source: rtems/cpukit/libnetworking/netinet/ip_mroute.c @ dac1edb

4.104.114.84.9
Last change on this file since dac1edb was 33679ec4, checked in by Joel Sherrill <joel.sherrill@…>, on Aug 21, 1998 at 1:04:55 PM

All warnings removed.

  • Property mode set to 100644
File size: 54.1 KB
Line 
1/*
2 * IP multicast forwarding procedures
3 *
4 * Written by David Waitzman, BBN Labs, August 1988.
5 * Modified by Steve Deering, Stanford, February 1989.
6 * Modified by Mark J. Steiglitz, Stanford, May, 1991
7 * Modified by Van Jacobson, LBL, January 1993
8 * Modified by Ajit Thyagarajan, PARC, August 1993
9 * Modified by Bill Fenner, PARC, April 1995
10 *
11 * MROUTING Revision: 3.5
12 * $Id$
13 */
14
15#include "opt_mrouting.h"
16
17#include <sys/param.h>
18#include <sys/queue.h>
19#include <sys/systm.h>
20#include <sys/mbuf.h>
21#include <sys/socket.h>
22#include <sys/socketvar.h>
23#include <sys/protosw.h>
24#include <sys/errno.h>
25#include <sys/time.h>
26#include <sys/kernel.h>
27#include <sys/ioctl.h>
28#include <sys/syslog.h>
29#include <net/if.h>
30#include <net/route.h>
31#include <netinet/in.h>
32#include <netinet/in_systm.h>
33#include <netinet/ip.h>
34#include <netinet/ip_var.h>
35#include <netinet/in_pcb.h>
36#include <netinet/in_var.h>
37#include <netinet/igmp.h>
38#include <netinet/igmp_var.h>
39#include <netinet/ip_mroute.h>
40#include <netinet/udp.h>
41
42#ifndef NTOHL
43#if BYTE_ORDER != BIG_ENDIAN
44#define NTOHL(d) ((d) = ntohl((d)))
45#define NTOHS(d) ((d) = ntohs((u_short)(d)))
46#define HTONL(d) ((d) = htonl((d)))
47#define HTONS(d) ((d) = htons((u_short)(d)))
48#else
49#define NTOHL(d)
50#define NTOHS(d)
51#define HTONL(d)
52#define HTONS(d)
53#endif
54#endif
55
56#ifndef MROUTING
57extern u_long   _ip_mcast_src __P((int vifi));
58extern int      _ip_mforward __P((struct ip *ip, struct ifnet *ifp,
59                                  struct mbuf *m, struct ip_moptions *imo));
60extern int      _ip_mrouter_done __P((void));
61extern int      _ip_mrouter_get __P((int cmd, struct socket *so,
62                                     struct mbuf **m));
63extern int      _ip_mrouter_set __P((int cmd, struct socket *so,
64                                     struct mbuf *m));
65extern int      _mrt_ioctl __P((int req, caddr_t data, struct proc *p));
66
67/*
68 * Dummy routines and globals used when multicast routing is not compiled in.
69 */
70
71struct socket  *ip_mrouter  = NULL;
72/* static u_int         ip_mrtproto = 0; */
73/* static struct mrtstat        mrtstat; */
74u_int           rsvpdebug = 0;
75
76int
77_ip_mrouter_set(cmd, so, m)
78        int cmd;
79        struct socket *so;
80        struct mbuf *m;
81{
82        return(EOPNOTSUPP);
83}
84
85int (*ip_mrouter_set)(int, struct socket *, struct mbuf *) = _ip_mrouter_set;
86
87
88int
89_ip_mrouter_get(cmd, so, m)
90        int cmd;
91        struct socket *so;
92        struct mbuf **m;
93{
94        return(EOPNOTSUPP);
95}
96
97int (*ip_mrouter_get)(int, struct socket *, struct mbuf **) = _ip_mrouter_get;
98
99int
100_ip_mrouter_done()
101{
102        return(0);
103}
104
105int (*ip_mrouter_done)(void) = _ip_mrouter_done;
106
107int
108_ip_mforward(ip, ifp, m, imo)
109        struct ip *ip;
110        struct ifnet *ifp;
111        struct mbuf *m;
112        struct ip_moptions *imo;
113{
114        return(0);
115}
116
117int (*ip_mforward)(struct ip *, struct ifnet *, struct mbuf *,
118                   struct ip_moptions *) = _ip_mforward;
119
120int
121_mrt_ioctl(int req, caddr_t data, struct proc *p)
122{
123        return EOPNOTSUPP;
124}
125
126int (*mrt_ioctl)(int, caddr_t, struct proc *) = _mrt_ioctl;
127
128void
129rsvp_input(m, iphlen)           /* XXX must fixup manually */
130        struct mbuf *m;
131        int iphlen;
132{
133    /* Can still get packets with rsvp_on = 0 if there is a local member
134     * of the group to which the RSVP packet is addressed.  But in this
135     * case we want to throw the packet away.
136     */
137    if (!rsvp_on) {
138        m_freem(m);
139        return;
140    }
141 
142    if (ip_rsvpd != NULL) {
143        if (rsvpdebug)
144            printf("rsvp_input: Sending packet up old-style socket\n");
145        rip_input(m, iphlen);
146        return;
147    }
148    /* Drop the packet */
149    m_freem(m);
150}
151
152void ipip_input(struct mbuf *m, int iphlen) { /* XXX must fixup manually */
153        rip_input(m, iphlen);
154}
155
156int (*legal_vif_num)(int) = 0;
157
158/*
159 * This should never be called, since IP_MULTICAST_VIF should fail, but
160 * just in case it does get called, the code a little lower in ip_output
161 * will assign the packet a local address.
162 */
163u_long
164_ip_mcast_src(int vifi) { return INADDR_ANY; }
165u_long (*ip_mcast_src)(int) = _ip_mcast_src;
166
167int
168ip_rsvp_vif_init(so, m)
169    struct socket *so;
170    struct mbuf *m;
171{
172    return(EINVAL);
173}
174
175int
176ip_rsvp_vif_done(so, m)
177    struct socket *so;
178    struct mbuf *m;
179{
180    return(EINVAL);
181}
182
183void
184ip_rsvp_force_done(so)
185    struct socket *so;
186{
187    return;
188}
189
190#else /* MROUTING */
191
192#define M_HASCL(m)      ((m)->m_flags & M_EXT)
193
194#define INSIZ           sizeof(struct in_addr)
195#define same(a1, a2) \
196        (bcmp((caddr_t)(a1), (caddr_t)(a2), INSIZ) == 0)
197
198#define MT_MRTABLE MT_RTABLE    /* since nothing else uses it */
199
200/*
201 * Globals.  All but ip_mrouter and ip_mrtproto could be static,
202 * except for netstat or debugging purposes.
203 */
204#ifndef MROUTE_LKM
205struct socket  *ip_mrouter  = NULL;
206struct mrtstat  mrtstat;
207
208int             ip_mrtproto = IGMP_DVMRP;    /* for netstat only */
209#else /* MROUTE_LKM */
210extern void     X_ipip_input __P((struct mbuf *m, int iphlen));
211extern struct mrtstat mrtstat;
212static int ip_mrtproto;
213#endif
214
215#define NO_RTE_FOUND    0x1
216#define RTE_FOUND       0x2
217
218static struct mbuf    *mfctable[MFCTBLSIZ];
219static u_char           nexpire[MFCTBLSIZ];
220static struct vif       viftable[MAXVIFS];
221static u_int    mrtdebug = 0;     /* debug level        */
222#define         DEBUG_MFC       0x02
223#define         DEBUG_FORWARD   0x04
224#define         DEBUG_EXPIRE    0x08
225#define         DEBUG_XMIT      0x10
226static u_int    tbfdebug = 0;     /* tbf debug level    */
227static u_int    rsvpdebug = 0;    /* rsvp debug level   */
228
229#define         EXPIRE_TIMEOUT  (hz / 4)        /* 4x / second          */
230#define         UPCALL_EXPIRE   6               /* number of timeouts   */
231
232/*
233 * Define the token bucket filter structures
234 * tbftable -> each vif has one of these for storing info
235 */
236
237static struct tbf tbftable[MAXVIFS];
238#define         TBF_REPROCESS   (hz / 100)      /* 100x / second */
239
240/*
241 * 'Interfaces' associated with decapsulator (so we can tell
242 * packets that went through it from ones that get reflected
243 * by a broken gateway).  These interfaces are never linked into
244 * the system ifnet list & no routes point to them.  I.e., packets
245 * can't be sent this way.  They only exist as a placeholder for
246 * multicast source verification.
247 */
248static struct ifnet multicast_decap_if[MAXVIFS];
249
250#define ENCAP_TTL 64
251#define ENCAP_PROTO IPPROTO_IPIP        /* 4 */
252
253/* prototype IP hdr for encapsulated packets */
254static struct ip multicast_encap_iphdr = {
255#if BYTE_ORDER == LITTLE_ENDIAN
256        sizeof(struct ip) >> 2, IPVERSION,
257#else
258        IPVERSION, sizeof(struct ip) >> 2,
259#endif
260        0,                              /* tos */
261        sizeof(struct ip),              /* total length */
262        0,                              /* id */
263        0,                              /* frag offset */
264        ENCAP_TTL, ENCAP_PROTO, 
265        0,                              /* checksum */
266};
267
268/*
269 * Private variables.
270 */
271static vifi_t      numvifs = 0;
272static int have_encap_tunnel = 0;
273
274/*
275 * one-back cache used by ipip_input to locate a tunnel's vif
276 * given a datagram's src ip address.
