source: rtems/cpukit/score/cpu/avr/rtems/score/cpu.h @ 0ca6d0d9

4.104.114.95
Last change on this file since 0ca6d0d9 was 0ca6d0d9, checked in by Joel Sherrill <joel.sherrill@…>, on 12/17/07 at 22:35:25

2007-12-17 Joel Sherrill <joel.sherrill@…>

  • rtems/score/cpu.h: Add _CPU_Context_Get_SP() for stack check utility.
  • Property mode set to 100644
File size: 34.0 KB
Line 
1/**
2 * @file rtems/score/cpu.h
3 */
4
5/*
6 *  This include file contains information pertaining to the AVR
7 *  processor.
8 *
9 *  COPYRIGHT (c) 1989-2006.
10 *  On-Line Applications Research Corporation (OAR).
11 *
12 *  The license and distribution terms for this file may be
13 *  found in the file LICENSE in this distribution or at
14 *  http://www.rtems.com/license/LICENSE.
15 *
16 *  $Id$
17 */
18
19#ifndef _RTEMS_SCORE_CPU_H
20#define _RTEMS_SCORE_CPU_H
21
22#ifdef __cplusplus
23extern "C" {
24#endif
25
26#include <rtems/score/avr.h>            /* pick up machine definitions */
27#ifndef ASM
28#include <rtems/score/types.h>
29#endif
30
31/* conditional compilation parameters */
32
33/*
34 *  Should the calls to _Thread_Enable_dispatch be inlined?
35 *
36 *  If TRUE, then they are inlined.
37 *  If FALSE, then a subroutine call is made.
38 *
39 *  Basically this is an example of the classic trade-off of size
40 *  versus speed.  Inlining the call (TRUE) typically increases the
41 *  size of RTEMS while speeding up the enabling of dispatching.
42 *  [NOTE: In general, the _Thread_Dispatch_disable_level will
43 *  only be 0 or 1 unless you are in an interrupt handler and that
44 *  interrupt handler invokes the executive.]  When not inlined
45 *  something calls _Thread_Enable_dispatch which in turns calls
46 *  _Thread_Dispatch.  If the enable dispatch is inlined, then
47 *  one subroutine call is avoided entirely.]
48 *
49 *  AVR Specific Information:
50 *
51 *  XXX document implementation including references if appropriate
52 */
53
54#define CPU_INLINE_ENABLE_DISPATCH       FALSE
55
56/*
57 *  Should the body of the search loops in _Thread_queue_Enqueue_priority
58 *  be unrolled one time?  In unrolled each iteration of the loop examines
59 *  two "nodes" on the chain being searched.  Otherwise, only one node
60 *  is examined per iteration.
61 *
62 *  If TRUE, then the loops are unrolled.
63 *  If FALSE, then the loops are not unrolled.
64 *
65 *  The primary factor in making this decision is the cost of disabling
66 *  and enabling interrupts (_ISR_Flash) versus the cost of rest of the
67 *  body of the loop.  On some CPUs, the flash is more expensive than
68 *  one iteration of the loop body.  In this case, it might be desirable
69 *  to unroll the loop.  It is important to note that on some CPUs, this
70 *  code is the longest interrupt disable period in RTEMS.  So it is
71 *  necessary to strike a balance when setting this parameter.
72 *
73 *  AVR Specific Information:
74 *
75 *  XXX document implementation including references if appropriate
76 */
77
78#define CPU_UNROLL_ENQUEUE_PRIORITY      TRUE
79
80/*
81 *  Does RTEMS manage a dedicated interrupt stack in software?
82 *
83 *  If TRUE, then a stack is allocated in _ISR_Handler_initialization.
84 *  If FALSE, nothing is done.
85 *
86 *  If the CPU supports a dedicated interrupt stack in hardware,
87 *  then it is generally the responsibility of the BSP to allocate it
88 *  and set it up.
89 *
90 *  If the CPU does not support a dedicated interrupt stack, then
91 *  the porter has two options: (1) execute interrupts on the
92 *  stack of the interrupted task, and (2) have RTEMS manage a dedicated
93 *  interrupt stack.
94 *
95 *  If this is TRUE, CPU_ALLOCATE_INTERRUPT_STACK should also be TRUE.
96 *
97 *  Only one of CPU_HAS_SOFTWARE_INTERRUPT_STACK and
98 *  CPU_HAS_HARDWARE_INTERRUPT_STACK should be set to TRUE.  It is
99 *  possible that both are FALSE for a particular CPU.  Although it
100 *  is unclear what that would imply about the interrupt processing
101 *  procedure on that CPU.
102 *
103 *  AVR Specific Information:
104 *
105 *  XXX document implementation including references if appropriate
106 */
107
108#define CPU_HAS_SOFTWARE_INTERRUPT_STACK FALSE
109
110/*
111 *  Does this CPU have hardware support for a dedicated interrupt stack?
112 *
113 *  If TRUE, then it must be installed during initialization.
