source: rtems/cpukit/score/cpu/i386/include/rtems/score/cpu.h @ c8df844

5
Last change on this file since c8df844 was c8df844, checked in by Sebastian Huber <sebastian.huber@…>, on 06/19/18 at 12:59:51

score: Add CPU_INTERRUPT_STACK_ALIGNMENT

Add CPU port define for the interrupt stack alignment. The alignment
should take the stack ABI and the cache line size into account.

Update #3459.

  • Property mode set to 100644
File size: 18.3 KB
Line 
1/**
2 * @file
3 *
4 * @brief Intel I386 CPU Dependent Source
5 *
6 * This include file contains information pertaining to the Intel
7 * i386 processor.
8 */
9
10/*
11 *  COPYRIGHT (c) 1989-2011.
12 *  On-Line Applications Research Corporation (OAR).
13 *
14 *  The license and distribution terms for this file may be
15 *  found in the file LICENSE in this distribution or at
16 *  http://www.rtems.org/license/LICENSE.
17 */
18
19#ifndef _RTEMS_SCORE_CPU_H
20#define _RTEMS_SCORE_CPU_H
21
22#ifndef ASM
23#include <string.h> /* for memcpy */
24#endif
25
26#ifdef __cplusplus
27extern "C" {
28#endif
29
30#include <rtems/score/basedefs.h>
31#if defined(RTEMS_PARAVIRT)
32#include <rtems/score/paravirt.h>
33#endif
34#include <rtems/score/i386.h>
35
36/* conditional compilation parameters */
37
38/*
39 *  Does the CPU follow the simple vectored interrupt model?
40 *
41 *  If TRUE, then RTEMS allocates the vector table it internally manages.
42 *  If FALSE, then the BSP is assumed to allocate and manage the vector
43 *  table
44 *
45 *  PowerPC Specific Information:
46 *
47 *  The PowerPC and x86 were the first to use the PIC interrupt model.
48 *  They do not use the simple vectored interrupt model.
49 */
50#define CPU_SIMPLE_VECTORED_INTERRUPTS FALSE
51
52/*
53 *  i386 has an RTEMS allocated and managed interrupt stack.
54 */
55
56#define CPU_HAS_SOFTWARE_INTERRUPT_STACK TRUE
57#define CPU_HAS_HARDWARE_INTERRUPT_STACK FALSE
58#define CPU_ALLOCATE_INTERRUPT_STACK     TRUE
59
60/*
61 *  Does the RTEMS invoke the user's ISR with the vector number and
62 *  a pointer to the saved interrupt frame (1) or just the vector
63 *  number (0)?
64 */
65
66#define CPU_ISR_PASSES_FRAME_POINTER FALSE
67
68/*
69 *  Some family members have no FP, some have an FPU such as the i387
70 *  for the i386, others have it built in (i486DX, Pentium).
71 */
72
73#ifdef __SSE__
74#define CPU_HARDWARE_FP                  TRUE
75#define CPU_SOFTWARE_FP                  FALSE
76
77#define CPU_ALL_TASKS_ARE_FP             TRUE
78#define CPU_IDLE_TASK_IS_FP              TRUE
79#define CPU_USE_DEFERRED_FP_SWITCH       FALSE
80#else /* __SSE__ */
81
82#if ( I386_HAS_FPU == 1 )
83#define CPU_HARDWARE_FP     TRUE    /* i387 for i386 */
84#else
85#define CPU_HARDWARE_FP     FALSE
86#endif
87#define CPU_SOFTWARE_FP     FALSE
88
89#define CPU_ALL_TASKS_ARE_FP             FALSE
90#define CPU_IDLE_TASK_IS_FP              FALSE
91#if defined(RTEMS_SMP)
92  #define CPU_USE_DEFERRED_FP_SWITCH     FALSE
93#else
94  #define CPU_USE_DEFERRED_FP_SWITCH     TRUE
95#endif
96#endif /* __SSE__ */
97
98#define CPU_ENABLE_ROBUST_THREAD_DISPATCH FALSE
99
100#define CPU_STACK_GROWS_UP               FALSE
101
102/* FIXME: The Pentium 4 used 128 bytes, it this processor still relevant? */
103#define CPU_CACHE_LINE_BYTES 64
104
105#define CPU_STRUCTURE_ALIGNMENT
106
107/*
108 *  Does this port provide a CPU dependent IDLE task implementation?
