source: rtems/cpukit/score/cpu/h8300/rtems/score/cpu.h @ 4b89ba7

4.104.114.95
Last change on this file since 4b89ba7 was 4b89ba7, checked in by Joel Sherrill <joel.sherrill@…>, on 12/03/07 at 22:22:55

2007-12-03 Joel Sherrill <joel.sherrill@…>

  • rtems/score/cpu.h: Moved most of the remaining CPU Table fields to the Configuration Table. This included pretasking_hook, predriver_hook, postdriver_hook, idle_task, do_zero_of_workspace, extra_mpci_receive_server_stack, stack_allocate_hook, and stack_free_hook. As a side-effect of this effort some multiprocessing code was made conditional and some style clean up occurred.
  • Property mode set to 100644
File size: 32.8 KB
Line 
1/**
2 * @file rtems/score/cpu.h
3 */
4
5/*
6 *  This include file contains information pertaining to the H8300
7 *  processor.
8 *
9 *  COPYRIGHT (c) 1989-2006.
10 *  On-Line Applications Research Corporation (OAR).
11 *
12 *  The license and distribution terms for this file may be
13 *  found in the file LICENSE in this distribution or at
14 *  http://www.rtems.com/license/LICENSE.
15 *
16 *  $Id$
17 */
18
19#ifndef _RTEMS_SCORE_CPU_H
20#define _RTEMS_SCORE_CPU_H
21
22#ifdef __cplusplus
23extern "C" {
24#endif
25
26#include <rtems/score/h8300.h>               /* pick up machine definitions */
27#ifndef ASM
28#include <rtems/score/types.h>
29#endif
30
31#include <rtems/bspIo.h>        /* printk */
32
33/* conditional compilation parameters */
34
35/*
36 *  Should the calls to _Thread_Enable_dispatch be inlined?
37 *
38 *  If TRUE, then they are inlined.
39 *  If FALSE, then a subroutine call is made.
40 *
41 *  Basically this is an example of the classic trade-off of size
42 *  versus speed.  Inlining the call (TRUE) typically increases the
43 *  size of RTEMS while speeding up the enabling of dispatching.
44 *  [NOTE: In general, the _Thread_Dispatch_disable_level will
45 *  only be 0 or 1 unless you are in an interrupt handler and that
46 *  interrupt handler invokes the executive.]  When not inlined
47 *  something calls _Thread_Enable_dispatch which in turns calls
48 *  _Thread_Dispatch.  If the enable dispatch is inlined, then
49 *  one subroutine call is avoided entirely.]
50 *
51 *  H8300 Specific Information:
52 *
53 *  XXX
54 */
55
56#define CPU_INLINE_ENABLE_DISPATCH       FALSE
57
58/*
59 *  Should the body of the search loops in _Thread_queue_Enqueue_priority
60 *  be unrolled one time?  In unrolled each iteration of the loop examines
61 *  two "nodes" on the chain being searched.  Otherwise, only one node
62 *  is examined per iteration.
63 *
64 *  If TRUE, then the loops are unrolled.
65 *  If FALSE, then the loops are not unrolled.
66 *
67 *  The primary factor in making this decision is the cost of disabling
68 *  and enabling interrupts (_ISR_Flash) versus the cost of rest of the
69 *  body of the loop.  On some CPUs, the flash is more expensive than
70 *  one iteration of the loop body.  In this case, it might be desirable
71 *  to unroll the loop.  It is important to note that on some CPUs, this
72 *  code is the longest interrupt disable period in RTEMS.  So it is
73 *  necessary to strike a balance when setting this parameter.
74 *
75 *  H8300 Specific Information:
76 *
77 *  XXX
78 */
79
80#define CPU_UNROLL_ENQUEUE_PRIORITY      TRUE
81
82/*
83 *  Does RTEMS manage a dedicated interrupt stack in software?
84 *
85 *  If TRUE, then a stack is allocated in _ISR_Handler_initialization.
86 *  If FALSE, nothing is done.
87 *
88 *  If the CPU supports a dedicated interrupt stack in hardware,
89 *  then it is generally the responsibility of the BSP to allocate it
90 *  and set it up.
91 *
92 *  If the CPU does not support a dedicated interrupt stack, then
93 *  the porter has two options: (1) execute interrupts on the
94 *  stack of the interrupted task, and (2) have RTEMS manage a dedicated
95 *  interrupt stack.
96 *
97 *  If this is TRUE, CPU_ALLOCATE_INTERRUPT_STACK should also be TRUE.
98 *
99 *  Only one of CPU_HAS_SOFTWARE_INTERRUPT_STACK and
100 *  CPU_HAS_HARDWARE_INTERRUPT_STACK should be set to TRUE.  It is
101 *  possible that both are FALSE for a particular CPU.  Although it
102 *  is unclear what that would imply about the interrupt processing
103 *  procedure on that CPU.
104 *
105 *  H8300 Specific Information:
106 *
107 *  XXX
108 */
109
110#define CPU_HAS_SOFTWARE_INTERRUPT_STACK TRUE
111
112/*
113 *  Does this CPU have hardware support for a dedicated interrupt stack?
114 *
115 *  If TRUE, then it must be installed during initialization.
116 *  If FALSE, then no installation is performed.
