source: rtems/cpukit/score/cpu/avr/rtems/score/cpu.h @ bdf9e8de

4.104.114.95
Last change on this file since bdf9e8de was bdf9e8de, checked in by Ralf Corsepius <ralf.corsepius@…>, on 08/21/08 at 04:12:26

Add missing prototypes.

  • Property mode set to 100644
File size: 34.4 KB
Line 
1/**
2 * @file rtems/score/cpu.h
3 */
4
5/*
6 *  This include file contains information pertaining to the AVR
7 *  processor.
8 *
9 *  COPYRIGHT (c) 1989-2006.
10 *  On-Line Applications Research Corporation (OAR).
11 *
12 *  The license and distribution terms for this file may be
13 *  found in the file LICENSE in this distribution or at
14 *  http://www.rtems.com/license/LICENSE.
15 *
16 *  $Id$
17 */
18
19#ifndef _RTEMS_SCORE_CPU_H
20#define _RTEMS_SCORE_CPU_H
21
22#ifdef __cplusplus
23extern "C" {
24#endif
25
26#include <rtems/score/avr.h>            /* pick up machine definitions */
27#ifndef ASM
28#include <rtems/score/types.h>
29#endif
30
31/* conditional compilation parameters */
32
33/*
34 *  Should the calls to _Thread_Enable_dispatch be inlined?
35 *
36 *  If TRUE, then they are inlined.
37 *  If FALSE, then a subroutine call is made.
38 *
39 *  Basically this is an example of the classic trade-off of size
40 *  versus speed.  Inlining the call (TRUE) typically increases the
41 *  size of RTEMS while speeding up the enabling of dispatching.
42 *  [NOTE: In general, the _Thread_Dispatch_disable_level will
43 *  only be 0 or 1 unless you are in an interrupt handler and that
44 *  interrupt handler invokes the executive.]  When not inlined
45 *  something calls _Thread_Enable_dispatch which in turns calls
46 *  _Thread_Dispatch.  If the enable dispatch is inlined, then
47 *  one subroutine call is avoided entirely.]
48 *
49 *  AVR Specific Information:
50 *
51 *  XXX document implementation including references if appropriate
52 */
53
54#define CPU_INLINE_ENABLE_DISPATCH       FALSE
55
56/*
57 *  Should the body of the search loops in _Thread_queue_Enqueue_priority
58 *  be unrolled one time?  In unrolled each iteration of the loop examines
59 *  two "nodes" on the chain being searched.  Otherwise, only one node
60 *  is examined per iteration.
61 *
62 *  If TRUE, then the loops are unrolled.
63 *  If FALSE, then the loops are not unrolled.
64 *
65 *  The primary factor in making this decision is the cost of disabling
66 *  and enabling interrupts (_ISR_Flash) versus the cost of rest of the
67 *  body of the loop.  On some CPUs, the flash is more expensive than
68 *  one iteration of the loop body.  In this case, it might be desirable
69 *  to unroll the loop.  It is important to note that on some CPUs, this
70 *  code is the longest interrupt disable period in RTEMS.  So it is
71 *  necessary to strike a balance when setting this parameter.
72 *
73 *  AVR Specific Information:
74 *
75 *  XXX document implementation including references if appropriate
76 */
77
78#define CPU_UNROLL_ENQUEUE_PRIORITY      TRUE
79
80/*
81 *  Does RTEMS manage a dedicated interrupt stack in software?
82 *
83 *  If TRUE, then a stack is allocated in _ISR_Handler_initialization.
84 *  If FALSE, nothing is done.
85 *
86 *  If the CPU supports a dedicated interrupt stack in hardware,
87 *  then it is generally the responsibility of the BSP to allocate it
88 *  and set it up.
89 *
90 *  If the CPU does not support a dedicated interrupt stack, then
91 *  the porter has two options: (1) execute interrupts on the
92 *  stack of the interrupted task, and (2) have RTEMS manage a dedicated
93 *  interrupt stack.
94 *
95 *  If this is TRUE, CPU_ALLOCATE_INTERRUPT_STACK should also be TRUE.
96 *
97 *  Only one of CPU_HAS_SOFTWARE_INTERRUPT_STACK and
98 *  CPU_HAS_HARDWARE_INTERRUPT_STACK should be set to TRUE.  It is
99 *  possible that both are FALSE for a particular CPU.  Although it
100 *  is unclear what that would imply about the interrupt processing
101 *  procedure on that CPU.
102 *
103 *  AVR Specific Information:
104 *
105 *  XXX document implementation including references if appropriate
106 */
107
108#define CPU_HAS_SOFTWARE_INTERRUPT_STACK FALSE
109
110/*
111 *  Does this CPU have hardware support for a dedicated interrupt stack?
112 *
113 *  If TRUE, then it must be installed during initialization.
114 *  If FALSE, then no installation is performed.
115 *
116 *  If this is TRUE, CPU_ALLOCATE_INTERRUPT_STACK should also be TRUE.
