source: rtems/cpukit/score/cpu/c4x/rtems/score/cpu.h @ c03e2bc

4.104.115
Last change on this file since c03e2bc was c03e2bc, checked in by Joel Sherrill <joel.sherrill@…>, on 02/11/09 at 21:45:05

2009-02-11 Joel Sherrill <joel.sherrill@…>

  • cpu.c, rtems/score/cpu.h: Eliminate _CPU_Thread_dispatch_pointer and passing address of _Thread_Dispatch to _CPU_Initialize. Clean up comments.
  • Property mode set to 100644
File size: 36.9 KB
Line 
1/**
2 * @file rtems/score/cpu.h
3 */
4
5/*
6 *  This include file contains information pertaining to the C4x
7 *  processor.
8 *
9 *  COPYRIGHT (c) 1989-2006.
10 *  On-Line Applications Research Corporation (OAR).
11 *
12 *  The license and distribution terms for this file may be
13 *  found in the file LICENSE in this distribution or at
14 *  http://www.rtems.com/license/LICENSE.
15 *
16 *  $Id$
17 */
18
19#ifndef _RTEMS_SCORE_CPU_H
20#define _RTEMS_SCORE_CPU_H
21
22#ifdef __cplusplus
23extern "C" {
24#endif
25
26#include <rtems/score/c4x.h>            /* pick up machine definitions */
27#ifndef ASM
28#include <rtems/score/types.h>
29#endif
30
31/* conditional compilation parameters */
32
33/*
34 *  Should the calls to _Thread_Enable_dispatch be inlined?
35 *
36 *  If TRUE, then they are inlined.
37 *  If FALSE, then a subroutine call is made.
38 *
39 *  Basically this is an example of the classic trade-off of size
40 *  versus speed.  Inlining the call (TRUE) typically increases the
41 *  size of RTEMS while speeding up the enabling of dispatching.
42 *  [NOTE: In general, the _Thread_Dispatch_disable_level will
43 *  only be 0 or 1 unless you are in an interrupt handler and that
44 *  interrupt handler invokes the executive.]  When not inlined
45 *  something calls _Thread_Enable_dispatch which in turns calls
46 *  _Thread_Dispatch.  If the enable dispatch is inlined, then
47 *  one subroutine call is avoided entirely.]
48 *
49 *  C4x Specific Information:
50 *
51 *  We might as well try to inline this code until there is a
52 *  code space problem.
53 */
54
55#define CPU_INLINE_ENABLE_DISPATCH       TRUE
56
57/*
58 *  Should the body of the search loops in _Thread_queue_Enqueue_priority
59 *  be unrolled one time?  In unrolled each iteration of the loop examines
60 *  two "nodes" on the chain being searched.  Otherwise, only one node
61 *  is examined per iteration.
62 *
63 *  If TRUE, then the loops are unrolled.
64 *  If FALSE, then the loops are not unrolled.
65 *
66 *  The primary factor in making this decision is the cost of disabling
67 *  and enabling interrupts (_ISR_Flash) versus the cost of rest of the
68 *  body of the loop.  On some CPUs, the flash is more expensive than
69 *  one iteration of the loop body.  In this case, it might be desirable
70 *  to unroll the loop.  It is important to note that on some CPUs, this
71 *  code is the longest interrupt disable period in RTEMS.  So it is
72 *  necessary to strike a balance when setting this parameter.
73 *
74 *  C4x Specific Information:
75 *
76 *  We might as well unroll this loop until there is a reason not to do so.
77 */
78
79#define CPU_UNROLL_ENQUEUE_PRIORITY      TRUE
80
81/*
82 *  Does RTEMS manage a dedicated interrupt stack in software?
83 *
84 *  If TRUE, then a stack is allocated in _Interrupt_Manager_initialization.
85 *  If FALSE, nothing is done.
86 *
87 *  If the CPU supports a dedicated interrupt stack in hardware,
88 *  then it is generally the responsibility of the BSP to allocate it
89 *  and set it up.
90 *
91 *  If the CPU does not support a dedicated interrupt stack, then
92 *  the porter has two options: (1) execute interrupts on the
93 *  stack of the interrupted task, and (2) have RTEMS manage a dedicated
94 *  interrupt stack.
95 *
96 *  If this is TRUE, CPU_ALLOCATE_INTERRUPT_STACK should also be TRUE.
97 *
98 *  Only one of CPU_HAS_SOFTWARE_INTERRUPT_STACK and
99 *  CPU_HAS_HARDWARE_INTERRUPT_STACK should be set to TRUE.  It is
100 *  possible that both are FALSE for a particular CPU.  Although it
101 *  is unclear what that would imply about the interrupt processing
102 *  procedure on that CPU.
103 *
104 *  C4x Specific Information:
105 *
106 *  Initial investigation indicates a software managed stack will be needed.
107 *  But the implementation does not currently include support for one.
108 */
109
110#define CPU_HAS_SOFTWARE_INTERRUPT_STACK FALSE
111
112/*
113 *  Does the CPU follow the simple vectored interrupt model?
114 *
115 *  If TRUE, then RTEMS allocates the vector table it internally manages.
116 *  If FALSE, then the BSP is assumed to allocate and manage the vector
117 *  table
118 *
119 *  C4x Specific Information:
120 *
121 *  XXX document implementation including references if appropriate
122 */
123#define CPU_SIMPLE_VECTORED_INTERRUPTS TRUE
124
125/*
126 *  Does this CPU have hardware support for a dedicated interrupt stack?
127 *
128 *  If TRUE, then it must be installed during initialization.
129 *  If FALSE, then no installation is performed.
