source: rtems/cpukit/libblock/src/bdbuf.c @ 0a7278e

4.104.115
Last change on this file since 0a7278e was 6d612944, checked in by Thomas Doerfler <Thomas.Doerfler@…>, on 11/20/09 at 06:33:38

numerous changes

  • Property mode set to 100644
File size: 78.1 KB
Line 
1/**
2 * @file
3 *
4 * @ingroup rtems_bdbuf
5 *
6 * Block device buffer management.
7 */
8
9/*
10 * Disk I/O buffering
11 * Buffer managment
12 *
13 * Copyright (C) 2001 OKTET Ltd., St.-Peterburg, Russia
14 * Author: Andrey G. Ivanov <Andrey.Ivanov@oktet.ru>
15 *         Victor V. Vengerov <vvv@oktet.ru>
16 *         Alexander Kukuta <kam@oktet.ru>
17 *
18 * Copyright (C) 2008,2009 Chris Johns <chrisj@rtems.org>
19 *    Rewritten to remove score mutex access. Fixes many performance
20 *    issues.
21 *
22 * Copyright (c) 2009 embedded brains GmbH.
23 *
24 * @(#) bdbuf.c,v 1.14 2004/04/17 08:15:17 ralf Exp
25 */
26
27/**
28 * Set to 1 to enable debug tracing.
29 */
30#define RTEMS_BDBUF_TRACE 0
31
32#if HAVE_CONFIG_H
33#include "config.h"
34#endif
35#include <limits.h>
36#include <errno.h>
37#include <assert.h>
38#include <stdio.h>
39#include <string.h>
40#include <inttypes.h>
41
42#include <rtems.h>
43#include <rtems/error.h>
44#include <rtems/malloc.h>
45
46#include "rtems/bdbuf.h"
47
48#define BDBUF_INVALID_DEV ((dev_t) -1)
49
50/*
51 * Simpler label for this file.
52 */
53#define bdbuf_config rtems_bdbuf_configuration
54
55/**
56 * A swapout transfer transaction data. This data is passed to a worked thread
57 * to handle the write phase of the transfer.
58 */
59typedef struct rtems_bdbuf_swapout_transfer
60{
61  rtems_chain_control   bds;         /**< The transfer list of BDs. */
62  dev_t                 dev;         /**< The device the transfer is for. */
63  rtems_blkdev_request* write_req;   /**< The write request array. */
64  uint32_t              bufs_per_bd; /**< Number of buffers per bd. */
65} rtems_bdbuf_swapout_transfer;
66
67/**
68 * Swapout worker thread. These are available to take processing from the
69 * main swapout thread and handle the I/O operation.
70 */
71typedef struct rtems_bdbuf_swapout_worker
72{
73  rtems_chain_node             link;     /**< The threads sit on a chain when
74                                          * idle. */
75  rtems_id                     id;       /**< The id of the task so we can wake
76                                          * it. */
77  volatile bool                enabled;  /**< The worked is enabled. */
78  rtems_bdbuf_swapout_transfer transfer; /**< The transfer data for this
79                                          * thread. */
80} rtems_bdbuf_swapout_worker;
81
82/**
83 * Buffer waiters synchronization.
84 */
85typedef struct rtems_bdbuf_waiters {
86  volatile unsigned count;
87  rtems_id sema;
88} rtems_bdbuf_waiters;
89
90/**
91 * The BD buffer cache.