114 *  If FALSE, then no installation is performed.
115 *
116 *  If this is TRUE, CPU_ALLOCATE_INTERRUPT_STACK should also be TRUE.
117 *
118 *  Only one of CPU_HAS_SOFTWARE_INTERRUPT_STACK and
119 *  CPU_HAS_HARDWARE_INTERRUPT_STACK should be set to TRUE.  It is
120 *  possible that both are FALSE for a particular CPU.  Although it
121 *  is unclear what that would imply about the interrupt processing
122 *  procedure on that CPU.
123 *
124 *  AVR Specific Information:
125 *
126 *  XXX document implementation including references if appropriate
127 */
128
129#define CPU_HAS_HARDWARE_INTERRUPT_STACK TRUE
130
131/*
132 *  Does RTEMS allocate a dedicated interrupt stack in the Interrupt Manager?
133 *
134 *  If TRUE, then the memory is allocated during initialization.
135 *  If FALSE, then the memory is allocated during initialization.
136 *
137 *  This should be TRUE is CPU_HAS_SOFTWARE_INTERRUPT_STACK is TRUE.
138 *
139 *  AVR Specific Information:
140 *
141 *  XXX document implementation including references if appropriate
142 */
143
144#define CPU_ALLOCATE_INTERRUPT_STACK TRUE
145
146/*
147 *  Does the RTEMS invoke the user's ISR with the vector number and
148 *  a pointer to the saved interrupt frame (1) or just the vector
149 *  number (0)?
150 *
151 *  AVR Specific Information:
152 *
153 *  XXX document implementation including references if appropriate
154 */
155
156#define CPU_ISR_PASSES_FRAME_POINTER 0
157
158/*
159 *  Does the CPU have hardware floating point?
160 *
161 *  If TRUE, then the RTEMS_FLOATING_POINT task attribute is supported.
162 *  If FALSE, then the RTEMS_FLOATING_POINT task attribute is ignored.
163 *
164 *  If there is a FP coprocessor such as the i387 or mc68881, then
165 *  the answer is TRUE.
166 *
167 *  The macro name "AVR_HAS_FPU" should be made CPU specific.
168 *  It indicates whether or not this CPU model has FP support.  For
169 *  example, it would be possible to have an i386_nofp CPU model
170 *  which set this to false to indicate that you have an i386 without
171 *  an i387 and wish to leave floating point support out of RTEMS.
172 *
173 *  The CPU_SOFTWARE_FP is used to indicate whether or not there
174 *  is software implemented floating point that must be context
175 *  switched.  The determination of whether or not this applies
176 *  is very tool specific and the state saved/restored is also
177 *  compiler specific.
178 *
179 *  AVR Specific Information:
180 *
181 *  XXX document implementation including references if appropriate
182 */
183
184#if ( AVR_HAS_FPU == 1 )
185#define CPU_HARDWARE_FP     TRUE
186#else
187#define CPU_HARDWARE_FP     FALSE
188#endif
189#define CPU_SOFTWARE_FP     FALSE
190
191/*
192 *  Are all tasks RTEMS_FLOATING_POINT tasks implicitly?
193 *
194 *  If TRUE, then the RTEMS_FLOATING_POINT task attribute is assumed.
195 *  If FALSE, then the RTEMS_FLOATING_POINT task attribute is followed.
196 *
197 *  So far, the only CPUs in which this option has been used are the
198 *  HP PA-RISC and PowerPC.  On the PA-RISC, The HP C compiler and
199 *  gcc both implicitly used the floating point registers to perform
200 *  integer multiplies.  Similarly, the PowerPC port of gcc has been
201 *  seen to allocate floating point local variables and touch the FPU
202 *  even when the flow through a subroutine (like vfprintf()) might
203 *  not use floating point formats.
204 *
205 *  If a function which you would not think utilize the FP unit DOES,
206 *  then one can not easily predict which tasks will use the FP hardware.
207 *  In this case, this option should be TRUE.
208 *
209 *  If CPU_HARDWARE_FP is FALSE, then this should be FALSE as well.
210 *
211 *  AVR Specific Information:
212 *
213 *  XXX document implementation including references if appropriate
214 */
215
216#define CPU_ALL_TASKS_ARE_FP     TRUE
217
218/*
219 *  Should the IDLE task have a floating point context?
220 *
221 *  If TRUE, then the IDLE task is created as a RTEMS_FLOATING_POINT task
222 *  and it has a floating point context which is switched in and out.
223 *  If FALSE, then the IDLE task does not have a floating point context.
224 *
225 *  Setting this to TRUE negatively impacts the time required to preempt
226 *  the IDLE task from an interrupt because the floating point context
227 *  must be saved as part of the preemption.
228 *
229 *  AVR Specific Information:
230 *
231 *  XXX document implementation including references if appropriate
232 */
233
234#define CPU_IDLE_TASK_IS_FP      FALSE
235
236/*
237 *  Should the saving of the floating point registers be deferred
238 *  until a context switch is made to another different floating point
239 *  task?