130 *
131 *  If this is TRUE, CPU_ALLOCATE_INTERRUPT_STACK should also be TRUE.
132 *
133 *  Only one of CPU_HAS_SOFTWARE_INTERRUPT_STACK and
134 *  CPU_HAS_HARDWARE_INTERRUPT_STACK should be set to TRUE.  It is
135 *  possible that both are FALSE for a particular CPU.  Although it
136 *  is unclear what that would imply about the interrupt processing
137 *  procedure on that CPU.
138 *
139 *  C4x Specific Information:
140 *
141 *  XXXanswer
142 *
143 *  Initial investigation indicates a software managed stack will be needed.
144 */
145
146#define CPU_HAS_HARDWARE_INTERRUPT_STACK FALSE
147
148/*
149 *  Does RTEMS allocate a dedicated interrupt stack in the Interrupt Manager?
150 *
151 *  If TRUE, then the memory is allocated during initialization.
152 *  If FALSE, then the memory is allocated during initialization.
153 *
154 *  This should be TRUE is CPU_HAS_SOFTWARE_INTERRUPT_STACK is TRUE.
155 *
156 *  C4x Specific Information:
157 *
158 *  XXXanswer
159 *
160 *  Until we know what to do with the memory, we should not allocated it.
161 */
162
163#define CPU_ALLOCATE_INTERRUPT_STACK FALSE
164
165/*
166 *  Does the RTEMS invoke the user's ISR with the vector number and
167 *  a pointer to the saved interrupt frame (1) or just the vector
168 *  number (0)?
169 *
170 *  C4x Specific Information:
171 *
172 *  XXXanswer
173 *
174 *  The interrupt code will have to be written before this is answered
175 *  but the answer should be yes.
176 */
177
178#define CPU_ISR_PASSES_FRAME_POINTER 1
179
180/*
181 *  Does the CPU have hardware floating point?
182 *
183 *  If TRUE, then the RTEMS_FLOATING_POINT task attribute is supported.
184 *  If FALSE, then the RTEMS_FLOATING_POINT task attribute is ignored.
185 *
186 *  If there is a FP coprocessor such as the i387 or mc68881, then
187 *  the answer is TRUE.
188 *
189 *  The macro name "C4X_HAS_FPU" should be made CPU specific.
190 *  It indicates whether or not this CPU model has FP support.  For
191 *  example, it would be possible to have an i386_nofp CPU model
192 *  which set this to false to indicate that you have an i386 without
193 *  an i387 and wish to leave floating point support out of RTEMS.
194 *
195 *  C4x Specific Information:
196 *
197 *  See c4x.h for more details but the bottom line is that the
198 *  few extended registers required to be preserved across subroutines
199 *  calls are considered part of the integer context.  This eliminates
200 *  overhead.
201 *
202 *  The C4X_HAS_FPU refers to the extended precision registers R0-R7
203 *  (plus R8-R11 on some models).
204 *
205 *  XXX check that we even need to have the context area pointer in
206 *  the TCB in this case.
207 */
208
209#if ( C4X_HAS_FPU == 1 )
210#define CPU_HARDWARE_FP     TRUE
211#else
212#define CPU_HARDWARE_FP     FALSE
213#endif
214#define CPU_SOFTWARE_FP     FALSE
215
216/*
217 *  Are all tasks RTEMS_FLOATING_POINT tasks implicitly?
218 *
219 *  If TRUE, then the RTEMS_FLOATING_POINT task attribute is assumed.
220 *  If FALSE, then the RTEMS_FLOATING_POINT task attribute is followed.
221 *
222 *  If CPU_HARDWARE_FP is FALSE, then this should be FALSE as well.
223 *
224 *  C4x Specific Information:
225 *
226 *  There is no known reason to make all tasks include the extended
227 *  precision registers (i.e. floating point context).
228 */
229
230#define CPU_ALL_TASKS_ARE_FP     FALSE
231
232/*
233 *  Should the IDLE task have a floating point context?
234 *
235 *  If TRUE, then the IDLE task is created as a RTEMS_FLOATING_POINT task
236 *  and it has a floating point context which is switched in and out.
237 *  If FALSE, then the IDLE task does not have a floating point context.
238 *
239 *  Setting this to TRUE negatively impacts the time required to preempt
240 *  the IDLE task from an interrupt because the floating point context
241 *  must be saved as part of the preemption.
242 *
243 *  C4x Specific Information:
244 *
245 *  There is no known reason to make the IDLE task floating point and
246 *  no point in wasting the memory or increasing the context switch
247 *  time for the IDLE task.
248 */
249
250#define CPU_IDLE_TASK_IS_FP      FALSE
251
252/*
253 *  Should the saving of the floating point registers be deferred
254 *  until a context switch is made to another different floating point
255 *  task?
256 *
257 *  If TRUE, then the floating point context will not be stored until
258 *  necessary.  It will remain in the floating point registers and not
259 *  disturned until another floating point task is switched to.
260 *
261 *  If FALSE, then the floating point context is saved when a floating
262 *  point task is switched out and restored when the next floating point
263 *  task is restored.  The state of the floating point registers between
264 *  those two operations is not specified.
265 *
266 *  If the floating point context does NOT have to be saved as part of
267 *  interrupt dispatching, then it should be safe to set this to TRUE.
268 *
269 *  Setting this flag to TRUE results in using a different algorithm
270 *  for deciding when to save and restore the floating point context.
271 *  The deferred FP switch algorithm minimizes the number of times
272 *  the FP context is saved and restored.  The FP context is not saved
273 *  until a context switch is made to another, different FP task.
274 *  Thus in a system with only one FP task, the FP context will never
275 *  be saved or restored.
