source: rtems/cpukit/score/cpu/i386/rtems/score/cpu.h @ 01b32d4

5
Last change on this file since 01b32d4 was 01b32d4, checked in by Sebastian Huber <sebastian.huber@…>, on 01/25/16 at 07:54:17

score: Delete obsolete CPU_TIMESTAMP_* defines

Update #2271.

  • Property mode set to 100644
File size: 19.1 KB
Line 
1/**
2 * @file
3 *
4 * @brief Intel I386 CPU Dependent Source
5 *
6 * This include file contains information pertaining to the Intel
7 * i386 processor.
8 */
9
10/*
11 *  COPYRIGHT (c) 1989-2011.
12 *  On-Line Applications Research Corporation (OAR).
13 *
14 *  The license and distribution terms for this file may be
15 *  found in the file LICENSE in this distribution or at
16 *  http://www.rtems.org/license/LICENSE.
17 */
18
19#ifndef _RTEMS_SCORE_CPU_H
20#define _RTEMS_SCORE_CPU_H
21
22#ifndef ASM
23#include <string.h> /* for memcpy */
24#endif
25
26#ifdef __cplusplus
27extern "C" {
28#endif
29
30#include <rtems/score/types.h>
31#include <rtems/score/i386.h>
32
33#ifndef ASM
34#include <rtems/score/interrupts.h>     /* formerly in libcpu/cpu.h> */
35#include <rtems/score/registers.h>      /* formerly part of libcpu */
36#endif
37
38/* conditional compilation parameters */
39
40#define CPU_INLINE_ENABLE_DISPATCH       TRUE
41
42/*
43 *  Does the CPU follow the simple vectored interrupt model?
44 *
45 *  If TRUE, then RTEMS allocates the vector table it internally manages.
46 *  If FALSE, then the BSP is assumed to allocate and manage the vector
47 *  table
48 *
49 *  PowerPC Specific Information:
50 *
51 *  The PowerPC and x86 were the first to use the PIC interrupt model.
52 *  They do not use the simple vectored interrupt model.
53 */
54#define CPU_SIMPLE_VECTORED_INTERRUPTS FALSE
55
56/*
57 *  i386 has an RTEMS allocated and managed interrupt stack.
58 */
59
60#define CPU_HAS_SOFTWARE_INTERRUPT_STACK TRUE
61#define CPU_HAS_HARDWARE_INTERRUPT_STACK FALSE
62#define CPU_ALLOCATE_INTERRUPT_STACK     TRUE
63
64/*
65 *  Does the RTEMS invoke the user's ISR with the vector number and
66 *  a pointer to the saved interrupt frame (1) or just the vector
67 *  number (0)?
68 */
69
70#define CPU_ISR_PASSES_FRAME_POINTER 0
71
72/*
73 *  Some family members have no FP, some have an FPU such as the i387
74 *  for the i386, others have it built in (i486DX, Pentium).
75 */
76
77#ifdef __SSE__
78#define CPU_HARDWARE_FP                  TRUE
79#define CPU_SOFTWARE_FP                  FALSE
80
81#define CPU_ALL_TASKS_ARE_FP             TRUE
82#define CPU_IDLE_TASK_IS_FP              TRUE
83#define CPU_USE_DEFERRED_FP_SWITCH       FALSE
84#else /* __SSE__ */
85
86#if ( I386_HAS_FPU == 1 )
87#define CPU_HARDWARE_FP     TRUE    /* i387 for i386 */
88#else
89#define CPU_HARDWARE_FP     FALSE
90#endif
91#define CPU_SOFTWARE_FP     FALSE
92
93#define CPU_ALL_TASKS_ARE_FP             FALSE
94#define CPU_IDLE_TASK_IS_FP              FALSE
95#if defined(RTEMS_SMP)
96  #define CPU_USE_DEFERRED_FP_SWITCH     FALSE
97#else
98  #define CPU_USE_DEFERRED_FP_SWITCH     TRUE
99#endif
100#endif /* __SSE__ */
101
102#define CPU_STACK_GROWS_UP               FALSE
103#define CPU_STRUCTURE_ALIGNMENT
104
105/*
106 *  Does this port provide a CPU dependent IDLE task implementation?
107 *
108 *  If TRUE, then the routine _CPU_Thread_Idle_body
109 *  must be provided and is the default IDLE thread body instead of
110 *  _CPU_Thread_Idle_body.