109 *
110 *  If TRUE, then the routine _CPU_Thread_Idle_body
111 *  must be provided and is the default IDLE thread body instead of
112 *  _CPU_Thread_Idle_body.
113 *
114 *  If FALSE, then use the generic IDLE thread body if the BSP does
115 *  not provide one.
116 */
117
118#define CPU_PROVIDES_IDLE_THREAD_BODY    FALSE
119
120#define CPU_MAXIMUM_PROCESSORS 32
121
122#define I386_CONTEXT_CONTROL_EFLAGS_OFFSET 0
123#define I386_CONTEXT_CONTROL_ESP_OFFSET 4
124#define I386_CONTEXT_CONTROL_EBP_OFFSET 8
125#define I386_CONTEXT_CONTROL_EBX_OFFSET 12
126#define I386_CONTEXT_CONTROL_ESI_OFFSET 16
127#define I386_CONTEXT_CONTROL_EDI_OFFSET 20
128#define I386_CONTEXT_CONTROL_GS_0_OFFSET 24
129#define I386_CONTEXT_CONTROL_GS_1_OFFSET 28
130
131#ifdef RTEMS_SMP
132  #define I386_CONTEXT_CONTROL_IS_EXECUTING_OFFSET 32
133#endif
134
135/* structures */
136
137#ifndef ASM
138
139/*
140 *  Basic integer context for the i386 family.
141 */
142
143typedef struct {
144  uint32_t    eflags;     /* extended flags register                   */
145  void       *esp;        /* extended stack pointer register           */
146  void       *ebp;        /* extended base pointer register            */
147  uint32_t    ebx;        /* extended bx register                      */
148  uint32_t    esi;        /* extended source index register            */
149  uint32_t    edi;        /* extended destination index flags register */
150  segment_descriptors gs; /* gs segment descriptor                     */
151#ifdef RTEMS_SMP
152  volatile bool is_executing;
153#endif
154}   Context_Control;
155
156#define _CPU_Context_Get_SP( _context ) \
157  (_context)->esp
158
159#ifdef RTEMS_SMP
160  static inline bool _CPU_Context_Get_is_executing(
161    const Context_Control *context
162  )
163  {
164    return context->is_executing;
165  }
166
167  static inline void _CPU_Context_Set_is_executing(
168    Context_Control *context,
169    bool is_executing
170  )
171  {
172    context->is_executing = is_executing;
173  }
174#endif
175
176/*
177 *  FP context save area for the i387 numeric coprocessors.
178 */
179#ifdef __SSE__
180/* All FPU and SSE registers are volatile; hence, as long
181 * as we are within normally executing C code (including
182 * a task switch) there is no need for saving/restoring
183 * any of those registers.
184 * We must save/restore the full FPU/SSE context across
185 * interrupts and exceptions, however:
186 *   -  after ISR execution a _Thread_Dispatch() may happen
187 *      and it is therefore necessary to save the FPU/SSE
188 *      registers to be restored when control is returned
189 *      to the interrupted task.
190 *   -  gcc may implicitly use FPU/SSE instructions in
191 *      an ISR.
192 *
193 * Even though there is no explicit mentioning of the FPU
194 * control word in the SYSV ABI (i386) being non-volatile
195 * we maintain MXCSR and the FPU control-word for each task.
196 */
197typedef struct {
198        uint32_t  mxcsr;
199        uint16_t  fpucw;
200} Context_Control_fp;
201
202#else
203
204typedef struct {
205  uint8_t     fp_save_area[108];    /* context size area for I80387 */
206                                    /*  28 bytes for environment    */
207} Context_Control_fp;
208
209#endif
210
211
212/*
213 *  The following structure defines the set of information saved
214 *  on the current stack by RTEMS upon receipt of execptions.
215 *
216 * idtIndex is either the interrupt number or the trap/exception number.
217 * faultCode is the code pushed by the processor on some exceptions.
218 *
219 * Since the first registers are directly pushed by the CPU they
220 * may not respect 16-byte stack alignment, which is, however,
221 * mandatory for the SSE register area.