117 *
118 *  Only one of CPU_HAS_SOFTWARE_INTERRUPT_STACK and
119 *  CPU_HAS_HARDWARE_INTERRUPT_STACK should be set to TRUE.  It is
120 *  possible that both are FALSE for a particular CPU.  Although it
121 *  is unclear what that would imply about the interrupt processing
122 *  procedure on that CPU.
123 *
124 *  AVR Specific Information:
125 *
126 *  XXX document implementation including references if appropriate
127 */
128
129#define CPU_HAS_HARDWARE_INTERRUPT_STACK TRUE
130
131/*
132 *  Does RTEMS allocate a dedicated interrupt stack in the Interrupt Manager?
133 *
134 *  If TRUE, then the memory is allocated during initialization.
135 *  If FALSE, then the memory is allocated during initialization.
136 *
137 *  This should be TRUE is CPU_HAS_SOFTWARE_INTERRUPT_STACK is TRUE.
138 *
139 *  AVR Specific Information:
140 *
141 *  XXX document implementation including references if appropriate
142 */
143
144#define CPU_ALLOCATE_INTERRUPT_STACK TRUE
145
146/*
147 *  Does the RTEMS invoke the user's ISR with the vector number and
148 *  a pointer to the saved interrupt frame (1) or just the vector
149 *  number (0)?
150 *
151 *  AVR Specific Information:
152 *
153 *  XXX document implementation including references if appropriate
154 */
155
156#define CPU_ISR_PASSES_FRAME_POINTER 0
157
158/*
159 *  Does the CPU follow the simple vectored interrupt model?
160 *
161 *  If TRUE, then RTEMS allocates the vector table it internally manages.
162 *  If FALSE, then the BSP is assumed to allocate and manage the vector
163 *  table
164 *
165 *  AVR Specific Information:
166 *
167 *  XXX document implementation including references if appropriate
168 */
169#define CPU_SIMPLE_VECTORED_INTERRUPTS TRUE
170
171/*
172 *  Does the CPU have hardware floating point?
173 *
174 *  If TRUE, then the RTEMS_FLOATING_POINT task attribute is supported.
175 *  If FALSE, then the RTEMS_FLOATING_POINT task attribute is ignored.
176 *
177 *  If there is a FP coprocessor such as the i387 or mc68881, then
178 *  the answer is TRUE.
179 *
180 *  The macro name "AVR_HAS_FPU" should be made CPU specific.
181 *  It indicates whether or not this CPU model has FP support.  For
182 *  example, it would be possible to have an i386_nofp CPU model
183 *  which set this to false to indicate that you have an i386 without
184 *  an i387 and wish to leave floating point support out of RTEMS.
185 *
186 *  The CPU_SOFTWARE_FP is used to indicate whether or not there
187 *  is software implemented floating point that must be context
188 *  switched.  The determination of whether or not this applies
189 *  is very tool specific and the state saved/restored is also
190 *  compiler specific.
191 *
192 *  AVR Specific Information:
193 *
194 *  XXX document implementation including references if appropriate
195 */
196
197#if ( AVR_HAS_FPU == 1 )
198#define CPU_HARDWARE_FP     TRUE
199#else
200#define CPU_HARDWARE_FP     FALSE
201#endif
202#define CPU_SOFTWARE_FP     FALSE
203
204/*
205 *  Are all tasks RTEMS_FLOATING_POINT tasks implicitly?
206 *
207 *  If TRUE, then the RTEMS_FLOATING_POINT task attribute is assumed.
208 *  If FALSE, then the RTEMS_FLOATING_POINT task attribute is followed.
209 *
210 *  So far, the only CPUs in which this option has been used are the
211 *  HP PA-RISC and PowerPC.  On the PA-RISC, The HP C compiler and
212 *  gcc both implicitly used the floating point registers to perform
213 *  integer multiplies.  Similarly, the PowerPC port of gcc has been
214 *  seen to allocate floating point local variables and touch the FPU
215 *  even when the flow through a subroutine (like vfprintf()) might
216 *  not use floating point formats.
217 *
218 *  If a function which you would not think utilize the FP unit DOES,
219 *  then one can not easily predict which tasks will use the FP hardware.
220 *  In this case, this option should be TRUE.
221 *
222 *  If CPU_HARDWARE_FP is FALSE, then this should be FALSE as well.
223 *
224 *  AVR Specific Information:
225 *
226 *  XXX document implementation including references if appropriate
227 */
228
229#define CPU_ALL_TASKS_ARE_FP     TRUE
230
231/*
232 *  Should the IDLE task have a floating point context?
233 *
234 *  If TRUE, then the IDLE task is created as a RTEMS_FLOATING_POINT task
235 *  and it has a floating point context which is switched in and out.
236 *  If FALSE, then the IDLE task does not have a floating point context.
237 *
238 *  Setting this to TRUE negatively impacts the time required to preempt
239 *  the IDLE task from an interrupt because the floating point context
240 *  must be saved as part of the preemption.