111 *
112 *  If FALSE, then use the generic IDLE thread body if the BSP does
113 *  not provide one.
114 */
115
116#define CPU_PROVIDES_IDLE_THREAD_BODY    TRUE
117
118/*
119 *  Define what is required to specify how the network to host conversion
120 *  routines are handled.
121 */
122
123#define CPU_BIG_ENDIAN                           FALSE
124#define CPU_LITTLE_ENDIAN                        TRUE
125
126#define CPU_PER_CPU_CONTROL_SIZE 0
127
128#define I386_CONTEXT_CONTROL_EFLAGS_OFFSET 0
129#define I386_CONTEXT_CONTROL_ESP_OFFSET 4
130#define I386_CONTEXT_CONTROL_EBP_OFFSET 8
131#define I386_CONTEXT_CONTROL_EBX_OFFSET 12
132#define I386_CONTEXT_CONTROL_ESI_OFFSET 16
133#define I386_CONTEXT_CONTROL_EDI_OFFSET 20
134
135#ifdef RTEMS_SMP
136  #define I386_CONTEXT_CONTROL_IS_EXECUTING_OFFSET 24
137#endif
138
139/* structures */
140
141#ifndef ASM
142
143typedef struct {
144  /* There is no CPU specific per-CPU state */
145} CPU_Per_CPU_control;
146
147/*
148 *  Basic integer context for the i386 family.
149 */
150
151typedef struct {
152  uint32_t    eflags;   /* extended flags register                   */
153  void       *esp;      /* extended stack pointer register           */
154  void       *ebp;      /* extended base pointer register            */
155  uint32_t    ebx;      /* extended bx register                      */
156  uint32_t    esi;      /* extended source index register            */
157  uint32_t    edi;      /* extended destination index flags register */
158#ifdef RTEMS_SMP
159  volatile bool is_executing;
160#endif
161}   Context_Control;
162
163#define _CPU_Context_Get_SP( _context ) \
164  (_context)->esp
165
166#ifdef RTEMS_SMP
167  static inline bool _CPU_Context_Get_is_executing(
168    const Context_Control *context
169  )
170  {
171    return context->is_executing;
172  }
173
174  static inline void _CPU_Context_Set_is_executing(
175    Context_Control *context,
176    bool is_executing
177  )
178  {
179    context->is_executing = is_executing;
180  }
181#endif
182
183/*
184 *  FP context save area for the i387 numeric coprocessors.
185 */
186#ifdef __SSE__
187/* All FPU and SSE registers are volatile; hence, as long
188 * as we are within normally executing C code (including
189 * a task switch) there is no need for saving/restoring
190 * any of those registers.
191 * We must save/restore the full FPU/SSE context across
192 * interrupts and exceptions, however:
193 *   -  after ISR execution a _Thread_Dispatch() may happen
194 *      and it is therefore necessary to save the FPU/SSE
195 *      registers to be restored when control is returned
196 *      to the interrupted task.
197 *   -  gcc may implicitly use FPU/SSE instructions in
198 *      an ISR.
199 *
200 * Even though there is no explicit mentioning of the FPU
201 * control word in the SYSV ABI (i386) being non-volatile
202 * we maintain MXCSR and the FPU control-word for each task.
203 */
204typedef struct {
205        uint32_t  mxcsr;
206        uint16_t  fpucw;
207} Context_Control_fp;
208
209#else
210
211typedef struct {
212  uint8_t     fp_save_area[108];    /* context size area for I80387 */
213                                    /*  28 bytes for environment    */
214} Context_Control_fp;
215
216#endif
217
218
219/*
220 *  The following structure defines the set of information saved
221 *  on the current stack by RTEMS upon receipt of execptions.
222 *
223 * idtIndex is either the interrupt number or the trap/exception number.
224 * faultCode is the code pushed by the processor on some exceptions.
225 *
226 * Since the first registers are directly pushed by the CPU they
227 * may not respect 16-byte stack alignment, which is, however,
228 * mandatory for the SSE register area.
229 * Therefore, these registers are stored at an aligned address
230 * and a pointer is stored in the CPU_Exception_frame.
231 * If the executive was compiled without SSE support then
232 * this pointer is NULL.