240 *
241 *  If TRUE, then the floating point context will not be stored until
242 *  necessary.  It will remain in the floating point registers and not
243 *  disturned until another floating point task is switched to.
244 *
245 *  If FALSE, then the floating point context is saved when a floating
246 *  point task is switched out and restored when the next floating point
247 *  task is restored.  The state of the floating point registers between
248 *  those two operations is not specified.
249 *
250 *  If the floating point context does NOT have to be saved as part of
251 *  interrupt dispatching, then it should be safe to set this to TRUE.
252 *
253 *  Setting this flag to TRUE results in using a different algorithm
254 *  for deciding when to save and restore the floating point context.
255 *  The deferred FP switch algorithm minimizes the number of times
256 *  the FP context is saved and restored.  The FP context is not saved
257 *  until a context switch is made to another, different FP task.
258 *  Thus in a system with only one FP task, the FP context will never
259 *  be saved or restored.
260 *
261 *  AVR Specific Information:
262 *
263 *  XXX document implementation including references if appropriate
264 */
265
266#define CPU_USE_DEFERRED_FP_SWITCH       TRUE
267
268/*
269 *  Does this port provide a CPU dependent IDLE task implementation?
270 *
271 *  If TRUE, then the routine _CPU_Thread_Idle_body
272 *  must be provided and is the default IDLE thread body instead of
273 *  _CPU_Thread_Idle_body.
274 *
275 *  If FALSE, then use the generic IDLE thread body if the BSP does
276 *  not provide one.
277 *
278 *  This is intended to allow for supporting processors which have
279 *  a low power or idle mode.  When the IDLE thread is executed, then
280 *  the CPU can be powered down.
281 *
282 *  The order of precedence for selecting the IDLE thread body is:
283 *
284 *    1.  BSP provided
285 *    2.  CPU dependent (if provided)
286 *    3.  generic (if no BSP and no CPU dependent)
287 *
288 *  AVR Specific Information:
289 *
290 *  XXX document implementation including references if appropriate
291 */
292
293#define CPU_PROVIDES_IDLE_THREAD_BODY    TRUE
294
295/*
296 *  Does the stack grow up (toward higher addresses) or down
297 *  (toward lower addresses)?
298 *
299 *  If TRUE, then the grows upward.
300 *  If FALSE, then the grows toward smaller addresses.
301 *
302 *  AVR Specific Information:
303 *
304 *  XXX document implementation including references if appropriate
305 */
306
307#define CPU_STACK_GROWS_UP               TRUE
308
309/*
310 *  The following is the variable attribute used to force alignment
311 *  of critical RTEMS structures.  On some processors it may make
312 *  sense to have these aligned on tighter boundaries than
313 *  the minimum requirements of the compiler in order to have as
314 *  much of the critical data area as possible in a cache line.
315 *
316 *  The placement of this macro in the declaration of the variables
317 *  is based on the syntactically requirements of the GNU C
318 *  "__attribute__" extension.  For example with GNU C, use
319 *  the following to force a structures to a 32 byte boundary.
320 *
321 *      __attribute__ ((aligned (32)))
322 *
323 *  NOTE:  Currently only the Priority Bit Map table uses this feature.
324 *         To benefit from using this, the data must be heavily
325 *         used so it will stay in the cache and used frequently enough
326 *         in the executive to justify turning this on.
327 *
328 *  AVR Specific Information:
329 *
330 *  XXX document implementation including references if appropriate
331 */
332
333#define CPU_STRUCTURE_ALIGNMENT
334
335/*
336 *  Define what is required to specify how the network to host conversion
337 *  routines are handled.
338 *
339 *  AVR Specific Information:
340 *
341 *  XXX document implementation including references if appropriate
342 */
343
344#define CPU_BIG_ENDIAN                           TRUE
345#define CPU_LITTLE_ENDIAN                        FALSE
346
347/*
348 *  The following defines the number of bits actually used in the
349 *  interrupt field of the task mode.  How those bits map to the
350 *  CPU interrupt levels is defined by the routine _CPU_ISR_Set_level().
351 *
352 *  AVR Specific Information:
353 *
354 *  XXX document implementation including references if appropriate
355 */
356
357#define CPU_MODES_INTERRUPT_MASK   0x00000001
358
359/*
360 *  Processor defined structures required for cpukit/score.
361 *
362 *  AVR Specific Information:
363 *
364 *  XXX document implementation including references if appropriate
365 */
366
367/* may need to put some structures here.  */
368
369/*
370 * Contexts
371 *
372 *  Generally there are 2 types of context to save.
373 *     1. Interrupt registers to save
374 *     2. Task level registers to save
375 *
376 *  This means we have the following 3 context items:
377 *     1. task level context stuff::  Context_Control
378 *     2. floating point task stuff:: Context_Control_fp
379 *     3. special interrupt level context :: Context_Control_interrupt
380 *
381 *  On some processors, it is cost-effective to save only the callee
382 *  preserved registers during a task context switch.  This means
383 *  that the ISR code needs to save those registers which do not
384 *  persist across function calls.  It is not mandatory to make this
385 *  distinctions between the caller/callee saves registers for the
386 *  purpose of minimizing context saved during task switch and on interrupts.
