those
336 *  bits out of a thread mode.
337 */
338
339#define CPU_MODES_INTERRUPT_LEVEL  0x00000001 /* interrupt level in mode */
340#define CPU_MODES_INTERRUPT_MASK   0x00000001 /* interrupt level in mode */
341
342/*
343 *  extra stack required by the MPCI receive server thread
344 */
345
346#define CPU_MPCI_RECEIVE_SERVER_EXTRA_STACK 1024
347
348/*
349 *  This is defined if the port has a special way to report the ISR nesting
350 *  level.  Most ports maintain the variable _ISR_Nest_level.
351 */
352
353#define CPU_PROVIDES_ISR_IS_IN_PROGRESS FALSE
354
355/*
356 *  Minimum size of a thread's stack.
357 */
358
359#define CPU_STACK_MINIMUM_SIZE          4096
360
361#define CPU_SIZEOF_POINTER 4
362
363/*
364 *  i386 is pretty tolerant of alignment.  Just put things on 4 byte boundaries.
365 */
366
367#define CPU_ALIGNMENT                    4
368#define CPU_HEAP_ALIGNMENT               CPU_ALIGNMENT
369#define CPU_PARTITION_ALIGNMENT          CPU_ALIGNMENT
370
371/*
372 *  On i386 thread stacks require no further alignment after allocation
373 *  from the Workspace. However, since gcc maintains 16-byte alignment
374 *  we try to respect that. If you find an option to let gcc squeeze
375 *  the stack more tightly then setting CPU_STACK_ALIGNMENT to 16 still
376 *  doesn't waste much space since this only determines the *initial*
377 *  alignment.
378 */
379
380#define CPU_STACK_ALIGNMENT             16
381
382/* macros */
383
384#ifndef ASM
385/*
386 *  ISR handler macros
387 *
388 *  These macros perform the following functions:
389 *     + initialize the RTEMS vector table
390 *     + disable all maskable CPU interrupts
391 *     + restore previous interrupt level (enable)
392 *     + temporarily restore interrupts (flash)
393 *     + set a particular level
394 */
395
396#define _CPU_ISR_Disable( _level ) i386_disable_interrupts( _level )
397
398#define _CPU_ISR_Enable( _level )  i386_enable_interrupts( _level )
399
400#define _CPU_ISR_Flash( _level )   i386_flash_interrupts( _level )
401
402#define _CPU_ISR_Set_level( _new_level ) \
403  { \
404    if ( _new_level ) __asm__ volatile ( "cli" ); \
405    else              __asm__ volatile ( "sti" ); \
406  }
407
408uint32_t   _CPU_ISR_Get_level( void );
409
410/*  Make sure interrupt stack has space for ISR
411 *  'vector' arg at the top and that it is aligned
412 *  properly.
413 */
414
415#define _CPU_Interrupt_stack_setup( _lo, _hi )  \
416        do {                                        \
417                _hi = (void*)(((uintptr_t)(_hi) - 4) & ~ (CPU_STACK_ALIGNMENT - 1)); \
418        } while (0)
419
420#endif /* ASM */
421
422/* end of ISR handler macros */
423
424/*
425 *  Context handler macros
426 *
427 *  These macros perform the following functions:
428 *     + initialize a context area
429 *     + restart the current thread
430 *     + calculate the initial pointer into a FP context area
431 *     + initialize an FP context area
432 */
433
434#define CPU_EFLAGS_INTERRUPTS_ON  0x00003202
435#define CPU_EFLAGS_INTERRUPTS_OFF 0x00003002
436
437#ifndef ASM
438
439/*
440 * Stack alignment note:
441 *
442 * We want the stack to look to the '_entry_point' routine
443 * like an ordinary stack frame as if '_entry_point' was
444 * called from C-code.
445 * Note that '_entry_point' is jumped-to by the 'ret'
446 * instruction returning from _CPU_Context_switch() or
447 * _CPU_Context_restore() thus popping the _entry_point
448 * from the stack.
449 * However, _entry_point expects a frame to look like this:
450 *
451 *      args        [_Thread_Handler expects no args, however]
452 *      ------      (alignment boundary)
453 * SP-> return_addr return here when _entry_point returns which (never happens)
454 *
455 *
456 * Hence we must initialize the stack as follows
457 *
458 *         [arg1          ]:  n/a
459 *         [arg0 (aligned)]:  n/a
460 *         [ret. addr     ]:  NULL
461 * SP->    [jump-target   ]:  _entry_point
462 *
463 * When Context_switch returns it pops the _entry_point from
464 * the stack which then finds a standard layout.