117 *
118 *  If this is TRUE, CPU_ALLOCATE_INTERRUPT_STACK should also be TRUE.
119 *
120 *  Only one of CPU_HAS_SOFTWARE_INTERRUPT_STACK and
121 *  CPU_HAS_HARDWARE_INTERRUPT_STACK should be set to TRUE.  It is
122 *  possible that both are FALSE for a particular CPU.  Although it
123 *  is unclear what that would imply about the interrupt processing
124 *  procedure on that CPU.
125 *
126 *  H8300 Specific Information:
127 *
128 *  XXX
129 */
130
131#define CPU_HAS_HARDWARE_INTERRUPT_STACK FALSE
132
133/*
134 *  Does RTEMS allocate a dedicated interrupt stack in the Interrupt Manager?
135 *
136 *  If TRUE, then the memory is allocated during initialization.
137 *  If FALSE, then the memory is allocated during initialization.
138 *
139 *  This should be TRUE is CPU_HAS_SOFTWARE_INTERRUPT_STACK is TRUE.
140 *
141 *  H8300 Specific Information:
142 *
143 *  XXX
144 */
145
146#define CPU_ALLOCATE_INTERRUPT_STACK TRUE
147
148/*
149 *  Does the CPU have hardware floating point?
150 *
151 *  If TRUE, then the RTEMS_FLOATING_POINT task attribute is supported.
152 *  If FALSE, then the RTEMS_FLOATING_POINT task attribute is ignored.
153 *
154 *  If there is a FP coprocessor such as the i387 or mc68881, then
155 *  the answer is TRUE.
156 *
157 *  The macro name "H8300_HAS_FPU" should be made CPU specific.
158 *  It indicates whether or not this CPU model has FP support.  For
159 *  example, it would be possible to have an i386_nofp CPU model
160 *  which set this to false to indicate that you have an i386 without
161 *  an i387 and wish to leave floating point support out of RTEMS.
162 *
163 *  H8300 Specific Information:
164 *
165 *  XXX
166 */
167
168#define CPU_HARDWARE_FP     FALSE
169
170/*
171 *  Are all tasks RTEMS_FLOATING_POINT tasks implicitly?
172 *
173 *  If TRUE, then the RTEMS_FLOATING_POINT task attribute is assumed.
174 *  If FALSE, then the RTEMS_FLOATING_POINT task attribute is followed.
175 *
176 *  If CPU_HARDWARE_FP is FALSE, then this should be FALSE as well.
177 *
178 *  H8300 Specific Information:
179 *
180 *  XXX
181 */
182
183#define CPU_ALL_TASKS_ARE_FP     FALSE
184
185/*
186 *  Should the IDLE task have a floating point context?
187 *
188 *  If TRUE, then the IDLE task is created as a RTEMS_FLOATING_POINT task
189 *  and it has a floating point context which is switched in and out.
190 *  If FALSE, then the IDLE task does not have a floating point context.
191 *
192 *  Setting this to TRUE negatively impacts the time required to preempt
193 *  the IDLE task from an interrupt because the floating point context
194 *  must be saved as part of the preemption.
195 *
196 *  H8300 Specific Information:
197 *
198 *  XXX
199 */
200
201#define CPU_IDLE_TASK_IS_FP      FALSE
202
203/*
204 *  Should the saving of the floating point registers be deferred
205 *  until a context switch is made to another different floating point
206 *  task?
207 *
208 *  If TRUE, then the floating point context will not be stored until
209 *  necessary.  It will remain in the floating point registers and not
210 *  disturned until another floating point task is switched to.
211 *
212 *  If FALSE, then the floating point context is saved when a floating
213 *  point task is switched out and restored when the next floating point
214 *  task is restored.  The state of the floating point registers between
215 *  those two operations is not specified.
216 *
217 *  If the floating point context does NOT have to be saved as part of
218 *  interrupt dispatching, then it should be safe to set this to TRUE.
219 *
220 *  Setting this flag to TRUE results in using a different algorithm
221 *  for deciding when to save and restore the floating point context.
222 *  The deferred FP switch algorithm minimizes the number of times
223 *  the FP context is saved and restored.  The FP context is not saved
224 *  until a context switch is made to another, different FP task.
225 *  Thus in a system with only one FP task, the FP context will never
226 *  be saved or restored.
227 *
228 *  H8300 Specific Information:
229 *
230 *  XXX
231 */
232
233#define CPU_USE_DEFERRED_FP_SWITCH       TRUE
234
235/*
236 *  Does this port provide a CPU dependent IDLE task implementation?
237 *
238 *  If TRUE, then the routine _CPU_Internal_threads_Idle_thread_body
239 *  must be provided and is the default IDLE thread body instead of
240 *  _Internal_threads_Idle_thread_body.
241 *
242 *  If FALSE, then use the generic IDLE thread body if the BSP does
243 *  not provide one.
244 *
245 *  This is intended to allow for supporting processors which have
246 *  a low power or idle mode.  When the IDLE thread is executed, then
247 *  the CPU can be powered down.
