source: rtems/cpukit/score/cpu/avr/rtems/score/cpu.h @ 8549b6c

4.104.114.84.95
Last change on this file since 8549b6c was 8549b6c, checked in by Ralf Corsepius <ralf.corsepius@…>, on 11/02/04 at 07:38:57

2004-10-02 Ralf Corsepius <ralf_corsepius@…>

  • rtems/score/avr.h: Add doxygen preamble.
  • rtems/score/cpu.h: Add doxygen preamble.
  • rtems/score/cpu_asm.h: Add doxygen preamble.
  • rtems/score/types.h: Add doxygen preamble.
  • Property mode set to 100644
File size: 35.4 KB
Line 
1/**
2 * @file rtems/score/cpu.h
3 */
4
5/*
6 *  This include file contains information pertaining to the XXX
7 *  processor.
8 *
9 *  COPYRIGHT (c) 1989-1999.
10 *  On-Line Applications Research Corporation (OAR).
11 *
12 *  The license and distribution terms for this file may be
13 *  found in the file LICENSE in this distribution or at
14 *  http://www.rtems.com/license/LICENSE.
15 *
16 *  $Id$
17 */
18
19#ifndef __CPU_h
20#define __CPU_h
21
22#ifdef __cplusplus
23extern "C" {
24#endif
25
26#include <rtems/score/avr.h>            /* pick up machine definitions */
27#ifndef ASM
28#include <rtems/score/types.h>
29#endif
30
31/* conditional compilation parameters */
32
33/*
34 *  Should the calls to _Thread_Enable_dispatch be inlined?
35 *
36 *  If TRUE, then they are inlined.
37 *  If FALSE, then a subroutine call is made.
38 *
39 *  Basically this is an example of the classic trade-off of size
40 *  versus speed.  Inlining the call (TRUE) typically increases the
41 *  size of RTEMS while speeding up the enabling of dispatching.
42 *  [NOTE: In general, the _Thread_Dispatch_disable_level will
43 *  only be 0 or 1 unless you are in an interrupt handler and that
44 *  interrupt handler invokes the executive.]  When not inlined
45 *  something calls _Thread_Enable_dispatch which in turns calls
46 *  _Thread_Dispatch.  If the enable dispatch is inlined, then
47 *  one subroutine call is avoided entirely.]
48 *
49 *  NO_CPU Specific Information:
50 *
51 *  XXX document implementation including references if appropriate
52 */
53
54#define CPU_INLINE_ENABLE_DISPATCH       FALSE
55
56/*
57 *  Should the body of the search loops in _Thread_queue_Enqueue_priority
58 *  be unrolled one time?  In unrolled each iteration of the loop examines
59 *  two "nodes" on the chain being searched.  Otherwise, only one node
60 *  is examined per iteration.
61 *
62 *  If TRUE, then the loops are unrolled.
63 *  If FALSE, then the loops are not unrolled.
64 *
65 *  The primary factor in making this decision is the cost of disabling
66 *  and enabling interrupts (_ISR_Flash) versus the cost of rest of the
67 *  body of the loop.  On some CPUs, the flash is more expensive than
68 *  one iteration of the loop body.  In this case, it might be desirable
69 *  to unroll the loop.  It is important to note that on some CPUs, this
70 *  code is the longest interrupt disable period in RTEMS.  So it is
71 *  necessary to strike a balance when setting this parameter.
72 *
73 *  NO_CPU Specific Information:
74 *
75 *  XXX document implementation including references if appropriate
76 */
77
78#define CPU_UNROLL_ENQUEUE_PRIORITY      TRUE
79
80/*
81 *  Does RTEMS manage a dedicated interrupt stack in software?
82 *
83 *  If TRUE, then a stack is allocated in _ISR_Handler_initialization.
84 *  If FALSE, nothing is done.
85 *
86 *  If the CPU supports a dedicated interrupt stack in hardware,
87 *  then it is generally the responsibility of the BSP to allocate it
88 *  and set it up.
89 *
90 *  If the CPU does not support a dedicated interrupt stack, then
91 *  the porter has two options: (1) execute interrupts on the
92 *  stack of the interrupted task, and (2) have RTEMS manage a dedicated
93 *  interrupt stack.
94 *
95 *  If this is TRUE, CPU_ALLOCATE_INTERRUPT_STACK should also be TRUE.
96 *
97 *  Only one of CPU_HAS_SOFTWARE_INTERRUPT_STACK and
98 *  CPU_HAS_HARDWARE_INTERRUPT_STACK should be set to TRUE.  It is
99 *  possible that both are FALSE for a particular CPU.  Although it
100 *  is unclear what that would imply about the interrupt processing
101 *  procedure on that CPU.
102 *
103 *  NO_CPU Specific Information:
104 *
105 *  XXX document implementation including references if appropriate
106 */
107
108#define CPU_HAS_SOFTWARE_INTERRUPT_STACK FALSE
109
110/*
111 *  Does this CPU have hardware support for a dedicated interrupt stack?
112 *
113 *  If TRUE, then it must be installed during initialization.
114 *  If FALSE, then no installation is performed.
115 *
116 *  If this is TRUE, CPU_ALLOCATE_INTERRUPT_STACK should also be TRUE.