387 *  If the cost of saving extra registers is minimal, simplicity is the
388 *  choice.  Save the same context on interrupt entry as for tasks in
389 *  this case.
390 *
391 *  Additionally, if gdb is to be made aware of RTEMS tasks for this CPU, then
392 *  care should be used in designing the context area.
393 *
394 *  On some CPUs with hardware floating point support, the Context_Control_fp
395 *  structure will not be used or it simply consist of an array of a
396 *  fixed number of bytes.   This is done when the floating point context
397 *  is dumped by a "FP save context" type instruction and the format
398 *  is not really defined by the CPU.  In this case, there is no need
399 *  to figure out the exact format -- only the size.  Of course, although
400 *  this is enough information for RTEMS, it is probably not enough for
401 *  a debugger such as gdb.  But that is another problem.
402 *
403 *  AVR Specific Information:
404 *
405 *  XXX document implementation including references if appropriate
406 */
407
408typedef struct {
409    uint32_t   some_integer_register;
410    uint32_t   some_system_register;
411    uint32_t   stack_pointer;
412} Context_Control;
413
414#define _CPU_Context_Get_SP( _context ) \
415  (_context)->stack_pointer
416
417typedef struct {
418    double      some_float_register;
419} Context_Control_fp;
420
421typedef struct {
422    uint32_t   special_interrupt_register;
423} CPU_Interrupt_frame;
424
425/*
426 *  This variable is optional.  It is used on CPUs on which it is difficult
427 *  to generate an "uninitialized" FP context.  It is filled in by
428 *  _CPU_Initialize and copied into the task's FP context area during
429 *  _CPU_Context_Initialize.
430 *
431 *  AVR Specific Information:
432 *
433 *  XXX document implementation including references if appropriate
434 */
435
436SCORE_EXTERN Context_Control_fp  _CPU_Null_fp_context;
437
438/*
439 *  On some CPUs, RTEMS supports a software managed interrupt stack.
440 *  This stack is allocated by the Interrupt Manager and the switch
441 *  is performed in _ISR_Handler.  These variables contain pointers
442 *  to the lowest and highest addresses in the chunk of memory allocated
443 *  for the interrupt stack.  Since it is unknown whether the stack
444 *  grows up or down (in general), this give the CPU dependent
445 *  code the option of picking the version it wants to use.
446 *
447 *  NOTE: These two variables are required if the macro
448 *        CPU_HAS_SOFTWARE_INTERRUPT_STACK is defined as TRUE.
449 *
450 *  AVR Specific Information:
451 *
452 *  XXX document implementation including references if appropriate
453 */
454
455SCORE_EXTERN void               *_CPU_Interrupt_stack_low;
456SCORE_EXTERN void               *_CPU_Interrupt_stack_high;
457
458/*
459 *  With some compilation systems, it is difficult if not impossible to
460 *  call a high-level language routine from assembly language.  This
461 *  is especially true of commercial Ada compilers and name mangling
462 *  C++ ones.  This variable can be optionally defined by the CPU porter
463 *  and contains the address of the routine _Thread_Dispatch.  This
464 *  can make it easier to invoke that routine at the end of the interrupt
465 *  sequence (if a dispatch is necessary).
466 *
467 *  AVR Specific Information:
468 *
469 *  XXX document implementation including references if appropriate
470 */
471
472SCORE_EXTERN void           (*_CPU_Thread_dispatch_pointer)();
473
474/*
475 *  Nothing prevents the porter from declaring more CPU specific variables.
476 *
477 *  AVR Specific Information:
478 *
479 *  XXX document implementation including references if appropriate
480 */
481
482/* XXX: if needed, put more variables here */
483
484/*
485 *  The size of the floating point context area.  On some CPUs this
486 *  will not be a "sizeof" because the format of the floating point
487 *  area is not defined -- only the size is.  This is usually on
488 *  CPUs with a "floating point save context" instruction.
489 *
490 *  AVR Specific Information:
491 *
492 *  XXX document implementation including references if appropriate
493 */
494
495#define CPU_CONTEXT_FP_SIZE sizeof( Context_Control_fp )
496
497/*
498 *  Amount of extra stack (above minimum stack size) required by
499 *  MPCI receive server thread.  Remember that in a multiprocessor
500 *  system this thread must exist and be able to process all directives.
501 *
502 *  AVR Specific Information:
503 *
504 *  XXX document implementation including references if appropriate
505 */
506
507#define CPU_MPCI_RECEIVE_SERVER_EXTRA_STACK 0
508
509/*
510 *  This defines the number of entries in the ISR_Vector_table managed
511 *  by RTEMS.