276 *
277 *  C4x Specific Information:
278 *
279 *  There is no reason to avoid the deferred FP switch logic on this
280 *  CPU family.
281 */
282
283#define CPU_USE_DEFERRED_FP_SWITCH       TRUE
284
285/*
286 *  Does this port provide a CPU dependent IDLE task implementation?
287 *
288 *  If TRUE, then the routine _CPU_Thread_Idle_body
289 *  must be provided and is the default IDLE thread body instead of
290 *  _CPU_Thread_Idle_body.
291 *
292 *  If FALSE, then use the generic IDLE thread body if the BSP does
293 *  not provide one.
294 *
295 *  This is intended to allow for supporting processors which have
296 *  a low power or idle mode.  When the IDLE thread is executed, then
297 *  the CPU can be powered down.
298 *
299 *  The order of precedence for selecting the IDLE thread body is:
300 *
301 *    1.  BSP provided
302 *    2.  CPU dependent (if provided)
303 *    3.  generic (if no BSP and no CPU dependent)
304 *
305 *  C4x Specific Information:
306 *
307 *  There is currently no reason to avoid using the generic implementation.
308 *  In the future, a C4x specific IDLE thread body may be added to take
309 *  advantage of low power modes.
310 */
311
312#define CPU_PROVIDES_IDLE_THREAD_BODY    FALSE
313
314/*
315 *  Does the stack grow up (toward higher addresses) or down
316 *  (toward lower addresses)?
317 *
318 *  If TRUE, then the grows upward.
319 *  If FALSE, then the grows toward smaller addresses.
320 *
321 *  C4x Specific Information:
322 *
323 *  The system stack grows from low to high memory.
324 *
325 *  C4x Specific Information:
326 *
327 *  This setting was derived from the discussion of stack management
328 *  in section 6.1 (p. 6-29) System and User Stack Management of the
329 *  TMS32C3x User's Guide (rev L, July 1997) which states: "A push
330 *  performs a preincrement, and a pop performs a postdecrement of the
331 *  system-stack pointer."  There are instructions for making "a stack"
332 *  run from high to low memory but this appears to be the exception.
333 */
334
335#define CPU_STACK_GROWS_UP               TRUE
336
337/*
338 *  The following is the variable attribute used to force alignment
339 *  of critical RTEMS structures.  On some processors it may make
340 *  sense to have these aligned on tighter boundaries than
341 *  the minimum requirements of the compiler in order to have as
342 *  much of the critical data area as possible in a cache line.
343 *
344 *  The placement of this macro in the declaration of the variables
345 *  is based on the syntactically requirements of the GNU C
346 *  "__attribute__" extension.  For example with GNU C, use
347 *  the following to force a structures to a 32 byte boundary.
348 *
349 *      __attribute__ ((aligned (32)))
350 *
351 *  NOTE:  Currently only the Priority Bit Map table uses this feature.
352 *         To benefit from using this, the data must be heavily
353 *         used so it will stay in the cache and used frequently enough
354 *         in the executive to justify turning this on.
355 *
356 *  C4x Specific Information:
357 *
358 *  The C4x is word oriented and there should be no alignment issues.
359 */
360
361#define CPU_STRUCTURE_ALIGNMENT
362
363/*
364 *  Define what is required to specify how the network to host conversion
365 *  routines are handled.
366 *
367 *  C4x Specific Information:
368 *
369 */
370
371#define CPU_BIG_ENDIAN                           TRUE
372#define CPU_LITTLE_ENDIAN                        FALSE
373
374/*
375 *  The following defines the number of bits actually used in the
376 *  interrupt field of the task mode.  How those bits map to the
377 *  CPU interrupt levels is defined by the routine _CPU_ISR_Set_level().
378 *
379 *  C4x Specific Information:
380 *
381 *  Currently we are only supporting interrupt levels 0 (all on) and
382 *  1 (all off).  Levels 2-255 COULD be looked up in a user provided
383 *  table that gives GIE and IE Mask settings.  But this is not the
384 *  case today.
385 */
386
387#define CPU_MODES_INTERRUPT_MASK   0x000000FF
388
389/*
390 *  Processor defined structures required for cpukit/score.
391 *
392 *  C4x Specific Information:
393 *
394 *  XXXanswer
395 */
396
397/* may need to put some structures here.  */
398
399/*
400 * Contexts
401 *
402 *  Generally there are 2 types of context to save.
403 *     1. Interrupt registers to save
404 *     2. Task level registers to save
405 *
406 *  This means we have the following 3 context items:
407 *     1. task level context stuff::  Context_Control
408 *     2. floating point task stuff:: Context_Control_fp
409 *     3. special interrupt level context :: Context_Control_interrupt
410 *
411 *  On some processors, it is cost-effective to save only the callee
412 *  preserved registers during a task context switch.  This means
413 *  that the ISR code needs to save those registers which do not
414 *  persist across function calls.  It is not mandatory to make this
415 *  distinctions between the caller/callee saves registers for the
416 *  purpose of minimizing context saved during task switch and on interrupts.
417 *  If the cost of saving extra registers is minimal, simplicity is the
418 *  choice.  Save the same context on interrupt entry as for tasks in
419 *  this case.
420 *
421 *  Additionally, if gdb is to be made aware of RTEMS tasks for this CPU, then
422 *  care should be used in designing the context area.
423 *
424 *  On some CPUs with hardware floating point support, the Context_Control_fp
425 *  structure will not be used or it simply consist of an array of a
426 *  fixed number of bytes.   This is done when the floating point context
427 *  is dumped by a "FP save context" type instruction and the format
428 *  is not really defined by the CPU.  In this case, there is no need
429 *  to figure out the exact format -- only the size.  Of course, although
430 *  this is enough information for RTEMS, it is probably not enough for
431 *  a debugger such as gdb.  But that is another problem.