117 *
118 *  Only one of CPU_HAS_SOFTWARE_INTERRUPT_STACK and
119 *  CPU_HAS_HARDWARE_INTERRUPT_STACK should be set to TRUE.  It is
120 *  possible that both are FALSE for a particular CPU.  Although it
121 *  is unclear what that would imply about the interrupt processing
122 *  procedure on that CPU.
123 *
124 *  NO_CPU Specific Information:
125 *
126 *  XXX document implementation including references if appropriate
127 */
128
129#define CPU_HAS_HARDWARE_INTERRUPT_STACK TRUE
130
131/*
132 *  Does RTEMS allocate a dedicated interrupt stack in the Interrupt Manager?
133 *
134 *  If TRUE, then the memory is allocated during initialization.
135 *  If FALSE, then the memory is allocated during initialization.
136 *
137 *  This should be TRUE is CPU_HAS_SOFTWARE_INTERRUPT_STACK is TRUE
138 *  or CPU_INSTALL_HARDWARE_INTERRUPT_STACK is TRUE.
139 *
140 *  NO_CPU Specific Information:
141 *
142 *  XXX document implementation including references if appropriate
143 */
144
145#define CPU_ALLOCATE_INTERRUPT_STACK TRUE
146
147/*
148 *  Does the RTEMS invoke the user's ISR with the vector number and
149 *  a pointer to the saved interrupt frame (1) or just the vector
150 *  number (0)?
151 *
152 *  NO_CPU Specific Information:
153 *
154 *  XXX document implementation including references if appropriate
155 */
156
157#define CPU_ISR_PASSES_FRAME_POINTER 0
158
159/*
160 *  Does the CPU have hardware floating point?
161 *
162 *  If TRUE, then the RTEMS_FLOATING_POINT task attribute is supported.
163 *  If FALSE, then the RTEMS_FLOATING_POINT task attribute is ignored.
164 *
165 *  If there is a FP coprocessor such as the i387 or mc68881, then
166 *  the answer is TRUE.
167 *
168 *  The macro name "NO_CPU_HAS_FPU" should be made CPU specific.
169 *  It indicates whether or not this CPU model has FP support.  For
170 *  example, it would be possible to have an i386_nofp CPU model
171 *  which set this to false to indicate that you have an i386 without
172 *  an i387 and wish to leave floating point support out of RTEMS.
173 *
174 *  The CPU_SOFTWARE_FP is used to indicate whether or not there
175 *  is software implemented floating point that must be context
176 *  switched.  The determination of whether or not this applies
177 *  is very tool specific and the state saved/restored is also
178 *  compiler specific.
179 *
180 *  NO_CPU Specific Information:
181 *
182 *  XXX document implementation including references if appropriate
183 */
184
185#if ( NO_CPU_HAS_FPU == 1 )
186#define CPU_HARDWARE_FP     TRUE
187#else
188#define CPU_HARDWARE_FP     FALSE
189#endif
190#define CPU_SOFTWARE_FP     FALSE
191
192/*
193 *  Are all tasks RTEMS_FLOATING_POINT tasks implicitly?
194 *
195 *  If TRUE, then the RTEMS_FLOATING_POINT task attribute is assumed.
196 *  If FALSE, then the RTEMS_FLOATING_POINT task attribute is followed.
197 *
198 *  So far, the only CPUs in which this option has been used are the
199 *  HP PA-RISC and PowerPC.  On the PA-RISC, The HP C compiler and
200 *  gcc both implicitly used the floating point registers to perform
201 *  integer multiplies.  Similarly, the PowerPC port of gcc has been
202 *  seen to allocate floating point local variables and touch the FPU
203 *  even when the flow through a subroutine (like vfprintf()) might
204 *  not use floating point formats.
205 *
206 *  If a function which you would not think utilize the FP unit DOES,
207 *  then one can not easily predict which tasks will use the FP hardware.
208 *  In this case, this option should be TRUE.
209 *
210 *  If CPU_HARDWARE_FP is FALSE, then this should be FALSE as well.
211 *
212 *  NO_CPU Specific Information:
213 *
214 *  XXX document implementation including references if appropriate
215 */
216
217#define CPU_ALL_TASKS_ARE_FP     TRUE
218
219/*
220 *  Should the IDLE task have a floating point context?
221 *
222 *  If TRUE, then the IDLE task is created as a RTEMS_FLOATING_POINT task
223 *  and it has a floating point context which is switched in and out.
224 *  If FALSE, then the IDLE task does not have a floating point context.
225 *
226 *  Setting this to TRUE negatively impacts the time required to preempt
227 *  the IDLE task from an interrupt because the floating point context
228 *  must be saved as part of the preemption.
229 *
230 *  NO_CPU Specific Information:
231 *
232 *  XXX document implementation including references if appropriate
233 */
234
235#define CPU_IDLE_TASK_IS_FP      FALSE
236
237/*
238 *  Should the saving of the floating point registers be deferred
239 *  until a context switch is made to another different floating point
240 *  task?
241 *
242 *  If TRUE, then the floating point context will not be stored until
243 *  necessary.  It will remain in the floating point registers and not
244 *  disturned until another floating point task is switched to.