465 */
466
467
468
469#define _CPU_Context_Initialize( _the_context, _stack_base, _size, \
470                                   _isr, _entry_point, _is_fp, _tls_area ) \
471  do { \
472    uint32_t   _stack; \
473    \
474    (void) _is_fp; /* avoid warning for being unused */ \
475    if ( (_isr) ) (_the_context)->eflags = CPU_EFLAGS_INTERRUPTS_OFF; \
476    else          (_the_context)->eflags = CPU_EFLAGS_INTERRUPTS_ON; \
477    \
478    _stack  = ((uint32_t)(_stack_base)) + (_size); \
479        _stack &= ~ (CPU_STACK_ALIGNMENT - 1); \
480    _stack -= 2*sizeof(proc_ptr*); /* see above for why we need to do this */ \
481    *((proc_ptr *)(_stack)) = (_entry_point); \
482    (_the_context)->ebp     = (void *) 0; \
483    (_the_context)->esp     = (void *) _stack; \
484  } while (0)
485
486#define _CPU_Context_Restart_self( _the_context ) \
487   _CPU_Context_restore( (_the_context) );
488
489#if defined(RTEMS_SMP)
490  uint32_t _CPU_SMP_Initialize( void );
491
492  bool _CPU_SMP_Start_processor( uint32_t cpu_index );
493
494  void _CPU_SMP_Finalize_initialization( uint32_t cpu_count );
495
496  void _CPU_SMP_Prepare_start_multitasking( void );
497
498  uint32_t _CPU_SMP_Get_current_processor( void );
499
500  void _CPU_SMP_Send_interrupt( uint32_t target_processor_index );
501
502  static inline void _CPU_SMP_Processor_event_broadcast( void )
503  {
504    __asm__ volatile ( "" : : : "memory" );
505  }
506
507  static inline void _CPU_SMP_Processor_event_receive( void )
508  {
509    __asm__ volatile ( "" : : : "memory" );
510  }
511#endif
512
513#define _CPU_Context_Fp_start( _base, _offset ) \
514   ( (void *) _Addresses_Add_offset( (_base), (_offset) ) )
515
516#define _CPU_Context_Initialize_fp( _fp_area ) \
517  { \
518    memcpy( *_fp_area, &_CPU_Null_fp_context, CPU_CONTEXT_FP_SIZE ); \
519  }
520
521/* end of Context handler macros */
522
523/*
524 *  Fatal Error manager macros
525 *
526 *  These macros perform the following functions:
527 *    + disable interrupts and halt the CPU
528 */
529
530#define _CPU_Fatal_halt( _source, _error ) \
531  { \
532    uint32_t _error_lvalue = ( _error ); \
533    __asm__ volatile ( "cli ; \
534                    movl %0,%%eax ; \
535                    hlt" \
536                    : "=r" ((_error_lvalue)) : "0" ((_error_lvalue)) \
537    ); \
538  }
539
540#endif /* ASM */
541
542/* end of Fatal Error manager macros */
543
544/*
545 *  Bitfield handler macros
546 *
547 *  These macros perform the following functions:
548 *     + scan for the highest numbered (MSB) set in a 16 bit bitfield
549 */
550
551#define CPU_USE_GENERIC_BITFIELD_CODE FALSE
552#define CPU_USE_GENERIC_BITFIELD_DATA FALSE
553
554#define _CPU_Bitfield_Find_first_bit( _value, _output ) \
555  { \
556    register uint16_t   __value_in_register = (_value); \
557    \
558    _output = 0; \
559    \
560    __asm__ volatile ( "bsfw    %0,%1 " \
561                    : "=r" (__value_in_register), "=r" (_output) \
562                    : "0"  (__value_in_register), "1"  (_output) \
563    ); \
564  }
565
566/* end of Bitfield handler macros */
567
568/*
569 *  Priority handler macros
570 *
571 *  These macros perform the following functions:
572 *    + return a mask with the bit for this major/minor portion of
573 *      of thread priority set.
574 *    + translate the bit number returned by "Bitfield_find_first_bit"
575 *      into an index into the thread ready chain bit maps
576 */
577
578#define _CPU_Priority_Mask( _bit_number ) \
579  ( 1 << (_bit_number) )
580
581#define _CPU_Priority_bits_index( _priority ) \
582  (_priority)
583
584/* functions */
585
586#ifndef ASM
587/*
588 *  _CPU_Initialize
589 *
590 *  This routine performs CPU dependent initialization.