432 *
433 *  C4x Specific Information:
434 *
435 *  From email with Michael Hayes:
436 *  > > But what are the rules for what is passed in what registers?
437 * 
438 *  Args are passed in the following registers (in order):
439 * 
440 *  AR2, R2, R3, RC, RS, RE
441 * 
442 *  However, the first and second floating point values are always in R2
443 *  and R3 (and all other floats are on the stack).  Structs are always
444 *  passed on the stack.  If the last argument is an ellipsis, the
445 *  previous argument is passed on the stack so that its address can be
446 *  taken for the stdargs macros.
447 * 
448 *   > > What is assumed to be preserved across calls?
449 * 
450 *  AR3, AR4, AR5, AR6, AR7   
451 *  R4, R5, R8              (using STI/LDI)
452 *  R6, R7                  (using STF/LDF)
453 * 
454 *   > > What is assumed to be scratch registers?
455 * 
456 *  R0, R1, R2, R3, AR0, AR1, AR2, IR0, IR1, BK, RS, RE, RC, R9, R10, R11
457 * 
458 *  Based on this information, the task specific context is quite small
459 *  but the interrupt context is much larger.  In fact, it could
460 *  easily be argued that there is no point in distinguishing between
461 *  integer and floating point contexts on the Cxx since there is
462 *  so little context involved.  So that is the decision made.
463 *
464 *  Not Mentioned in list: DP
465 *
466 *  Assumed to be global resources:
467 *
468 *  C3X: IE, IF, and IOF
469 *  C4X: DIE, IIF, and IIF
470 */
471
472
473typedef struct {
474  unsigned int st;
475  unsigned int ar3;
476  unsigned int ar4;
477  unsigned int ar5;
478  unsigned int ar6;
479  unsigned int ar7;
480  unsigned int r4_sti;  /* other part of register is in interrupt context */
481  unsigned int r5_sti;  /* other part of register is in interrupt context */
482  unsigned int r6_stf;  /* other part of register is in interrupt context */
483  unsigned int r7_stf;  /* other part of register is in interrupt context */
484#ifdef _TMS320C40
485  unsigned int r8_sti;  /* other part of register is in interrupt context */
486#endif
487  unsigned int sp;
488} Context_Control;
489
490#define _CPU_Context_Get_SP( _context ) \
491  (_context)->sp
492
493typedef struct {
494} Context_Control_fp;
495
496/*
497 *  This is the order the interrupt entry code pushes the registers.
498 */
499
500typedef struct {
501  void        *interrupted;
502  unsigned int st;
503  unsigned int ar2;   /* because the vector numbers goes here */
504  unsigned int ar0;
505  unsigned int ar1;
506  unsigned int dp;
507  unsigned int ir0;
508  unsigned int ir1;
509  unsigned int rs;
510  unsigned int re;
511  unsigned int rc;
512  unsigned int bk;
513  unsigned int r0_sti;
514  unsigned int r0_stf;
515  unsigned int r1_sti;
516  unsigned int r1_stf;
517  unsigned int r2_sti;
518  unsigned int r2_stf;
519  unsigned int r3_sti;
520  unsigned int r3_stf;
521  unsigned int r4_stf;  /* other part of register is in basic context */
522  unsigned int r5_stf;  /* other part of register is in basic context */
523  unsigned int r6_sti;  /* other part of register is in basic context */
524  unsigned int r7_sti;  /* other part of register is in basic context */
525
526#ifdef _TMS320C40
527  unsigned int r8_sti;  /* other part of register is in basic context */
528  unsigned int r9_sti;
529  unsigned int r9_stf;
530  unsigned int r10_sti;
531  unsigned int r10_stf;
532  unsigned int r11_sti;
533  unsigned int r11_stf;
534#endif
535
536} CPU_Interrupt_frame;
537
538/*
539 *  Macros to access C4X specific additions to the CPU Table
540 *
541 *  C4x Specific Information:
542 *
543 *  XXXanswer
544 */
545
546/* There are no CPU specific additions to the CPU Table for this port. */
547
548#if 0
549/*
550 *  This variable is optional.  It is used on CPUs on which it is difficult
551 *  to generate an "uninitialized" FP context.  It is filled in by
552 *  _CPU_Initialize and copied into the task's FP context area during
553 *  _CPU_Context_Initialize.
554 *
555 *  C4x Specific Information:
556 *
557 *  Unused
558 */
559
560SCORE_EXTERN Context_Control_fp  _CPU_Null_fp_context;
561#endif
562
563/*
564 *  On some CPUs, RTEMS supports a software managed interrupt stack.
565 *  This stack is allocated by the Interrupt Manager and the switch
566 *  is performed in _ISR_Handler.  These variables contain pointers
567 *  to the lowest and highest addresses in the chunk of memory allocated
568 *  for the interrupt stack.  Since it is unknown whether the stack
569 *  grows up or down (in general), this give the CPU dependent
570 *  code the option of picking the version it wants to use.
571 *
572 *  NOTE: These two variables are required if the macro
573 *        CPU_HAS_SOFTWARE_INTERRUPT_STACK is defined as TRUE.
574 *
575 *  C4x Specific Information:
576 *
577 *  XXXanswer
578 */
579
580SCORE_EXTERN void               *_CPU_Interrupt_stack_low;
581SCORE_EXTERN void               *_CPU_Interrupt_stack_high;
582
583/*
584 *  Nothing prevents the porter from declaring more CPU specific variables.