233 */
234
235struct Context_Control_sse;
236
237typedef struct {
238  struct Context_Control_sse *fp_ctxt;
239  uint32_t    edi;
240  uint32_t    esi;
241  uint32_t    ebp;
242  uint32_t    esp0;
243  uint32_t    ebx;
244  uint32_t    edx;
245  uint32_t    ecx;
246  uint32_t    eax;
247  uint32_t    idtIndex;
248  uint32_t    faultCode;
249  uint32_t    eip;
250  uint32_t    cs;
251  uint32_t    eflags;
252} CPU_Exception_frame;
253
254#ifdef __SSE__
255typedef struct Context_Control_sse {
256  uint16_t  fcw;
257  uint16_t  fsw;
258  uint8_t   ftw;
259  uint8_t   res_1;
260  uint16_t  fop;
261  uint32_t  fpu_ip;
262  uint16_t  cs;
263  uint16_t  res_2;
264  uint32_t  fpu_dp;
265  uint16_t  ds;
266  uint16_t  res_3;
267  uint32_t  mxcsr;
268  uint32_t  mxcsr_mask;
269  struct {
270        uint8_t fpreg[10];
271        uint8_t res_4[ 6];
272  } fp_mmregs[8];
273  uint8_t   xmmregs[8][16];
274  uint8_t   res_5[224];
275} Context_Control_sse
276__attribute__((aligned(16)))
277;
278#endif
279
280typedef void (*cpuExcHandlerType) (CPU_Exception_frame*);
281extern cpuExcHandlerType _currentExcHandler;
282extern void rtems_exception_init_mngt(void);
283
284/*
285 * This port does not pass any frame info to the
286 * interrupt handler.
287 */
288
289typedef void CPU_Interrupt_frame;
290
291typedef enum {
292  I386_EXCEPTION_DIVIDE_BY_ZERO      = 0,
293  I386_EXCEPTION_DEBUG               = 1,
294  I386_EXCEPTION_NMI                 = 2,
295  I386_EXCEPTION_BREAKPOINT          = 3,
296  I386_EXCEPTION_OVERFLOW            = 4,
297  I386_EXCEPTION_BOUND               = 5,
298  I386_EXCEPTION_ILLEGAL_INSTR       = 6,
299  I386_EXCEPTION_MATH_COPROC_UNAVAIL = 7,
300  I386_EXCEPTION_DOUBLE_FAULT        = 8,
301  I386_EXCEPTION_I386_COPROC_SEG_ERR = 9,
302  I386_EXCEPTION_INVALID_TSS         = 10,
303  I386_EXCEPTION_SEGMENT_NOT_PRESENT = 11,
304  I386_EXCEPTION_STACK_SEGMENT_FAULT = 12,
305  I386_EXCEPTION_GENERAL_PROT_ERR    = 13,
306  I386_EXCEPTION_PAGE_FAULT          = 14,
307  I386_EXCEPTION_INTEL_RES15         = 15,
308  I386_EXCEPTION_FLOAT_ERROR         = 16,
309  I386_EXCEPTION_ALIGN_CHECK         = 17,
310  I386_EXCEPTION_MACHINE_CHECK       = 18,
311  I386_EXCEPTION_ENTER_RDBG          = 50     /* to enter manually RDBG */
312
313} Intel_symbolic_exception_name;
314
315
316/*
317 *  context size area for floating point
318 *
319 *  NOTE:  This is out of place on the i386 to avoid a forward reference.
320 */
321
322#define CPU_CONTEXT_FP_SIZE sizeof( Context_Control_fp )
323
324/* variables */
325
326SCORE_EXTERN Context_Control_fp  _CPU_Null_fp_context;
327
328#endif /* ASM */
329
330/* constants */
331
332/*
333 *  This defines the number of levels and the mask used to pick those
334 *  bits out of a thread mode.
335 */
336
337#define CPU_MODES_INTERRUPT_LEVEL  0x00000001 /* interrupt level in mode */
338#define CPU_MODES_INTERRUPT_MASK   0x00000001 /* interrupt level in mode */
339
340/*
341 *  extra stack required by the MPCI receive server thread
342 */
343
344#define CPU_MPCI_RECEIVE_SERVER_EXTRA_STACK 1024
345
346/*
347 *  This is defined if the port has a special way to report the ISR nesting
348 *  level.  Most ports maintain the variable _ISR_Nest_level.