248 *
249 *  The order of precedence for selecting the IDLE thread body is:
250 *
251 *    1.  BSP provided
252 *    2.  CPU dependent (if provided)
253 *    3.  generic (if no BSP and no CPU dependent)
254 *
255 *  H8300 Specific Information:
256 *
257 *  XXX
258 *  The port initially called a BSP dependent routine called
259 *  IDLE_Monitor.  The idle task body can be overridden by
260 *  the BSP in newer versions of RTEMS.
261 */
262
263#define CPU_PROVIDES_IDLE_THREAD_BODY    FALSE
264
265/*
266 *  Does the stack grow up (toward higher addresses) or down
267 *  (toward lower addresses)?
268 *
269 *  If TRUE, then the grows upward.
270 *  If FALSE, then the grows toward smaller addresses.
271 *
272 *  H8300 Specific Information:
273 *
274 *  XXX
275 */
276
277#define CPU_STACK_GROWS_UP               FALSE
278
279/*
280 *  The following is the variable attribute used to force alignment
281 *  of critical RTEMS structures.  On some processors it may make
282 *  sense to have these aligned on tighter boundaries than
283 *  the minimum requirements of the compiler in order to have as
284 *  much of the critical data area as possible in a cache line.
285 *
286 *  The placement of this macro in the declaration of the variables
287 *  is based on the syntactically requirements of the GNU C
288 *  "__attribute__" extension.  For example with GNU C, use
289 *  the following to force a structures to a 32 byte boundary.
290 *
291 *      __attribute__ ((aligned (32)))
292 *
293 *  NOTE:  Currently only the Priority Bit Map table uses this feature.
294 *         To benefit from using this, the data must be heavily
295 *         used so it will stay in the cache and used frequently enough
296 *         in the executive to justify turning this on.
297 *
298 *  H8300 Specific Information:
299 *
300 *  XXX
301 */
302
303#define CPU_STRUCTURE_ALIGNMENT
304
305/*
306 *  Define what is required to specify how the network to host conversion
307 *  routines are handled.
308 */
309
310#define CPU_BIG_ENDIAN                           TRUE
311#define CPU_LITTLE_ENDIAN                        FALSE
312
313/*
314 *  The following defines the number of bits actually used in the
315 *  interrupt field of the task mode.  How those bits map to the
316 *  CPU interrupt levels is defined by the routine _CPU_ISR_Set_level().
317 *
318 *  H8300 Specific Information:
319 *
320 *  XXX
321 */
322
323#define CPU_MODES_INTERRUPT_MASK   0x00000001
324
325/*
326 *  Processor defined structures required for cpukit/score.
327 *
328 *  H8300 Specific Information:
329 *
330 *  XXX
331 */
332
333/* may need to put some structures here.  */
334
335/*
336 * Contexts
337 *
338 *  Generally there are 2 types of context to save.
339 *     1. Interrupt registers to save
340 *     2. Task level registers to save
341 *
342 *  This means we have the following 3 context items:
343 *     1. task level context stuff::  Context_Control
344 *     2. floating point task stuff:: Context_Control_fp
345 *     3. special interrupt level context :: Context_Control_interrupt
346 *
347 *  On some processors, it is cost-effective to save only the callee
348 *  preserved registers during a task context switch.  This means
349 *  that the ISR code needs to save those registers which do not
350 *  persist across function calls.  It is not mandatory to make this
351 *  distinctions between the caller/callee saves registers for the
352 *  purpose of minimizing context saved during task switch and on interrupts.
353 *  If the cost of saving extra registers is minimal, simplicity is the
354 *  choice.  Save the same context on interrupt entry as for tasks in
355 *  this case.
356 *
357 *  Additionally, if gdb is to be made aware of RTEMS tasks for this CPU, then
358 *  care should be used in designing the context area.
359 *
360 *  On some CPUs with hardware floating point support, the Context_Control_fp
361 *  structure will not be used or it simply consist of an array of a
362 *  fixed number of bytes.   This is done when the floating point context
363 *  is dumped by a "FP save context" type instruction and the format
364 *  is not really defined by the CPU.  In this case, there is no need
365 *  to figure out the exact format -- only the size.  Of course, although
366 *  this is enough information for RTEMS, it is probably not enough for
367 *  a debugger such as gdb.  But that is another problem.
368 *
369 *  H8300 Specific Information:
370 *
371 *  XXX
372 */
373
374
375
376#define nogap __attribute__ ((packed))
377
378typedef struct {
379    uint16_t    ccr nogap;
380    void        *er7 nogap;
381    void        *er6 nogap;
382    uint32_t    er5 nogap;
383    uint32_t    er4 nogap;
384    uint32_t    er3 nogap;
385    uint32_t    er2 nogap;
386    uint32_t    er1 nogap;
387    uint32_t    er0 nogap;
388    uint32_t    xxx nogap;
389} Context_Control;
390
391typedef struct {
392    double      some_float_register[2];
393} Context_Control_fp;
394
395typedef struct {
396    uint32_t   special_interrupt_register;
397} CPU_Interrupt_frame;
398
399
400/*
401 *  The following table contains the information required to configure
402 *  the XXX processor specific parameters.
403 *
404 *  NOTE: The interrupt_stack_size field is required if
405 *        CPU_ALLOCATE_INTERRUPT_STACK is defined as TRUE.