585 *
586 *  C4x Specific Information:
587 *
588 *  XXXanswer
589 */
590
591/* XXX: if needed, put more variables here */
592
593/*
594 *  The size of the floating point context area.  On some CPUs this
595 *  will not be a "sizeof" because the format of the floating point
596 *  area is not defined -- only the size is.  This is usually on
597 *  CPUs with a "floating point save context" instruction.
598 *
599 *  C4x Specific Information:
600 *
601 *  If we decide to have a separate floating point context, then
602 *  the answer is the size of the data structure.  Otherwise, we
603 *  need to define it as 0 to let upper level configuration work.
604 */
605
606#if ( C4X_HAS_FPU == 1 )
607#define CPU_CONTEXT_FP_SIZE sizeof( Context_Control_fp )
608#else
609#define CPU_CONTEXT_FP_SIZE 0
610#endif
611
612/*
613 *  Amount of extra stack (above minimum stack size) required by
614 *  MPCI receive server thread.  Remember that in a multiprocessor
615 *  system this thread must exist and be able to process all directives.
616 *
617 *  C4x Specific Information:
618 *
619 *  XXXanswer
620 */
621
622#define CPU_MPCI_RECEIVE_SERVER_EXTRA_STACK 0
623
624/*
625 *  This defines the number of entries in the ISR_Vector_table managed
626 *  by RTEMS.
627 *
628 *  C4x Specific Information:
629 *
630 *  Based on the information provided in section 7.6.1 (p. 7-26)
631 *  titled "TMS320C30 and TMS320C31 Interrupt Vector Table" and section
632 *  7.6.2 "TMS320C32 Interrupt Vector Table" of the TMS32C3x User's
633 *  Guide (rev L, July 1997), vectors are numbered 0x00 - 0x3F.  Thus
634 *  there are 0x40 or 64 vectors.
635 */
636
637#define CPU_INTERRUPT_NUMBER_OF_VECTORS      0x40
638#define CPU_INTERRUPT_MAXIMUM_VECTOR_NUMBER  (CPU_INTERRUPT_NUMBER_OF_VECTORS - 1)
639
640/*
641 *  This is defined if the port has a special way to report the ISR nesting
642 *  level.  Most ports maintain the variable _ISR_Nest_level.
643 */
644
645#define CPU_PROVIDES_ISR_IS_IN_PROGRESS FALSE
646
647/*
648 *  Should be large enough to run all RTEMS tests.  This ensures
649 *  that a "reasonable" small application should not have any problems.
650 *
651 *  C4x Specific Information:
652 *
653 *  XXXanswer
654 */
655
656#define CPU_STACK_MINIMUM_SIZE          (1024)
657
658/*
659 *  CPU's worst alignment requirement for data types on a byte boundary.  This
660 *  alignment does not take into account the requirements for the stack.
661 *
662 *  C4x Specific Information:
663 *
664 *  XXXanswer
665 *  As best I can tell, there are no restrictions since this is a word
666 *  -- not byte -- oriented archtiecture.
667 */
668
669#define CPU_ALIGNMENT              0
670
671/*
672 *  This number corresponds to the byte alignment requirement for the
673 *  heap handler.  This alignment requirement may be stricter than that
674 *  for the data types alignment specified by CPU_ALIGNMENT.  It is
675 *  common for the heap to follow the same alignment requirement as
676 *  CPU_ALIGNMENT.  If the CPU_ALIGNMENT is strict enough for the heap,
677 *  then this should be set to CPU_ALIGNMENT.
678 *
679 *  NOTE:  This does not have to be a power of 2.  It does have to
680 *         be greater or equal to than CPU_ALIGNMENT.
681 *
682 *  C4x Specific Information:
683 *
684 *  XXXanswer
685 *
686 *  A CPU_HEAP_ALIGNMENT of 2 comes close to disabling all the rounding
687 *  while still ensuring that the least significant bit of the front
688 *  and back flags can be used as the used bit -- not part of the size.
689 */
690
691#define CPU_HEAP_ALIGNMENT         2
692
693/*
694 *  This number corresponds to the byte alignment requirement for memory
695 *  buffers allocated by the partition manager.  This alignment requirement
696 *  may be stricter than that for the data types alignment specified by
697 *  CPU_ALIGNMENT.  It is common for the partition to follow the same
698 *  alignment requirement as CPU_ALIGNMENT.  If the CPU_ALIGNMENT is strict
699 *  enough for the partition, then this should be set to CPU_ALIGNMENT.
700 *
701 *  NOTE:  This does not have to be a power of 2.  It does have to
702 *         be greater or equal to than CPU_ALIGNMENT.
703 *
704 *  C4x Specific Information:
705 *
706 *  XXXanswer
707 *  I think a CPU_PARTITION_ALIGNMENT of 1 will effectively disable all
708 *  the rounding.
709 */
710
711#define CPU_PARTITION_ALIGNMENT    1
712
713/*
714 *  This number corresponds to the byte alignment requirement for the
715 *  stack.  This alignment requirement may be stricter than that for the
716 *  data types alignment specified by CPU_ALIGNMENT.  If the CPU_ALIGNMENT
717 *  is strict enough for the stack, then this should be set to 0.
718 *
719 *  NOTE:  This must be a power of 2 either 0 or greater than CPU_ALIGNMENT.
720 *
721 *  C4x Specific Information:
722 *
723 *  XXXanswer
724 */
725
726#define CPU_STACK_ALIGNMENT        0
727
728/*
729 *  ISR handler macros
730 *
731 *  C4x Specific Information:
732 *
733 *  These macros disable interrupts using the GIE (global interrupts enable)
734 *  bit in the status word.