245 *
246 *  If FALSE, then the floating point context is saved when a floating
247 *  point task is switched out and restored when the next floating point
248 *  task is restored.  The state of the floating point registers between
249 *  those two operations is not specified.
250 *
251 *  If the floating point context does NOT have to be saved as part of
252 *  interrupt dispatching, then it should be safe to set this to TRUE.
253 *
254 *  Setting this flag to TRUE results in using a different algorithm
255 *  for deciding when to save and restore the floating point context.
256 *  The deferred FP switch algorithm minimizes the number of times
257 *  the FP context is saved and restored.  The FP context is not saved
258 *  until a context switch is made to another, different FP task.
259 *  Thus in a system with only one FP task, the FP context will never
260 *  be saved or restored.
261 *
262 *  NO_CPU Specific Information:
263 *
264 *  XXX document implementation including references if appropriate
265 */
266
267#define CPU_USE_DEFERRED_FP_SWITCH       TRUE
268
269/*
270 *  Does this port provide a CPU dependent IDLE task implementation?
271 *
272 *  If TRUE, then the routine _CPU_Thread_Idle_body
273 *  must be provided and is the default IDLE thread body instead of
274 *  _CPU_Thread_Idle_body.
275 *
276 *  If FALSE, then use the generic IDLE thread body if the BSP does
277 *  not provide one.
278 *
279 *  This is intended to allow for supporting processors which have
280 *  a low power or idle mode.  When the IDLE thread is executed, then
281 *  the CPU can be powered down.
282 *
283 *  The order of precedence for selecting the IDLE thread body is:
284 *
285 *    1.  BSP provided
286 *    2.  CPU dependent (if provided)
287 *    3.  generic (if no BSP and no CPU dependent)
288 *
289 *  NO_CPU Specific Information:
290 *
291 *  XXX document implementation including references if appropriate
292 */
293
294#define CPU_PROVIDES_IDLE_THREAD_BODY    TRUE
295
296/*
297 *  Does the stack grow up (toward higher addresses) or down
298 *  (toward lower addresses)?
299 *
300 *  If TRUE, then the grows upward.
301 *  If FALSE, then the grows toward smaller addresses.
302 *
303 *  NO_CPU Specific Information:
304 *
305 *  XXX document implementation including references if appropriate
306 */
307
308#define CPU_STACK_GROWS_UP               TRUE
309
310/*
311 *  The following is the variable attribute used to force alignment
312 *  of critical RTEMS structures.  On some processors it may make
313 *  sense to have these aligned on tighter boundaries than
314 *  the minimum requirements of the compiler in order to have as
315 *  much of the critical data area as possible in a cache line.
316 *
317 *  The placement of this macro in the declaration of the variables
318 *  is based on the syntactically requirements of the GNU C
319 *  "__attribute__" extension.  For example with GNU C, use
320 *  the following to force a structures to a 32 byte boundary.
321 *
322 *      __attribute__ ((aligned (32)))
323 *
324 *  NOTE:  Currently only the Priority Bit Map table uses this feature.
325 *         To benefit from using this, the data must be heavily
326 *         used so it will stay in the cache and used frequently enough
327 *         in the executive to justify turning this on.
328 *
329 *  NO_CPU Specific Information:
330 *
331 *  XXX document implementation including references if appropriate
332 */
333
334#define CPU_STRUCTURE_ALIGNMENT
335
336/*
337 *  Define what is required to specify how the network to host conversion
338 *  routines are handled.
339 *
340 *  NO_CPU Specific Information:
341 *
342 *  XXX document implementation including references if appropriate
343 */
344
345#define CPU_HAS_OWN_HOST_TO_NETWORK_ROUTINES     FALSE
346#define CPU_BIG_ENDIAN                           TRUE
347#define CPU_LITTLE_ENDIAN                        FALSE
348
349/*
350 *  The following defines the number of bits actually used in the
351 *  interrupt field of the task mode.  How those bits map to the
352 *  CPU interrupt levels is defined by the routine _CPU_ISR_Set_level().
353 *
354 *  NO_CPU Specific Information:
355 *
356 *  XXX document implementation including references if appropriate
357 */
358
359#define CPU_MODES_INTERRUPT_MASK   0x00000001
360
361/*
362 *  Processor defined structures required for cpukit/score.
363 *
364 *  NO_CPU Specific Information:
365 *
366 *  XXX document implementation including references if appropriate
367 */
368
369/* may need to put some structures here.  */
370
371/*
372 * Contexts
373 *
374 *  Generally there are 2 types of context to save.
375 *     1. Interrupt registers to save
376 *     2. Task level registers to save
377 *
378 *  This means we have the following 3 context items:
379 *     1. task level context stuff::  Context_Control
380 *     2. floating point task stuff:: Context_Control_fp
381 *     3. special interrupt level context :: Context_Control_interrupt
382 *
383 *  On some processors, it is cost-effective to save only the callee
384 *  preserved registers during a task context switch.  This means
385 *  that the ISR code needs to save those registers which do not
386 *  persist across function calls.  It is not mandatory to make this
387 *  distinctions between the caller/callee saves registers for the
388 *  purpose of minimizing context saved during task switch and on interrupts.