92 */
93typedef struct rtems_bdbuf_cache
94{
95  rtems_id            swapout;           /**< Swapout task ID */
96  volatile bool       swapout_enabled;   /**< Swapout is only running if
97                                          * enabled. Set to false to kill the
98                                          * swap out task. It deletes itself. */
99  rtems_chain_control swapout_workers;   /**< The work threads for the swapout
100                                          * task. */
101 
102  rtems_bdbuf_buffer* bds;               /**< Pointer to table of buffer
103                                          * descriptors. */
104  void*               buffers;           /**< The buffer's memory. */
105  size_t              buffer_min_count;  /**< Number of minimum size buffers
106                                          * that fit the buffer memory. */
107  size_t              max_bds_per_group; /**< The number of BDs of minimum
108                                          * buffer size that fit in a group. */
109  uint32_t            flags;             /**< Configuration flags. */
110
111  rtems_id            lock;              /**< The cache lock. It locks all
112                                          * cache data, BD and lists. */
113  rtems_id            sync_lock;         /**< Sync calls block writes. */
114  volatile bool       sync_active;       /**< True if a sync is active. */
115  volatile rtems_id   sync_requester;    /**< The sync requester. */
116  volatile dev_t      sync_device;       /**< The device to sync and
117                                          * BDBUF_INVALID_DEV not a device
118                                          * sync. */
119
120  rtems_bdbuf_buffer* tree;              /**< Buffer descriptor lookup AVL tree
121                                          * root. There is only one. */
122  rtems_chain_control lru;               /**< Least recently used list */
123  rtems_chain_control modified;          /**< Modified buffers list */
124  rtems_chain_control sync;              /**< Buffers to sync list */
125
126  rtems_bdbuf_waiters access_waiters;    /**< Wait for a buffer in ACCESS
127                                          * state. */
128  rtems_bdbuf_waiters transfer_waiters;  /**< Wait for a buffer in TRANSFER
129                                          * state. */
130  rtems_bdbuf_waiters buffer_waiters;    /**< Wait for a buffer and no one is
131                                          * available. */
132
133  size_t              group_count;       /**< The number of groups. */
134  rtems_bdbuf_group*  groups;            /**< The groups. */
135 
136  bool                initialised;       /**< Initialised state. */
137} rtems_bdbuf_cache;
138
139/**
140 * Fatal errors
141 */
142#define RTEMS_BLKDEV_FATAL_ERROR(n) \
143  (((uint32_t)'B' << 24) | ((uint32_t)(n) & (uint32_t)0x00FFFFFF))
144
145#define RTEMS_BLKDEV_FATAL_BDBUF_STATE_3       RTEMS_BLKDEV_FATAL_ERROR(1)
146#define RTEMS_BLKDEV_FATAL_BDBUF_STATE_4       RTEMS_BLKDEV_FATAL_ERROR(2)
147#define RTEMS_BLKDEV_FATAL_BDBUF_STATE_5       RTEMS_BLKDEV_FATAL_ERROR(3)
148#define RTEMS_BLKDEV_FATAL_BDBUF_STATE_6       RTEMS_BLKDEV_FATAL_ERROR(4)
149#define RTEMS_BLKDEV_FATAL_BDBUF_STATE_7       RTEMS_BLKDEV_FATAL_ERROR(5)
150#define RTEMS_BLKDEV_FATAL_BDBUF_STATE_8       RTEMS_BLKDEV_FATAL_ERROR(6)
151#define RTEMS_BLKDEV_FATAL_BDBUF_STATE_9       RTEMS_BLKDEV_FATAL_ERROR(7)