512 *
513 *  AVR Specific Information:
514 *
515 *  XXX document implementation including references if appropriate
516 */
517
518#define CPU_INTERRUPT_NUMBER_OF_VECTORS      32
519#define CPU_INTERRUPT_MAXIMUM_VECTOR_NUMBER  (CPU_INTERRUPT_NUMBER_OF_VECTORS - 1)
520
521/*
522 *  This is defined if the port has a special way to report the ISR nesting
523 *  level.  Most ports maintain the variable _ISR_Nest_level.
524 */
525
526#define CPU_PROVIDES_ISR_IS_IN_PROGRESS FALSE
527
528/*
529 *  Should be large enough to run all RTEMS tests.  This ensures
530 *  that a "reasonable" small application should not have any problems.
531 *
532 *  AVR Specific Information:
533 *
534 *  XXX document implementation including references if appropriate
535 */
536
537#define CPU_STACK_MINIMUM_SIZE          (1024*4)
538
539/*
540 *  CPU's worst alignment requirement for data types on a byte boundary.  This
541 *  alignment does not take into account the requirements for the stack.
542 *
543 *  AVR Specific Information:
544 *
545 *  XXX document implementation including references if appropriate
546 */
547
548#define CPU_ALIGNMENT              8
549
550/*
551 *  This number corresponds to the byte alignment requirement for the
552 *  heap handler.  This alignment requirement may be stricter than that
553 *  for the data types alignment specified by CPU_ALIGNMENT.  It is
554 *  common for the heap to follow the same alignment requirement as
555 *  CPU_ALIGNMENT.  If the CPU_ALIGNMENT is strict enough for the heap,
556 *  then this should be set to CPU_ALIGNMENT.
557 *
558 *  NOTE:  This does not have to be a power of 2 although it should be
559 *         a multiple of 2 greater than or equal to 2.  The requirement
560 *         to be a multiple of 2 is because the heap uses the least
561 *         significant field of the front and back flags to indicate
562 *         that a block is in use or free.  So you do not want any odd
563 *         length blocks really putting length data in that bit.
564 *
565 *         On byte oriented architectures, CPU_HEAP_ALIGNMENT normally will
566 *         have to be greater or equal to than CPU_ALIGNMENT to ensure that
567 *         elements allocated from the heap meet all restrictions.
568 *
569 *  AVR Specific Information:
570 *
571 *  XXX document implementation including references if appropriate
572 */
573
574#define CPU_HEAP_ALIGNMENT         CPU_ALIGNMENT
575
576/*
577 *  This number corresponds to the byte alignment requirement for memory
578 *  buffers allocated by the partition manager.  This alignment requirement
579 *  may be stricter than that for the data types alignment specified by
580 *  CPU_ALIGNMENT.  It is common for the partition to follow the same
581 *  alignment requirement as CPU_ALIGNMENT.  If the CPU_ALIGNMENT is strict
582 *  enough for the partition, then this should be set to CPU_ALIGNMENT.
583 *
584 *  NOTE:  This does not have to be a power of 2.  It does have to
585 *         be greater or equal to than CPU_ALIGNMENT.
586 *
587 *  AVR Specific Information:
588 *
589 *  XXX document implementation including references if appropriate
590 */
591
592#define CPU_PARTITION_ALIGNMENT    CPU_ALIGNMENT
593
594/*
595 *  This number corresponds to the byte alignment requirement for the
596 *  stack.  This alignment requirement may be stricter than that for the
597 *  data types alignment specified by CPU_ALIGNMENT.  If the CPU_ALIGNMENT
598 *  is strict enough for the stack, then this should be set to 0.
599 *
600 *  NOTE:  This must be a power of 2 either 0 or greater than CPU_ALIGNMENT.
601 *
602 *  AVR Specific Information:
603 *
604 *  XXX document implementation including references if appropriate
605 */
606
607#define CPU_STACK_ALIGNMENT        0
608
609/*
610 *  ISR handler macros
611 */
612
613/*
614 *  Support routine to initialize the RTEMS vector table after it is allocated.
615 *
616 *  AVR Specific Information:
617 *
618 *  XXX document implementation including references if appropriate
619 */
620
621#define _CPU_Initialize_vectors()
622
623/*
624 *  Disable all interrupts for an RTEMS critical section.  The previous
625 *  level is returned in _level.
626 *
627 *  AVR Specific Information:
628 *
629 *  XXX document implementation including references if appropriate
630 */
631
632#define _CPU_ISR_Disable( _isr_cookie ) \
633  { \
634    (_isr_cookie) = 0;   /* do something to prevent warnings */ \
635  }
636
637/*
638 *  Enable interrupts to the previous level (returned by _CPU_ISR_Disable).
639 *  This indicates the end of an RTEMS critical section.  The parameter
640 *  _level is not modified.