389 *  If the cost of saving extra registers is minimal, simplicity is the
390 *  choice.  Save the same context on interrupt entry as for tasks in
391 *  this case.
392 *
393 *  Additionally, if gdb is to be made aware of RTEMS tasks for this CPU, then
394 *  care should be used in designing the context area.
395 *
396 *  On some CPUs with hardware floating point support, the Context_Control_fp
397 *  structure will not be used or it simply consist of an array of a
398 *  fixed number of bytes.   This is done when the floating point context
399 *  is dumped by a "FP save context" type instruction and the format
400 *  is not really defined by the CPU.  In this case, there is no need
401 *  to figure out the exact format -- only the size.  Of course, although
402 *  this is enough information for RTEMS, it is probably not enough for
403 *  a debugger such as gdb.  But that is another problem.
404 *
405 *  NO_CPU Specific Information:
406 *
407 *  XXX document implementation including references if appropriate
408 */
409
410typedef struct {
411    uint32_t   some_integer_register;
412    uint32_t   some_system_register;
413} Context_Control;
414
415typedef struct {
416    double      some_float_register;
417} Context_Control_fp;
418
419typedef struct {
420    uint32_t   special_interrupt_register;
421} CPU_Interrupt_frame;
422
423
424/*
425 *  The following table contains the information required to configure
426 *  the XXX processor specific parameters.
427 *
428 *  NO_CPU Specific Information:
429 *
430 *  XXX document implementation including references if appropriate
431 */
432
433typedef struct {
434  void       (*pretasking_hook)( void );
435  void       (*predriver_hook)( void );
436  void       (*postdriver_hook)( void );
437  void       (*idle_task)( void );
438  boolean      do_zero_of_workspace;
439  uint32_t     idle_task_stack_size;
440  uint32_t     interrupt_stack_size;
441  uint32_t     extra_mpci_receive_server_stack;
442  void *     (*stack_allocate_hook)( uint32_t   );
443  void       (*stack_free_hook)( void* );
444  /* end of fields required on all CPUs */
445
446}   rtems_cpu_table;
447
448/*
449 *  Macros to access required entires in the CPU Table are in
450 *  the file rtems/system.h.
451 *
452 *  NO_CPU Specific Information:
453 *
454 *  XXX document implementation including references if appropriate
455 */
456
457/*
458 *  Macros to access NO_CPU specific additions to the CPU Table
459 *
460 *  NO_CPU Specific Information:
461 *
462 *  XXX document implementation including references if appropriate
463 */
464
465/* There are no CPU specific additions to the CPU Table for this port. */
466
467/*
468 *  This variable is optional.  It is used on CPUs on which it is difficult
469 *  to generate an "uninitialized" FP context.  It is filled in by
470 *  _CPU_Initialize and copied into the task's FP context area during
471 *  _CPU_Context_Initialize.
472 *
473 *  NO_CPU Specific Information:
474 *
475 *  XXX document implementation including references if appropriate
476 */
477
478SCORE_EXTERN Context_Control_fp  _CPU_Null_fp_context;
479
480/*
481 *  On some CPUs, RTEMS supports a software managed interrupt stack.
482 *  This stack is allocated by the Interrupt Manager and the switch
483 *  is performed in _ISR_Handler.  These variables contain pointers
484 *  to the lowest and highest addresses in the chunk of memory allocated
485 *  for the interrupt stack.  Since it is unknown whether the stack
486 *  grows up or down (in general), this give the CPU dependent
487 *  code the option of picking the version it wants to use.
488 *
489 *  NOTE: These two variables are required if the macro
490 *        CPU_HAS_SOFTWARE_INTERRUPT_STACK is defined as TRUE.
491 *
492 *  NO_CPU Specific Information:
493 *
494 *  XXX document implementation including references if appropriate
495 */
496
497SCORE_EXTERN void               *_CPU_Interrupt_stack_low;
498SCORE_EXTERN void               *_CPU_Interrupt_stack_high;
499
500/*
501 *  With some compilation systems, it is difficult if not impossible to
502 *  call a high-level language routine from assembly language.  This
503 *  is especially true of commercial Ada compilers and name mangling
504 *  C++ ones.  This variable can be optionally defined by the CPU porter
505 *  and contains the address of the routine _Thread_Dispatch.  This
506 *  can make it easier to invoke that routine at the end of the interrupt
507 *  sequence (if a dispatch is necessary).
508 *
509 *  NO_CPU Specific Information:
510 *
511 *  XXX document implementation including references if appropriate
512 */
513
514SCORE_EXTERN void           (*_CPU_Thread_dispatch_pointer)();
515
516/*
517 *  Nothing prevents the porter from declaring more CPU specific variables.
518 *
519 *  NO_CPU Specific Information:
520 *
521 *  XXX document implementation including references if appropriate
522 */
523
524/* XXX: if needed, put more variables here */
525
526/*
527 *  The size of the floating point context area.  On some CPUs this
528 *  will not be a "sizeof" because the format of the floating point
529 *  area is not defined -- only the size is.  This is usually on
530 *  CPUs with a "floating point save context" instruction.