241 *
242 *  AVR Specific Information:
243 *
244 *  XXX document implementation including references if appropriate
245 */
246
247#define CPU_IDLE_TASK_IS_FP      FALSE
248
249/*
250 *  Should the saving of the floating point registers be deferred
251 *  until a context switch is made to another different floating point
252 *  task?
253 *
254 *  If TRUE, then the floating point context will not be stored until
255 *  necessary.  It will remain in the floating point registers and not
256 *  disturned until another floating point task is switched to.
257 *
258 *  If FALSE, then the floating point context is saved when a floating
259 *  point task is switched out and restored when the next floating point
260 *  task is restored.  The state of the floating point registers between
261 *  those two operations is not specified.
262 *
263 *  If the floating point context does NOT have to be saved as part of
264 *  interrupt dispatching, then it should be safe to set this to TRUE.
265 *
266 *  Setting this flag to TRUE results in using a different algorithm
267 *  for deciding when to save and restore the floating point context.
268 *  The deferred FP switch algorithm minimizes the number of times
269 *  the FP context is saved and restored.  The FP context is not saved
270 *  until a context switch is made to another, different FP task.
271 *  Thus in a system with only one FP task, the FP context will never
272 *  be saved or restored.
273 *
274 *  AVR Specific Information:
275 *
276 *  XXX document implementation including references if appropriate
277 */
278
279#define CPU_USE_DEFERRED_FP_SWITCH       TRUE
280
281/*
282 *  Does this port provide a CPU dependent IDLE task implementation?
283 *
284 *  If TRUE, then the routine _CPU_Thread_Idle_body
285 *  must be provided and is the default IDLE thread body instead of
286 *  _CPU_Thread_Idle_body.
287 *
288 *  If FALSE, then use the generic IDLE thread body if the BSP does
289 *  not provide one.
290 *
291 *  This is intended to allow for supporting processors which have
292 *  a low power or idle mode.  When the IDLE thread is executed, then
293 *  the CPU can be powered down.
294 *
295 *  The order of precedence for selecting the IDLE thread body is:
296 *
297 *    1.  BSP provided
298 *    2.  CPU dependent (if provided)
299 *    3.  generic (if no BSP and no CPU dependent)
300 *
301 *  AVR Specific Information:
302 *
303 *  XXX document implementation including references if appropriate
304 */
305
306#define CPU_PROVIDES_IDLE_THREAD_BODY    TRUE
307
308/*
309 *  Does the stack grow up (toward higher addresses) or down
310 *  (toward lower addresses)?
311 *
312 *  If TRUE, then the grows upward.
313 *  If FALSE, then the grows toward smaller addresses.
314 *
315 *  AVR Specific Information:
316 *
317 *  XXX document implementation including references if appropriate
318 */
319
320#define CPU_STACK_GROWS_UP               TRUE
321
322/*
323 *  The following is the variable attribute used to force alignment
324 *  of critical RTEMS structures.  On some processors it may make
325 *  sense to have these aligned on tighter boundaries than
326 *  the minimum requirements of the compiler in order to have as
327 *  much of the critical data area as possible in a cache line.
328 *
329 *  The placement of this macro in the declaration of the variables
330 *  is based on the syntactically requirements of the GNU C
331 *  "__attribute__" extension.  For example with GNU C, use
332 *  the following to force a structures to a 32 byte boundary.
333 *
334 *      __attribute__ ((aligned (32)))
335 *
336 *  NOTE:  Currently only the Priority Bit Map table uses this feature.
337 *         To benefit from using this, the data must be heavily
338 *         used so it will stay in the cache and used frequently enough
339 *         in the executive to justify turning this on.
340 *
341 *  AVR Specific Information:
342 *
343 *  XXX document implementation including references if appropriate
344 */
345
346#define CPU_STRUCTURE_ALIGNMENT
347
348/*
349 *  Define what is required to specify how the network to host conversion
350 *  routines are handled.
351 *
352 *  AVR Specific Information:
353 *
354 *  XXX document implementation including references if appropriate
355 */
356
357#define CPU_BIG_ENDIAN                           TRUE
358#define CPU_LITTLE_ENDIAN                        FALSE
359
360/*
361 *  The following defines the number of bits actually used in the
362 *  interrupt field of the task mode.  How those bits map to the
363 *  CPU interrupt levels is defined by the routine _CPU_ISR_Set_level().
364 *
365 *  AVR Specific Information:
366 *
367 *  XXX document implementation including references if appropriate
368 */
369
370#define CPU_MODES_INTERRUPT_MASK   0x00000001
371
372/*
373 *  Processor defined structures required for cpukit/score.
374 *
375 *  AVR Specific Information:
376 *
377 *  XXX document implementation including references if appropriate
378 */
379
380/* may need to put some structures here.  */
381
382/*
383 * Contexts
384 *
385 *  Generally there are 2 types of context to save.