349 */
350
351#define CPU_PROVIDES_ISR_IS_IN_PROGRESS FALSE
352
353/*
354 *  Minimum size of a thread's stack.
355 */
356
357#define CPU_STACK_MINIMUM_SIZE          4096
358
359#define CPU_SIZEOF_POINTER 4
360
361/*
362 *  i386 is pretty tolerant of alignment.  Just put things on 4 byte boundaries.
363 */
364
365#define CPU_ALIGNMENT                    4
366#define CPU_HEAP_ALIGNMENT               CPU_ALIGNMENT
367#define CPU_PARTITION_ALIGNMENT          CPU_ALIGNMENT
368
369/*
370 *  On i386 thread stacks require no further alignment after allocation
371 *  from the Workspace. However, since gcc maintains 16-byte alignment
372 *  we try to respect that. If you find an option to let gcc squeeze
373 *  the stack more tightly then setting CPU_STACK_ALIGNMENT to 16 still
374 *  doesn't waste much space since this only determines the *initial*
375 *  alignment.
376 */
377
378#define CPU_STACK_ALIGNMENT             16
379
380/* macros */
381
382#ifndef ASM
383/*
384 *  ISR handler macros
385 *
386 *  These macros perform the following functions:
387 *     + initialize the RTEMS vector table
388 *     + disable all maskable CPU interrupts
389 *     + restore previous interrupt level (enable)
390 *     + temporarily restore interrupts (flash)
391 *     + set a particular level
392 */
393
394#define _CPU_ISR_Disable( _level ) i386_disable_interrupts( _level )
395
396#define _CPU_ISR_Enable( _level )  i386_enable_interrupts( _level )
397
398#define _CPU_ISR_Flash( _level )   i386_flash_interrupts( _level )
399
400#define _CPU_ISR_Set_level( _new_level ) \
401  { \
402    if ( _new_level ) __asm__ volatile ( "cli" ); \
403    else              __asm__ volatile ( "sti" ); \
404  }
405
406uint32_t   _CPU_ISR_Get_level( void );
407
408/*  Make sure interrupt stack has space for ISR
409 *  'vector' arg at the top and that it is aligned
410 *  properly.
411 */
412
413#define _CPU_Interrupt_stack_setup( _lo, _hi )  \
414        do {                                        \
415                _hi = (void*)(((uintptr_t)(_hi) - 4) & ~ (CPU_STACK_ALIGNMENT - 1)); \
416        } while (0)
417
418#endif /* ASM */
419
420/* end of ISR handler macros */
421
422/*
423 *  Context handler macros
424 *
425 *  These macros perform the following functions:
426 *     + initialize a context area
427 *     + restart the current thread
428 *     + calculate the initial pointer into a FP context area
429 *     + initialize an FP context area
430 */
431
432#define CPU_EFLAGS_INTERRUPTS_ON  0x00003202
433#define CPU_EFLAGS_INTERRUPTS_OFF 0x00003002
434
435#ifndef ASM
436
437/*
438 * Stack alignment note:
439 *
440 * We want the stack to look to the '_entry_point' routine
441 * like an ordinary stack frame as if '_entry_point' was
442 * called from C-code.
443 * Note that '_entry_point' is jumped-to by the 'ret'
444 * instruction returning from _CPU_Context_switch() or
445 * _CPU_Context_restore() thus popping the _entry_point
446 * from the stack.
447 * However, _entry_point expects a frame to look like this:
448 *
449 *      args        [_Thread_Handler expects no args, however]
450 *      ------      (alignment boundary)
451 * SP-> return_addr return here when _entry_point returns which (never happens)
452 *
453 *
454 * Hence we must initialize the stack as follows
455 *
456 *         [arg1          ]:  n/a
457 *         [arg0 (aligned)]:  n/a
458 *         [ret. addr     ]:  NULL
459 * SP->    [jump-target   ]:  _entry_point
460 *
461 * When Context_switch returns it pops the _entry_point from
462 * the stack which then finds a standard layout.