277 */
278static u_long last_encap_src;
279static struct vif *last_encap_vif;
280
281static u_long   X_ip_mcast_src __P((int vifi));
282static int      X_ip_mforward __P((struct ip *ip, struct ifnet *ifp, struct mbuf *m, struct ip_moptions *imo));
283static int      X_ip_mrouter_done __P((void));
284static int      X_ip_mrouter_get __P((int cmd, struct socket *so, struct mbuf **m));
285static int      X_ip_mrouter_set __P((int cmd, struct socket *so, struct mbuf *m));
286static int      X_legal_vif_num __P((int vif));
287static int      X_mrt_ioctl __P((int cmd, caddr_t data));
288
289static int get_sg_cnt(struct sioc_sg_req *);
290static int get_vif_cnt(struct sioc_vif_req *);
291static int ip_mrouter_init(struct socket *, struct mbuf *);
292static int add_vif(struct vifctl *);
293static int del_vif(vifi_t *);
294static int add_mfc(struct mfcctl *);
295static int del_mfc(struct mfcctl *);
296static int socket_send(struct socket *, struct mbuf *, struct sockaddr_in *);
297static int get_version(struct mbuf *);
298static int get_assert(struct mbuf *);
299static int set_assert(int *);
300static void expire_upcalls(void *);
301static int ip_mdq(struct mbuf *, struct ifnet *, struct mfc *,
302                  vifi_t);
303static void phyint_send(struct ip *, struct vif *, struct mbuf *);
304static void encap_send(struct ip *, struct vif *, struct mbuf *);
305static void tbf_control(struct vif *, struct mbuf *, struct ip *, u_long);
306static void tbf_queue(struct vif *, struct mbuf *);
307static void tbf_process_q(struct vif *);
308static void tbf_reprocess_q(void *);
309static int tbf_dq_sel(struct vif *, struct ip *);
310static void tbf_send_packet(struct vif *, struct mbuf *);
311static void tbf_update_tokens(struct vif *);
312static int priority(struct vif *, struct ip *);
313void multiencap_decap(struct mbuf *);
314
315/*
316 * whether or not special PIM assert processing is enabled.
317 */
318static int pim_assert;
319/*
320 * Rate limit for assert notification messages, in usec
321 */
322#define ASSERT_MSG_TIME         3000000
323
324/*
325 * Hash function for a source, group entry
326 */
327#define MFCHASH(a, g) MFCHASHMOD(((a) >> 20) ^ ((a) >> 10) ^ (a) ^ \
328                        ((g) >> 20) ^ ((g) >> 10) ^ (g))
329
330/*
331 * Find a route for a given origin IP address and Multicast group address
332 * Type of service parameter to be added in the future!!!
333 */
334
335#define MFCFIND(o, g, rt) { \
336        register struct mbuf *_mb_rt = mfctable[MFCHASH(o,g)]; \
337        register struct mfc *_rt = NULL; \
338        rt = NULL; \
339        ++mrtstat.mrts_mfc_lookups; \
340        while (_mb_rt) { \
341                _rt = mtod(_mb_rt, struct mfc *); \
342                if ((_rt->mfc_origin.s_addr == o) && \
343                    (_rt->mfc_mcastgrp.s_addr == g) && \
344                    (_mb_rt->m_act == NULL)) { \
345                        rt = _rt; \
346                        break; \
347                } \
348                _mb_rt = _mb_rt->m_next; \
349        } \
350        if (rt == NULL) { \
351                ++mrtstat.mrts_mfc_misses; \
352        } \
353}
354
355
356/*
357 * Macros to compute elapsed time efficiently
358 * Borrowed from Van Jacobson's scheduling code
359 */
360#define TV_DELTA(a, b, delta) { \
361            register int xxs; \
362                \
363            delta = (a).tv_usec - (b).tv_usec; \
364            if ((xxs = (a).tv_sec - (b).tv_sec)) { \
365               switch (xxs) { \
366                      case 2: \
367                          delta += 1000000; \
368                              /* fall through */ \
369                      case 1: \
370                          delta += 1000000; \
371                          break; \
372                      default: \
373                          delta += (1000000 * xxs); \
374               } \
375            } \
376}
377
378#define TV_LT(a, b) (((a).tv_usec < (b).tv_usec && \
379              (a).tv_sec <= (b).tv_sec) || (a).tv_sec < (b).tv_sec)
380
381#ifdef UPCALL_TIMING
382u_long upcall_data[51];
383static void collate(struct timeval *);
384#endif /* UPCALL_TIMING */
385
386
387/*
388 * Handle MRT setsockopt commands to modify the multicast routing tables.
389 */
390static int
391X_ip_mrouter_set(cmd, so, m)
392    int cmd;
393    struct socket *so;
394    struct mbuf *m;
395{
396   if (cmd != MRT_INIT && so != ip_mrouter) return EACCES;
397
398    switch (cmd) {
399        case MRT_INIT:     return ip_mrouter_init(so, m);
400        case MRT_DONE:     return ip_mrouter_done();
401        case MRT_ADD_VIF:  return add_vif (mtod(m, struct vifctl *));
402        case MRT_DEL_VIF:  return del_vif (mtod(m, vifi_t *));
403        case MRT_ADD_MFC:  return add_mfc (mtod(m, struct mfcctl *));
404        case MRT_DEL_MFC:  return del_mfc (mtod(m, struct mfcctl *));
405        case MRT_ASSERT:   return set_assert(mtod(m, int *));
406        default:             return EOPNOTSUPP;
407    }
408}
409
410#ifndef MROUTE_LKM
411int (*ip_mrouter_set)(int, struct socket *, struct mbuf *) = X_ip_mrouter_set;
412#endif
413
414/*
415 * Handle MRT getsockopt commands
416 */
417static int
418X_ip_mrouter_get(cmd, so, m)
419    int cmd;
420    struct socket *so;
421    struct mbuf **m;
422{
423    struct mbuf *mb;
424
425    if (so != ip_mrouter) return EACCES;
426
427    *m = mb = m_get(M_WAIT, MT_SOOPTS);
428 
429    switch (cmd) {
430        case MRT_VERSION:   return get_version(mb);
431        case MRT_ASSERT:    return get_assert(mb);
432        default:            return EOPNOTSUPP;
433    }
434}
435
436#ifndef MROUTE_LKM
437int (*ip_mrouter_get)(int, struct socket *, struct mbuf **) = X_ip_mrouter_get;
438#endif
439
440/*
441 * Handle ioctl commands to obtain information from the cache
442 */
443static int
444X_mrt_ioctl(cmd, data)
445    int cmd;
446    caddr_t data;
447{
448    int error = 0;
449
450    switch (cmd) {
451        case (SIOCGETVIFCNT):
452            return (get_vif_cnt((struct sioc_vif_req *)data));
453            break;
454        case (SIOCGETSGCNT):
455            return (get_sg_cnt((struct sioc_sg_req *)data));
456            break;
457        default:
458            return (EINVAL);
459            break;
460    }
461    return error;
462}
463
464#ifndef MROUTE_LKM
465int (*mrt_ioctl)(int, caddr_t) = X_mrt_ioctl;
466#endif
467
468/*
469 * returns the packet, byte, rpf-failure count for the source group provided
470 */
471static int
472get_sg_cnt(req)
473    register struct sioc_sg_req *req;
474{
475    register struct mfc *rt;
476    int s;
477
478    s = splnet();
479    MFCFIND(req->src.s_addr, req->grp.s_addr, rt);
480    splx(s);
481    if (rt != NULL) {
482        req->pktcnt = rt->mfc_pkt_cnt;
483        req->bytecnt = rt->mfc_byte_cnt;
484        req->wrong_if = rt->mfc_wrong_if;
485    } else
486        req->pktcnt = req->bytecnt = req->wrong_if = 0xffffffff;
487
488    return 0;
489}
490
491/*
492 * returns the input and output packet and byte counts on the vif provided
493 */
494static int
495get_vif_cnt(req)
496    register struct sioc_vif_req *req;
497{
498    register vifi_t vifi = req->vifi;
499
500    if (vifi >= numvifs) return EINVAL;
501
502    req->icount = viftable[vifi].v_pkt_in;
503    req->ocount = viftable[vifi].v_pkt_out;
504    req->ibytes = viftable[vifi].v_bytes_in;
505    req->obytes = viftable[vifi].v_bytes_out;
506
507    return 0;
508}
509
510/*
511 * Enable multicast routing
512 */
513static int
514ip_mrouter_init(so, m)
515        struct socket *so;
516        struct mbuf *m;
517{
518    int *v;
519
520    if (mrtdebug)
521        log(LOG_DEBUG,"ip_mrouter_init: so_type = %d, pr_protocol = %d\n",
522                so->so_type, so->so_proto->pr_protocol);
523
524    if (so->so_type != SOCK_RAW ||
525        so->so_proto->pr_protocol != IPPROTO_IGMP) return EOPNOTSUPP;
526
527    if (!m || (m->m_len != sizeof(int *)))
528        return ENOPROTOOPT;
529
530    v = mtod(m, int *);
531    if (*v != 1)
532        return ENOPROTOOPT;
533
534    if (ip_mrouter != NULL) return EADDRINUSE;
535
536    ip_mrouter = so;
537
538    bzero((caddr_t)mfctable, sizeof(mfctable));
539    bzero((caddr_t)nexpire, sizeof(nexpire));
540
541    pim_assert = 0;
542
543    timeout(expire_upcalls, (caddr_t)NULL, EXPIRE_TIMEOUT);
544
545    if (mrtdebug)
546        log(LOG_DEBUG, "ip_mrouter_init\n");
547
548    return 0;
549}
550
551/*
552 * Disable multicast routing
553 */
554static int
555X_ip_mrouter_done()
556{
557    vifi_t vifi;
558    int i;
559    struct ifnet *ifp;
560    struct ifreq ifr;
561    struct mbuf *mb_rt;
562    struct mbuf *m;
563    struct rtdetq *rte;
564    int s;
565
566    s = splnet();
567
568    /*
569     * For each phyint in use, disable promiscuous reception of all IP
570     * multicasts.
571     */
572    for (vifi = 0; vifi < numvifs; vifi++) {
573        if (viftable[vifi].v_lcl_addr.s_addr != 0 &&
574            !(viftable[vifi].v_flags & VIFF_TUNNEL)) {
575            ((struct sockaddr_in *)&(ifr.ifr_addr))->sin_family = AF_INET;
576            ((struct sockaddr_in *)&(ifr.ifr_addr))->sin_addr.s_addr
577                                                                = INADDR_ANY;
578            ifp = viftable[vifi].v_ifp;
579            (*ifp->if_ioctl)(ifp, SIOCDELMULTI, (caddr_t)&ifr);
580        }
581    }
582    bzero((caddr_t)tbftable, sizeof(tbftable));
583    bzero((caddr_t)viftable, sizeof(viftable));
584    numvifs = 0;
585    pim_assert = 0;
586
587    untimeout(expire_upcalls, (caddr_t)NULL);
588
589    /*
590     * Free all multicast forwarding cache entries.