406 *
407 *  H8300 Specific Information:
408 *
409 *  XXX
410 */
411
412typedef struct {
413  uint32_t     interrupt_stack_size;
414}   rtems_cpu_table;
415
416/*
417 *  This variable is optional.  It is used on CPUs on which it is difficult
418 *  to generate an "uninitialized" FP context.  It is filled in by
419 *  _CPU_Initialize and copied into the task's FP context area during
420 *  _CPU_Context_Initialize.
421 *
422 *  H8300 Specific Information:
423 *
424 *  XXX
425 */
426
427SCORE_EXTERN Context_Control_fp  _CPU_Null_fp_context;
428
429/*
430 *  On some CPUs, RTEMS supports a software managed interrupt stack.
431 *  This stack is allocated by the Interrupt Manager and the switch
432 *  is performed in _ISR_Handler.  These variables contain pointers
433 *  to the lowest and highest addresses in the chunk of memory allocated
434 *  for the interrupt stack.  Since it is unknown whether the stack
435 *  grows up or down (in general), this give the CPU dependent
436 *  code the option of picking the version it wants to use.
437 *
438 *  NOTE: These two variables are required if the macro
439 *        CPU_HAS_SOFTWARE_INTERRUPT_STACK is defined as TRUE.
440 *
441 *  H8300 Specific Information:
442 *
443 *  XXX
444 */
445
446SCORE_EXTERN void               *_CPU_Interrupt_stack_low;
447SCORE_EXTERN void               *_CPU_Interrupt_stack_high;
448
449/*
450 *  With some compilation systems, it is difficult if not impossible to
451 *  call a high-level language routine from assembly language.  This
452 *  is especially true of commercial Ada compilers and name mangling
453 *  C++ ones.  This variable can be optionally defined by the CPU porter
454 *  and contains the address of the routine _Thread_Dispatch.  This
455 *  can make it easier to invoke that routine at the end of the interrupt
456 *  sequence (if a dispatch is necessary).
457 *
458 *  H8300 Specific Information:
459 *
460 *  XXX
461 */
462
463SCORE_EXTERN void           (*_CPU_Thread_dispatch_pointer)();
464
465/*
466 *  Nothing prevents the porter from declaring more CPU specific variables.
467 *
468 *  H8300 Specific Information:
469 *
470 *  XXX
471 */
472
473/* XXX: if needed, put more variables here */
474
475/*
476 *  The size of the floating point context area.  On some CPUs this
477 *  will not be a "sizeof" because the format of the floating point
478 *  area is not defined -- only the size is.  This is usually on
479 *  CPUs with a "floating point save context" instruction.
480 *
481 *  H8300 Specific Information:
482 *
483 *  XXX
484 */
485
486#define CPU_CONTEXT_FP_SIZE sizeof( Context_Control_fp )
487
488/*
489 *  Amount of extra stack (above minimum stack size) required by
490 *  system initialization thread.  Remember that in a multiprocessor
491 *  system the system intialization thread becomes the MP server thread.
492 *
493 *  H8300 Specific Information:
494 *
495 *  It is highly unlikely the H8300 will get used in a multiprocessor system.
496 */
497
498#define CPU_MPCI_RECEIVE_SERVER_EXTRA_STACK 0
499
500/*
501 *  This defines the number of entries in the ISR_Vector_table managed
502 *  by RTEMS.
503 *
504 *  H8300 Specific Information:
505 *
506 *  XXX
507 */
508
509#define CPU_INTERRUPT_NUMBER_OF_VECTORS      64
510#define CPU_INTERRUPT_MAXIMUM_VECTOR_NUMBER  (CPU_INTERRUPT_NUMBER_OF_VECTORS - 1)
511
512/*
513 *  This is defined if the port has a special way to report the ISR nesting
514 *  level.  Most ports maintain the variable _ISR_Nest_level.
515 */
516
517#define CPU_PROVIDES_ISR_IS_IN_PROGRESS FALSE
518
519/*
520 *  Should be large enough to run all RTEMS tests.  This ensures
521 *  that a "reasonable" small application should not have any problems.
522 *
523 *  H8300 Specific Information:
524 *
525 *  XXX
526 */
527
528#define CPU_STACK_MINIMUM_SIZE          (1536)
529
530/*
531 *  CPU's worst alignment requirement for data types on a byte boundary.  This
532 *  alignment does not take into account the requirements for the stack.
533 *
534 *  H8300 Specific Information:
535 *
536 *  XXX
537 */
538
539#define CPU_ALIGNMENT              8
540
541/*
542 *  This number corresponds to the byte alignment requirement for the
543 *  heap handler.  This alignment requirement may be stricter than that
544 *  for the data types alignment specified by CPU_ALIGNMENT.  It is
545 *  common for the heap to follow the same alignment requirement as
546 *  CPU_ALIGNMENT.  If the CPU_ALIGNMENT is strict enough for the heap,
547 *  then this should be set to CPU_ALIGNMENT.
548 *
549 *  NOTE:  This does not have to be a power of 2.  It does have to
550 *         be greater or equal to than CPU_ALIGNMENT.