222 * Therefore, these registers are stored at an aligned address
223 * and a pointer is stored in the CPU_Exception_frame.
224 * If the executive was compiled without SSE support then
225 * this pointer is NULL.
226 */
227
228struct Context_Control_sse;
229
230typedef struct {
231  struct Context_Control_sse *fp_ctxt;
232  uint32_t    edi;
233  uint32_t    esi;
234  uint32_t    ebp;
235  uint32_t    esp0;
236  uint32_t    ebx;
237  uint32_t    edx;
238  uint32_t    ecx;
239  uint32_t    eax;
240  uint32_t    idtIndex;
241  uint32_t    faultCode;
242  uint32_t    eip;
243  uint32_t    cs;
244  uint32_t    eflags;
245} CPU_Exception_frame;
246
247#ifdef __SSE__
248typedef struct Context_Control_sse {
249  uint16_t  fcw;
250  uint16_t  fsw;
251  uint8_t   ftw;
252  uint8_t   res_1;
253  uint16_t  fop;
254  uint32_t  fpu_ip;
255  uint16_t  cs;
256  uint16_t  res_2;
257  uint32_t  fpu_dp;
258  uint16_t  ds;
259  uint16_t  res_3;
260  uint32_t  mxcsr;
261  uint32_t  mxcsr_mask;
262  struct {
263        uint8_t fpreg[10];
264        uint8_t res_4[ 6];
265  } fp_mmregs[8];
266  uint8_t   xmmregs[8][16];
267  uint8_t   res_5[224];
268} Context_Control_sse
269__attribute__((aligned(16)))
270;
271#endif
272
273typedef void (*cpuExcHandlerType) (CPU_Exception_frame*);
274extern cpuExcHandlerType _currentExcHandler;
275extern void rtems_exception_init_mngt(void);
276
277#ifdef RTEMS_SMP
278  /* Throw compile-time error to indicate incomplete support */
279  #error "i386 targets do not support SMP.\
280 See: https://devel.rtems.org/ticket/3335"
281
282  /*
283   * This size must match the size of the CPU_Interrupt_frame, which must be
284   * used in the SMP context switch code, which is incomplete at the moment.
285   */
286  #define CPU_INTERRUPT_FRAME_SIZE 4
287#endif
288
289/*
290 * This port does not pass any frame info to the
291 * interrupt handler.
292 */
293
294typedef struct {
295  uint32_t todo_replace_with_apt_registers;
296} CPU_Interrupt_frame;
297
298typedef enum {
299  I386_EXCEPTION_DIVIDE_BY_ZERO      = 0,
300  I386_EXCEPTION_DEBUG               = 1,
301  I386_EXCEPTION_NMI                 = 2,
302  I386_EXCEPTION_BREAKPOINT          = 3,
303  I386_EXCEPTION_OVERFLOW            = 4,
304  I386_EXCEPTION_BOUND               = 5,
305  I386_EXCEPTION_ILLEGAL_INSTR       = 6,
306  I386_EXCEPTION_MATH_COPROC_UNAVAIL = 7,
307  I386_EXCEPTION_DOUBLE_FAULT        = 8,
308  I386_EXCEPTION_I386_COPROC_SEG_ERR = 9,
309  I386_EXCEPTION_INVALID_TSS         = 10,
310  I386_EXCEPTION_SEGMENT_NOT_PRESENT = 11,
311  I386_EXCEPTION_STACK_SEGMENT_FAULT = 12,
312  I386_EXCEPTION_GENERAL_PROT_ERR    = 13,
313  I386_EXCEPTION_PAGE_FAULT          = 14,
314  I386_EXCEPTION_INTEL_RES15         = 15,
315  I386_EXCEPTION_FLOAT_ERROR         = 16,
316  I386_EXCEPTION_ALIGN_CHECK         = 17,
317  I386_EXCEPTION_MACHINE_CHECK       = 18,
318  I386_EXCEPTION_ENTER_RDBG          = 50     /* to enter manually RDBG */
319
320} Intel_symbolic_exception_name;
321
322
323/*
324 *  context size area for floating point
325 *
326 *  NOTE:  This is out of place on the i386 to avoid a forward reference.