641 *
642 *  AVR Specific Information:
643 *
644 *  XXX document implementation including references if appropriate
645 */
646
647#define _CPU_ISR_Enable( _isr_cookie )  \
648  { \
649  }
650
651/*
652 *  This temporarily restores the interrupt to _level before immediately
653 *  disabling them again.  This is used to divide long RTEMS critical
654 *  sections into two or more parts.  The parameter _level is not
655 * modified.
656 *
657 *  AVR Specific Information:
658 *
659 *  XXX document implementation including references if appropriate
660 */
661
662#define _CPU_ISR_Flash( _isr_cookie ) \
663  { \
664  }
665
666/*
667 *  Map interrupt level in task mode onto the hardware that the CPU
668 *  actually provides.  Currently, interrupt levels which do not
669 *  map onto the CPU in a generic fashion are undefined.  Someday,
670 *  it would be nice if these were "mapped" by the application
671 *  via a callout.  For example, m68k has 8 levels 0 - 7, levels
672 *  8 - 255 would be available for bsp/application specific meaning.
673 *  This could be used to manage a programmable interrupt controller
674 *  via the rtems_task_mode directive.
675 *
676 *  The get routine usually must be implemented as a subroutine.
677 *
678 *  AVR Specific Information:
679 *
680 *  XXX document implementation including references if appropriate
681 */
682
683#define _CPU_ISR_Set_level( new_level ) \
684  { \
685  }
686
687uint32_t   _CPU_ISR_Get_level( void );
688
689/* end of ISR handler macros */
690
691/* Context handler macros */
692
693/*
694 *  Initialize the context to a state suitable for starting a
695 *  task after a context restore operation.  Generally, this
696 *  involves:
697 *
698 *     - setting a starting address
699 *     - preparing the stack
700 *     - preparing the stack and frame pointers
701 *     - setting the proper interrupt level in the context
702 *     - initializing the floating point context
703 *
704 *  This routine generally does not set any unnecessary register
705 *  in the context.  The state of the "general data" registers is
706 *  undefined at task start time.
707 *
708 *  NOTE: This is_fp parameter is TRUE if the thread is to be a floating
709 *        point thread.  This is typically only used on CPUs where the
710 *        FPU may be easily disabled by software such as on the SPARC
711 *        where the PSR contains an enable FPU bit.
712 *
713 *  AVR Specific Information:
714 *
715 *  XXX document implementation including references if appropriate
716 */
717
718#define _CPU_Context_Initialize( _the_context, _stack_base, _size, \
719                                 _isr, _entry_point, _is_fp ) \
720  { \
721  }
722
723/*
724 *  This routine is responsible for somehow restarting the currently
725 *  executing task.  If you are lucky, then all that is necessary
726 *  is restoring the context.  Otherwise, there will need to be
727 *  a special assembly routine which does something special in this
728 *  case.  Context_Restore should work most of the time.  It will
729 *  not work if restarting self conflicts with the stack frame
730 *  assumptions of restoring a context.
731 *
732 *  AVR Specific Information:
733 *
734 *  XXX document implementation including references if appropriate
735 */
736
737#define _CPU_Context_Restart_self( _the_context ) \
738   _CPU_Context_restore( (_the_context) );
739
740/*
741 *  The purpose of this macro is to allow the initial pointer into
742 *  a floating point context area (used to save the floating point
743 *  context) to be at an arbitrary place in the floating point
744 *  context area.
745 *
746 *  This is necessary because some FP units are designed to have
747 *  their context saved as a stack which grows into lower addresses.
748 *  Other FP units can be saved by simply moving registers into offsets
749 *  from the base of the context area.  Finally some FP units provide
750 *  a "dump context" instruction which could fill in from high to low
751 *  or low to high based on the whim of the CPU designers.
752 *
753 *  AVR Specific Information:
754 *
755 *  XXX document implementation including references if appropriate
756 */
757
758#define _CPU_Context_Fp_start( _base, _offset ) \
759   ( (void *) _Addresses_Add_offset( (_base), (_offset) ) )
760
761/*
762 *  This routine initializes the FP context area passed to it to.
763 *  There are a few standard ways in which to initialize the
764 *  floating point context.  The code included for this macro assumes
765 *  that this is a CPU in which a "initial" FP context was saved into
766 *  _CPU_Null_fp_context and it simply copies it to the destination
767 *  context passed to it.
768 *
769 *  Other models include (1) not doing anything, and (2) putting
770 *  a "null FP status word" in the correct place in the FP context.
771 *
772 *  AVR Specific Information:
773 *
774 *  XXX document implementation including references if appropriate
775 */
776
777#define _CPU_Context_Initialize_fp( _destination ) \
778  { \
779   *(*(_destination)) = _CPU_Null_fp_context; \
780  }
781
782/* end of Context handler macros */
783
784/* Fatal Error manager macros */
785
786/*
787 *  This routine copies _error into a known place -- typically a stack
788 *  location or a register, optionally disables interrupts, and
789 *  halts/stops the CPU.