551 *
552 *  H8300 Specific Information:
553 *
554 *  XXX
555 */
556
557#define CPU_HEAP_ALIGNMENT         CPU_ALIGNMENT
558
559/*
560 *  This number corresponds to the byte alignment requirement for memory
561 *  buffers allocated by the partition manager.  This alignment requirement
562 *  may be stricter than that for the data types alignment specified by
563 *  CPU_ALIGNMENT.  It is common for the partition to follow the same
564 *  alignment requirement as CPU_ALIGNMENT.  If the CPU_ALIGNMENT is strict
565 *  enough for the partition, then this should be set to CPU_ALIGNMENT.
566 *
567 *  NOTE:  This does not have to be a power of 2.  It does have to
568 *         be greater or equal to than CPU_ALIGNMENT.
569 *
570 *  H8300 Specific Information:
571 *
572 *  XXX
573 */
574
575#define CPU_PARTITION_ALIGNMENT    CPU_ALIGNMENT
576
577/*
578 *  This number corresponds to the byte alignment requirement for the
579 *  stack.  This alignment requirement may be stricter than that for the
580 *  data types alignment specified by CPU_ALIGNMENT.  If the CPU_ALIGNMENT
581 *  is strict enough for the stack, then this should be set to 0.
582 *
583 *  NOTE:  This must be a power of 2 either 0 or greater than CPU_ALIGNMENT.
584 *
585 *  H8300 Specific Information:
586 *
587 *  XXX
588 */
589
590#define CPU_STACK_ALIGNMENT        2
591
592/*
593 *  ISR handler macros
594 */
595
596/*
597 *  Support routine to initialize the RTEMS vector table after it is allocated.
598 */
599
600#define _CPU_Initialize_vectors()
601
602/* COPE With Brain dead version of GCC distributed with Hitachi HIView Tools.
603   Note requires ISR_Level be uint16_t or assembler croaks.
604*/
605
606#if (__GNUC__ == 2 && __GNUC_MINOR__ == 7 )
607
608
609/*
610 *  Disable all interrupts for an RTEMS critical section.  The previous
611 *  level is returned in _level.
612 */
613
614#define _CPU_ISR_Disable( _isr_cookie ) \
615  do { \
616    asm volatile( "stc.w ccr, @-er7 ;\n orc #0xC0,ccr ;\n mov.w @er7+,%0" :  : "r" (_isr_cookie) ); \
617  } while (0)
618
619
620/*
621 *  Enable interrupts to the previous level (returned by _CPU_ISR_Disable).
622 *  This indicates the end of an RTEMS critical section.  The parameter
623 *  _level is not modified.
624 */
625
626
627#define _CPU_ISR_Enable( _isr_cookie )  \
628  do { \
629    asm volatile( "mov.w %0,@-er7 ;\n ldc.w @er7+, ccr" :  : "r" (_isr_cookie) ); \
630  } while (0)
631
632
633/*
634 *  This temporarily restores the interrupt to _level before immediately
635 *  disabling them again.  This is used to divide long RTEMS critical
636 *  sections into two or more parts.  The parameter _level is not
637 * modified.
638 */
639
640
641#define _CPU_ISR_Flash( _isr_cookie ) \
642  do { \
643    asm volatile( "mov.w %0,@-er7 ;\n ldc.w @er7+, ccr ;\n orc #0xC0,ccr" :  : "r" (_isr_cookie) ); \
644  } while (0)
645
646/* end of ISR handler macros */
647
648#else /* modern gcc version */
649
650/*
651 *  Disable all interrupts for an RTEMS critical section.  The previous
652 *  level is returned in _level.
653 *
654 *  H8300 Specific Information:
655 *
656 *  XXX 
657 */
658
659#if defined(__H8300H__) || defined(__H8300S__)
660#define _CPU_ISR_Disable( _isr_cookie ) \
661  do { \
662    unsigned char __ccr; \
663    asm volatile( "stc ccr, %0 ; orc #0x80,ccr " \
664             : "=m" (__ccr) /* : "0" (__ccr) */ ); \
665    (_isr_cookie) = __ccr; \
666  } while (0)
667#else
668#define _CPU_ISR_Disable( _isr_cookie ) (_isr_cookie) = 0
669#endif
670
671
672/*
673 *  Enable interrupts to the previous level (returned by _CPU_ISR_Disable).
674 *  This indicates the end of an RTEMS critical section.  The parameter
675 *  _level is not modified.
676 *
677 *  H8300 Specific Information:
678 *
679 *  XXX
680 */
681
682#if defined(__H8300H__) || defined(__H8300S__)
683#define _CPU_ISR_Enable( _isr_cookie )  \
684  do { \
685    unsigned char __ccr = (unsigned char) (_isr_cookie); \
686    asm volatile( "ldc %0, ccr" :  : "m" (__ccr) ); \
687  } while (0)
688#else
689#define _CPU_ISR_Enable( _isr_cookie )
690#endif
691
692/*
693 *  This temporarily restores the interrupt to _level before immediately
694 *  disabling them again.  This is used to divide long RTEMS critical
695 *  sections into two or more parts.  The parameter _level is not
696 *  modified.