327 */
328
329#define CPU_CONTEXT_FP_SIZE sizeof( Context_Control_fp )
330
331/* variables */
332
333extern Context_Control_fp _CPU_Null_fp_context;
334
335#endif /* ASM */
336
337/* constants */
338
339/*
340 *  This defines the number of levels and the mask used to pick those
341 *  bits out of a thread mode.
342 */
343
344#define CPU_MODES_INTERRUPT_MASK   0x00000001 /* interrupt level in mode */
345
346/*
347 *  extra stack required by the MPCI receive server thread
348 */
349
350#define CPU_MPCI_RECEIVE_SERVER_EXTRA_STACK 1024
351
352/*
353 *  This is defined if the port has a special way to report the ISR nesting
354 *  level.  Most ports maintain the variable _ISR_Nest_level.
355 */
356
357#define CPU_PROVIDES_ISR_IS_IN_PROGRESS FALSE
358
359/*
360 *  Minimum size of a thread's stack.
361 */
362
363#define CPU_STACK_MINIMUM_SIZE          4096
364
365#define CPU_SIZEOF_POINTER 4
366
367/*
368 *  i386 is pretty tolerant of alignment.  Just put things on 4 byte boundaries.
369 */
370
371#define CPU_ALIGNMENT                    4
372#define CPU_HEAP_ALIGNMENT               CPU_ALIGNMENT
373#define CPU_PARTITION_ALIGNMENT          CPU_ALIGNMENT
374
375/*
376 *  On i386 thread stacks require no further alignment after allocation
377 *  from the Workspace. However, since gcc maintains 16-byte alignment
378 *  we try to respect that. If you find an option to let gcc squeeze
379 *  the stack more tightly then setting CPU_STACK_ALIGNMENT to 16 still
380 *  doesn't waste much space since this only determines the *initial*
381 *  alignment.
382 */
383
384#define CPU_STACK_ALIGNMENT             16
385
386#define CPU_INTERRUPT_STACK_ALIGNMENT CPU_CACHE_LINE_BYTES
387
388/* macros */
389
390#ifndef ASM
391/*
392 *  ISR handler macros
393 *
394 *  These macros perform the following functions:
395 *     + initialize the RTEMS vector table
396 *     + disable all maskable CPU interrupts
397 *     + restore previous interrupt level (enable)
398 *     + temporarily restore interrupts (flash)
399 *     + set a particular level
400 */
401
402#if !defined(I386_DISABLE_INLINE_ISR_DISABLE_ENABLE)
403#define _CPU_ISR_Disable( _level ) i386_disable_interrupts( _level )
404
405#define _CPU_ISR_Enable( _level )  i386_enable_interrupts( _level )
406
407#define _CPU_ISR_Flash( _level )   i386_flash_interrupts( _level )
408
409#define _CPU_ISR_Set_level( _new_level ) \
410  { \
411    if ( _new_level ) __asm__ volatile ( "cli" ); \
412    else              __asm__ volatile ( "sti" ); \
413  }
414#else
415#define _CPU_ISR_Disable( _level ) _level = i386_disable_interrupts()
416#define _CPU_ISR_Enable( _level ) i386_enable_interrupts( _level )
417#define _CPU_ISR_Flash( _level ) i386_flash_interrupts( _level )
418#define _CPU_ISR_Set_level( _new_level ) i386_set_interrupt_level(_new_level)
419#endif
420
421RTEMS_INLINE_ROUTINE bool _CPU_ISR_Is_enabled( uint32_t level )
422{
423  return ( level & EFLAGS_INTR_ENABLE ) != 0;
424}
425
426uint32_t   _CPU_ISR_Get_level( void );
427
428/*  Make sure interrupt stack has space for ISR
429 *  'vector' arg at the top and that it is aligned
430 *  properly.