386 *     1. Interrupt registers to save
387 *     2. Task level registers to save
388 *
389 *  This means we have the following 3 context items:
390 *     1. task level context stuff::  Context_Control
391 *     2. floating point task stuff:: Context_Control_fp
392 *     3. special interrupt level context :: Context_Control_interrupt
393 *
394 *  On some processors, it is cost-effective to save only the callee
395 *  preserved registers during a task context switch.  This means
396 *  that the ISR code needs to save those registers which do not
397 *  persist across function calls.  It is not mandatory to make this
398 *  distinctions between the caller/callee saves registers for the
399 *  purpose of minimizing context saved during task switch and on interrupts.
400 *  If the cost of saving extra registers is minimal, simplicity is the
401 *  choice.  Save the same context on interrupt entry as for tasks in
402 *  this case.
403 *
404 *  Additionally, if gdb is to be made aware of RTEMS tasks for this CPU, then
405 *  care should be used in designing the context area.
406 *
407 *  On some CPUs with hardware floating point support, the Context_Control_fp
408 *  structure will not be used or it simply consist of an array of a
409 *  fixed number of bytes.   This is done when the floating point context
410 *  is dumped by a "FP save context" type instruction and the format
411 *  is not really defined by the CPU.  In this case, there is no need
412 *  to figure out the exact format -- only the size.  Of course, although
413 *  this is enough information for RTEMS, it is probably not enough for
414 *  a debugger such as gdb.  But that is another problem.
415 *
416 *  AVR Specific Information:
417 *
418 *  XXX document implementation including references if appropriate
419 */
420
421typedef struct {
422    uint32_t   some_integer_register;
423    uint32_t   some_system_register;
424    uint32_t   stack_pointer;
425} Context_Control;
426
427#define _CPU_Context_Get_SP( _context ) \
428  (_context)->stack_pointer
429
430typedef struct {
431    double      some_float_register;
432} Context_Control_fp;
433
434typedef struct {
435    uint32_t   special_interrupt_register;
436} CPU_Interrupt_frame;
437
438/*
439 *  This variable is optional.  It is used on CPUs on which it is difficult
440 *  to generate an "uninitialized" FP context.  It is filled in by
441 *  _CPU_Initialize and copied into the task's FP context area during
442 *  _CPU_Context_Initialize.
443 *
444 *  AVR Specific Information:
445 *
446 *  XXX document implementation including references if appropriate
447 */
448
449SCORE_EXTERN Context_Control_fp  _CPU_Null_fp_context;
450
451/*
452 *  On some CPUs, RTEMS supports a software managed interrupt stack.
453 *  This stack is allocated by the Interrupt Manager and the switch
454 *  is performed in _ISR_Handler.  These variables contain pointers
455 *  to the lowest and highest addresses in the chunk of memory allocated
456 *  for the interrupt stack.  Since it is unknown whether the stack
457 *  grows up or down (in general), this give the CPU dependent
458 *  code the option of picking the version it wants to use.
459 *
460 *  NOTE: These two variables are required if the macro
461 *        CPU_HAS_SOFTWARE_INTERRUPT_STACK is defined as TRUE.
462 *
463 *  AVR Specific Information:
464 *
465 *  XXX document implementation including references if appropriate
466 */
467
468SCORE_EXTERN void               *_CPU_Interrupt_stack_low;
469SCORE_EXTERN void               *_CPU_Interrupt_stack_high;
470
471/*
472 *  With some compilation systems, it is difficult if not impossible to
473 *  call a high-level language routine from assembly language.  This
474 *  is especially true of commercial Ada compilers and name mangling
475 *  C++ ones.  This variable can be optionally defined by the CPU porter
476 *  and contains the address of the routine _Thread_Dispatch.  This
477 *  can make it easier to invoke that routine at the end of the interrupt
478 *  sequence (if a dispatch is necessary).
479 *
480 *  AVR Specific Information:
481 *
482 *  XXX document implementation including references if appropriate
483 */
484
485SCORE_EXTERN void           (*_CPU_Thread_dispatch_pointer)(void);
486
487/*
488 *  Nothing prevents the porter from declaring more CPU specific variables.
489 *
490 *  AVR Specific Information:
491 *
492 *  XXX document implementation including references if appropriate
493 */
494
495/* XXX: if needed, put more variables here */
496
497/*
498 *  The size of the floating point context area.  On some CPUs this
499 *  will not be a "sizeof" because the format of the floating point
500 *  area is not defined -- only the size is.  This is usually on
501 *  CPUs with a "floating point save context" instruction.
502 *
503 *  AVR Specific Information:
504 *
505 *  XXX document implementation including references if appropriate
506 */
507
508#define CPU_CONTEXT_FP_SIZE sizeof( Context_Control_fp )
509
510/*
511 *  Amount of extra stack (above minimum stack size) required by
512 *  MPCI receive server thread.  Remember that in a multiprocessor
513 *  system this thread must exist and be able to process all directives.
514 *
515 *  AVR Specific Information:
516 *
517 *  XXX document implementation including references if appropriate
518 */
519
520#define CPU_MPCI_RECEIVE_SERVER_EXTRA_STACK 0
521
522/*
523 *  This defines the number of entries in the ISR_Vector_table managed
524 *  by RTEMS.