697 *
698 *  H8300 Specific Information:
699 *
700 *  XXX
701 */
702
703#if defined(__H8300H__) || defined(__H8300S__)
704#define _CPU_ISR_Flash( _isr_cookie ) \
705  do { \
706    unsigned char __ccr = (unsigned char) (_isr_cookie); \
707    asm volatile( "ldc %0, ccr ; orc #0x80,ccr " :  : "m" (__ccr) ); \
708  } while (0)
709#else
710#define _CPU_ISR_Flash( _isr_cookie )
711#endif
712
713#endif /* end of old gcc */
714
715
716/*
717 *  Map interrupt level in task mode onto the hardware that the CPU
718 *  actually provides.  Currently, interrupt levels which do not
719 *  map onto the CPU in a generic fashion are undefined.  Someday,
720 *  it would be nice if these were "mapped" by the application
721 *  via a callout.  For example, m68k has 8 levels 0 - 7, levels
722 *  8 - 255 would be available for bsp/application specific meaning.
723 *  This could be used to manage a programmable interrupt controller
724 *  via the rtems_task_mode directive.
725 *
726 *  H8300 Specific Information:
727 *
728 *  XXX
729 */
730
731#define _CPU_ISR_Set_level( _new_level ) \
732  { \
733    if ( _new_level ) asm volatile ( "orc #0x80,ccr\n" ); \
734    else              asm volatile ( "andc #0x7f,ccr\n" ); \
735  }
736
737uint32_t   _CPU_ISR_Get_level( void );
738
739/* end of ISR handler macros */
740
741/* Context handler macros */
742
743/*
744 *  Initialize the context to a state suitable for starting a
745 *  task after a context restore operation.  Generally, this
746 *  involves:
747 *
748 *     - setting a starting address
749 *     - preparing the stack
750 *     - preparing the stack and frame pointers
751 *     - setting the proper interrupt level in the context
752 *     - initializing the floating point context
753 *
754 *  This routine generally does not set any unnecessary register
755 *  in the context.  The state of the "general data" registers is
756 *  undefined at task start time.
757 *
758 *  NOTE: This is_fp parameter is TRUE if the thread is to be a floating
759 *        point thread.  This is typically only used on CPUs where the
760 *        FPU may be easily disabled by software such as on the SPARC
761 *        where the PSR contains an enable FPU bit.
762 *
763 *  H8300 Specific Information:
764 *
765 *  XXX
766 */
767
768
769#define CPU_CCR_INTERRUPTS_ON  0x80
770#define CPU_CCR_INTERRUPTS_OFF 0x00
771
772#define _CPU_Context_Initialize( _the_context, _stack_base, _size, \
773                                   _isr, _entry_point, _is_fp ) \
774  /* Locate Me */ \
775  do { \
776    uint32_t   _stack; \
777    \
778    if ( (_isr) ) (_the_context)->ccr = CPU_CCR_INTERRUPTS_OFF; \
779    else          (_the_context)->ccr = CPU_CCR_INTERRUPTS_ON; \
780    \
781    _stack = ((uint32_t  )(_stack_base)) + (_size) - 4; \
782    *((proc_ptr *)(_stack)) = (_entry_point); \
783     (_the_context)->er7     = (void *) _stack; \
784     (_the_context)->er6     = (void *) _stack; \
785     (_the_context)->er5     = 0; \
786     (_the_context)->er4     = 1; \
787     (_the_context)->er3     = 2; \
788  } while (0)
789
790
791/*
792 *  This routine is responsible for somehow restarting the currently
793 *  executing task.  If you are lucky, then all that is necessary
794 *  is restoring the context.  Otherwise, there will need to be
795 *  a special assembly routine which does something special in this
796 *  case.  Context_Restore should work most of the time.  It will
797 *  not work if restarting self conflicts with the stack frame
798 *  assumptions of restoring a context.
799 *
800 *  H8300 Specific Information:
801 *
802 *  XXX
803 */
804
805#define _CPU_Context_Restart_self( _the_context ) \
806   _CPU_Context_restore( (_the_context) );
807
808/*
809 *  The purpose of this macro is to allow the initial pointer into
810 *  a floating point context area (used to save the floating point
811 *  context) to be at an arbitrary place in the floating point
812 *  context area.
813 *
814 *  This is necessary because some FP units are designed to have
815 *  their context saved as a stack which grows into lower addresses.
816 *  Other FP units can be saved by simply moving registers into offsets
817 *  from the base of the context area.  Finally some FP units provide
818 *  a "dump context" instruction which could fill in from high to low
819 *  or low to high based on the whim of the CPU designers.
820 *
821 *  H8300 Specific Information:
822 *
823 *  XXX
824 */
825
826#define _CPU_Context_Fp_start( _base, _offset ) \
827   ( (void *) (_base) + (_offset) )
828
829/*
830 *  This routine initializes the FP context area passed to it to.
831 *  There are a few standard ways in which to initialize the
832 *  floating point context.  The code included for this macro assumes
833 *  that this is a CPU in which a "initial" FP context was saved into
834 *  _CPU_Null_fp_context and it simply copies it to the destination
835 *  context passed to it.
836 *
837 *  Other models include (1) not doing anything, and (2) putting
838 *  a "null FP status word" in the correct place in the FP context.
839 *
840 *  H8300 Specific Information:
841 *
842 *  XXX
843 */
844
845#define _CPU_Context_Initialize_fp( _destination ) \
846  { \
847   *(*(_destination)) = _CPU_Null_fp_context; \
848  }
849
850/* end of Context handler macros */
851
852/* Fatal Error manager macros */
853
854/*
855 *  This routine copies _error into a known place -- typically a stack
856 *  location or a register, optionally disables interrupts, and
857 *  halts/stops the CPU.