735 */
736
737/*
738 *  Support routine to initialize the RTEMS vector table after it is allocated.
739 */
740
741#define _CPU_Initialize_vectors()
742
743/*
744 *  Disable all interrupts for an RTEMS critical section.  The previous
745 *  level is returned in _isr_cookie.
746 */
747
748#define _CPU_ISR_Disable( _isr_cookie ) \
749  do { \
750    (_isr_cookie) = c4x_global_interrupts_get(); \
751    c4x_global_interrupts_disable(); \
752  } while (0)
753
754/*
755 *  Enable interrupts to the previous level (returned by _CPU_ISR_Disable).
756 *  This indicates the end of an RTEMS critical section.  The parameter
757 *  _isr_cookie is not modified.
758 */
759
760#define _CPU_ISR_Enable( _isr_cookie )  \
761  c4x_global_interrupts_restore( _isr_cookie )
762
763/*
764 *  This temporarily restores the interrupt to _isr_cookie before immediately
765 *  disabling them again.  This is used to divide long RTEMS critical
766 *  sections into two or more parts.  The parameter _isr_cookie is not
767 *  modified.
768 */
769
770#define _CPU_ISR_Flash( _isr_cookie ) \
771  c4x_global_interrupts_flash( _isr_cookie )
772
773/*
774 *  Map interrupt level in task mode onto the hardware that the CPU
775 *  actually provides.  Currently, interrupt levels which do not
776 *  map onto the CPU in a generic fashion are undefined.  Someday,
777 *  it would be nice if these were "mapped" by the application
778 *  via a callout.  For example, m68k has 8 levels 0 - 7, levels
779 *  8 - 255 would be available for bsp/application specific meaning.
780 *  This could be used to manage a programmable interrupt controller
781 *  via the rtems_task_mode directive.
782 *
783 *  The get routine usually must be implemented as a subroutine.
784 *
785 *  C4x Specific Information:
786 *
787 *  The C4x port probably needs to allow the BSP to define
788 *  a mask table for all values 0-255.  For now, 0 is global
789 *  interrupts enabled and and non-zero is global interrupts
790 *  disabled.  In the future, values 1-254 could be defined as
791 *  specific combinations of the global interrupt enabled and the IE mask.
792 *
793 *  The logic for setting the mask field is something like this:
794 *    _ie_value = c4x_get_ie();
795 *    _ie_value &= C4X_IE_INTERRUPT_MASK_BITS;
796 *    _ie_value |= _ie_mask;
797 *    c4x_set_ie(_ie_value);
798 *
799 *  NOTE:  If this is implemented, then the context of each task
800 *         must be extended to include the IE register.
801 */
802
803#define _CPU_ISR_Set_level( _new_level ) \
804  do { \
805    if ( _new_level == 0 ) c4x_global_interrupts_enable(); \
806    else                   c4x_global_interrupts_disable(); \
807  } while (0)
808
809/* if GIE = 1, then logical level is 0. */
810#define _CPU_ISR_Get_level() \
811  (c4x_global_interrupts_get() ? 0 : 1)
812
813
814/* end of ISR handler macros */
815
816/* Context handler macros */
817
818/*
819 *  Initialize the context to a state suitable for starting a
820 *  task after a context restore operation.  Generally, this
821 *  involves:
822 *
823 *     - setting a starting address
824 *     - preparing the stack
825 *     - preparing the stack and frame pointers
826 *     - setting the proper interrupt level in the context
827 *     - initializing the floating point context
828 *
829 *  This routine generally does not set any unnecessary register
830 *  in the context.  The state of the "general data" registers is
831 *  undefined at task start time.
832 *
833 *  NOTE: This is_fp parameter is TRUE if the thread is to be a floating
834 *        point thread.  This is typically only used on CPUs where the
835 *        FPU may be easily disabled by software such as on the SPARC
836 *        where the PSR contains an enable FPU bit.
837 *
838 *  C4x Specific Information:
839 *
840 *  XXXanswer
841 */
842
843void _CPU_Context_Initialize(
844  Context_Control       *_the_context,
845  void                  *_stack_base,
846  uint32_t              _size,
847  uint32_t              _isr,
848  void  (*_entry_point)(void),
849  int                   _is_fp
850);
851
852/*
853 *  This routine is responsible for somehow restarting the currently
854 *  executing task.  If you are lucky, then all that is necessary
855 *  is restoring the context.  Otherwise, there will need to be
856 *  a special assembly routine which does something special in this
857 *  case.  Context_Restore should work most of the time.  It will
858 *  not work if restarting self conflicts with the stack frame
859 *  assumptions of restoring a context.
860 *
861 *  C4x Specific Information:
862 *
863 *  XXXanswer
864 */
865
866#define _CPU_Context_Restart_self( _the_context ) \
867   _CPU_Context_restore( (_the_context) );
868
869#if ( C4X_HAS_FPU == 1 )
870/*
871 *  The purpose of this macro is to allow the initial pointer into
872 *  a floating point context area (used to save the floating point
873 *  context) to be at an arbitrary place in the floating point
874 *  context area.
875 *
876 *  This is necessary because some FP units are designed to have
877 *  their context saved as a stack which grows into lower addresses.
878 *  Other FP units can be saved by simply moving registers into offsets
879 *  from the base of the context area.  Finally some FP units provide
880 *  a "dump context" instruction which could fill in from high to low
881 *  or low to high based on the whim of the CPU designers.
882 *
883 *  C4x Specific Information:
884 *
885 *  No Floating Point from RTEMS perspective.