525 *
526 *  AVR Specific Information:
527 *
528 *  XXX document implementation including references if appropriate
529 */
530
531#define CPU_INTERRUPT_NUMBER_OF_VECTORS      32
532#define CPU_INTERRUPT_MAXIMUM_VECTOR_NUMBER  (CPU_INTERRUPT_NUMBER_OF_VECTORS - 1)
533
534/*
535 *  This is defined if the port has a special way to report the ISR nesting
536 *  level.  Most ports maintain the variable _ISR_Nest_level.
537 */
538
539#define CPU_PROVIDES_ISR_IS_IN_PROGRESS FALSE
540
541/*
542 *  Should be large enough to run all RTEMS tests.  This ensures
543 *  that a "reasonable" small application should not have any problems.
544 *
545 *  AVR Specific Information:
546 *
547 *  XXX document implementation including references if appropriate
548 */
549
550#define CPU_STACK_MINIMUM_SIZE          (1024*4)
551
552/*
553 *  CPU's worst alignment requirement for data types on a byte boundary.  This
554 *  alignment does not take into account the requirements for the stack.
555 *
556 *  AVR Specific Information:
557 *
558 *  XXX document implementation including references if appropriate
559 */
560
561#define CPU_ALIGNMENT              8
562
563/*
564 *  This number corresponds to the byte alignment requirement for the
565 *  heap handler.  This alignment requirement may be stricter than that
566 *  for the data types alignment specified by CPU_ALIGNMENT.  It is
567 *  common for the heap to follow the same alignment requirement as
568 *  CPU_ALIGNMENT.  If the CPU_ALIGNMENT is strict enough for the heap,
569 *  then this should be set to CPU_ALIGNMENT.
570 *
571 *  NOTE:  This does not have to be a power of 2 although it should be
572 *         a multiple of 2 greater than or equal to 2.  The requirement
573 *         to be a multiple of 2 is because the heap uses the least
574 *         significant field of the front and back flags to indicate
575 *         that a block is in use or free.  So you do not want any odd
576 *         length blocks really putting length data in that bit.
577 *
578 *         On byte oriented architectures, CPU_HEAP_ALIGNMENT normally will
579 *         have to be greater or equal to than CPU_ALIGNMENT to ensure that
580 *         elements allocated from the heap meet all restrictions.
581 *
582 *  AVR Specific Information:
583 *
584 *  XXX document implementation including references if appropriate
585 */
586
587#define CPU_HEAP_ALIGNMENT         CPU_ALIGNMENT
588
589/*
590 *  This number corresponds to the byte alignment requirement for memory
591 *  buffers allocated by the partition manager.  This alignment requirement
592 *  may be stricter than that for the data types alignment specified by
593 *  CPU_ALIGNMENT.  It is common for the partition to follow the same
594 *  alignment requirement as CPU_ALIGNMENT.  If the CPU_ALIGNMENT is strict
595 *  enough for the partition, then this should be set to CPU_ALIGNMENT.
596 *
597 *  NOTE:  This does not have to be a power of 2.  It does have to
598 *         be greater or equal to than CPU_ALIGNMENT.
599 *
600 *  AVR Specific Information:
601 *
602 *  XXX document implementation including references if appropriate
603 */
604
605#define CPU_PARTITION_ALIGNMENT    CPU_ALIGNMENT
606
607/*
608 *  This number corresponds to the byte alignment requirement for the
609 *  stack.  This alignment requirement may be stricter than that for the
610 *  data types alignment specified by CPU_ALIGNMENT.  If the CPU_ALIGNMENT
611 *  is strict enough for the stack, then this should be set to 0.
612 *
613 *  NOTE:  This must be a power of 2 either 0 or greater than CPU_ALIGNMENT.
614 *
615 *  AVR Specific Information:
616 *
617 *  XXX document implementation including references if appropriate
618 */
619
620#define CPU_STACK_ALIGNMENT        0
621
622/*
623 *  ISR handler macros
624 */
625
626/*
627 *  Support routine to initialize the RTEMS vector table after it is allocated.
628 *
629 *  AVR Specific Information:
630 *
631 *  XXX document implementation including references if appropriate
632 */
633
634#define _CPU_Initialize_vectors()
635
636/*
637 *  Disable all interrupts for an RTEMS critical section.  The previous
638 *  level is returned in _level.
639 *
640 *  AVR Specific Information:
641 *
642 *  XXX document implementation including references if appropriate
643 */
644
645#define _CPU_ISR_Disable( _isr_cookie ) \
646  { \
647    (_isr_cookie) = 0;   /* do something to prevent warnings */ \
648  }
649
650/*
651 *  Enable interrupts to the previous level (returned by _CPU_ISR_Disable).
652 *  This indicates the end of an RTEMS critical section.  The parameter
653 *  _level is not modified.