531 *
532 *  NO_CPU Specific Information:
533 *
534 *  XXX document implementation including references if appropriate
535 */
536
537#define CPU_CONTEXT_FP_SIZE sizeof( Context_Control_fp )
538
539/*
540 *  Amount of extra stack (above minimum stack size) required by
541 *  MPCI receive server thread.  Remember that in a multiprocessor
542 *  system this thread must exist and be able to process all directives.
543 *
544 *  NO_CPU Specific Information:
545 *
546 *  XXX document implementation including references if appropriate
547 */
548
549#define CPU_MPCI_RECEIVE_SERVER_EXTRA_STACK 0
550
551/*
552 *  This defines the number of entries in the ISR_Vector_table managed
553 *  by RTEMS.
554 *
555 *  NO_CPU Specific Information:
556 *
557 *  XXX document implementation including references if appropriate
558 */
559
560#define CPU_INTERRUPT_NUMBER_OF_VECTORS      32
561#define CPU_INTERRUPT_MAXIMUM_VECTOR_NUMBER  (CPU_INTERRUPT_NUMBER_OF_VECTORS - 1)
562
563/*
564 *  This is defined if the port has a special way to report the ISR nesting
565 *  level.  Most ports maintain the variable _ISR_Nest_level.
566 */
567
568#define CPU_PROVIDES_ISR_IS_IN_PROGRESS FALSE
569
570/*
571 *  Should be large enough to run all RTEMS tests.  This insures
572 *  that a "reasonable" small application should not have any problems.
573 *
574 *  NO_CPU Specific Information:
575 *
576 *  XXX document implementation including references if appropriate
577 */
578
579#define CPU_STACK_MINIMUM_SIZE          (1024*4)
580
581/*
582 *  CPU's worst alignment requirement for data types on a byte boundary.  This
583 *  alignment does not take into account the requirements for the stack.
584 *
585 *  NO_CPU Specific Information:
586 *
587 *  XXX document implementation including references if appropriate
588 */
589
590#define CPU_ALIGNMENT              8
591
592/*
593 *  This number corresponds to the byte alignment requirement for the
594 *  heap handler.  This alignment requirement may be stricter than that
595 *  for the data types alignment specified by CPU_ALIGNMENT.  It is
596 *  common for the heap to follow the same alignment requirement as
597 *  CPU_ALIGNMENT.  If the CPU_ALIGNMENT is strict enough for the heap,
598 *  then this should be set to CPU_ALIGNMENT.
599 *
600 *  NOTE:  This does not have to be a power of 2 although it should be
601 *         a multiple of 2 greater than or equal to 2.  The requirement
602 *         to be a multiple of 2 is because the heap uses the least
603 *         significant field of the front and back flags to indicate
604 *         that a block is in use or free.  So you do not want any odd
605 *         length blocks really putting length data in that bit.
606 *
607 *         On byte oriented architectures, CPU_HEAP_ALIGNMENT normally will
608 *         have to be greater or equal to than CPU_ALIGNMENT to ensure that
609 *         elements allocated from the heap meet all restrictions.
610 *
611 *  NO_CPU Specific Information:
612 *
613 *  XXX document implementation including references if appropriate
614 */
615
616#define CPU_HEAP_ALIGNMENT         CPU_ALIGNMENT
617
618/*
619 *  This number corresponds to the byte alignment requirement for memory
620 *  buffers allocated by the partition manager.  This alignment requirement
621 *  may be stricter than that for the data types alignment specified by
622 *  CPU_ALIGNMENT.  It is common for the partition to follow the same
623 *  alignment requirement as CPU_ALIGNMENT.  If the CPU_ALIGNMENT is strict
624 *  enough for the partition, then this should be set to CPU_ALIGNMENT.
625 *
626 *  NOTE:  This does not have to be a power of 2.  It does have to
627 *         be greater or equal to than CPU_ALIGNMENT.
628 *
629 *  NO_CPU Specific Information:
630 *
631 *  XXX document implementation including references if appropriate
632 */
633
634#define CPU_PARTITION_ALIGNMENT    CPU_ALIGNMENT
635
636/*
637 *  This number corresponds to the byte alignment requirement for the
638 *  stack.  This alignment requirement may be stricter than that for the
639 *  data types alignment specified by CPU_ALIGNMENT.  If the CPU_ALIGNMENT
640 *  is strict enough for the stack, then this should be set to 0.
641 *
642 *  NOTE:  This must be a power of 2 either 0 or greater than CPU_ALIGNMENT.
643 *
644 *  NO_CPU Specific Information:
645 *
646 *  XXX document implementation including references if appropriate
647 */
648
649#define CPU_STACK_ALIGNMENT        0
650
651/*
652 *  ISR handler macros
653 */
654
655/*
656 *  Support routine to initialize the RTEMS vector table after it is allocated.
657 *
658 *  NO_CPU Specific Information:
659 *
660 *  XXX document implementation including references if appropriate
661 */
662
663#define _CPU_Initialize_vectors()
664
665/*
666 *  Disable all interrupts for an RTEMS critical section.  The previous
667 *  level is returned in _level.
668 *
669 *  NO_CPU Specific Information:
670 *
671 *  XXX document implementation including references if appropriate
672 */
673
674#define _CPU_ISR_Disable( _isr_cookie ) \
675  { \
676    (_isr_cookie) = 0;   /* do something to prevent warnings */ \
677  }
678
679/*
680 *  Enable interrupts to the previous level (returned by _CPU_ISR_Disable).