152#define RTEMS_BLKDEV_FATAL_BDBUF_STATE_10      RTEMS_BLKDEV_FATAL_ERROR(8)
153#define RTEMS_BLKDEV_FATAL_BDBUF_CACHE_RM      RTEMS_BLKDEV_FATAL_ERROR(9)
154#define RTEMS_BLKDEV_FATAL_BDBUF_SWAPOUT       RTEMS_BLKDEV_FATAL_ERROR(10)
155#define RTEMS_BLKDEV_FATAL_BDBUF_SYNC_LOCK     RTEMS_BLKDEV_FATAL_ERROR(11)
156#define RTEMS_BLKDEV_FATAL_BDBUF_SYNC_UNLOCK   RTEMS_BLKDEV_FATAL_ERROR(12)
157#define RTEMS_BLKDEV_FATAL_BDBUF_CACHE_LOCK    RTEMS_BLKDEV_FATAL_ERROR(13)
158#define RTEMS_BLKDEV_FATAL_BDBUF_CACHE_UNLOCK  RTEMS_BLKDEV_FATAL_ERROR(14)
159#define RTEMS_BLKDEV_FATAL_BDBUF_PREEMPT_DIS   RTEMS_BLKDEV_FATAL_ERROR(15)
160#define RTEMS_BLKDEV_FATAL_BDBUF_CACHE_WAIT_2  RTEMS_BLKDEV_FATAL_ERROR(16)
161#define RTEMS_BLKDEV_FATAL_BDBUF_PREEMPT_RST   RTEMS_BLKDEV_FATAL_ERROR(17)
162#define RTEMS_BLKDEV_FATAL_BDBUF_CACHE_WAIT_TO RTEMS_BLKDEV_FATAL_ERROR(18)
163#define RTEMS_BLKDEV_FATAL_BDBUF_CACHE_WAKE    RTEMS_BLKDEV_FATAL_ERROR(19)
164#define RTEMS_BLKDEV_FATAL_BDBUF_SO_WAKE       RTEMS_BLKDEV_FATAL_ERROR(20)
165#define RTEMS_BLKDEV_FATAL_BDBUF_SO_NOMEM      RTEMS_BLKDEV_FATAL_ERROR(21)
166#define RTEMS_BLKDEV_FATAL_BDBUF_SO_WK_CREATE  RTEMS_BLKDEV_FATAL_ERROR(22)
167#define RTEMS_BLKDEV_FATAL_BDBUF_SO_WK_START   RTEMS_BLKDEV_FATAL_ERROR(23)
168#define BLKDEV_FATAL_BDBUF_SWAPOUT_RE          RTEMS_BLKDEV_FATAL_ERROR(24)
169#define BLKDEV_FATAL_BDBUF_SWAPOUT_TS          RTEMS_BLKDEV_FATAL_ERROR(25)
170#define RTEMS_BLKDEV_FATAL_BDBUF_WAIT_EVNT     RTEMS_BLKDEV_FATAL_ERROR(26)
171#define RTEMS_BLKDEV_FATAL_BDBUF_RECYCLE       RTEMS_BLKDEV_FATAL_ERROR(27)
172#define RTEMS_BLKDEV_FATAL_BDBUF_STATE_0       RTEMS_BLKDEV_FATAL_ERROR(28)
173#define RTEMS_BLKDEV_FATAL_BDBUF_STATE_1       RTEMS_BLKDEV_FATAL_ERROR(29)
174#define RTEMS_BLKDEV_FATAL_BDBUF_STATE_2       RTEMS_BLKDEV_FATAL_ERROR(30)
175#define RTEMS_BLKDEV_FATAL_BDBUF_DISK_REL      RTEMS_BLKDEV_FATAL_ERROR(31)
176
177/**
178 * The events used in this code. These should be system events rather than
179 * application events.
180 */
181#define RTEMS_BDBUF_TRANSFER_SYNC  RTEMS_EVENT_1
182#define RTEMS_BDBUF_SWAPOUT_SYNC   RTEMS_EVENT_2
183
184/**
185 * The swap out task size. Should be more than enough for most drivers with
186 * tracing turned on.
187 */
188#define SWAPOUT_TASK_STACK_SIZE (8 * 1024)
189
190/**
191 * Lock semaphore attributes. This is used for locking type mutexes.
192 *
193 * @warning Priority inheritance is on.
194 */
195#define RTEMS_BDBUF_CACHE_LOCK_ATTRIBS \
196  (RTEMS_PRIORITY | RTEMS_BINARY_SEMAPHORE | \
197   RTEMS_INHERIT_PRIORITY | RTEMS_NO_PRIORITY_CEILING | RTEMS_LOCAL)
198
199/**
200 * Waiter semaphore attributes.
201 *
202 * @warning Do not configure as inherit priority. If a driver is in the driver
203 *          initialisation table this locked semaphore will have the IDLE task
204 *          as the holder and a blocking task will raise the priority of the
205 *          IDLE task which can cause unsual side effects.
206 */
207#define RTEMS_BDBUF_CACHE_WAITER_ATTRIBS \
208  (RTEMS_PRIORITY | RTEMS_SIMPLE_BINARY_SEMAPHORE | \
209   RTEMS_NO_INHERIT_PRIORITY | RTEMS_NO_PRIORITY_CEILING | RTEMS_LOCAL)
210
211/**
212 * Waiter timeout. Set to non-zero to find some info on a waiter that is
213 * waiting too long.
214 */
215#define RTEMS_BDBUF_WAIT_TIMEOUT RTEMS_NO_TIMEOUT
216#if !defined (RTEMS_BDBUF_WAIT_TIMEOUT)
217#define RTEMS_BDBUF_WAIT_TIMEOUT \
218  (TOD_MICROSECONDS_TO_TICKS (20000000))
219#endif
220
221/*
222 * The swap out task.