463 */
464
465
466
467#define _CPU_Context_Initialize( _the_context, _stack_base, _size, \
468                                   _isr, _entry_point, _is_fp, _tls_area ) \
469  do { \
470    uint32_t   _stack; \
471    \
472    (void) _is_fp; /* avoid warning for being unused */ \
473    if ( (_isr) ) (_the_context)->eflags = CPU_EFLAGS_INTERRUPTS_OFF; \
474    else          (_the_context)->eflags = CPU_EFLAGS_INTERRUPTS_ON; \
475    \
476    _stack  = ((uint32_t)(_stack_base)) + (_size); \
477        _stack &= ~ (CPU_STACK_ALIGNMENT - 1); \
478    _stack -= 2*sizeof(proc_ptr*); /* see above for why we need to do this */ \
479    *((proc_ptr *)(_stack)) = (_entry_point); \
480    (_the_context)->ebp     = (void *) 0; \
481    (_the_context)->esp     = (void *) _stack; \
482  } while (0)
483
484#define _CPU_Context_Restart_self( _the_context ) \
485   _CPU_Context_restore( (_the_context) );
486
487#if defined(RTEMS_SMP)
488  uint32_t _CPU_SMP_Initialize( void );
489
490  bool _CPU_SMP_Start_processor( uint32_t cpu_index );
491
492  void _CPU_SMP_Finalize_initialization( uint32_t cpu_count );
493
494  void _CPU_SMP_Prepare_start_multitasking( void );
495
496  uint32_t _CPU_SMP_Get_current_processor( void );
497
498  void _CPU_SMP_Send_interrupt( uint32_t target_processor_index );
499
500  static inline void _CPU_SMP_Processor_event_broadcast( void )
501  {
502    __asm__ volatile ( "" : : : "memory" );
503  }
504
505  static inline void _CPU_SMP_Processor_event_receive( void )
506  {
507    __asm__ volatile ( "" : : : "memory" );
508  }
509#endif
510
511#define _CPU_Context_Fp_start( _base, _offset ) \
512   ( (void *) _Addresses_Add_offset( (_base), (_offset) ) )
513
514#define _CPU_Context_Initialize_fp( _fp_area ) \
515  { \
516    memcpy( *_fp_area, &_CPU_Null_fp_context, CPU_CONTEXT_FP_SIZE ); \
517  }
518
519/* end of Context handler macros */
520
521/*
522 *  Fatal Error manager macros
523 *
524 *  These macros perform the following functions:
525 *    + disable interrupts and halt the CPU
526 */
527
528#define _CPU_Fatal_halt( _source, _error ) \
529  { \
530    uint32_t _error_lvalue = ( _error ); \
531    __asm__ volatile ( "cli ; \
532                    movl %0,%%eax ; \
533                    hlt" \
534                    : "=r" ((_error_lvalue)) : "0" ((_error_lvalue)) \
535    ); \
536  }
537
538#endif /* ASM */
539
540/* end of Fatal Error manager macros */
541
542/*
543 *  Bitfield handler macros
544 *
545 *  These macros perform the following functions:
546 *     + scan for the highest numbered (MSB) set in a 16 bit bitfield
547 */
548
549#define CPU_USE_GENERIC_BITFIELD_CODE FALSE
550#define CPU_USE_GENERIC_BITFIELD_DATA FALSE
551
552#define _CPU_Bitfield_Find_first_bit( _value, _output ) \
553  { \
554    register uint16_t   __value_in_register = (_value); \
555    \
556    _output = 0; \
557    \
558    __asm__ volatile ( "bsfw    %0,%1 " \
559                    : "=r" (__value_in_register), "=r" (_output) \
560                    : "0"  (__value_in_register), "1"  (_output) \
561    ); \
562  }
563
564/* end of Bitfield handler macros */
565
566/*
567 *  Priority handler macros
568 *
569 *  These macros perform the following functions:
570 *    + return a mask with the bit for this major/minor portion of
571 *      of thread priority set.
572 *    + translate the bit number returned by "Bitfield_find_first_bit"
573 *      into an index into the thread ready chain bit maps
574 */
575
576#define _CPU_Priority_Mask( _bit_number ) \
577  ( 1 << (_bit_number) )
578
579#define _CPU_Priority_bits_index( _priority ) \
580  (_priority)
581
582/* functions */
583
584#ifndef ASM
585/*
586 *  _CPU_Initialize
587 *
588 *  This routine performs CPU dependent initialization.
589 */
590
591void _CPU_Initialize(void);
592
593/*
594 *  _CPU_ISR_install_raw_handler
595 *
596 *  This routine installs a "raw" interrupt handler directly into the
597 *  processor's vector table.