681 *  This indicates the end of an RTEMS critical section.  The parameter
682 *  _level is not modified.
683 *
684 *  NO_CPU Specific Information:
685 *
686 *  XXX document implementation including references if appropriate
687 */
688
689#define _CPU_ISR_Enable( _isr_cookie )  \
690  { \
691  }
692
693/*
694 *  This temporarily restores the interrupt to _level before immediately
695 *  disabling them again.  This is used to divide long RTEMS critical
696 *  sections into two or more parts.  The parameter _level is not
697 * modified.
698 *
699 *  NO_CPU Specific Information:
700 *
701 *  XXX document implementation including references if appropriate
702 */
703
704#define _CPU_ISR_Flash( _isr_cookie ) \
705  { \
706  }
707
708/*
709 *  Map interrupt level in task mode onto the hardware that the CPU
710 *  actually provides.  Currently, interrupt levels which do not
711 *  map onto the CPU in a generic fashion are undefined.  Someday,
712 *  it would be nice if these were "mapped" by the application
713 *  via a callout.  For example, m68k has 8 levels 0 - 7, levels
714 *  8 - 255 would be available for bsp/application specific meaning.
715 *  This could be used to manage a programmable interrupt controller
716 *  via the rtems_task_mode directive.
717 *
718 *  The get routine usually must be implemented as a subroutine.
719 *
720 *  NO_CPU Specific Information:
721 *
722 *  XXX document implementation including references if appropriate
723 */
724
725#define _CPU_ISR_Set_level( new_level ) \
726  { \
727  }
728
729uint32_t   _CPU_ISR_Get_level( void );
730
731/* end of ISR handler macros */
732
733/* Context handler macros */
734
735/*
736 *  Initialize the context to a state suitable for starting a
737 *  task after a context restore operation.  Generally, this
738 *  involves:
739 *
740 *     - setting a starting address
741 *     - preparing the stack
742 *     - preparing the stack and frame pointers
743 *     - setting the proper interrupt level in the context
744 *     - initializing the floating point context
745 *
746 *  This routine generally does not set any unnecessary register
747 *  in the context.  The state of the "general data" registers is
748 *  undefined at task start time.
749 *
750 *  NOTE: This is_fp parameter is TRUE if the thread is to be a floating
751 *        point thread.  This is typically only used on CPUs where the
752 *        FPU may be easily disabled by software such as on the SPARC
753 *        where the PSR contains an enable FPU bit.
754 *
755 *  NO_CPU Specific Information:
756 *
757 *  XXX document implementation including references if appropriate
758 */
759
760#define _CPU_Context_Initialize( _the_context, _stack_base, _size, \
761                                 _isr, _entry_point, _is_fp ) \
762  { \
763  }
764
765/*
766 *  This routine is responsible for somehow restarting the currently
767 *  executing task.  If you are lucky, then all that is necessary
768 *  is restoring the context.  Otherwise, there will need to be
769 *  a special assembly routine which does something special in this
770 *  case.  Context_Restore should work most of the time.  It will
771 *  not work if restarting self conflicts with the stack frame
772 *  assumptions of restoring a context.
773 *
774 *  NO_CPU Specific Information:
775 *
776 *  XXX document implementation including references if appropriate
777 */
778
779#define _CPU_Context_Restart_self( _the_context ) \
780   _CPU_Context_restore( (_the_context) );
781
782/*
783 *  The purpose of this macro is to allow the initial pointer into
784 *  a floating point context area (used to save the floating point
785 *  context) to be at an arbitrary place in the floating point
786 *  context area.
787 *
788 *  This is necessary because some FP units are designed to have
789 *  their context saved as a stack which grows into lower addresses.
790 *  Other FP units can be saved by simply moving registers into offsets
791 *  from the base of the context area.  Finally some FP units provide
792 *  a "dump context" instruction which could fill in from high to low
793 *  or low to high based on the whim of the CPU designers.
794 *
795 *  NO_CPU Specific Information:
796 *
797 *  XXX document implementation including references if appropriate
798 */
799
800#define _CPU_Context_Fp_start( _base, _offset ) \
801   ( (void *) _Addresses_Add_offset( (_base), (_offset) ) )
802
803/*
804 *  This routine initializes the FP context area passed to it to.
805 *  There are a few standard ways in which to initialize the
806 *  floating point context.  The code included for this macro assumes
807 *  that this is a CPU in which a "initial" FP context was saved into
808 *  _CPU_Null_fp_context and it simply copies it to the destination
809 *  context passed to it.
810 *
811 *  Other models include (1) not doing anything, and (2) putting
812 *  a "null FP status word" in the correct place in the FP context.
813 *
814 *  NO_CPU Specific Information:
815 *
816 *  XXX document implementation including references if appropriate
817 */
818
819#define _CPU_Context_Initialize_fp( _destination ) \
820  { \
821   *((Context_Control_fp *) *((void **) _destination)) = _CPU_Null_fp_context; \
822  }
823
824/* end of Context handler macros */
825
826/* Fatal Error manager macros */
827
828/*
829 *  This routine copies _error into a known place -- typically a stack
830 *  location or a register, optionally disables interrupts, and
831 *  halts/stops the CPU.