790 *
791 *  AVR Specific Information:
792 *
793 *  XXX document implementation including references if appropriate
794 */
795
796#define _CPU_Fatal_halt( _error ) \
797  { \
798  }
799
800/* end of Fatal Error manager macros */
801
802/* Bitfield handler macros */
803
804/*
805 *  This routine sets _output to the bit number of the first bit
806 *  set in _value.  _value is of CPU dependent type Priority_Bit_map_control.
807 *  This type may be either 16 or 32 bits wide although only the 16
808 *  least significant bits will be used.
809 *
810 *  There are a number of variables in using a "find first bit" type
811 *  instruction.
812 *
813 *    (1) What happens when run on a value of zero?
814 *    (2) Bits may be numbered from MSB to LSB or vice-versa.
815 *    (3) The numbering may be zero or one based.
816 *    (4) The "find first bit" instruction may search from MSB or LSB.
817 *
818 *  RTEMS guarantees that (1) will never happen so it is not a concern.
819 *  (2),(3), (4) are handled by the macros _CPU_Priority_mask() and
820 *  _CPU_Priority_bits_index().  These three form a set of routines
821 *  which must logically operate together.  Bits in the _value are
822 *  set and cleared based on masks built by _CPU_Priority_mask().
823 *  The basic major and minor values calculated by _Priority_Major()
824 *  and _Priority_Minor() are "massaged" by _CPU_Priority_bits_index()
825 *  to properly range between the values returned by the "find first bit"
826 *  instruction.  This makes it possible for _Priority_Get_highest() to
827 *  calculate the major and directly index into the minor table.
828 *  This mapping is necessary to ensure that 0 (a high priority major/minor)
829 *  is the first bit found.
830 *
831 *  This entire "find first bit" and mapping process depends heavily
832 *  on the manner in which a priority is broken into a major and minor
833 *  components with the major being the 4 MSB of a priority and minor
834 *  the 4 LSB.  Thus (0 << 4) + 0 corresponds to priority 0 -- the highest
835 *  priority.  And (15 << 4) + 14 corresponds to priority 254 -- the next
836 *  to the lowest priority.
837 *
838 *  If your CPU does not have a "find first bit" instruction, then
839 *  there are ways to make do without it.  Here are a handful of ways
840 *  to implement this in software:
841 *
842 *    - a series of 16 bit test instructions
843 *    - a "binary search using if's"
844 *    - _number = 0
845 *      if _value > 0x00ff
846 *        _value >>=8
847 *        _number = 8;
848 *
849 *      if _value > 0x0000f
850 *        _value >=8
851 *        _number += 4
852 *
853 *      _number += bit_set_table[ _value ]
854 *
855 *    where bit_set_table[ 16 ] has values which indicate the first
856 *      bit set
857 *
858 *  AVR Specific Information:
859 *
860 *  XXX document implementation including references if appropriate
861 */
862
863#define CPU_USE_GENERIC_BITFIELD_CODE TRUE
864#define CPU_USE_GENERIC_BITFIELD_DATA TRUE
865
866#if (CPU_USE_GENERIC_BITFIELD_CODE == FALSE)
867
868#define _CPU_Bitfield_Find_first_bit( _value, _output ) \
869  { \
870    (_output) = 0;   /* do something to prevent warnings */ \
871  }
872
873#endif
874
875/* end of Bitfield handler macros */
876
877/*
878 *  This routine builds the mask which corresponds to the bit fields
879 *  as searched by _CPU_Bitfield_Find_first_bit().  See the discussion
880 *  for that routine.
881 *
882 *  AVR Specific Information:
883 *
884 *  XXX document implementation including references if appropriate
885 */
886
887#if (CPU_USE_GENERIC_BITFIELD_CODE == FALSE)
888
889#define _CPU_Priority_Mask( _bit_number ) \
890  ( 1 << (_bit_number) )
891
892#endif
893
894/*
895 *  This routine translates the bit numbers returned by
896 *  _CPU_Bitfield_Find_first_bit() into something suitable for use as
897 *  a major or minor component of a priority.  See the discussion
898 *  for that routine.
899 *
900 *  AVR Specific Information:
901 *
902 *  XXX document implementation including references if appropriate
903 */
904
905#if (CPU_USE_GENERIC_BITFIELD_CODE == FALSE)
906
907#define _CPU_Priority_bits_index( _priority ) \
908  (_priority)
909
910#endif
911
912/* end of Priority handler macros */
913
914/* functions */
915
916/*
917 *  _CPU_Initialize
918 *
919 *  This routine performs CPU dependent initialization.
920 *
921 *  AVR Specific Information:
922 *
923 *  XXX document implementation including references if appropriate
924 */
925
926void _CPU_Initialize(
927  void      (*thread_dispatch)
928);
929
930/*
931 *  _CPU_ISR_install_raw_handler
932 *
933 *  This routine installs a "raw" interrupt handler directly into the
934 *  processor's vector table.