431 */
432
433#define _CPU_Interrupt_stack_setup( _lo, _hi )  \
434        do {                                        \
435                _hi = (void*)(((uintptr_t)(_hi) - 4) & ~ (CPU_STACK_ALIGNMENT - 1)); \
436        } while (0)
437
438#endif /* ASM */
439
440/* end of ISR handler macros */
441
442/*
443 *  Context handler macros
444 *
445 *  These macros perform the following functions:
446 *     + initialize a context area
447 *     + restart the current thread
448 *     + calculate the initial pointer into a FP context area
449 *     + initialize an FP context area
450 */
451
452#define CPU_EFLAGS_INTERRUPTS_ON  0x00003202
453#define CPU_EFLAGS_INTERRUPTS_OFF 0x00003002
454
455#ifndef ASM
456
457void _CPU_Context_Initialize(
458  Context_Control *the_context,
459  void *stack_area_begin,
460  size_t stack_area_size,
461  uint32_t new_level,
462  void (*entry_point)( void ),
463  bool is_fp,
464  void *tls_area
465);
466
467#define _CPU_Context_Restart_self( _the_context ) \
468   _CPU_Context_restore( (_the_context) );
469
470#if defined(RTEMS_SMP)
471  uint32_t _CPU_SMP_Initialize( void );
472
473  bool _CPU_SMP_Start_processor( uint32_t cpu_index );
474
475  void _CPU_SMP_Finalize_initialization( uint32_t cpu_count );
476
477  void _CPU_SMP_Prepare_start_multitasking( void );
478
479  uint32_t _CPU_SMP_Get_current_processor( void );
480
481  void _CPU_SMP_Send_interrupt( uint32_t target_processor_index );
482
483  static inline void _CPU_SMP_Processor_event_broadcast( void )
484  {
485    __asm__ volatile ( "" : : : "memory" );
486  }
487
488  static inline void _CPU_SMP_Processor_event_receive( void )
489  {
490    __asm__ volatile ( "" : : : "memory" );
491  }
492#endif
493
494#define _CPU_Context_Initialize_fp( _fp_area ) \
495  { \
496    memcpy( *_fp_area, &_CPU_Null_fp_context, CPU_CONTEXT_FP_SIZE ); \
497  }
498
499/* end of Context handler macros */
500
501/*
502 *  Fatal Error manager macros
503 *
504 *  These macros perform the following functions:
505 *    + disable interrupts and halt the CPU
506 */
507
508extern void _CPU_Fatal_halt(uint32_t source, uint32_t error)
509  RTEMS_NO_RETURN;
510
511#endif /* ASM */
512
513/* end of Fatal Error manager macros */
514
515/*
516 *  Bitfield handler macros
517 *
518 *  These macros perform the following functions:
519 *     + scan for the highest numbered (MSB) set in a 16 bit bitfield
520 */
521
522#define CPU_USE_GENERIC_BITFIELD_CODE FALSE
523
524#define _CPU_Bitfield_Find_first_bit( _value, _output ) \
525  { \
526    uint16_t __value_in_register = ( _value ); \
527    uint16_t __output = 0; \
528    __asm__ volatile ( "bsfw    %0,%1 " \
529                    : "=r" ( __value_in_register ), "=r" ( __output ) \
530                    : "0"  ( __value_in_register ), "1"  ( __output ) \
531    ); \
532    ( _output ) = __output; \
533  }
534
535/* end of Bitfield handler macros */
536
537/*
538 *  Priority handler macros
539 *
540 *  These macros perform the following functions:
541 *    + return a mask with the bit for this major/minor portion of
542 *      of thread priority set.
543 *    + translate the bit number returned by "Bitfield_find_first_bit"
544 *      into an index into the thread ready chain bit maps
545 */
546
547#define _CPU_Priority_Mask( _bit_number ) \
548  ( 1 << (_bit_number) )
549
550#define _CPU_Priority_bits_index( _priority ) \
551  (_priority)
552
553/* functions */
554
555#ifndef ASM
556/*
557 *  _CPU_Initialize
558 *
559 *  This routine performs CPU dependent initialization.
560 */
561
562void _CPU_Initialize(void);
563
564/*
565 *  _CPU_ISR_install_raw_handler
566 *
567 *  This routine installs a "raw" interrupt handler directly into the
568 *  processor's vector table.
569 */
570
571void _CPU_ISR_install_raw_handler(
572  uint32_t    vector,
573  proc_ptr    new_handler,
574  proc_ptr   *old_handler
575);
576
577/*
578 *  _CPU_ISR_install_vector
579 *
580 *  This routine installs an interrupt vector.