654 *
655 *  AVR Specific Information:
656 *
657 *  XXX document implementation including references if appropriate
658 */
659
660#define _CPU_ISR_Enable( _isr_cookie )  \
661  { \
662  }
663
664/*
665 *  This temporarily restores the interrupt to _level before immediately
666 *  disabling them again.  This is used to divide long RTEMS critical
667 *  sections into two or more parts.  The parameter _level is not
668 * modified.
669 *
670 *  AVR Specific Information:
671 *
672 *  XXX document implementation including references if appropriate
673 */
674
675#define _CPU_ISR_Flash( _isr_cookie ) \
676  { \
677  }
678
679/*
680 *  Map interrupt level in task mode onto the hardware that the CPU
681 *  actually provides.  Currently, interrupt levels which do not
682 *  map onto the CPU in a generic fashion are undefined.  Someday,
683 *  it would be nice if these were "mapped" by the application
684 *  via a callout.  For example, m68k has 8 levels 0 - 7, levels
685 *  8 - 255 would be available for bsp/application specific meaning.
686 *  This could be used to manage a programmable interrupt controller
687 *  via the rtems_task_mode directive.
688 *
689 *  The get routine usually must be implemented as a subroutine.
690 *
691 *  AVR Specific Information:
692 *
693 *  XXX document implementation including references if appropriate
694 */
695
696#define _CPU_ISR_Set_level( new_level ) \
697  { \
698  }
699
700uint32_t   _CPU_ISR_Get_level( void );
701
702/* end of ISR handler macros */
703
704/* Context handler macros */
705
706/*
707 *  Initialize the context to a state suitable for starting a
708 *  task after a context restore operation.  Generally, this
709 *  involves:
710 *
711 *     - setting a starting address
712 *     - preparing the stack
713 *     - preparing the stack and frame pointers
714 *     - setting the proper interrupt level in the context
715 *     - initializing the floating point context
716 *
717 *  This routine generally does not set any unnecessary register
718 *  in the context.  The state of the "general data" registers is
719 *  undefined at task start time.
720 *
721 *  NOTE: This is_fp parameter is TRUE if the thread is to be a floating
722 *        point thread.  This is typically only used on CPUs where the
723 *        FPU may be easily disabled by software such as on the SPARC
724 *        where the PSR contains an enable FPU bit.
725 *
726 *  AVR Specific Information:
727 *
728 *  XXX document implementation including references if appropriate
729 */
730
731#define _CPU_Context_Initialize( _the_context, _stack_base, _size, \
732                                 _isr, _entry_point, _is_fp ) \
733  { \
734  }
735
736/*
737 *  This routine is responsible for somehow restarting the currently
738 *  executing task.  If you are lucky, then all that is necessary
739 *  is restoring the context.  Otherwise, there will need to be
740 *  a special assembly routine which does something special in this
741 *  case.  Context_Restore should work most of the time.  It will
742 *  not work if restarting self conflicts with the stack frame
743 *  assumptions of restoring a context.
744 *
745 *  AVR Specific Information:
746 *
747 *  XXX document implementation including references if appropriate
748 */
749
750#define _CPU_Context_Restart_self( _the_context ) \
751   _CPU_Context_restore( (_the_context) );
752
753/*
754 *  The purpose of this macro is to allow the initial pointer into
755 *  a floating point context area (used to save the floating point
756 *  context) to be at an arbitrary place in the floating point
757 *  context area.
758 *
759 *  This is necessary because some FP units are designed to have
760 *  their context saved as a stack which grows into lower addresses.
761 *  Other FP units can be saved by simply moving registers into offsets
762 *  from the base of the context area.  Finally some FP units provide
763 *  a "dump context" instruction which could fill in from high to low
764 *  or low to high based on the whim of the CPU designers.
765 *
766 *  AVR Specific Information:
767 *
768 *  XXX document implementation including references if appropriate
769 */
770
771#define _CPU_Context_Fp_start( _base, _offset ) \
772   ( (void *) _Addresses_Add_offset( (_base), (_offset) ) )
773
774/*
775 *  This routine initializes the FP context area passed to it to.
776 *  There are a few standard ways in which to initialize the
777 *  floating point context.  The code included for this macro assumes
778 *  that this is a CPU in which a "initial" FP context was saved into
779 *  _CPU_Null_fp_context and it simply copies it to the destination
780 *  context passed to it.
781 *
782 *  Other models include (1) not doing anything, and (2) putting
783 *  a "null FP status word" in the correct place in the FP context.
784 *
785 *  AVR Specific Information:
786 *
787 *  XXX document implementation including references if appropriate
788 */
789
790#define _CPU_Context_Initialize_fp( _destination ) \
791  { \
792   *(*(_destination)) = _CPU_Null_fp_context; \
793  }
794
795/* end of Context handler macros */
796
797/* Fatal Error manager macros */
798
799/*
800 *  This routine copies _error into a known place -- typically a stack
801 *  location or a register, optionally disables interrupts, and
802 *  halts/stops the CPU.