223 */
224static rtems_task rtems_bdbuf_swapout_task(rtems_task_argument arg);
225
226/**
227 * The Buffer Descriptor cache.
228 */
229static rtems_bdbuf_cache bdbuf_cache;
230
231#if RTEMS_BDBUF_TRACE
232/**
233 * If true output the trace message.
234 */
235bool rtems_bdbuf_tracer;
236
237/**
238 * Return the number of items on the list.
239 *
240 * @param list The chain control.
241 * @return uint32_t The number of items on the list.
242 */
243uint32_t
244rtems_bdbuf_list_count (rtems_chain_control* list)
245{
246  rtems_chain_node* node = rtems_chain_first (list);
247  uint32_t          count = 0;
248  while (!rtems_chain_is_tail (list, node))
249  {
250    count++;
251    node = rtems_chain_next (node);
252  }
253  return count;
254}
255
256/**
257 * Show the usage for the bdbuf cache.
258 */
259void
260rtems_bdbuf_show_usage (void)
261{
262  uint32_t group;
263  uint32_t total = 0;
264  uint32_t val;
265
266  for (group = 0; group < bdbuf_cache.group_count; group++)
267    total += bdbuf_cache.groups[group].users;
268  printf ("bdbuf:group users=%lu", total);
269  val = rtems_bdbuf_list_count (&bdbuf_cache.lru);
270  printf (", lru=%lu", val);
271  total = val;
272  val = rtems_bdbuf_list_count (&bdbuf_cache.modified);
273  printf (", mod=%lu", val);
274  total += val;
275  val = rtems_bdbuf_list_count (&bdbuf_cache.sync);
276  printf (", sync=%lu", val);
277  total += val;
278  printf (", total=%lu\n", total);
279}
280
281/**
282 * Show the users for a group of a bd.
283 *
284 * @param where A label to show the context of output.
285 * @param bd The bd to show the users of.
286 */
287void
288rtems_bdbuf_show_users (const char* where, rtems_bdbuf_buffer* bd)
289{
290  const char* states[] =
291    { "EM", "FR", "CH", "AC", "AM", "MD", "SY", "TR" };
292
293  printf ("bdbuf:users: %15s: [%" PRIu32 " (%s)] %td:%td = %" PRIu32 " %s\n",
294          where,
295          bd->block, states[bd->state],
296          bd->group - bdbuf_cache.groups,
297          bd - bdbuf_cache.bds,
298          bd->group->users,
299          bd->group->users > 8 ? "<<<<<<<" : "");
300}
301#else
302#define rtems_bdbuf_tracer (0)
303#define rtems_bdbuf_show_usage() ((void) 0)
304#define rtems_bdbuf_show_users(_w, _b) ((void) 0)
305#endif
306
307/**
308 * The default maximum height of 32 allows for AVL trees having between
309 * 5,704,880 and 4,294,967,295 nodes, depending on order of insertion.  You may
310 * change this compile-time constant as you wish.
311 */
312#ifndef RTEMS_BDBUF_AVL_MAX_HEIGHT
313#define RTEMS_BDBUF_AVL_MAX_HEIGHT (32)
314#endif
315
316static void
317rtems_bdbuf_fatal (rtems_bdbuf_buf_state state, uint32_t error)
318{
319  rtems_fatal_error_occurred ((((uint32_t) state) << 16) | error);
320}
321
322/**
323 * Searches for the node with specified dev/block.
324 *
325 * @param root pointer to the root node of the AVL-Tree
326 * @param dev device search key
327 * @param block block search key
328 * @retval NULL node with the specified dev/block is not found
329 * @return pointer to the node with specified dev/block
330 */
331static rtems_bdbuf_buffer *
332rtems_bdbuf_avl_search (rtems_bdbuf_buffer** root,
333                        dev_t                dev,
334                        rtems_blkdev_bnum    block)
335{
336  rtems_bdbuf_buffer* p = *root;
337
338  while ((p != NULL) && ((p->dev != dev) || (p->block != block)))
339  {
340    if ((p->dev < dev) || ((p->dev == dev) && (p->block < block)))
341    {
342      p = p->avl.right;
343    }
344    else
345    {
346      p = p->avl.left;
347    }
348  }
349
350  return p;
351}
352
353/**
354 * Inserts the specified node to the AVl-Tree.