591     */
592    for (i = 0; i < MFCTBLSIZ; i++) {
593        mb_rt = mfctable[i];
594        while (mb_rt) {
595            if (mb_rt->m_act != NULL) {
596                while (mb_rt->m_act) {
597                    m = mb_rt->m_act;
598                    mb_rt->m_act = m->m_act;
599                    rte = mtod(m, struct rtdetq *);
600                    m_freem(rte->m);
601                    m_free(m);
602                }
603            }
604            mb_rt = m_free(mb_rt);
605        }
606    }
607
608    bzero((caddr_t)mfctable, sizeof(mfctable));
609
610    /*
611     * Reset de-encapsulation cache
612     */
613    last_encap_src = 0;
614    last_encap_vif = NULL;
615    have_encap_tunnel = 0;
616 
617    ip_mrouter = NULL;
618
619    splx(s);
620
621    if (mrtdebug)
622        log(LOG_DEBUG, "ip_mrouter_done\n");
623
624    return 0;
625}
626
627#ifndef MROUTE_LKM
628int (*ip_mrouter_done)(void) = X_ip_mrouter_done;
629#endif
630
631static int
632get_version(mb)
633    struct mbuf *mb;
634{
635    int *v;
636
637    v = mtod(mb, int *);
638
639    *v = 0x0305;        /* XXX !!!! */
640    mb->m_len = sizeof(int);
641
642    return 0;
643}
644
645/*
646 * Set PIM assert processing global
647 */
648static int
649set_assert(i)
650    int *i;
651{
652    if ((*i != 1) && (*i != 0))
653        return EINVAL;
654
655    pim_assert = *i;
656
657    return 0;
658}
659
660/*
661 * Get PIM assert processing global
662 */
663static int
664get_assert(m)
665    struct mbuf *m;
666{
667    int *i;
668
669    i = mtod(m, int *);
670
671    *i = pim_assert;
672
673    return 0;
674}
675
676/*
677 * Add a vif to the vif table
678 */
679static int
680add_vif(vifcp)
681    register struct vifctl *vifcp;
682{
683    register struct vif *vifp = viftable + vifcp->vifc_vifi;
684    static struct sockaddr_in sin = {sizeof sin, AF_INET};
685    struct ifaddr *ifa;
686    struct ifnet *ifp;
687    struct ifreq ifr;
688    int error, s;
689    struct tbf *v_tbf = tbftable + vifcp->vifc_vifi;
690
691    if (vifcp->vifc_vifi >= MAXVIFS)  return EINVAL;
692    if (vifp->v_lcl_addr.s_addr != 0) return EADDRINUSE;
693
694    /* Find the interface with an address in AF_INET family */
695    sin.sin_addr = vifcp->vifc_lcl_addr;
696    ifa = ifa_ifwithaddr((struct sockaddr *)&sin);
697    if (ifa == 0) return EADDRNOTAVAIL;
698    ifp = ifa->ifa_ifp;
699
700    if (vifcp->vifc_flags & VIFF_TUNNEL) {
701        if ((vifcp->vifc_flags & VIFF_SRCRT) == 0) {
702                /*
703                 * An encapsulating tunnel is wanted.  Tell ipip_input() to
704                 * start paying attention to encapsulated packets.
705                 */
706                if (have_encap_tunnel == 0) {
707                        have_encap_tunnel = 1;
708                        for (s = 0; s < MAXVIFS; ++s) {
709                                multicast_decap_if[s].if_name = "mdecap";
710                                multicast_decap_if[s].if_unit = s;
711                        }
712                }
713                /*
714                 * Set interface to fake encapsulator interface
715                 */
716                ifp = &multicast_decap_if[vifcp->vifc_vifi];
717                /*
718                 * Prepare cached route entry
719                 */
720                bzero(&vifp->v_route, sizeof(vifp->v_route));
721        } else {
722            log(LOG_ERR, "source routed tunnels not supported\n");
723            return EOPNOTSUPP;
724        }
725    } else {
726        /* Make sure the interface supports multicast */
727        if ((ifp->if_flags & IFF_MULTICAST) == 0)
728            return EOPNOTSUPP;
729
730        /* Enable promiscuous reception of all IP multicasts from the if */
731        ((struct sockaddr_in *)&(ifr.ifr_addr))->sin_family = AF_INET;
732        ((struct sockaddr_in *)&(ifr.ifr_addr))->sin_addr.s_addr = INADDR_ANY;
733        s = splnet();
734        error = (*ifp->if_ioctl)(ifp, SIOCADDMULTI, (caddr_t)&ifr);
735        splx(s);
736        if (error)
737            return error;
738    }
739
740    s = splnet();
741    /* define parameters for the tbf structure */
742    vifp->v_tbf = v_tbf;
743    GET_TIME(vifp->v_tbf->tbf_last_pkt_t);
744    vifp->v_tbf->tbf_n_tok = 0;
745    vifp->v_tbf->tbf_q_len = 0;
746    vifp->v_tbf->tbf_max_q_len = MAXQSIZE;
747    vifp->v_tbf->tbf_q = vifp->v_tbf->tbf_t = NULL;
748
749    vifp->v_flags     = vifcp->vifc_flags;
750    vifp->v_threshold = vifcp->vifc_threshold;
751    vifp->v_lcl_addr  = vifcp->vifc_lcl_addr;
752    vifp->v_rmt_addr  = vifcp->vifc_rmt_addr;
753    vifp->v_ifp       = ifp;
754    /* scaling up here allows division by 1024 in critical code */
755    vifp->v_rate_limit= vifcp->vifc_rate_limit * 1024 / 1000;
756    vifp->v_rsvp_on   = 0;
757    vifp->v_rsvpd     = NULL;
758    /* initialize per vif pkt counters */
759    vifp->v_pkt_in    = 0;
760    vifp->v_pkt_out   = 0;
761    vifp->v_bytes_in  = 0;
762    vifp->v_bytes_out = 0;
763    splx(s);
764
765    /* Adjust numvifs up if the vifi is higher than numvifs */
766    if (numvifs <= vifcp->vifc_vifi) numvifs = vifcp->vifc_vifi + 1;
767
768    if (mrtdebug)
769        log(LOG_DEBUG, "add_vif #%d, lcladdr %x, %s %x, thresh %x, rate %d\n",
770            vifcp->vifc_vifi, 
771            ntohl(vifcp->vifc_lcl_addr.s_addr),
772            (vifcp->vifc_flags & VIFF_TUNNEL) ? "rmtaddr" : "mask",
773            ntohl(vifcp->vifc_rmt_addr.s_addr),
774            vifcp->vifc_threshold,
775            vifcp->vifc_rate_limit);   
776
777    return 0;
778}
779
780/*
781 * Delete a vif from the vif table
782 */
783static int
784del_vif(vifip)
785    vifi_t *vifip;
786{
787    register struct vif *vifp = viftable + *vifip;
788    register vifi_t vifi;
789    register struct mbuf *m;
790    struct ifnet *ifp;
791    struct ifreq ifr;
792    int s;
793
794    if (*vifip >= numvifs) return EINVAL;
795    if (vifp->v_lcl_addr.s_addr == 0) return EADDRNOTAVAIL;
796
797    s = splnet();
798
799    if (!(vifp->v_flags & VIFF_TUNNEL)) {
800        ((struct sockaddr_in *)&(ifr.ifr_addr))->sin_family = AF_INET;
801        ((struct sockaddr_in *)&(ifr.ifr_addr))->sin_addr.s_addr = INADDR_ANY;
802        ifp = vifp->v_ifp;
803        (*ifp->if_ioctl)(ifp, SIOCDELMULTI, (caddr_t)&ifr);
804    }
805
806    if (vifp == last_encap_vif) {
807        last_encap_vif = 0;
808        last_encap_src = 0;
809    }
810
811    /*
812     * Free packets queued at the interface
813     */
814    while (vifp->v_tbf->tbf_q) {
815        m = vifp->v_tbf->tbf_q;
816        vifp->v_tbf->tbf_q = m->m_act;
817        m_freem(m);
818    }
819
820    bzero((caddr_t)vifp->v_tbf, sizeof(*(vifp->v_tbf)));
821    bzero((caddr_t)vifp, sizeof (*vifp));
822
823    /* Adjust numvifs down */
824    for (vifi = numvifs; vifi > 0; vifi--)
825        if (viftable[vifi-1].v_lcl_addr.s_addr != 0) break;
826    numvifs = vifi;
827
828    splx(s);
829
830    if (mrtdebug)
831      log(LOG_DEBUG, "del_vif %d, numvifs %d\n", *vifip, numvifs);
832
833    return 0;
834}
835
836/*
837 * Add an mfc entry
838 */
839static int
840add_mfc(mfccp)
841    struct mfcctl *mfccp;
842{
843    struct mfc *rt;
844    register struct mbuf *mb_rt;
845    u_long hash;
846    struct mbuf *mb_ntry;
847    struct rtdetq *rte;
848    register u_short nstl;
849    int s;
850    int i;
851
852    MFCFIND(mfccp->mfcc_origin.s_addr, mfccp->mfcc_mcastgrp.s_addr, rt);
853
854    /* If an entry already exists, just update the fields */
855    if (rt) {
856        if (mrtdebug & DEBUG_MFC)
857            log(LOG_DEBUG,"add_mfc update o %x g %x p %x\n",
858                ntohl(mfccp->mfcc_origin.s_addr),
859                ntohl(mfccp->mfcc_mcastgrp.s_addr),
860                mfccp->mfcc_parent);
861
862        s = splnet();
863        rt->mfc_parent = mfccp->mfcc_parent;
864        for (i = 0; i < numvifs; i++)
865            rt->mfc_ttls[i] = mfccp->mfcc_ttls[i];
866        splx(s);
867        return 0;
868    }
869
870    /*
871     * Find the entry for which the upcall was made and update
872     */
873    s = splnet();
874    hash = MFCHASH(mfccp->mfcc_origin.s_addr, mfccp->mfcc_mcastgrp.s_addr);
875    for (mb_rt = mfctable[hash], nstl = 0; mb_rt; mb_rt = mb_rt->m_next) {
876
877        rt = mtod(mb_rt, struct mfc *);
878        if ((rt->mfc_origin.s_addr == mfccp->mfcc_origin.s_addr) &&
879            (rt->mfc_mcastgrp.s_addr == mfccp->mfcc_mcastgrp.s_addr) &&