858 *
859 *  H8300 Specific Information:
860 *
861 *  XXX
862 */
863
864#define _CPU_Fatal_halt( _error ) \
865        printk("Fatal Error %d Halted\n",_error); \
866        for(;;)
867 
868
869/* end of Fatal Error manager macros */
870
871/* Bitfield handler macros */
872
873/*
874 *  This routine sets _output to the bit number of the first bit
875 *  set in _value.  _value is of CPU dependent type Priority_Bit_map_control.
876 *  This type may be either 16 or 32 bits wide although only the 16
877 *  least significant bits will be used.
878 *
879 *  There are a number of variables in using a "find first bit" type
880 *  instruction.
881 *
882 *    (1) What happens when run on a value of zero?
883 *    (2) Bits may be numbered from MSB to LSB or vice-versa.
884 *    (3) The numbering may be zero or one based.
885 *    (4) The "find first bit" instruction may search from MSB or LSB.
886 *
887 *  RTEMS guarantees that (1) will never happen so it is not a concern.
888 *  (2),(3), (4) are handled by the macros _CPU_Priority_mask() and
889 *  _CPU_Priority_bits_index().  These three form a set of routines
890 *  which must logically operate together.  Bits in the _value are
891 *  set and cleared based on masks built by _CPU_Priority_mask().
892 *  The basic major and minor values calculated by _Priority_Major()
893 *  and _Priority_Minor() are "massaged" by _CPU_Priority_bits_index()
894 *  to properly range between the values returned by the "find first bit"
895 *  instruction.  This makes it possible for _Priority_Get_highest() to
896 *  calculate the major and directly index into the minor table.
897 *  This mapping is necessary to ensure that 0 (a high priority major/minor)
898 *  is the first bit found.
899 *
900 *  This entire "find first bit" and mapping process depends heavily
901 *  on the manner in which a priority is broken into a major and minor
902 *  components with the major being the 4 MSB of a priority and minor
903 *  the 4 LSB.  Thus (0 << 4) + 0 corresponds to priority 0 -- the highest
904 *  priority.  And (15 << 4) + 14 corresponds to priority 254 -- the next
905 *  to the lowest priority.
906 *
907 *  If your CPU does not have a "find first bit" instruction, then
908 *  there are ways to make do without it.  Here are a handful of ways
909 *  to implement this in software:
910 *
911 *    - a series of 16 bit test instructions
912 *    - a "binary search using if's"
913 *    - _number = 0
914 *      if _value > 0x00ff
915 *        _value >>=8
916 *        _number = 8;
917 *
918 *      if _value > 0x0000f
919 *        _value >=8
920 *        _number += 4
921 *
922 *      _number += bit_set_table[ _value ]
923 *
924 *    where bit_set_table[ 16 ] has values which indicate the first
925 *      bit set
926 *
927 *  H8300 Specific Information:
928 *
929 *  XXX
930 */
931
932#define CPU_USE_GENERIC_BITFIELD_CODE TRUE
933#define CPU_USE_GENERIC_BITFIELD_DATA TRUE
934
935#if (CPU_USE_GENERIC_BITFIELD_CODE == FALSE)
936
937#define _CPU_Bitfield_Find_first_bit( _value, _output ) \
938  { \
939    (_output) = 0;   /* do something to prevent warnings */ \
940  }
941
942#endif
943
944/* end of Bitfield handler macros */
945
946/*
947 *  This routine builds the mask which corresponds to the bit fields
948 *  as searched by _CPU_Bitfield_Find_first_bit().  See the discussion
949 *  for that routine.
950 *
951 *  H8300 Specific Information:
952 *
953 *  XXX
954 */
955
956#if (CPU_USE_GENERIC_BITFIELD_CODE == FALSE)
957
958#define _CPU_Priority_Mask( _bit_number ) \
959  ( 1 << (_bit_number) )
960
961#endif
962
963/*
964 *  This routine translates the bit numbers returned by
965 *  _CPU_Bitfield_Find_first_bit() into something suitable for use as
966 *  a major or minor component of a priority.  See the discussion
967 *  for that routine.
968 *
969 *  H8300 Specific Information:
970 *
971 *  XXX
972 */
973
974#if (CPU_USE_GENERIC_BITFIELD_CODE == FALSE)
975
976#define _CPU_Priority_bits_index( _priority ) \
977  (_priority)
978
979#endif
980
981/* end of Priority handler macros */
982
983/* functions */
984
985/*
986 *  _CPU_Initialize
987 *
988 *  This routine performs CPU dependent initialization.
989 *
990 *  H8300 Specific Information:
991 *
992 *  XXX
993 */
994
995void _CPU_Initialize(
996  rtems_cpu_table  *cpu_table,
997  void      (*thread_dispatch)
998);
999
1000/*
1001 *  _CPU_ISR_install_raw_handler
1002 *
1003 *  This routine installs a "raw" interrupt handler directly into the
1004 *  processor's vector table.