581 */
582
583void _CPU_ISR_install_vector(
584  uint32_t    vector,
585  proc_ptr    new_handler,
586  proc_ptr   *old_handler
587);
588
589/*
590 *  _CPU_Thread_Idle_body
591 *
592 *  Use the halt instruction of low power mode of a particular i386 model.
593 */
594
595#if (CPU_PROVIDES_IDLE_THREAD_BODY == TRUE)
596
597void *_CPU_Thread_Idle_body( uintptr_t ignored );
598
599#endif /* CPU_PROVIDES_IDLE_THREAD_BODY */
600
601/*
602 *  _CPU_Context_switch
603 *
604 *  This routine switches from the run context to the heir context.
605 */
606
607void _CPU_Context_switch(
608  Context_Control  *run,
609  Context_Control  *heir
610);
611
612/*
613 *  _CPU_Context_restore
614 *
615 *  This routine is generally used only to restart self in an
616 *  efficient manner and avoid stack conflicts.
617 */
618
619void _CPU_Context_restore(
620  Context_Control *new_context
621) RTEMS_NO_RETURN;
622
623/*
624 *  _CPU_Context_save_fp
625 *
626 *  This routine saves the floating point context passed to it.
627 */
628
629#ifdef __SSE__
630#define _CPU_Context_save_fp(fp_context_pp) \
631  do {                                      \
632    __asm__ __volatile__(                   \
633      "fstcw %0"                            \
634      :"=m"((*(fp_context_pp))->fpucw)      \
635    );                                      \
636        __asm__ __volatile__(                   \
637      "stmxcsr %0"                          \
638      :"=m"((*(fp_context_pp))->mxcsr)      \
639    );                                      \
640  } while (0)
641#else
642void _CPU_Context_save_fp(
643  Context_Control_fp **fp_context_ptr
644);
645#endif
646
647/*
648 *  _CPU_Context_restore_fp
649 *
650 *  This routine restores the floating point context passed to it.
651 */
652#ifdef __SSE__
653#define _CPU_Context_restore_fp(fp_context_pp) \
654  do {                                         \
655    __asm__ __volatile__(                      \
656      "fldcw %0"                               \
657      ::"m"((*(fp_context_pp))->fpucw)         \
658      :"fpcr"                                  \
659    );                                         \
660    __builtin_ia32_ldmxcsr(_Thread_Executing->fp_context->mxcsr);  \
661  } while (0)
662#else
663void _CPU_Context_restore_fp(
664  Context_Control_fp **fp_context_ptr
665);
666#endif
667
668#ifdef __SSE__
669#define _CPU_Context_Initialization_at_thread_begin() \
670  do {                                                \
671    __asm__ __volatile__(                             \
672      "finit"                                         \
673      :                                               \
674      :                                               \
675      :"st","st(1)","st(2)","st(3)",                  \
676       "st(4)","st(5)","st(6)","st(7)",               \
677       "fpsr","fpcr"                                  \
678    );                                                \
679        if ( _Thread_Executing->fp_context ) {            \
680          _CPU_Context_restore_fp(&_Thread_Executing->fp_context); \
681   }                                                  \
682  } while (0)
683#endif
684
685static inline void _CPU_Context_volatile_clobber( uintptr_t pattern )
686{
687  /* TODO */
688}
689
690static inline void _CPU_Context_validate( uintptr_t pattern )
691{
692  while (1) {
693    /* TODO */
694  }
695}
696
697void _CPU_Exception_frame_print( const CPU_Exception_frame *frame );
698
699typedef uint32_t CPU_Counter_ticks;
700
701uint32_t _CPU_Counter_frequency( void );
702
703CPU_Counter_ticks _CPU_Counter_read( void );
704
705static inline CPU_Counter_ticks _CPU_Counter_difference(
706  CPU_Counter_ticks second,
707  CPU_Counter_ticks first
708)
709{
710  return second - first;
711}
712
713/** Type that can store a 32-bit integer or a pointer. */
714typedef uintptr_t CPU_Uint32ptr;
715
716#endif /* ASM */
717
718#ifdef __cplusplus
719}
720#endif
721
722#endif
Note: See TracBrowser for help on using the repository browser.