355 *
356 * @param root pointer to the root node of the AVL-Tree
357 * @param node Pointer to the node to add.
358 * @retval 0 The node added successfully
359 * @retval -1 An error occured
360 */
361static int
362rtems_bdbuf_avl_insert(rtems_bdbuf_buffer** root,
363                       rtems_bdbuf_buffer*  node)
364{
365  dev_t             dev = node->dev;
366  rtems_blkdev_bnum block = node->block;
367
368  rtems_bdbuf_buffer*  p = *root;
369  rtems_bdbuf_buffer*  q;
370  rtems_bdbuf_buffer*  p1;
371  rtems_bdbuf_buffer*  p2;
372  rtems_bdbuf_buffer*  buf_stack[RTEMS_BDBUF_AVL_MAX_HEIGHT];
373  rtems_bdbuf_buffer** buf_prev = buf_stack;
374
375  bool modified = false;
376
377  if (p == NULL)
378  {
379    *root = node;
380    node->avl.left = NULL;
381    node->avl.right = NULL;
382    node->avl.bal = 0;
383    return 0;
384  }
385
386  while (p != NULL)
387  {
388    *buf_prev++ = p;
389
390    if ((p->dev < dev) || ((p->dev == dev) && (p->block < block)))
391    {
392      p->avl.cache = 1;
393      q = p->avl.right;
394      if (q == NULL)
395      {
396        q = node;
397        p->avl.right = q = node;
398        break;
399      }
400    }
401    else if ((p->dev != dev) || (p->block != block))
402    {
403      p->avl.cache = -1;
404      q = p->avl.left;
405      if (q == NULL)
406      {
407        q = node;
408        p->avl.left = q;
409        break;
410      }
411    }
412    else
413    {
414      return -1;
415    }
416
417    p = q;
418  }
419 
420  q->avl.left = q->avl.right = NULL;
421  q->avl.bal = 0;
422  modified = true;
423  buf_prev--;
424
425  while (modified)
426  {
427    if (p->avl.cache == -1)
428    {
429      switch (p->avl.bal)
430      {
431        case 1:
432          p->avl.bal = 0;
433          modified = false;
434          break;
435
436        case 0:
437          p->avl.bal = -1;
438          break;
439
440        case -1:
441          p1 = p->avl.left;
442          if (p1->avl.bal == -1) /* simple LL-turn */
443          {
444            p->avl.left = p1->avl.right;
445            p1->avl.right = p;
446            p->avl.bal = 0;
447            p = p1;
448          }
449          else /* double LR-turn */
450          {
451            p2 = p1->avl.right;
452            p1->avl.right = p2->avl.left;
453            p2->avl.left = p1;
454            p->avl.left = p2->avl.right;
455            p2->avl.right = p;
456            if (p2->avl.bal == -1) p->avl.bal = +1; else p->avl.bal = 0;
457            if (p2->avl.bal == +1) p1->avl.bal = -1; else p1->avl.bal = 0;
458            p = p2;
459          }
460          p->avl.bal = 0;
461          modified = false;
462          break;
463
464        default:
465          break;
466      }
467    }
468    else
469    {
470      switch (p->avl.bal)
471      {
472        case -1:
473          p->avl.bal = 0;
474          modified = false;
475          break;
476
477        case 0:
478          p->avl.bal = 1;
479          break;
480
481        case 1:
482          p1 = p->avl.right;
483          if (p1->avl.bal == 1) /* simple RR-turn */
484          {
485            p->avl.right = p1->avl.left;
486            p1->avl.left = p;
487            p->avl.bal = 0;
488            p = p1;
489          }
490          else /* double RL-turn */
491          {
492            p2 = p1->avl.left;
493            p1->avl.left = p2->avl.right;
494            p2->avl.right = p1;
495            p->avl.right = p2->avl.left;
496            p2->avl.left = p;
497            if (p2->avl.bal == +1) p->avl.bal = -1; else p->avl.bal = 0;
498            if (p2->avl.bal == -1) p1->avl.bal = +1; else p1->avl.bal = 0;
499            p = p2;
500          }
501          p->avl.bal = 0;
502          modified = false;
503          break;
504
505        default:
506          break;
507      }
508    }
509    q = p;
510    if (buf_prev > buf_stack)
511    {
512      p = *--buf_prev;
513
514      if (p->avl.cache == -1)
515      {
516        p->avl.left = q;
517      }
518      else
519      {
520        p->avl.right = q;
521      }
522    }
523    else
524    {
525      *root = p;
526      break;
527    }
528  };
529
530  return 0;
531}
532
533
534/**
535 * Removes the node from the tree.