886 */
887
888#define _CPU_Context_Fp_start( _base, _offset ) \
889   ( (void *) _Addresses_Add_offset( (_base), (_offset) ) )
890#endif
891
892#if ( C4X_HAS_FPU == 1 )
893/*
894 *  This routine initializes the FP context area passed to it to.
895 *  There are a few standard ways in which to initialize the
896 *  floating point context.  The code included for this macro assumes
897 *  that this is a CPU in which a "initial" FP context was saved into
898 *  _CPU_Null_fp_context and it simply copies it to the destination
899 *  context passed to it.
900 *
901 *  Other models include (1) not doing anything, and (2) putting
902 *  a "null FP status word" in the correct place in the FP context.
903 *
904 *  C4x Specific Information:
905 *
906 *  No Floating Point from RTEMS perspective.
907 */
908
909#define _CPU_Context_Initialize_fp( _destination ) \
910  do { \
911   *(*(_destination)) = _CPU_Null_fp_context; \
912  } while (0)
913#endif
914
915/* end of Context handler macros */
916
917/* Fatal Error manager macros */
918
919/*
920 *  This routine copies _error into a known place -- typically a stack
921 *  location or a register, optionally disables interrupts, and
922 *  halts/stops the CPU.
923 *
924 *  C4x Specific Information:
925 *
926 *  XXXanswer
927 */
928
929#define _CPU_Fatal_halt( _error ) \
930  do { \
931  } while (0)
932
933/* end of Fatal Error manager macros */
934
935/* Bitfield handler macros */
936
937/*
938 *  This routine sets _output to the bit number of the first bit
939 *  set in _value.  _value is of CPU dependent type Priority_Bit_map_control.
940 *  This type may be either 16 or 32 bits wide although only the 16
941 *  least significant bits will be used.
942 *
943 *  There are a number of variables in using a "find first bit" type
944 *  instruction.
945 *
946 *    (1) What happens when run on a value of zero?
947 *    (2) Bits may be numbered from MSB to LSB or vice-versa.
948 *    (3) The numbering may be zero or one based.
949 *    (4) The "find first bit" instruction may search from MSB or LSB.
950 *
951 *  RTEMS guarantees that (1) will never happen so it is not a concern.
952 *  (2),(3), (4) are handled by the macros _CPU_Priority_mask() and
953 *  _CPU_Priority_bits_index().  These three form a set of routines
954 *  which must logically operate together.  Bits in the _value are
955 *  set and cleared based on masks built by _CPU_Priority_mask().
956 *  The basic major and minor values calculated by _Priority_Major()
957 *  and _Priority_Minor() are "massaged" by _CPU_Priority_bits_index()
958 *  to properly range between the values returned by the "find first bit"
959 *  instruction.  This makes it possible for _Priority_Get_highest() to
960 *  calculate the major and directly index into the minor table.
961 *  This mapping is necessary to ensure that 0 (a high priority major/minor)
962 *  is the first bit found.
963 *
964 *  This entire "find first bit" and mapping process depends heavily
965 *  on the manner in which a priority is broken into a major and minor
966 *  components with the major being the 4 MSB of a priority and minor
967 *  the 4 LSB.  Thus (0 << 4) + 0 corresponds to priority 0 -- the highest
968 *  priority.  And (15 << 4) + 14 corresponds to priority 254 -- the next
969 *  to the lowest priority.
970 *
971 *  If your CPU does not have a "find first bit" instruction, then
972 *  there are ways to make do without it.  Here are a handful of ways
973 *  to implement this in software:
974 *
975 *    - a series of 16 bit test instructions
976 *    - a "binary search using if's"
977 *    - _number = 0
978 *      if _value > 0x00ff
979 *        _value >>=8
980 *        _number = 8;
981 *
982 *      if _value > 0x0000f
983 *        _value >=8
984 *        _number += 4
985 *
986 *      _number += bit_set_table[ _value ]
987 *
988 *    where bit_set_table[ 16 ] has values which indicate the first
989 *      bit set
990 *
991 *  C4x Specific Information:
992 *
993 *  There does not appear to be a simple way to do this on this
994 *  processor family that is better than the generic algorithm.
995 *  Almost certainly, a hand-optimized assembly version of the
996 *  generic algorithm could be written although it is not
997 *  worth the development effort at this time.
998 */
999
1000#define CPU_USE_GENERIC_BITFIELD_CODE TRUE
1001#define CPU_USE_GENERIC_BITFIELD_DATA TRUE
1002
1003#if (CPU_USE_GENERIC_BITFIELD_CODE == FALSE)
1004
1005#define _CPU_Bitfield_Find_first_bit( _value, _output ) \
1006  do { \
1007    (_output) = 0;   /* do something to prevent warnings */ \
1008  } while (0)
1009
1010#endif
1011
1012/* end of Bitfield handler macros */
1013
1014/*
1015 *  This routine builds the mask which corresponds to the bit fields
1016 *  as searched by _CPU_Bitfield_Find_first_bit().  See the discussion
1017 *  for that routine.
1018 *
1019 *  C4x Specific Information:
1020 *
1021 *  XXXanswer
1022 */
1023
1024#if (CPU_USE_GENERIC_BITFIELD_CODE == FALSE)
1025
1026#define _CPU_Priority_Mask( _bit_number ) \
1027  ( 1 << (_bit_number) )
1028
1029#endif
1030
1031/*
1032 *  This routine translates the bit numbers returned by
1033 *  _CPU_Bitfield_Find_first_bit() into something suitable for use as
1034 *  a major or minor component of a priority.  See the discussion
1035 *  for that routine.