880            (mb_rt->m_act != NULL)) {
881 
882            if (nstl++)
883                log(LOG_ERR, "add_mfc %s o %x g %x p %x dbx %x\n",
884                    "multiple kernel entries",
885                    ntohl(mfccp->mfcc_origin.s_addr),
886                    ntohl(mfccp->mfcc_mcastgrp.s_addr),
887                    mfccp->mfcc_parent, mb_rt->m_act);
888
889            if (mrtdebug & DEBUG_MFC)
890                log(LOG_DEBUG,"add_mfc o %x g %x p %x dbg %x\n",
891                    ntohl(mfccp->mfcc_origin.s_addr),
892                    ntohl(mfccp->mfcc_mcastgrp.s_addr),
893                    mfccp->mfcc_parent, mb_rt->m_act);
894
895            rt->mfc_origin     = mfccp->mfcc_origin;
896            rt->mfc_mcastgrp   = mfccp->mfcc_mcastgrp;
897            rt->mfc_parent     = mfccp->mfcc_parent;
898            for (i = 0; i < numvifs; i++)
899                rt->mfc_ttls[i] = mfccp->mfcc_ttls[i];
900            /* initialize pkt counters per src-grp */
901            rt->mfc_pkt_cnt    = 0;
902            rt->mfc_byte_cnt   = 0;
903            rt->mfc_wrong_if   = 0;
904            rt->mfc_last_assert.tv_sec = rt->mfc_last_assert.tv_usec = 0;
905
906            rt->mfc_expire = 0; /* Don't clean this guy up */
907            nexpire[hash]--;
908
909            /* free packets Qed at the end of this entry */
910            while (mb_rt->m_act) {
911                mb_ntry = mb_rt->m_act;
912                rte = mtod(mb_ntry, struct rtdetq *);
913/* #ifdef RSVP_ISI */
914                ip_mdq(rte->m, rte->ifp, rt, -1);
915/* #endif */
916                mb_rt->m_act = mb_ntry->m_act;
917                m_freem(rte->m);
918#ifdef UPCALL_TIMING
919                collate(&(rte->t));
920#endif /* UPCALL_TIMING */
921                m_free(mb_ntry);
922            }
923        }
924    }
925
926    /*
927     * It is possible that an entry is being inserted without an upcall
928     */
929    if (nstl == 0) {
930        if (mrtdebug & DEBUG_MFC)
931            log(LOG_DEBUG,"add_mfc no upcall h %d o %x g %x p %x\n",
932                hash, ntohl(mfccp->mfcc_origin.s_addr),
933                ntohl(mfccp->mfcc_mcastgrp.s_addr),
934                mfccp->mfcc_parent);
935       
936        for (mb_rt = mfctable[hash]; mb_rt; mb_rt = mb_rt->m_next) {
937           
938            rt = mtod(mb_rt, struct mfc *);
939            if ((rt->mfc_origin.s_addr == mfccp->mfcc_origin.s_addr) &&
940                (rt->mfc_mcastgrp.s_addr == mfccp->mfcc_mcastgrp.s_addr)) {
941
942                rt->mfc_origin     = mfccp->mfcc_origin;
943                rt->mfc_mcastgrp   = mfccp->mfcc_mcastgrp;
944                rt->mfc_parent     = mfccp->mfcc_parent;
945                for (i = 0; i < numvifs; i++)
946                    rt->mfc_ttls[i] = mfccp->mfcc_ttls[i];
947                /* initialize pkt counters per src-grp */
948                rt->mfc_pkt_cnt    = 0;
949                rt->mfc_byte_cnt   = 0;
950                rt->mfc_wrong_if   = 0;
951                rt->mfc_last_assert.tv_sec = rt->mfc_last_assert.tv_usec = 0;
952                if (rt->mfc_expire)
953                    nexpire[hash]--;
954                rt->mfc_expire     = 0;
955            }
956        }
957        if (mb_rt == NULL) {
958            /* no upcall, so make a new entry */
959            MGET(mb_rt, M_DONTWAIT, MT_MRTABLE);
960            if (mb_rt == NULL) {
961                splx(s);
962                return ENOBUFS;
963            }
964           
965            rt = mtod(mb_rt, struct mfc *);
966           
967            /* insert new entry at head of hash chain */
968            rt->mfc_origin     = mfccp->mfcc_origin;
969            rt->mfc_mcastgrp   = mfccp->mfcc_mcastgrp;
970            rt->mfc_parent     = mfccp->mfcc_parent;
971            for (i = 0; i < numvifs; i++)
972                    rt->mfc_ttls[i] = mfccp->mfcc_ttls[i];
973            /* initialize pkt counters per src-grp */
974            rt->mfc_pkt_cnt    = 0;
975            rt->mfc_byte_cnt   = 0;
976            rt->mfc_wrong_if   = 0;
977            rt->mfc_last_assert.tv_sec = rt->mfc_last_assert.tv_usec = 0;
978            rt->mfc_expire     = 0;
979           
980            /* link into table */
981            mb_rt->m_next  = mfctable[hash];
982            mfctable[hash] = mb_rt;
983            mb_rt->m_act = NULL;
984        }
985    }
986    splx(s);
987    return 0;
988}
989
990#ifdef UPCALL_TIMING
991/*
992 * collect delay statistics on the upcalls
993 */
994static void collate(t)
995register struct timeval *t;
996{
997    register u_long d;
998    register struct timeval tp;
999    register u_long delta;
1000   
1001    GET_TIME(tp);
1002   
1003    if (TV_LT(*t, tp))
1004    {
1005        TV_DELTA(tp, *t, delta);
1006       
1007        d = delta >> 10;
1008        if (d > 50)
1009            d = 50;
1010       
1011        ++upcall_data[d];
1012    }
1013}
1014#endif /* UPCALL_TIMING */
1015
1016/*
1017 * Delete an mfc entry
1018 */
1019static int
1020del_mfc(mfccp)
1021    struct mfcctl *mfccp;
1022{
1023    struct in_addr      origin;
1024    struct in_addr      mcastgrp;
1025    struct mfc          *rt;
1026    struct mbuf         *mb_rt;
1027    struct mbuf         **nptr;
1028    u_long              hash;
1029    int s;
1030
1031    origin = mfccp->mfcc_origin;
1032    mcastgrp = mfccp->mfcc_mcastgrp;
1033    hash = MFCHASH(origin.s_addr, mcastgrp.s_addr);
1034
1035    if (mrtdebug & DEBUG_MFC)
1036        log(LOG_DEBUG,"del_mfc orig %x mcastgrp %x\n",
1037            ntohl(origin.s_addr), ntohl(mcastgrp.s_addr));
1038
1039    s = splnet();
1040
1041    nptr = &mfctable[hash];
1042    while ((mb_rt = *nptr) != NULL) {
1043        rt = mtod(mb_rt, struct mfc *);
1044        if (origin.s_addr == rt->mfc_origin.s_addr &&
1045            mcastgrp.s_addr == rt->mfc_mcastgrp.s_addr &&
1046            mb_rt->m_act == NULL)
1047            break;
1048
1049        nptr = &mb_rt->m_next;
1050    }
1051    if (mb_rt == NULL) {
1052        splx(s);
1053        return EADDRNOTAVAIL;
1054    }
1055
1056    MFREE(mb_rt, *nptr);
1057
1058    splx(s);
1059
1060    return 0;
1061}
1062
1063/*
1064 * Send a message to mrouted on the multicast routing socket
1065 */
1066static int
1067socket_send(s, mm, src)
1068        struct socket *s;
1069        struct mbuf *mm;
1070        struct sockaddr_in *src;
1071{
1072        if (s) {
1073                if (sbappendaddr(&s->so_rcv,
1074                                 (struct sockaddr *)src,
1075                                 mm, (struct mbuf *)0) != 0) {
1076                        sorwakeup(s);
1077                        return 0;
1078                }
1079        }
1080        m_freem(mm);
1081        return -1;
1082}
1083
1084/*
1085 * IP multicast forwarding function. This function assumes that the packet
1086 * pointed to by "ip" has arrived on (or is about to be sent to) the interface
1087 * pointed to by "ifp", and the packet is to be relayed to other networks
1088 * that have members of the packet's destination IP multicast group.
1089 *
1090 * The packet is returned unscathed to the caller, unless it is
1091 * erroneous, in which case a non-zero return value tells the caller to
1092 * discard it.
1093 */
1094
1095#define IP_HDR_LEN  20  /* # bytes of fixed IP header (excluding options) */
1096#define TUNNEL_LEN  12  /* # bytes of IP option for tunnel encapsulation  */
1097
1098static int
1099X_ip_mforward(ip, ifp, m, imo)
1100    register struct ip *ip;
1101    struct ifnet *ifp;
1102    struct mbuf *m;
1103    struct ip_moptions *imo;
1104{
1105    register struct mfc *rt;
1106    register u_char *ipoptions;
1107    static struct sockaddr_in   k_igmpsrc       = { sizeof k_igmpsrc, AF_INET };
1108    static int srctun = 0;
1109    register struct mbuf *mm;
1110    int s;
1111    vifi_t vifi;
1112    struct vif *vifp;
1113
1114    if (mrtdebug & DEBUG_FORWARD)
1115        log(LOG_DEBUG, "ip_mforward: src %x, dst %x, ifp %x\n",
1116            ntohl(ip->ip_src.s_addr), ntohl(ip->ip_dst.s_addr), ifp);
1117
1118    if (ip->ip_hl < (IP_HDR_LEN + TUNNEL_LEN) >> 2 ||
1119        (ipoptions = (u_char *)(ip + 1))[1] != IPOPT_LSRR ) {
1120        /*
1121         * Packet arrived via a physical interface or
1122         * an encapsulated tunnel.
1123         */
1124    } else {
1125        /*
1126         * Packet arrived through a source-route tunnel.
1127         * Source-route tunnels are no longer supported.