598 */
599
600void _CPU_ISR_install_raw_handler(
601  uint32_t    vector,
602  proc_ptr    new_handler,
603  proc_ptr   *old_handler
604);
605
606/*
607 *  _CPU_ISR_install_vector
608 *
609 *  This routine installs an interrupt vector.
610 */
611
612void _CPU_ISR_install_vector(
613  uint32_t    vector,
614  proc_ptr    new_handler,
615  proc_ptr   *old_handler
616);
617
618/*
619 *  _CPU_Thread_Idle_body
620 *
621 *  Use the halt instruction of low power mode of a particular i386 model.
622 */
623
624#if (CPU_PROVIDES_IDLE_THREAD_BODY == TRUE)
625
626void *_CPU_Thread_Idle_body( uintptr_t ignored );
627
628#endif /* CPU_PROVIDES_IDLE_THREAD_BODY */
629
630/*
631 *  _CPU_Context_switch
632 *
633 *  This routine switches from the run context to the heir context.
634 */
635
636void _CPU_Context_switch(
637  Context_Control  *run,
638  Context_Control  *heir
639);
640
641/*
642 *  _CPU_Context_restore
643 *
644 *  This routine is generally used only to restart self in an
645 *  efficient manner and avoid stack conflicts.
646 */
647
648void _CPU_Context_restore(
649  Context_Control *new_context
650) RTEMS_NO_RETURN;
651
652/*
653 *  _CPU_Context_save_fp
654 *
655 *  This routine saves the floating point context passed to it.
656 */
657
658#ifdef __SSE__
659#define _CPU_Context_save_fp(fp_context_pp) \
660  do {                                      \
661    __asm__ __volatile__(                   \
662      "fstcw %0"                            \
663      :"=m"((*(fp_context_pp))->fpucw)      \
664    );                                      \
665        __asm__ __volatile__(                   \
666      "stmxcsr %0"                          \
667      :"=m"((*(fp_context_pp))->mxcsr)      \
668    );                                      \
669  } while (0)
670#else
671void _CPU_Context_save_fp(
672  Context_Control_fp **fp_context_ptr
673);
674#endif
675
676/*
677 *  _CPU_Context_restore_fp
678 *
679 *  This routine restores the floating point context passed to it.
680 */
681#ifdef __SSE__
682#define _CPU_Context_restore_fp(fp_context_pp) \
683  do {                                         \
684    __asm__ __volatile__(                      \
685      "fldcw %0"                               \
686      ::"m"((*(fp_context_pp))->fpucw)         \
687      :"fpcr"                                  \
688    );                                         \
689    __builtin_ia32_ldmxcsr(_Thread_Executing->fp_context->mxcsr);  \
690  } while (0)
691#else
692void _CPU_Context_restore_fp(
693  Context_Control_fp **fp_context_ptr
694);
695#endif
696
697#ifdef __SSE__
698#define _CPU_Context_Initialization_at_thread_begin() \
699  do {                                                \
700    __asm__ __volatile__(                             \
701      "finit"                                         \
702      :                                               \
703      :                                               \
704      :"st","st(1)","st(2)","st(3)",                  \
705       "st(4)","st(5)","st(6)","st(7)",               \
706       "fpsr","fpcr"                                  \
707    );                                                \
708        if ( _Thread_Executing->fp_context ) {            \
709          _CPU_Context_restore_fp(&_Thread_Executing->fp_context); \
710   }                                                  \
711  } while (0)
712#endif
713
714static inline void _CPU_Context_volatile_clobber( uintptr_t pattern )
715{
716  /* TODO */
717}
718
719static inline void _CPU_Context_validate( uintptr_t pattern )
720{
721  while (1) {
722    /* TODO */
723  }
724}
725
726void _CPU_Exception_frame_print( const CPU_Exception_frame *frame );
727
728typedef uint32_t CPU_Counter_ticks;
729
730CPU_Counter_ticks _CPU_Counter_read( void );
731
732static inline CPU_Counter_ticks _CPU_Counter_difference(
733  CPU_Counter_ticks second,
734  CPU_Counter_ticks first
735)
736{
737  return second - first;
738}
739
740#endif /* ASM */
741
742#ifdef __cplusplus
743}
744#endif
745
746#endif
Note: See TracBrowser for help on using the repository browser.