803 *
804 *  AVR Specific Information:
805 *
806 *  XXX document implementation including references if appropriate
807 */
808
809#define _CPU_Fatal_halt( _error ) \
810  { \
811  }
812
813/* end of Fatal Error manager macros */
814
815/* Bitfield handler macros */
816
817/*
818 *  This routine sets _output to the bit number of the first bit
819 *  set in _value.  _value is of CPU dependent type Priority_Bit_map_control.
820 *  This type may be either 16 or 32 bits wide although only the 16
821 *  least significant bits will be used.
822 *
823 *  There are a number of variables in using a "find first bit" type
824 *  instruction.
825 *
826 *    (1) What happens when run on a value of zero?
827 *    (2) Bits may be numbered from MSB to LSB or vice-versa.
828 *    (3) The numbering may be zero or one based.
829 *    (4) The "find first bit" instruction may search from MSB or LSB.
830 *
831 *  RTEMS guarantees that (1) will never happen so it is not a concern.
832 *  (2),(3), (4) are handled by the macros _CPU_Priority_mask() and
833 *  _CPU_Priority_bits_index().  These three form a set of routines
834 *  which must logically operate together.  Bits in the _value are
835 *  set and cleared based on masks built by _CPU_Priority_mask().
836 *  The basic major and minor values calculated by _Priority_Major()
837 *  and _Priority_Minor() are "massaged" by _CPU_Priority_bits_index()
838 *  to properly range between the values returned by the "find first bit"
839 *  instruction.  This makes it possible for _Priority_Get_highest() to
840 *  calculate the major and directly index into the minor table.
841 *  This mapping is necessary to ensure that 0 (a high priority major/minor)
842 *  is the first bit found.
843 *
844 *  This entire "find first bit" and mapping process depends heavily
845 *  on the manner in which a priority is broken into a major and minor
846 *  components with the major being the 4 MSB of a priority and minor
847 *  the 4 LSB.  Thus (0 << 4) + 0 corresponds to priority 0 -- the highest
848 *  priority.  And (15 << 4) + 14 corresponds to priority 254 -- the next
849 *  to the lowest priority.
850 *
851 *  If your CPU does not have a "find first bit" instruction, then
852 *  there are ways to make do without it.  Here are a handful of ways
853 *  to implement this in software:
854 *
855 *    - a series of 16 bit test instructions
856 *    - a "binary search using if's"
857 *    - _number = 0
858 *      if _value > 0x00ff
859 *        _value >>=8
860 *        _number = 8;
861 *
862 *      if _value > 0x0000f
863 *        _value >=8
864 *        _number += 4
865 *
866 *      _number += bit_set_table[ _value ]
867 *
868 *    where bit_set_table[ 16 ] has values which indicate the first
869 *      bit set
870 *
871 *  AVR Specific Information:
872 *
873 *  XXX document implementation including references if appropriate
874 */
875
876#define CPU_USE_GENERIC_BITFIELD_CODE TRUE
877#define CPU_USE_GENERIC_BITFIELD_DATA TRUE
878
879#if (CPU_USE_GENERIC_BITFIELD_CODE == FALSE)
880
881#define _CPU_Bitfield_Find_first_bit( _value, _output ) \
882  { \
883    (_output) = 0;   /* do something to prevent warnings */ \
884  }
885
886#endif
887
888/* end of Bitfield handler macros */
889
890/*
891 *  This routine builds the mask which corresponds to the bit fields
892 *  as searched by _CPU_Bitfield_Find_first_bit().  See the discussion
893 *  for that routine.
894 *
895 *  AVR Specific Information:
896 *
897 *  XXX document implementation including references if appropriate
898 */
899
900#if (CPU_USE_GENERIC_BITFIELD_CODE == FALSE)
901
902#define _CPU_Priority_Mask( _bit_number ) \
903  ( 1 << (_bit_number) )
904
905#endif
906
907/*
908 *  This routine translates the bit numbers returned by
909 *  _CPU_Bitfield_Find_first_bit() into something suitable for use as
910 *  a major or minor component of a priority.  See the discussion
911 *  for that routine.
912 *
913 *  AVR Specific Information:
914 *
915 *  XXX document implementation including references if appropriate
916 */
917
918#if (CPU_USE_GENERIC_BITFIELD_CODE == FALSE)
919
920#define _CPU_Priority_bits_index( _priority ) \
921  (_priority)
922
923#endif
924
925/* end of Priority handler macros */
926
927/* functions */
928
929/*
930 *  _CPU_Initialize
931 *
932 *  This routine performs CPU dependent initialization.
933 *
934 *  AVR Specific Information:
935 *
936 *  XXX document implementation including references if appropriate
937 */
938
939void _CPU_Initialize(
940  void      (*thread_dispatch)
941);
942
943/*
944 *  _CPU_ISR_install_raw_handler
945 *
946 *  This routine installs a "raw" interrupt handler directly into the
947 *  processor's vector table.