1128         */
1129        if ((srctun++ % 1000) == 0)
1130            log(LOG_ERR, "ip_mforward: received source-routed packet from %x\n",
1131                ntohl(ip->ip_src.s_addr));
1132
1133        return 1;
1134    }
1135
1136    if ((imo) && ((vifi = imo->imo_multicast_vif) < numvifs)) {
1137        if (ip->ip_ttl < 255)
1138                ip->ip_ttl++;   /* compensate for -1 in *_send routines */
1139        if (rsvpdebug && ip->ip_p == IPPROTO_RSVP) {
1140            vifp = viftable + vifi;
1141            printf("Sending IPPROTO_RSVP from %lx to %lx on vif %d (%s%s%d)\n",
1142                ntohl(ip->ip_src.s_addr), ntohl(ip->ip_dst.s_addr), vifi,
1143                (vifp->v_flags & VIFF_TUNNEL) ? "tunnel on " : "",
1144                vifp->v_ifp->if_name, vifp->v_ifp->if_unit);
1145        }
1146        return (ip_mdq(m, ifp, NULL, vifi));
1147    }
1148    if (rsvpdebug && ip->ip_p == IPPROTO_RSVP) {
1149        printf("Warning: IPPROTO_RSVP from %lx to %lx without vif option\n",
1150            ntohl(ip->ip_src.s_addr), ntohl(ip->ip_dst.s_addr));
1151        if(!imo)
1152                printf("In fact, no options were specified at all\n");
1153    }
1154
1155    /*
1156     * Don't forward a packet with time-to-live of zero or one,
1157     * or a packet destined to a local-only group.
1158     */
1159    if (ip->ip_ttl <= 1 ||
1160        ntohl(ip->ip_dst.s_addr) <= INADDR_MAX_LOCAL_GROUP)
1161        return 0;
1162
1163    /*
1164     * Determine forwarding vifs from the forwarding cache table
1165     */
1166    s = splnet();
1167    MFCFIND(ip->ip_src.s_addr, ip->ip_dst.s_addr, rt);
1168
1169    /* Entry exists, so forward if necessary */
1170    if (rt != NULL) {
1171        splx(s);
1172        return (ip_mdq(m, ifp, rt, -1));
1173    } else {
1174        /*
1175         * If we don't have a route for packet's origin,
1176         * Make a copy of the packet &
1177         * send message to routing daemon
1178         */
1179
1180        register struct mbuf *mb_rt;
1181        register struct mbuf *mb_ntry;
1182        register struct mbuf *mb0;
1183        register struct rtdetq *rte;
1184        register struct mbuf *rte_m;
1185        register u_long hash;
1186        register int npkts;
1187        int hlen = ip->ip_hl << 2;
1188#ifdef UPCALL_TIMING
1189        struct timeval tp;
1190
1191        GET_TIME(tp);
1192#endif
1193
1194        mrtstat.mrts_no_route++;
1195        if (mrtdebug & (DEBUG_FORWARD | DEBUG_MFC))
1196            log(LOG_DEBUG, "ip_mforward: no rte s %x g %x\n",
1197                ntohl(ip->ip_src.s_addr),
1198                ntohl(ip->ip_dst.s_addr));
1199
1200        /*
1201         * Allocate mbufs early so that we don't do extra work if we are
1202         * just going to fail anyway.  Make sure to pullup the header so
1203         * that other people can't step on it.
1204         */
1205        MGET(mb_ntry, M_DONTWAIT, MT_DATA);
1206        if (mb_ntry == NULL) {
1207            splx(s);
1208            return ENOBUFS;
1209        }
1210        mb0 = m_copy(m, 0, M_COPYALL);
1211        if (mb0 && (M_HASCL(mb0) || mb0->m_len < hlen))
1212            mb0 = m_pullup(mb0, hlen);
1213        if (mb0 == NULL) {
1214            m_free(mb_ntry);
1215            splx(s);
1216            return ENOBUFS;
1217        }
1218
1219        /* is there an upcall waiting for this packet? */
1220        hash = MFCHASH(ip->ip_src.s_addr, ip->ip_dst.s_addr);
1221        for (mb_rt = mfctable[hash]; mb_rt; mb_rt = mb_rt->m_next) {
1222            rt = mtod(mb_rt, struct mfc *);
1223            if ((ip->ip_src.s_addr == rt->mfc_origin.s_addr) &&
1224                (ip->ip_dst.s_addr == rt->mfc_mcastgrp.s_addr) &&
1225                (mb_rt->m_act != NULL))
1226                break;
1227        }
1228
1229        if (mb_rt == NULL) {
1230            int i;
1231            struct igmpmsg *im;
1232
1233            /* no upcall, so make a new entry */
1234            MGET(mb_rt, M_DONTWAIT, MT_MRTABLE);
1235            if (mb_rt == NULL) {
1236                m_free(mb_ntry);
1237                m_freem(mb0);
1238                splx(s);
1239                return ENOBUFS;
1240            }
1241            /* Make a copy of the header to send to the user level process */
1242            mm = m_copy(mb0, 0, hlen);
1243            if (mm == NULL) {
1244                m_free(mb_ntry);
1245                m_freem(mb0);
1246                m_free(mb_rt);
1247                splx(s);
1248                return ENOBUFS;
1249            }
1250
1251            /*
1252             * Send message to routing daemon to install
1253             * a route into the kernel table
1254             */
1255            k_igmpsrc.sin_addr = ip->ip_src;
1256           
1257            im = mtod(mm, struct igmpmsg *);
1258            im->im_msgtype      = IGMPMSG_NOCACHE;
1259            im->im_mbz          = 0;
1260
1261            mrtstat.mrts_upcalls++;
1262
1263            if (socket_send(ip_mrouter, mm, &k_igmpsrc) < 0) {
1264                log(LOG_WARNING, "ip_mforward: ip_mrouter socket queue full\n");
1265                ++mrtstat.mrts_upq_sockfull;
1266                m_free(mb_ntry);
1267                m_freem(mb0);
1268                m_free(mb_rt);
1269                splx(s);
1270                return ENOBUFS;
1271            }
1272
1273            rt = mtod(mb_rt, struct mfc *);
1274
1275            /* insert new entry at head of hash chain */
1276            rt->mfc_origin.s_addr     = ip->ip_src.s_addr;
1277            rt->mfc_mcastgrp.s_addr   = ip->ip_dst.s_addr;
1278            rt->mfc_expire            = UPCALL_EXPIRE;
1279            nexpire[hash]++;
1280            for (i = 0; i < numvifs; i++)
1281                rt->mfc_ttls[i] = 0;
1282            rt->mfc_parent = -1;
1283
1284            /* link into table */
1285            mb_rt->m_next  = mfctable[hash];
1286            mfctable[hash] = mb_rt;
1287            mb_rt->m_act = NULL;
1288
1289            rte_m = mb_rt;
1290        } else {
1291            /* determine if q has overflowed */
1292            for (rte_m = mb_rt, npkts = 0; rte_m->m_act; rte_m = rte_m->m_act)
1293                npkts++;
1294
1295            if (npkts > MAX_UPQ) {
1296                mrtstat.mrts_upq_ovflw++;
1297                m_free(mb_ntry);
1298                m_freem(mb0);
1299                splx(s);
1300                return 0;
1301            }
1302        }
1303
1304        mb_ntry->m_act = NULL;
1305        rte = mtod(mb_ntry, struct rtdetq *);
1306
1307        rte->m                  = mb0;
1308        rte->ifp                = ifp;
1309#ifdef UPCALL_TIMING
1310        rte->t                  = tp;
1311#endif
1312
1313        /* Add this entry to the end of the queue */
1314        rte_m->m_act            = mb_ntry;
1315
1316        splx(s);
1317
1318        return 0;
1319    }           
1320}
1321
1322#ifndef MROUTE_LKM
1323int (*ip_mforward)(struct ip *, struct ifnet *, struct mbuf *,
1324                   struct ip_moptions *) = X_ip_mforward;
1325#endif
1326
1327/*
1328 * Clean up the cache entry if upcall is not serviced
1329 */
1330static void
1331expire_upcalls(void *unused)
1332{
1333    struct mbuf *mb_rt, *m, **nptr;
1334    struct rtdetq *rte;
1335    struct mfc *mfc;
1336    int i;
1337    int s;
1338
1339    s = splnet();
1340    for (i = 0; i < MFCTBLSIZ; i++) {
1341        if (nexpire[i] == 0)
1342            continue;
1343        nptr = &mfctable[i];
1344        for (mb_rt = *nptr; mb_rt != NULL; mb_rt = *nptr) {
1345            mfc = mtod(mb_rt, struct mfc *);
1346
1347            /*
1348             * Skip real cache entries
1349             * Make sure it wasn't marked to not expire (shouldn't happen)
1350             * If it expires now
1351             */
1352            if (mb_rt->m_act != NULL &&
1353                mfc->mfc_expire != 0 &&
1354                --mfc->mfc_expire == 0) {
1355                if (mrtdebug & DEBUG_EXPIRE)
1356                    log(LOG_DEBUG, "expire_upcalls: expiring (%x %x)\n",
1357                        ntohl(mfc->mfc_origin.s_addr),
1358                        ntohl(mfc->mfc_mcastgrp.s_addr));
1359                /*
1360                 * drop all the packets
1361                 * free the mbuf with the pkt, if, timing info
1362                 */
1363                while (mb_rt->m_act) {
1364                    m = mb_rt->m_act;
1365                    mb_rt->m_act = m->m_act;
1366             
1367                    rte = mtod(m, struct rtdetq *);
1368                    m_freem(rte->m);
1369                    m_free(m);
1370                }
1371                ++mrtstat.mrts_cache_cleanups;
1372                nexpire[i]--;
1373
1374                MFREE(mb_rt, *nptr);
1375            } else {
1376                nptr = &mb_rt->m_next;
1377            }
1378        }
1379    }
1380    splx(s);
1381    timeout(expire_upcalls, (caddr_t)NULL, EXPIRE_TIMEOUT);
1382}
1383
1384/*
1385 * Packet forwarding routine once entry in the cache is made
1386 */
1387static int
1388ip_mdq(m, ifp, rt, xmt_vif)
1389    register struct mbuf *m;
1390    register struct ifnet *ifp;
1391    register struct mfc *rt;
1392    register vifi_t xmt_vif;
1393{
1394    register struct ip  *ip = mtod(m, struct ip *);
1395    register vifi_t vifi;
1396    register struct vif *vifp;
1397    register int plen = ntohs(ip->ip_len);
1398
1399/*
1400 * Macro to send packet on vif.  Since RSVP packets don't get counted on
1401 * input, they shouldn't get counted on output, so statistics keeping is
1402 * seperate.
1403 */
1404#define MC_SEND(ip,vifp,m) {                             \
1405                if ((vifp)->v_flags & VIFF_TUNNEL)       \
1406                    encap_send((ip), (vifp), (m));       \
1407                else                                     \
1408                    phyint_send((ip), (vifp), (m));      \
1409}
1410
1411    /*
1412     * If xmt_vif is not -1, send on only the requested vif.
1413     *
1414     * (since vifi_t is u_short, -1 becomes MAXUSHORT, which > numvifs.)