1036 *
1037 *  C4x Specific Information:
1038 *
1039 *  XXXanswer
1040 */
1041
1042#if (CPU_USE_GENERIC_BITFIELD_CODE == FALSE)
1043
1044#define _CPU_Priority_bits_index( _priority ) \
1045  (_priority)
1046
1047#endif
1048
1049/* end of Priority handler macros */
1050
1051/* functions */
1052
1053/*
1054 *  _CPU_Initialize
1055 *
1056 *  This routine performs CPU dependent initialization.
1057 *
1058 *  C4x Specific Information:
1059 *
1060 *  XXXanswer
1061 */
1062
1063void _CPU_Initialize(void);
1064
1065/*
1066 *  _CPU_ISR_install_raw_handler
1067 *
1068 *  This routine installs a "raw" interrupt handler directly into the
1069 *  processor's vector table.
1070 *
1071 *  C4x Specific Information:
1072 *
1073 *  XXXanswer
1074 */
1075 
1076void _CPU_ISR_install_raw_handler(
1077  uint32_t    vector,
1078  proc_ptr    new_handler,
1079  proc_ptr   *old_handler
1080);
1081
1082/*
1083 *  _CPU_ISR_install_vector
1084 *
1085 *  This routine installs an interrupt vector.
1086 *
1087 *  C4x Specific Information:
1088 *
1089 *  XXXanswer
1090 */
1091
1092void _CPU_ISR_install_vector(
1093  uint32_t    vector,
1094  proc_ptr    new_handler,
1095  proc_ptr   *old_handler
1096);
1097
1098/*
1099 *  _CPU_Thread_Idle_body
1100 *
1101 *  This routine is the CPU dependent IDLE thread body.
1102 *
1103 *  NOTE:  It need only be provided if CPU_PROVIDES_IDLE_THREAD_BODY
1104 *
1105 *  C4x Specific Information:
1106 *
1107 *  XXXanswer
1108 *         is TRUE.
1109 */
1110
1111#if (CPU_PROVIDES_IDLE_THREAD_BODY == 1)
1112void *_CPU_Thread_Idle_body( uint32_t );
1113#endif
1114
1115/*
1116 *  _CPU_Context_switch
1117 *
1118 *  This routine switches from the run context to the heir context.
1119 *
1120 *  C4x Specific Information:
1121 *
1122 *  XXXanswer
1123 */
1124
1125void _CPU_Context_switch(
1126  Context_Control  *run,
1127  Context_Control  *heir
1128);
1129
1130/*
1131 *  _CPU_Context_restore
1132 *
1133 *  This routine is generally used only to restart self in an
1134 *  efficient manner.  It may simply be a label in _CPU_Context_switch.
1135 *
1136 *  NOTE: May be unnecessary to reload some registers.
1137 *
1138 *  C4x Specific Information:
1139 *
1140 *  XXXanswer
1141 */
1142
1143void _CPU_Context_restore(
1144  Context_Control *new_context
1145);
1146
1147/*
1148 *  _CPU_Context_save_fp
1149 *
1150 *  This routine saves the floating point context passed to it.
1151 *
1152 *  C4x Specific Information:
1153 *
1154 *  No Floating Point from RTEMS perspective.
1155 */
1156
1157#if ( C4X_HAS_FPU == 1 )
1158void _CPU_Context_save_fp(
1159  Context_Control_fp **fp_context_ptr
1160);
1161#endif
1162
1163/*
1164 *  _CPU_Context_restore_fp
1165 *
1166 *  This routine restores the floating point context passed to it.
1167 *
1168 *  C4x Specific Information:
1169 *
1170 *  No Floating Point from RTEMS perspective.
1171 */
1172
1173#if ( C4X_HAS_FPU == 1 )
1174void _CPU_Context_restore_fp(
1175  Context_Control_fp **fp_context_ptr
1176);
1177#endif
1178
1179/*  The following routine swaps the endian format of an unsigned int.
1180 *  It must be static because it is referenced indirectly.
1181 *
1182 *  This version will work on any processor, but if there is a better
1183 *  way for your CPU PLEASE use it.  The most common way to do this is to:
1184 *
1185 *     swap least significant two bytes with 16-bit rotate
1186 *     swap upper and lower 16-bits
1187 *     swap most significant two bytes with 16-bit rotate
1188 *
1189 *  Some CPUs have special instructions which swap a 32-bit quantity in
1190 *  a single instruction (e.g. i486).  It is probably best to avoid
1191 *  an "endian swapping control bit" in the CPU.  One good reason is
1192 *  that interrupts would probably have to be disabled to ensure that
1193 *  an interrupt does not try to access the same "chunk" with the wrong
1194 *  endian.  Another good reason is that on some CPUs, the endian bit
1195 *  endianness for ALL fetches -- both code and data -- so the code
1196 *  will be fetched incorrectly.
1197 *
1198 *  C4x Specific Information:
1199 *
1200 *  XXXanswer
1201 */
1202 
1203static inline uint32_t CPU_swap_u32(
1204  uint32_t value
1205)
1206{
1207  uint32_t   byte1, byte2, byte3, byte4, swapped;
1208 
1209  byte4 = (value >> 24) & 0xff;
1210  byte3 = (value >> 16) & 0xff;
1211  byte2 = (value >> 8)  & 0xff;
1212  byte1 =  value        & 0xff;
1213 
1214  swapped = (byte1 << 24) | (byte2 << 16) | (byte3 << 8) | byte4;
1215  return( swapped );
1216}
1217
1218#define CPU_swap_u16( value ) \
1219  (((value&0xff) << 8) | ((value >> 8)&0xff))
1220
1221#ifdef __cplusplus
1222}
1223#endif
1224
1225#endif
Note: See TracBrowser for help on using the repository browser.