591 */
592
593void _CPU_Initialize(void);
594
595/*
596 *  _CPU_ISR_install_raw_handler
597 *
598 *  This routine installs a "raw" interrupt handler directly into the
599 *  processor's vector table.
600 */
601
602void _CPU_ISR_install_raw_handler(
603  uint32_t    vector,
604  proc_ptr    new_handler,
605  proc_ptr   *old_handler
606);
607
608/*
609 *  _CPU_ISR_install_vector
610 *
611 *  This routine installs an interrupt vector.
612 */
613
614void _CPU_ISR_install_vector(
615  uint32_t    vector,
616  proc_ptr    new_handler,
617  proc_ptr   *old_handler
618);
619
620/*
621 *  _CPU_Thread_Idle_body
622 *
623 *  Use the halt instruction of low power mode of a particular i386 model.
624 */
625
626#if (CPU_PROVIDES_IDLE_THREAD_BODY == TRUE)
627
628void *_CPU_Thread_Idle_body( uintptr_t ignored );
629
630#endif /* CPU_PROVIDES_IDLE_THREAD_BODY */
631
632/*
633 *  _CPU_Context_switch
634 *
635 *  This routine switches from the run context to the heir context.
636 */
637
638void _CPU_Context_switch(
639  Context_Control  *run,
640  Context_Control  *heir
641);
642
643/*
644 *  _CPU_Context_restore
645 *
646 *  This routine is generally used only to restart self in an
647 *  efficient manner and avoid stack conflicts.
648 */
649
650void _CPU_Context_restore(
651  Context_Control *new_context
652) RTEMS_NO_RETURN;
653
654/*
655 *  _CPU_Context_save_fp
656 *
657 *  This routine saves the floating point context passed to it.
658 */
659
660#ifdef __SSE__
661#define _CPU_Context_save_fp(fp_context_pp) \
662  do {                                      \
663    __asm__ __volatile__(                   \
664      "fstcw %0"                            \
665      :"=m"((*(fp_context_pp))->fpucw)      \
666    );                                      \
667        __asm__ __volatile__(                   \
668      "stmxcsr %0"                          \
669      :"=m"((*(fp_context_pp))->mxcsr)      \
670    );                                      \
671  } while (0)
672#else
673void _CPU_Context_save_fp(
674  Context_Control_fp **fp_context_ptr
675);
676#endif
677
678/*
679 *  _CPU_Context_restore_fp
680 *
681 *  This routine restores the floating point context passed to it.
682 */
683#ifdef __SSE__
684#define _CPU_Context_restore_fp(fp_context_pp) \
685  do {                                         \
686    __asm__ __volatile__(                      \
687      "fldcw %0"                               \
688      ::"m"((*(fp_context_pp))->fpucw)         \
689      :"fpcr"                                  \
690    );                                         \
691    __builtin_ia32_ldmxcsr(_Thread_Executing->fp_context->mxcsr);  \
692  } while (0)
693#else
694void _CPU_Context_restore_fp(
695  Context_Control_fp **fp_context_ptr
696);
697#endif
698
699#ifdef __SSE__
700#define _CPU_Context_Initialization_at_thread_begin() \
701  do {                                                \
702    __asm__ __volatile__(                             \
703      "finit"                                         \
704      :                                               \
705      :                                               \
706      :"st","st(1)","st(2)","st(3)",                  \
707       "st(4)","st(5)","st(6)","st(7)",               \
708       "fpsr","fpcr"                                  \
709    );                                                \
710        if ( _Thread_Executing->fp_context ) {            \
711          _CPU_Context_restore_fp(&_Thread_Executing->fp_context); \
712   }                                                  \
713  } while (0)
714#endif
715
716static inline void _CPU_Context_volatile_clobber( uintptr_t pattern )
717{
718  /* TODO */
719}
720
721static inline void _CPU_Context_validate( uintptr_t pattern )
722{
723  while (1) {
724    /* TODO */
725  }
726}
727
728void _CPU_Exception_frame_print( const CPU_Exception_frame *frame );
729
730typedef uint32_t CPU_Counter_ticks;
731
732CPU_Counter_ticks _CPU_Counter_read( void );
733
734static inline CPU_Counter_ticks _CPU_Counter_difference(
735  CPU_Counter_ticks second,
736  CPU_Counter_ticks first
737)
738{
739  return second - first;
740}
741
742#endif /* ASM */
743
744#ifdef __cplusplus
745}
746#endif
747
748#endif
Note: See TracBrowser for help on using the repository browser.