1415     */
1416    if (xmt_vif < numvifs) {
1417        MC_SEND(ip, viftable + xmt_vif, m);
1418        return 1;
1419    }
1420
1421    /*
1422     * Don't forward if it didn't arrive from the parent vif for its origin.
1423     */
1424    vifi = rt->mfc_parent;
1425    if ((vifi >= numvifs) || (viftable[vifi].v_ifp != ifp)) {
1426        /* came in the wrong interface */
1427        if (mrtdebug & DEBUG_FORWARD)
1428            log(LOG_DEBUG, "wrong if: ifp %x vifi %d vififp %x\n",
1429                ifp, vifi, viftable[vifi].v_ifp); 
1430        ++mrtstat.mrts_wrong_if;
1431        ++rt->mfc_wrong_if;
1432        /*
1433         * If we are doing PIM assert processing, and we are forwarding
1434         * packets on this interface, and it is a broadcast medium
1435         * interface (and not a tunnel), send a message to the routing daemon.
1436         */
1437        if (pim_assert && rt->mfc_ttls[vifi] &&
1438                (ifp->if_flags & IFF_BROADCAST) &&
1439                !(viftable[vifi].v_flags & VIFF_TUNNEL)) {
1440            struct sockaddr_in k_igmpsrc;
1441            struct mbuf *mm;
1442            struct igmpmsg *im;
1443            int hlen = ip->ip_hl << 2;
1444            struct timeval now;
1445            register u_long delta;
1446
1447            GET_TIME(now);
1448
1449            TV_DELTA(rt->mfc_last_assert, now, delta);
1450
1451            if (delta > ASSERT_MSG_TIME) {
1452                mm = m_copy(m, 0, hlen);
1453                if (mm && (M_HASCL(mm) || mm->m_len < hlen))
1454                    mm = m_pullup(mm, hlen);
1455                if (mm == NULL) {
1456                    return ENOBUFS;
1457                }
1458
1459                rt->mfc_last_assert = now;
1460
1461                im = mtod(mm, struct igmpmsg *);
1462                im->im_msgtype  = IGMPMSG_WRONGVIF;
1463                im->im_mbz              = 0;
1464                im->im_vif              = vifi;
1465
1466                k_igmpsrc.sin_addr = im->im_src;
1467
1468                socket_send(ip_mrouter, mm, &k_igmpsrc);
1469            }
1470        }
1471        return 0;
1472    }
1473
1474    /* If I sourced this packet, it counts as output, else it was input. */
1475    if (ip->ip_src.s_addr == viftable[vifi].v_lcl_addr.s_addr) {
1476        viftable[vifi].v_pkt_out++;
1477        viftable[vifi].v_bytes_out += plen;
1478    } else {
1479        viftable[vifi].v_pkt_in++;
1480        viftable[vifi].v_bytes_in += plen;
1481    }
1482    rt->mfc_pkt_cnt++;
1483    rt->mfc_byte_cnt += plen;
1484
1485    /*
1486     * For each vif, decide if a copy of the packet should be forwarded.
1487     * Forward if:
1488     *          - the ttl exceeds the vif's threshold
1489     *          - there are group members downstream on interface
1490     */
1491    for (vifp = viftable, vifi = 0; vifi < numvifs; vifp++, vifi++)
1492        if ((rt->mfc_ttls[vifi] > 0) &&
1493            (ip->ip_ttl > rt->mfc_ttls[vifi])) {
1494            vifp->v_pkt_out++;
1495            vifp->v_bytes_out += plen;
1496            MC_SEND(ip, vifp, m);
1497        }
1498
1499    return 0;
1500}
1501
1502/*
1503 * check if a vif number is legal/ok. This is used by ip_output, to export
1504 * numvifs there,
1505 */
1506static int
1507X_legal_vif_num(vif)
1508    int vif;
1509{
1510    if (vif >= 0 && vif < numvifs)
1511       return(1);
1512    else
1513       return(0);
1514}
1515
1516#ifndef MROUTE_LKM
1517int (*legal_vif_num)(int) = X_legal_vif_num;
1518#endif
1519
1520/*
1521 * Return the local address used by this vif
1522 */
1523static u_long
1524X_ip_mcast_src(vifi)
1525    int vifi;
1526{
1527    if (vifi >= 0 && vifi < numvifs)
1528        return viftable[vifi].v_lcl_addr.s_addr;
1529    else
1530        return INADDR_ANY;
1531}
1532
1533#ifndef MROUTE_LKM
1534u_long (*ip_mcast_src)(int) = X_ip_mcast_src;
1535#endif
1536
1537static void
1538phyint_send(ip, vifp, m)
1539    struct ip *ip;
1540    struct vif *vifp;
1541    struct mbuf *m;
1542{
1543    register struct mbuf *mb_copy;
1544    register int hlen = ip->ip_hl << 2;
1545
1546    /*
1547     * Make a new reference to the packet; make sure that
1548     * the IP header is actually copied, not just referenced,
1549     * so that ip_output() only scribbles on the copy.
1550     */
1551    mb_copy = m_copy(m, 0, M_COPYALL);
1552    if (mb_copy && (M_HASCL(mb_copy) || mb_copy->m_len < hlen))
1553        mb_copy = m_pullup(mb_copy, hlen);
1554    if (mb_copy == NULL)
1555        return;
1556
1557    if (vifp->v_rate_limit <= 0)
1558        tbf_send_packet(vifp, mb_copy);
1559    else
1560        tbf_control(vifp, mb_copy, mtod(mb_copy, struct ip *), ip->ip_len);
1561}
1562
1563static void
1564encap_send(ip, vifp, m)
1565    register struct ip *ip;
1566    register struct vif *vifp;
1567    register struct mbuf *m;
1568{
1569    register struct mbuf *mb_copy;
1570    register struct ip *ip_copy;
1571    register int i, len = ip->ip_len;
1572
1573    /*
1574     * copy the old packet & pullup it's IP header into the
1575     * new mbuf so we can modify it.  Try to fill the new
1576     * mbuf since if we don't the ethernet driver will.
1577     */
1578    MGETHDR(mb_copy, M_DONTWAIT, MT_HEADER);
1579    if (mb_copy == NULL)
1580        return;
1581    mb_copy->m_data += max_linkhdr;
1582    mb_copy->m_len = sizeof(multicast_encap_iphdr);
1583
1584    if ((mb_copy->m_next = m_copy(m, 0, M_COPYALL)) == NULL) {
1585        m_freem(mb_copy);
1586        return;
1587    }
1588    i = MHLEN - M_LEADINGSPACE(mb_copy);
1589    if (i > len)
1590        i = len;
1591    mb_copy = m_pullup(mb_copy, i);
1592    if (mb_copy == NULL)
1593        return;
1594    mb_copy->m_pkthdr.len = len + sizeof(multicast_encap_iphdr);
1595
1596    /*
1597     * fill in the encapsulating IP header.
1598     */
1599    ip_copy = mtod(mb_copy, struct ip *);
1600    *ip_copy = multicast_encap_iphdr;
1601    ip_copy->ip_id = htons(ip_id++);
1602    ip_copy->ip_len += len;
1603    ip_copy->ip_src = vifp->v_lcl_addr;
1604    ip_copy->ip_dst = vifp->v_rmt_addr;
1605
1606    /*
1607     * turn the encapsulated IP header back into a valid one.
1608     */
1609    ip = (struct ip *)((caddr_t)ip_copy + sizeof(multicast_encap_iphdr));
1610    --ip->ip_ttl;
1611    HTONS(ip->ip_len);
1612    HTONS(ip->ip_off);
1613    ip->ip_sum = 0;
1614    mb_copy->m_data += sizeof(multicast_encap_iphdr);
1615    ip->ip_sum = in_cksum(mb_copy, ip->ip_hl << 2);
1616    mb_copy->m_data -= sizeof(multicast_encap_iphdr);
1617
1618    if (vifp->v_rate_limit <= 0)
1619        tbf_send_packet(vifp, mb_copy);
1620    else
1621        tbf_control(vifp, mb_copy, ip, ip_copy->ip_len);
1622}
1623
1624/*
1625 * De-encapsulate a packet and feed it back through ip input (this
1626 * routine is called whenever IP gets a packet with proto type
1627 * ENCAP_PROTO and a local destination address).
1628 */
1629void
1630#ifdef MROUTE_LKM
1631X_ipip_input(m, iphlen)
1632#else
1633ipip_input(m, iphlen)
1634#endif
1635        register struct mbuf *m;
1636        int iphlen;
1637{
1638    struct ifnet *ifp = m->m_pkthdr.rcvif;
1639    register struct ip *ip = mtod(m, struct ip *);
1640    register int hlen = ip->ip_hl << 2;
1641    register int s;
1642    register struct ifqueue *ifq;
1643    register struct vif *vifp;
1644
1645    if (!have_encap_tunnel) {
1646            rip_input(m, iphlen);
1647            return;
1648    }
1649    /*
1650     * dump the packet if it's not to a multicast destination or if
1651     * we don't have an encapsulating tunnel with the source.
1652     * Note:  This code assumes that the remote site IP address
1653     * uniquely identifies the tunnel (i.e., that this site has
1654     * at most one tunnel with the remote site).
1655     */
1656    if (! IN_MULTICAST(ntohl(((struct ip *)((char *)ip + hlen))->ip_dst.s_addr))) {
1657        ++mrtstat.mrts_bad_tunnel;
1658        m_freem(m);
1659        return;
1660    }
1661    if (ip->ip_src.s_addr != last_encap_src) {
1662        register struct vif *vife;
1663       
1664        vifp = viftable;
1665        vife = vifp + numvifs;
1666        last_encap_src = ip->ip_src.s_addr;
1667        last_encap_vif = 0;
1668        for ( ; vifp < vife; ++vifp)
1669            if (vifp->v_rmt_addr.s_addr == ip->ip_src.s_addr) {
1670                if ((vifp->v_flags & (VIFF_TUNNEL|VIFF_SRCRT))
1671                    == VIFF_TUNNEL)
1672                    last_encap_vif = vifp;
1673                break;
1674            }
1675    }
1676    if ((vifp = last_encap_vif) == 0) {
1677        last_encap_src = 0;
1678        mrtstat.mrts_cant_tunnel++; /*XXX*/
1679        m_freem(m);
1680        if (mrtdebug)
1681          log(LOG_DEBUG, "ip_mforward: no tunnel with %x\n",
1682                ntohl(ip->ip_src.s_addr));
1683        return;
1684    }
1685    ifp = vifp->v_ifp;
1686
1687    if (hlen > IP_HDR_LEN)
1688      ip_stripoptions(m, (struct mbuf *) 0);
1689    m->m_data += IP_HDR_LEN;
1690    m->m_len -= IP_HDR_LEN;
1691    m->m_pkthdr.len -= IP_HDR_LEN;
1692    m->m_pkthdr.rcvif = ifp;
1693
1694    ifq = &ipintrq;
1695    s = splimp();
1696    if (IF_QFULL(ifq)) {
1697        IF_DROP(ifq);
1698        m_freem(m);
1699    } else {
1700        IF_ENQUEUE(ifq, m);
1701        /*
1702         * normally we would need a "schednetisr(NETISR_IP)"
1703         * here but we were called by ip_input and it is going
1704         * to loop back & try to dequeue the packet we just
1705         * queued as soon as we return so we avoid the
1706         * unnecessary software interrrupt.