832 *
833 *  NO_CPU Specific Information:
834 *
835 *  XXX document implementation including references if appropriate
836 */
837
838#define _CPU_Fatal_halt( _error ) \
839  { \
840  }
841
842/* end of Fatal Error manager macros */
843
844/* Bitfield handler macros */
845
846/*
847 *  This routine sets _output to the bit number of the first bit
848 *  set in _value.  _value is of CPU dependent type Priority_Bit_map_control.
849 *  This type may be either 16 or 32 bits wide although only the 16
850 *  least significant bits will be used.
851 *
852 *  There are a number of variables in using a "find first bit" type
853 *  instruction.
854 *
855 *    (1) What happens when run on a value of zero?
856 *    (2) Bits may be numbered from MSB to LSB or vice-versa.
857 *    (3) The numbering may be zero or one based.
858 *    (4) The "find first bit" instruction may search from MSB or LSB.
859 *
860 *  RTEMS guarantees that (1) will never happen so it is not a concern.
861 *  (2),(3), (4) are handled by the macros _CPU_Priority_mask() and
862 *  _CPU_Priority_bits_index().  These three form a set of routines
863 *  which must logically operate together.  Bits in the _value are
864 *  set and cleared based on masks built by _CPU_Priority_mask().
865 *  The basic major and minor values calculated by _Priority_Major()
866 *  and _Priority_Minor() are "massaged" by _CPU_Priority_bits_index()
867 *  to properly range between the values returned by the "find first bit"
868 *  instruction.  This makes it possible for _Priority_Get_highest() to
869 *  calculate the major and directly index into the minor table.
870 *  This mapping is necessary to ensure that 0 (a high priority major/minor)
871 *  is the first bit found.
872 *
873 *  This entire "find first bit" and mapping process depends heavily
874 *  on the manner in which a priority is broken into a major and minor
875 *  components with the major being the 4 MSB of a priority and minor
876 *  the 4 LSB.  Thus (0 << 4) + 0 corresponds to priority 0 -- the highest
877 *  priority.  And (15 << 4) + 14 corresponds to priority 254 -- the next
878 *  to the lowest priority.
879 *
880 *  If your CPU does not have a "find first bit" instruction, then
881 *  there are ways to make do without it.  Here are a handful of ways
882 *  to implement this in software:
883 *
884 *    - a series of 16 bit test instructions
885 *    - a "binary search using if's"
886 *    - _number = 0
887 *      if _value > 0x00ff
888 *        _value >>=8
889 *        _number = 8;
890 *
891 *      if _value > 0x0000f
892 *        _value >=8
893 *        _number += 4
894 *
895 *      _number += bit_set_table[ _value ]
896 *
897 *    where bit_set_table[ 16 ] has values which indicate the first
898 *      bit set
899 *
900 *  NO_CPU Specific Information:
901 *
902 *  XXX document implementation including references if appropriate
903 */
904
905#define CPU_USE_GENERIC_BITFIELD_CODE TRUE
906#define CPU_USE_GENERIC_BITFIELD_DATA TRUE
907
908#if (CPU_USE_GENERIC_BITFIELD_CODE == FALSE)
909
910#define _CPU_Bitfield_Find_first_bit( _value, _output ) \
911  { \
912    (_output) = 0;   /* do something to prevent warnings */ \
913  }
914
915#endif
916
917/* end of Bitfield handler macros */
918
919/*
920 *  This routine builds the mask which corresponds to the bit fields
921 *  as searched by _CPU_Bitfield_Find_first_bit().  See the discussion
922 *  for that routine.
923 *
924 *  NO_CPU Specific Information:
925 *
926 *  XXX document implementation including references if appropriate
927 */
928
929#if (CPU_USE_GENERIC_BITFIELD_CODE == FALSE)
930
931#define _CPU_Priority_Mask( _bit_number ) \
932  ( 1 << (_bit_number) )
933
934#endif
935
936/*
937 *  This routine translates the bit numbers returned by
938 *  _CPU_Bitfield_Find_first_bit() into something suitable for use as
939 *  a major or minor component of a priority.  See the discussion
940 *  for that routine.
941 *
942 *  NO_CPU Specific Information:
943 *
944 *  XXX document implementation including references if appropriate
945 */
946
947#if (CPU_USE_GENERIC_BITFIELD_CODE == FALSE)
948
949#define _CPU_Priority_bits_index( _priority ) \
950  (_priority)
951
952#endif
953
954/* end of Priority handler macros */
955
956/* functions */
957
958/*
959 *  _CPU_Initialize
960 *
961 *  This routine performs CPU dependent initialization.
962 *
963 *  NO_CPU Specific Information:
964 *
965 *  XXX document implementation including references if appropriate
966 */
967
968void _CPU_Initialize(
969  rtems_cpu_table  *cpu_table,
970  void      (*thread_dispatch)
971);
972
973/*
974 *  _CPU_ISR_install_raw_handler
975 *
976 *  This routine installs a "raw" interrupt handler directly into the
977 *  processor's vector table.