948 *
949 *  AVR Specific Information:
950 *
951 *  XXX document implementation including references if appropriate
952 */
953 
954void _CPU_ISR_install_raw_handler(
955  uint32_t    vector,
956  proc_ptr    new_handler,
957  proc_ptr   *old_handler
958);
959
960/*
961 *  _CPU_ISR_install_vector
962 *
963 *  This routine installs an interrupt vector.
964 *
965 *  AVR Specific Information:
966 *
967 *  XXX document implementation including references if appropriate
968 */
969
970void _CPU_ISR_install_vector(
971  uint32_t    vector,
972  proc_ptr    new_handler,
973  proc_ptr   *old_handler
974);
975
976/*
977 *  _CPU_Install_interrupt_stack
978 *
979 *  This routine installs the hardware interrupt stack pointer.
980 *
981 *  NOTE:  It need only be provided if CPU_HAS_HARDWARE_INTERRUPT_STACK
982 *         is TRUE.
983 *
984 *  AVR Specific Information:
985 *
986 *  XXX document implementation including references if appropriate
987 */
988
989void _CPU_Install_interrupt_stack( void );
990
991/*
992 *  _CPU_Thread_Idle_body
993 *
994 *  This routine is the CPU dependent IDLE thread body.
995 *
996 *  NOTE:  It need only be provided if CPU_PROVIDES_IDLE_THREAD_BODY
997 *         is TRUE.
998 *
999 *  AVR Specific Information:
1000 *
1001 *  XXX document implementation including references if appropriate
1002 */
1003
1004void *_CPU_Thread_Idle_body( uint32_t );
1005
1006/*
1007 *  _CPU_Context_switch
1008 *
1009 *  This routine switches from the run context to the heir context.
1010 *
1011 *  AVR Specific Information:
1012 *
1013 *  XXX document implementation including references if appropriate
1014 */
1015
1016void _CPU_Context_switch(
1017  Context_Control  *run,
1018  Context_Control  *heir
1019);
1020
1021/*
1022 *  _CPU_Context_restore
1023 *
1024 *  This routine is generally used only to restart self in an
1025 *  efficient manner.  It may simply be a label in _CPU_Context_switch.
1026 *
1027 *  NOTE: May be unnecessary to reload some registers.
1028 *
1029 *  AVR Specific Information:
1030 *
1031 *  XXX document implementation including references if appropriate
1032 */
1033
1034void _CPU_Context_restore(
1035  Context_Control *new_context
1036);
1037
1038/*
1039 *  _CPU_Context_save_fp
1040 *
1041 *  This routine saves the floating point context passed to it.
1042 *
1043 *  AVR Specific Information:
1044 *
1045 *  XXX document implementation including references if appropriate
1046 */
1047
1048void _CPU_Context_save_fp(
1049  Context_Control_fp **fp_context_ptr
1050);
1051
1052/*
1053 *  _CPU_Context_restore_fp
1054 *
1055 *  This routine restores the floating point context passed to it.
1056 *
1057 *  AVR Specific Information:
1058 *
1059 *  XXX document implementation including references if appropriate
1060 */
1061
1062void _CPU_Context_restore_fp(
1063  Context_Control_fp **fp_context_ptr
1064);
1065
1066/*  The following routine swaps the endian format of an unsigned int.
1067 *  It must be static because it is referenced indirectly.
1068 *
1069 *  This version will work on any processor, but if there is a better
1070 *  way for your CPU PLEASE use it.  The most common way to do this is to:
1071 *
1072 *     swap least significant two bytes with 16-bit rotate
1073 *     swap upper and lower 16-bits
1074 *     swap most significant two bytes with 16-bit rotate
1075 *
1076 *  Some CPUs have special instructions which swap a 32-bit quantity in
1077 *  a single instruction (e.g. i486).  It is probably best to avoid
1078 *  an "endian swapping control bit" in the CPU.  One good reason is
1079 *  that interrupts would probably have to be disabled to ensure that
1080 *  an interrupt does not try to access the same "chunk" with the wrong
1081 *  endian.  Another good reason is that on some CPUs, the endian bit
1082 *  endianness for ALL fetches -- both code and data -- so the code
1083 *  will be fetched incorrectly.
1084 *
1085 *  AVR Specific Information:
1086 *
1087 *  XXX document implementation including references if appropriate
1088 */
1089 
1090static inline uint32_t CPU_swap_u32(
1091  uint32_t value
1092)
1093{
1094  uint32_t   byte1, byte2, byte3, byte4, swapped;
1095 
1096  byte4 = (value >> 24) & 0xff;
1097  byte3 = (value >> 16) & 0xff;
1098  byte2 = (value >> 8)  & 0xff;
1099  byte1 =  value        & 0xff;
1100 
1101  swapped = (byte1 << 24) | (byte2 << 16) | (byte3 << 8) | byte4;
1102  return( swapped );
1103}
1104
1105#define CPU_swap_u16( value ) \
1106  (((value&0xff) << 8) | ((value >> 8)&0xff))
1107
1108#ifdef __cplusplus
1109}
1110#endif
1111
1112#endif
Note: See TracBrowser for help on using the repository browser.