1707         */
1708    }
1709    splx(s);
1710}
1711
1712/*
1713 * Token bucket filter module
1714 */
1715
1716static void
1717tbf_control(vifp, m, ip, p_len)
1718        register struct vif *vifp;
1719        register struct mbuf *m;
1720        register struct ip *ip;
1721        register u_long p_len;
1722{
1723    register struct tbf *t = vifp->v_tbf;
1724
1725    if (p_len > MAX_BKT_SIZE) {
1726        /* drop if packet is too large */
1727        mrtstat.mrts_pkt2large++;
1728        m_freem(m);
1729        return;
1730    }
1731
1732    tbf_update_tokens(vifp);
1733
1734    /* if there are enough tokens,
1735     * and the queue is empty,
1736     * send this packet out
1737     */
1738
1739    if (t->tbf_q_len == 0) {
1740        /* queue empty, send packet if enough tokens */
1741        if (p_len <= t->tbf_n_tok) {
1742            t->tbf_n_tok -= p_len;
1743            tbf_send_packet(vifp, m);
1744        } else {
1745            /* queue packet and timeout till later */
1746            tbf_queue(vifp, m);
1747            timeout(tbf_reprocess_q, (caddr_t)vifp, TBF_REPROCESS);
1748        }
1749    } else if (t->tbf_q_len < t->tbf_max_q_len) {
1750        /* finite queue length, so queue pkts and process queue */
1751        tbf_queue(vifp, m);
1752        tbf_process_q(vifp);
1753    } else {
1754        /* queue length too much, try to dq and queue and process */
1755        if (!tbf_dq_sel(vifp, ip)) {
1756            mrtstat.mrts_q_overflow++;
1757            m_freem(m);
1758            return;
1759        } else {
1760            tbf_queue(vifp, m);
1761            tbf_process_q(vifp);
1762        }
1763    }
1764    return;
1765}
1766
1767/*
1768 * adds a packet to the queue at the interface
1769 */
1770static void
1771tbf_queue(vifp, m) 
1772        register struct vif *vifp;
1773        register struct mbuf *m;
1774{
1775    register int s = splnet();
1776    register struct tbf *t = vifp->v_tbf;
1777
1778    if (t->tbf_t == NULL) {
1779        /* Queue was empty */
1780        t->tbf_q = m;
1781    } else {
1782        /* Insert at tail */
1783        t->tbf_t->m_act = m;
1784    }
1785
1786    /* Set new tail pointer */
1787    t->tbf_t = m;
1788
1789#ifdef DIAGNOSTIC
1790    /* Make sure we didn't get fed a bogus mbuf */
1791    if (m->m_act)
1792        panic("tbf_queue: m_act");
1793#endif
1794    m->m_act = NULL;
1795
1796    t->tbf_q_len++;
1797
1798    splx(s);
1799}
1800
1801
1802/*
1803 * processes the queue at the interface
1804 */
1805static void
1806tbf_process_q(vifp)
1807    register struct vif *vifp;
1808{
1809    register struct mbuf *m;
1810    register int len;
1811    register int s = splnet();
1812    register struct tbf *t = vifp->v_tbf;
1813
1814    /* loop through the queue at the interface and send as many packets
1815     * as possible
1816     */
1817    while (t->tbf_q_len > 0) {
1818        m = t->tbf_q;
1819
1820        len = mtod(m, struct ip *)->ip_len;
1821
1822        /* determine if the packet can be sent */
1823        if (len <= t->tbf_n_tok) {
1824            /* if so,
1825             * reduce no of tokens, dequeue the packet,
1826             * send the packet.
1827             */
1828            t->tbf_n_tok -= len;
1829
1830            t->tbf_q = m->m_act;
1831            if (--t->tbf_q_len == 0)
1832                t->tbf_t = NULL;
1833
1834            m->m_act = NULL;
1835            tbf_send_packet(vifp, m);
1836
1837        } else break;
1838    }
1839    splx(s);
1840}
1841
1842static void
1843tbf_reprocess_q(xvifp)
1844        void *xvifp;
1845{
1846    register struct vif *vifp = xvifp;
1847    if (ip_mrouter == NULL) 
1848        return;
1849
1850    tbf_update_tokens(vifp);
1851
1852    tbf_process_q(vifp);
1853
1854    if (vifp->v_tbf->tbf_q_len)
1855        timeout(tbf_reprocess_q, (caddr_t)vifp, TBF_REPROCESS);
1856}
1857
1858/* function that will selectively discard a member of the queue
1859 * based on the precedence value and the priority
1860 */
1861static int
1862tbf_dq_sel(vifp, ip)
1863    register struct vif *vifp;
1864    register struct ip *ip;
1865{
1866    register int s = splnet();
1867    register u_int p;
1868    register struct mbuf *m, *last;
1869    register struct mbuf **np;
1870    register struct tbf *t = vifp->v_tbf;
1871
1872    p = priority(vifp, ip);
1873
1874    np = &t->tbf_q;
1875    last = NULL;
1876    while ((m = *np) != NULL) {
1877        if (p > priority(vifp, mtod(m, struct ip *))) {
1878            *np = m->m_act;
1879            /* If we're removing the last packet, fix the tail pointer */
1880            if (m == t->tbf_t)
1881                t->tbf_t = last;
1882            m_freem(m);
1883            /* it's impossible for the queue to be empty, but
1884             * we check anyway. */
1885            if (--t->tbf_q_len == 0)
1886                t->tbf_t = NULL;
1887            splx(s);
1888            mrtstat.mrts_drop_sel++;
1889            return(1);
1890        }
1891        np = &m->m_act;
1892        last = m;
1893    }
1894    splx(s);
1895    return(0);
1896}
1897
1898static void
1899tbf_send_packet(vifp, m)
1900    register struct vif *vifp;
1901    register struct mbuf *m;
1902{
1903    struct ip_moptions imo;
1904    int error;
1905    static struct route ro;
1906    int s = splnet();
1907
1908    if (vifp->v_flags & VIFF_TUNNEL) {
1909        /* If tunnel options */
1910        ip_output(m, (struct mbuf *)0, &vifp->v_route,
1911                  IP_FORWARDING, (struct ip_moptions *)0);
1912    } else {
1913        imo.imo_multicast_ifp  = vifp->v_ifp;
1914        imo.imo_multicast_ttl  = mtod(m, struct ip *)->ip_ttl - 1;
1915        imo.imo_multicast_loop = 1;
1916        imo.imo_multicast_vif  = -1;
1917
1918        /*
1919         * Re-entrancy should not be a problem here, because
1920         * the packets that we send out and are looped back at us
1921         * should get rejected because they appear to come from
1922         * the loopback interface, thus preventing looping.
1923         */
1924        error = ip_output(m, (struct mbuf *)0, &ro,
1925                          IP_FORWARDING, &imo);
1926
1927        if (mrtdebug & DEBUG_XMIT)
1928            log(LOG_DEBUG, "phyint_send on vif %d err %d\n", 
1929                vifp - viftable, error);
1930    }
1931    splx(s);
1932}
1933
1934/* determine the current time and then
1935 * the elapsed time (between the last time and time now)
1936 * in milliseconds & update the no. of tokens in the bucket
1937 */
1938static void
1939tbf_update_tokens(vifp)
1940    register struct vif *vifp;
1941{
1942    struct timeval tp;
1943    register u_long tm;
1944    register int s = splnet();
1945    register struct tbf *t = vifp->v_tbf;
1946
1947    GET_TIME(tp);
1948
1949    TV_DELTA(tp, t->tbf_last_pkt_t, tm);
1950
1951    /*
1952     * This formula is actually
1953     * "time in seconds" * "bytes/second".
1954     *
1955     * (tm / 1000000) * (v_rate_limit * 1000 * (1000/1024) / 8)
1956     *
1957     * The (1000/1024) was introduced in add_vif to optimize
1958     * this divide into a shift.