978 *
979 *  NO_CPU Specific Information:
980 *
981 *  XXX document implementation including references if appropriate
982 */
983 
984void _CPU_ISR_install_raw_handler(
985  uint32_t    vector,
986  proc_ptr    new_handler,
987  proc_ptr   *old_handler
988);
989
990/*
991 *  _CPU_ISR_install_vector
992 *
993 *  This routine installs an interrupt vector.
994 *
995 *  NO_CPU Specific Information:
996 *
997 *  XXX document implementation including references if appropriate
998 */
999
1000void _CPU_ISR_install_vector(
1001  uint32_t    vector,
1002  proc_ptr    new_handler,
1003  proc_ptr   *old_handler
1004);
1005
1006/*
1007 *  _CPU_Install_interrupt_stack
1008 *
1009 *  This routine installs the hardware interrupt stack pointer.
1010 *
1011 *  NOTE:  It need only be provided if CPU_HAS_HARDWARE_INTERRUPT_STACK
1012 *         is TRUE.
1013 *
1014 *  NO_CPU Specific Information:
1015 *
1016 *  XXX document implementation including references if appropriate
1017 */
1018
1019void _CPU_Install_interrupt_stack( void );
1020
1021/*
1022 *  _CPU_Thread_Idle_body
1023 *
1024 *  This routine is the CPU dependent IDLE thread body.
1025 *
1026 *  NOTE:  It need only be provided if CPU_PROVIDES_IDLE_THREAD_BODY
1027 *         is TRUE.
1028 *
1029 *  NO_CPU Specific Information:
1030 *
1031 *  XXX document implementation including references if appropriate
1032 */
1033
1034void _CPU_Thread_Idle_body( void );
1035
1036/*
1037 *  _CPU_Context_switch
1038 *
1039 *  This routine switches from the run context to the heir context.
1040 *
1041 *  NO_CPU Specific Information:
1042 *
1043 *  XXX document implementation including references if appropriate
1044 */
1045
1046void _CPU_Context_switch(
1047  Context_Control  *run,
1048  Context_Control  *heir
1049);
1050
1051/*
1052 *  _CPU_Context_restore
1053 *
1054 *  This routine is generally used only to restart self in an
1055 *  efficient manner.  It may simply be a label in _CPU_Context_switch.
1056 *
1057 *  NOTE: May be unnecessary to reload some registers.
1058 *
1059 *  NO_CPU Specific Information:
1060 *
1061 *  XXX document implementation including references if appropriate
1062 */
1063
1064void _CPU_Context_restore(
1065  Context_Control *new_context
1066);
1067
1068/*
1069 *  _CPU_Context_save_fp
1070 *
1071 *  This routine saves the floating point context passed to it.
1072 *
1073 *  NO_CPU Specific Information:
1074 *
1075 *  XXX document implementation including references if appropriate
1076 */
1077
1078void _CPU_Context_save_fp(
1079  void **fp_context_ptr
1080);
1081
1082/*
1083 *  _CPU_Context_restore_fp
1084 *
1085 *  This routine restores the floating point context passed to it.
1086 *
1087 *  NO_CPU Specific Information:
1088 *
1089 *  XXX document implementation including references if appropriate
1090 */
1091
1092void _CPU_Context_restore_fp(
1093  void **fp_context_ptr
1094);
1095
1096/*  The following routine swaps the endian format of an unsigned int.
1097 *  It must be static because it is referenced indirectly.
1098 *
1099 *  This version will work on any processor, but if there is a better
1100 *  way for your CPU PLEASE use it.  The most common way to do this is to:
1101 *
1102 *     swap least significant two bytes with 16-bit rotate
1103 *     swap upper and lower 16-bits
1104 *     swap most significant two bytes with 16-bit rotate
1105 *
1106 *  Some CPUs have special instructions which swap a 32-bit quantity in
1107 *  a single instruction (e.g. i486).  It is probably best to avoid
1108 *  an "endian swapping control bit" in the CPU.  One good reason is
1109 *  that interrupts would probably have to be disabled to insure that
1110 *  an interrupt does not try to access the same "chunk" with the wrong
1111 *  endian.  Another good reason is that on some CPUs, the endian bit
1112 *  endianness for ALL fetches -- both code and data -- so the code
1113 *  will be fetched incorrectly.
1114 *
1115 *  NO_CPU Specific Information:
1116 *
1117 *  XXX document implementation including references if appropriate
1118 */
1119 
1120static inline unsigned int CPU_swap_u32(
1121  unsigned int value
1122)
1123{
1124  uint32_t   byte1, byte2, byte3, byte4, swapped;
1125 
1126  byte4 = (value >> 24) & 0xff;
1127  byte3 = (value >> 16) & 0xff;
1128  byte2 = (value >> 8)  & 0xff;
1129  byte1 =  value        & 0xff;
1130 
1131  swapped = (byte1 << 24) | (byte2 << 16) | (byte3 << 8) | byte4;
1132  return( swapped );
1133}
1134
1135#define CPU_swap_u16( value ) \
1136  (((value&0xff) << 8) | ((value >> 8)&0xff))
1137
1138#ifdef __cplusplus
1139}
1140#endif
1141
1142#endif
Note: See TracBrowser for help on using the repository browser.