1005 *
1006 *  H8300 Specific Information:
1007 *
1008 *  XXX
1009 */
1010 
1011void _CPU_ISR_install_raw_handler(
1012  uint32_t    vector,
1013  proc_ptr    new_handler,
1014  proc_ptr   *old_handler
1015);
1016
1017/*
1018 *  _CPU_ISR_install_vector
1019 *
1020 *  This routine installs an interrupt vector.
1021 *
1022 *  H8300 Specific Information:
1023 *
1024 *  XXX
1025 */
1026
1027void _CPU_ISR_install_vector(
1028  uint32_t    vector,
1029  proc_ptr    new_handler,
1030  proc_ptr   *old_handler
1031);
1032
1033/*
1034 *  _CPU_Install_interrupt_stack
1035 *
1036 *  This routine installs the hardware interrupt stack pointer.
1037 *
1038 *  NOTE:  It need only be provided if CPU_HAS_HARDWARE_INTERRUPT_STACK
1039 *         is TRUE.
1040 *
1041 *  H8300 Specific Information:
1042 *
1043 *  XXX
1044 */
1045
1046void _CPU_Install_interrupt_stack( void );
1047
1048/*
1049 *  _CPU_Internal_threads_Idle_thread_body
1050 *
1051 *  This routine is the CPU dependent IDLE thread body.
1052 *
1053 *  NOTE:  It need only be provided if CPU_PROVIDES_IDLE_THREAD_BODY
1054 *         is TRUE.
1055 *
1056 *  H8300 Specific Information:
1057 *
1058 *  XXX
1059 */
1060
1061void _CPU_Thread_Idle_body( void );
1062
1063/*
1064 *  _CPU_Context_switch
1065 *
1066 *  This routine switches from the run context to the heir context.
1067 *
1068 *  H8300 Specific Information:
1069 *
1070 *  XXX
1071 */
1072
1073void _CPU_Context_switch(
1074  Context_Control  *run,
1075  Context_Control  *heir
1076);
1077
1078/*
1079 *  _CPU_Context_restore
1080 *
1081 *  This routine is generallu used only to restart self in an
1082 *  efficient manner.  It may simply be a label in _CPU_Context_switch.
1083 *
1084 *  NOTE: May be unnecessary to reload some registers.
1085 *
1086 *  H8300 Specific Information:
1087 *
1088 *  XXX
1089 */
1090
1091void _CPU_Context_restore(
1092  Context_Control *new_context
1093);
1094
1095/*
1096 *  _CPU_Context_save_fp
1097 *
1098 *  This routine saves the floating point context passed to it.
1099 *
1100 *  H8300 Specific Information:
1101 *
1102 *  XXX
1103 */
1104
1105void _CPU_Context_save_fp(
1106  Context_Control_fp **fp_context_ptr
1107);
1108
1109/*
1110 *  _CPU_Context_restore_fp
1111 *
1112 *  This routine restores the floating point context passed to it.
1113 *
1114 *  H8300 Specific Information:
1115 *
1116 *  XXX
1117 */
1118
1119void _CPU_Context_restore_fp(
1120  Context_Control_fp **fp_context_ptr
1121);
1122
1123/*  The following routine swaps the endian format of an unsigned int.
1124 *  It must be static because it is referenced indirectly.
1125 *
1126 *  This version will work on any processor, but if there is a better
1127 *  way for your CPU PLEASE use it.  The most common way to do this is to:
1128 *
1129 *     swap least significant two bytes with 16-bit rotate
1130 *     swap upper and lower 16-bits
1131 *     swap most significant two bytes with 16-bit rotate
1132 *
1133 *  Some CPUs have special instructions which swap a 32-bit quantity in
1134 *  a single instruction (e.g. i486).  It is probably best to avoid
1135 *  an "endian swapping control bit" in the CPU.  One good reason is
1136 *  that interrupts would probably have to be disabled to ensure that
1137 *  an interrupt does not try to access the same "chunk" with the wrong
1138 *  endian.  Another good reason is that on some CPUs, the endian bit
1139 *  endianness for ALL fetches -- both code and data -- so the code
1140 *  will be fetched incorrectly.
1141 *
1142 *  H8300 Specific Information:
1143 *
1144 *  This is the generic implementation.
1145 */
1146 
1147static inline uint32_t   CPU_swap_u32(
1148  uint32_t   value
1149)
1150{
1151  uint32_t   byte1, byte2, byte3, byte4, swapped;
1152 
1153  byte4 = (value >> 24) & 0xff;
1154  byte3 = (value >> 16) & 0xff;
1155  byte2 = (value >> 8)  & 0xff;
1156  byte1 =  value        & 0xff;
1157 
1158  swapped = (byte1 << 24) | (byte2 << 16) | (byte3 << 8) | byte4;
1159  return( swapped );
1160}
1161
1162#define CPU_swap_u16( value ) \
1163  (((value&0xff) << 8) | ((value >> 8)&0xff))
1164
1165/* to be provided by the BSP */
1166extern void H8BD_Install_IRQ(
1167  uint32_t      vector,
1168  proc_ptr      new_handler,
1169  proc_ptr      *old_handler );
1170
1171#ifdef __cplusplus
1172}
1173#endif
1174
1175#endif
Note: See TracBrowser for help on using the repository browser.