935 *
936 *  AVR Specific Information:
937 *
938 *  XXX document implementation including references if appropriate
939 */
940 
941void _CPU_ISR_install_raw_handler(
942  uint32_t    vector,
943  proc_ptr    new_handler,
944  proc_ptr   *old_handler
945);
946
947/*
948 *  _CPU_ISR_install_vector
949 *
950 *  This routine installs an interrupt vector.
951 *
952 *  AVR Specific Information:
953 *
954 *  XXX document implementation including references if appropriate
955 */
956
957void _CPU_ISR_install_vector(
958  uint32_t    vector,
959  proc_ptr    new_handler,
960  proc_ptr   *old_handler
961);
962
963/*
964 *  _CPU_Install_interrupt_stack
965 *
966 *  This routine installs the hardware interrupt stack pointer.
967 *
968 *  NOTE:  It need only be provided if CPU_HAS_HARDWARE_INTERRUPT_STACK
969 *         is TRUE.
970 *
971 *  AVR Specific Information:
972 *
973 *  XXX document implementation including references if appropriate
974 */
975
976void _CPU_Install_interrupt_stack( void );
977
978/*
979 *  _CPU_Thread_Idle_body
980 *
981 *  This routine is the CPU dependent IDLE thread body.
982 *
983 *  NOTE:  It need only be provided if CPU_PROVIDES_IDLE_THREAD_BODY
984 *         is TRUE.
985 *
986 *  AVR Specific Information:
987 *
988 *  XXX document implementation including references if appropriate
989 */
990
991void _CPU_Thread_Idle_body( void );
992
993/*
994 *  _CPU_Context_switch
995 *
996 *  This routine switches from the run context to the heir context.
997 *
998 *  AVR Specific Information:
999 *
1000 *  XXX document implementation including references if appropriate
1001 */
1002
1003void _CPU_Context_switch(
1004  Context_Control  *run,
1005  Context_Control  *heir
1006);
1007
1008/*
1009 *  _CPU_Context_restore
1010 *
1011 *  This routine is generally used only to restart self in an
1012 *  efficient manner.  It may simply be a label in _CPU_Context_switch.
1013 *
1014 *  NOTE: May be unnecessary to reload some registers.
1015 *
1016 *  AVR Specific Information:
1017 *
1018 *  XXX document implementation including references if appropriate
1019 */
1020
1021void _CPU_Context_restore(
1022  Context_Control *new_context
1023);
1024
1025/*
1026 *  _CPU_Context_save_fp
1027 *
1028 *  This routine saves the floating point context passed to it.
1029 *
1030 *  AVR Specific Information:
1031 *
1032 *  XXX document implementation including references if appropriate
1033 */
1034
1035void _CPU_Context_save_fp(
1036  Context_Control_fp **fp_context_ptr
1037);
1038
1039/*
1040 *  _CPU_Context_restore_fp
1041 *
1042 *  This routine restores the floating point context passed to it.
1043 *
1044 *  AVR Specific Information:
1045 *
1046 *  XXX document implementation including references if appropriate
1047 */
1048
1049void _CPU_Context_restore_fp(
1050  Context_Control_fp **fp_context_ptr
1051);
1052
1053/*  The following routine swaps the endian format of an unsigned int.
1054 *  It must be static because it is referenced indirectly.
1055 *
1056 *  This version will work on any processor, but if there is a better
1057 *  way for your CPU PLEASE use it.  The most common way to do this is to:
1058 *
1059 *     swap least significant two bytes with 16-bit rotate
1060 *     swap upper and lower 16-bits
1061 *     swap most significant two bytes with 16-bit rotate
1062 *
1063 *  Some CPUs have special instructions which swap a 32-bit quantity in
1064 *  a single instruction (e.g. i486).  It is probably best to avoid
1065 *  an "endian swapping control bit" in the CPU.  One good reason is
1066 *  that interrupts would probably have to be disabled to ensure that
1067 *  an interrupt does not try to access the same "chunk" with the wrong
1068 *  endian.  Another good reason is that on some CPUs, the endian bit
1069 *  endianness for ALL fetches -- both code and data -- so the code
1070 *  will be fetched incorrectly.
1071 *
1072 *  AVR Specific Information:
1073 *
1074 *  XXX document implementation including references if appropriate
1075 */
1076 
1077static inline uint32_t CPU_swap_u32(
1078  uint32_t value
1079)
1080{
1081  uint32_t   byte1, byte2, byte3, byte4, swapped;
1082 
1083  byte4 = (value >> 24) & 0xff;
1084  byte3 = (value >> 16) & 0xff;
1085  byte2 = (value >> 8)  & 0xff;
1086  byte1 =  value        & 0xff;
1087 
1088  swapped = (byte1 << 24) | (byte2 << 16) | (byte3 << 8) | byte4;
1089  return( swapped );
1090}
1091
1092#define CPU_swap_u16( value ) \
1093  (((value&0xff) << 8) | ((value >> 8)&0xff))
1094
1095#ifdef __cplusplus
1096}
1097#endif
1098
1099#endif
Note: See TracBrowser for help on using the repository browser.