1959     */
1960    t->tbf_n_tok += tm * vifp->v_rate_limit / 1024 / 8;
1961    t->tbf_last_pkt_t = tp;
1962
1963    if (t->tbf_n_tok > MAX_BKT_SIZE)
1964        t->tbf_n_tok = MAX_BKT_SIZE;
1965
1966    splx(s);
1967}
1968
1969static int
1970priority(vifp, ip)
1971    register struct vif *vifp;
1972    register struct ip *ip;
1973{
1974    register int prio;
1975
1976    /* temporary hack; may add general packet classifier some day */
1977
1978    /*
1979     * The UDP port space is divided up into four priority ranges:
1980     * [0, 16384)     : unclassified - lowest priority
1981     * [16384, 32768) : audio - highest priority
1982     * [32768, 49152) : whiteboard - medium priority
1983     * [49152, 65536) : video - low priority
1984     */
1985    if (ip->ip_p == IPPROTO_UDP) {
1986        struct udphdr *udp = (struct udphdr *)(((char *)ip) + (ip->ip_hl << 2));
1987        switch (ntohs(udp->uh_dport) & 0xc000) {
1988            case 0x4000:
1989                prio = 70;
1990                break;
1991            case 0x8000:
1992                prio = 60;
1993                break;
1994            case 0xc000:
1995                prio = 55;
1996                break;
1997            default:
1998                prio = 50;
1999                break;
2000        }
2001        if (tbfdebug > 1)
2002                log(LOG_DEBUG, "port %x prio%d\n", ntohs(udp->uh_dport), prio);
2003    } else {
2004            prio = 50;
2005    }
2006    return prio;
2007}
2008
2009/*
2010 * End of token bucket filter modifications
2011 */
2012
2013int
2014ip_rsvp_vif_init(so, m)
2015    struct socket *so;
2016    struct mbuf *m;
2017{
2018    int i;
2019    register int s;
2020
2021    if (rsvpdebug)
2022        printf("ip_rsvp_vif_init: so_type = %d, pr_protocol = %d\n",
2023               so->so_type, so->so_proto->pr_protocol);
2024
2025    if (so->so_type != SOCK_RAW || so->so_proto->pr_protocol != IPPROTO_RSVP)
2026        return EOPNOTSUPP;
2027
2028    /* Check mbuf. */
2029    if (m == NULL || m->m_len != sizeof(int)) {
2030        return EINVAL;
2031    }
2032    i = *(mtod(m, int *));
2033 
2034    if (rsvpdebug)
2035        printf("ip_rsvp_vif_init: vif = %d rsvp_on = %d\n",i,rsvp_on);
2036 
2037    s = splnet();
2038
2039    /* Check vif. */
2040    if (!legal_vif_num(i)) {
2041        splx(s);
2042        return EADDRNOTAVAIL;
2043    }
2044
2045    /* Check if socket is available. */
2046    if (viftable[i].v_rsvpd != NULL) {
2047        splx(s);
2048        return EADDRINUSE;
2049    }
2050
2051    viftable[i].v_rsvpd = so;
2052    /* This may seem silly, but we need to be sure we don't over-increment
2053     * the RSVP counter, in case something slips up.
2054     */
2055    if (!viftable[i].v_rsvp_on) {
2056        viftable[i].v_rsvp_on = 1;
2057        rsvp_on++;
2058    }
2059
2060    splx(s);
2061    return 0;
2062}
2063
2064int
2065ip_rsvp_vif_done(so, m)
2066    struct socket *so;
2067    struct mbuf *m;
2068{
2069        int i;
2070        register int s;
2071 
2072    if (rsvpdebug)
2073        printf("ip_rsvp_vif_done: so_type = %d, pr_protocol = %d\n",
2074               so->so_type, so->so_proto->pr_protocol);
2075 
2076    if (so->so_type != SOCK_RAW || so->so_proto->pr_protocol != IPPROTO_RSVP)
2077        return EOPNOTSUPP;
2078 
2079    /* Check mbuf. */
2080    if (m == NULL || m->m_len != sizeof(int)) {
2081            return EINVAL;
2082    }
2083    i = *(mtod(m, int *));
2084 
2085    s = splnet();
2086 
2087    /* Check vif. */
2088    if (!legal_vif_num(i)) {
2089        splx(s);
2090        return EADDRNOTAVAIL;
2091    }
2092
2093    if (rsvpdebug)
2094        printf("ip_rsvp_vif_done: v_rsvpd = %p so = %p\n",
2095               viftable[i].v_rsvpd, so);
2096
2097    viftable[i].v_rsvpd = NULL;
2098    /* This may seem silly, but we need to be sure we don't over-decrement
2099     * the RSVP counter, in case something slips up.
2100     */
2101    if (viftable[i].v_rsvp_on) {
2102        viftable[i].v_rsvp_on = 0;
2103        rsvp_on--;
2104    }
2105
2106    splx(s);
2107    return 0;
2108}
2109
2110void
2111ip_rsvp_force_done(so)
2112    struct socket *so;
2113{
2114    int vifi;
2115    register int s;
2116
2117    /* Don't bother if it is not the right type of socket. */
2118    if (so->so_type != SOCK_RAW || so->so_proto->pr_protocol != IPPROTO_RSVP)
2119        return;
2120
2121    s = splnet();
2122
2123    /* The socket may be attached to more than one vif...this
2124     * is perfectly legal.
2125     */
2126    for (vifi = 0; vifi < numvifs; vifi++) {
2127        if (viftable[vifi].v_rsvpd == so) {
2128            viftable[vifi].v_rsvpd = NULL;
2129            /* This may seem silly, but we need to be sure we don't
2130             * over-decrement the RSVP counter, in case something slips up.
2131             */
2132            if (viftable[vifi].v_rsvp_on) {
2133                viftable[vifi].v_rsvp_on = 0;
2134                rsvp_on--;
2135            }
2136        }
2137    }
2138
2139    splx(s);
2140    return;
2141}
2142
2143void
2144rsvp_input(m, iphlen)
2145        struct mbuf *m;
2146        int iphlen;
2147{
2148    int vifi;
2149    register struct ip *ip = mtod(m, struct ip *);
2150    static struct sockaddr_in rsvp_src = { sizeof rsvp_src, AF_INET };
2151    register int s;
2152    struct ifnet *ifp;
2153
2154    if (rsvpdebug)
2155        printf("rsvp_input: rsvp_on %d\n",rsvp_on);
2156
2157    /* Can still get packets with rsvp_on = 0 if there is a local member
2158     * of the group to which the RSVP packet is addressed.  But in this
2159     * case we want to throw the packet away.
2160     */
2161    if (!rsvp_on) {
2162        m_freem(m);
2163        return;
2164    }
2165
2166    /* If the old-style non-vif-associated socket is set, then use
2167     * it and ignore the new ones.
2168     */
2169    if (ip_rsvpd != NULL) {
2170        if (rsvpdebug)
2171            printf("rsvp_input: Sending packet up old-style socket\n");
2172        rip_input(m, iphlen);
2173        return;
2174    }
2175
2176    s = splnet();
2177
2178    if (rsvpdebug)
2179        printf("rsvp_input: check vifs\n");
2180
2181#ifdef DIAGNOSTIC
2182    if (!(m->m_flags & M_PKTHDR))
2183            panic("rsvp_input no hdr");
2184#endif
2185
2186    ifp = m->m_pkthdr.rcvif;
2187    /* Find which vif the packet arrived on. */
2188    for (vifi = 0; vifi < numvifs; vifi++) {
2189        if (viftable[vifi].v_ifp == ifp)
2190                break;
2191        }
2192 
2193    if (vifi == numvifs) {
2194        /* Can't find vif packet arrived on. Drop packet. */
2195        if (rsvpdebug)
2196            printf("rsvp_input: Can't find vif for packet...dropping it.\n");
2197        m_freem(m);
2198        splx(s);
2199        return;
2200    }
2201
2202    if (rsvpdebug)
2203        printf("rsvp_input: check socket\n");
2204
2205    if (viftable[vifi].v_rsvpd == NULL) {
2206        /* drop packet, since there is no specific socket for this
2207         * interface */
2208            if (rsvpdebug)
2209                    printf("rsvp_input: No socket defined for vif %d\n",vifi);
2210            m_freem(m);
2211            splx(s);
2212            return;
2213    }
2214    rsvp_src.sin_addr = ip->ip_src;
2215
2216    if (rsvpdebug && m)
2217        printf("rsvp_input: m->m_len = %d, sbspace() = %ld\n",
2218               m->m_len,sbspace(&(viftable[vifi].v_rsvpd->so_rcv)));
2219
2220    if (socket_send(viftable[vifi].v_rsvpd, m, &rsvp_src) < 0)
2221        if (rsvpdebug)
2222            printf("rsvp_input: Failed to append to socket\n");
2223    else
2224        if (rsvpdebug)
2225            printf("rsvp_input: send packet up\n");
2226   
2227    splx(s);
2228}
2229
2230#ifdef MROUTE_LKM
2231#include <sys/conf.h>
2232#include <sys/exec.h>
2233#include <sys/sysent.h>
2234#include <sys/lkm.h>
2235
2236MOD_MISC("ip_mroute_mod")
2237
2238static int
2239ip_mroute_mod_handle(struct lkm_table *lkmtp, int cmd)
2240{
2241        int i;
2242        struct lkm_misc *args = lkmtp->private.lkm_misc;
2243        int err = 0;
2244
2245        switch(cmd) {
2246                static int (*old_ip_mrouter_cmd)();
2247                static int (*old_ip_mrouter_done)();
2248                static int (*old_ip_mforward)();
2249                static int (*old_mrt_ioctl)();
2250                static void (*old_proto4_input)();
2251                static int (*old_legal_vif_num)();
2252                extern struct protosw inetsw[];
2253
2254        case LKM_E_LOAD:
2255                if(lkmexists(lkmtp) || ip_mrtproto)
2256                  return(EEXIST);
2257                old_ip_mrouter_cmd = ip_mrouter_cmd;
2258                ip_mrouter_cmd = X_ip_mrouter_cmd;
2259                old_ip_mrouter_done = ip_mrouter_done;
2260                ip_mrouter_done = X_ip_mrouter_done;
2261                old_ip_mforward = ip_mforward;
2262                ip_mforward = X_ip_mforward;
2263                old_mrt_ioctl = mrt_ioctl;
2264                mrt_ioctl = X_mrt_ioctl;
2265              old_proto4_input = inetsw[ip_protox[ENCAP_PROTO]].pr_input;
2266              inetsw[ip_protox[ENCAP_PROTO]].pr_input = X_ipip_input;
2267                old_legal_vif_num = legal_vif_num;
2268                legal_vif_num = X_legal_vif_num;
2269                ip_mrtproto = IGMP_DVMRP;
2270
2271                printf("\nIP multicast routing loaded\n");
2272                break;
2273
2274        case LKM_E_UNLOAD:
2275                if (ip_mrouter)
2276                  return EINVAL;
2277
2278                ip_mrouter_cmd = old_ip_mrouter_cmd;
2279                ip_mrouter_done = old_ip_mrouter_done;
2280                ip_mforward = old_ip_mforward;
2281                mrt_ioctl = old_mrt_ioctl;
2282              inetsw[ip_protox[ENCAP_PROTO]].pr_input = old_proto4_input;
2283                legal_vif_num = old_legal_vif_num;
2284                ip_mrtproto = 0;
2285                break;
2286
2287        default:
2288                err = EINVAL;
2289                break;
2290        }
2291
2292        return(err);
2293}
2294
2295int
2296ip_mroute_mod(struct lkm_table *lkmtp, int cmd, int ver) {
2297        DISPATCH(lkmtp, cmd, ver, ip_mroute_mod_handle, ip_mroute_mod_handle,
2298                 nosys);
2299}
2300
2301#endif /* MROUTE_LKM */
2302#endif /* MROUTING */
Note: See TracBrowser for help on using the repository browser.