536 *
537 * @param root Pointer to pointer to the root node
538 * @param node Pointer to the node to remove
539 * @retval 0 Item removed
540 * @retval -1 No such item found
541 */
542static int
543rtems_bdbuf_avl_remove(rtems_bdbuf_buffer**      root,
544                       const rtems_bdbuf_buffer* node)
545{
546  dev_t             dev = node->dev;
547  rtems_blkdev_bnum block = node->block;
548
549  rtems_bdbuf_buffer*  p = *root;
550  rtems_bdbuf_buffer*  q;
551  rtems_bdbuf_buffer*  r;
552  rtems_bdbuf_buffer*  s;
553  rtems_bdbuf_buffer*  p1;
554  rtems_bdbuf_buffer*  p2;
555  rtems_bdbuf_buffer*  buf_stack[RTEMS_BDBUF_AVL_MAX_HEIGHT];
556  rtems_bdbuf_buffer** buf_prev = buf_stack;
557
558  bool modified = false;
559
560  memset (buf_stack, 0, sizeof(buf_stack));
561
562  while (p != NULL)
563  {
564    *buf_prev++ = p;
565
566    if ((p->dev < dev) || ((p->dev == dev) && (p->block < block)))
567    {
568      p->avl.cache = 1;
569      p = p->avl.right;
570    }
571    else if ((p->dev != dev) || (p->block != block))
572    {
573      p->avl.cache = -1;
574      p = p->avl.left;
575    }
576    else
577    {
578      /* node found */
579      break;
580    }
581  }
582
583  if (p == NULL)
584  {
585    /* there is no such node */
586    return -1;
587  }
588
589  q = p;
590
591  buf_prev--;
592  if (buf_prev > buf_stack)
593  {
594    p = *(buf_prev - 1);
595  }
596  else
597  {
598    p = NULL;
599  }
600
601  /* at this moment q - is a node to delete, p is q's parent */
602  if (q->avl.right == NULL)
603  {
604    r = q->avl.left;
605    if (r != NULL)
606    {
607      r->avl.bal = 0;
608    }
609    q = r;
610  }
611  else
612  {
613    rtems_bdbuf_buffer **t;
614
615    r = q->avl.right;
616
617    if (r->avl.left == NULL)
618    {
619      r->avl.left = q->avl.left;
620      r->avl.bal = q->avl.bal;
621      r->avl.cache = 1;
622      *buf_prev++ = q = r;
623    }
624    else
625    {
626      t = buf_prev++;
627      s = r;
628
629      while (s->avl.left != NULL)
630      {
631        *buf_prev++ = r = s;
632        s = r->avl.left;
633        r->avl.cache = -1;
634      }
635
636      s->avl.left = q->avl.left;
637      r->avl.left = s->avl.right;
638      s->avl.right = q->avl.right;
639      s->avl.bal = q->avl.bal;
640      s->avl.cache = 1;
641
642      *t = q = s;
643    }
644  }
645
646  if (p != NULL)
647  {
648    if (p->avl.cache == -1)
649    {
650      p->avl.left = q;
651    }
652    else
653    {
654      p->avl.right = q;
655    }
656  }
657  else
658  {
659    *root = q;
660  }
661
662  modified = true;
663
664  while (modified)
665  {
666    if (buf_prev > buf_stack)
667    {
668      p = *--buf_prev;
669    }
670    else
671    {
672      break;
673    }
674
675    if (p->avl.cache == -1)
676    {
677      /* rebalance left branch */
678      switch (p->avl.bal)
679      {
680        case -1:
681          p->avl.bal = 0;
682          break;
683        case  0:
684          p->avl.bal = 1;
685          modified = false;
686          break;
687
688        case +1:
689          p1 = p->avl.right;
690
691          if (p1->avl.bal >= 0) /* simple RR-turn */
692          {
693            p->avl.right = p1->avl.left;
694            p1->avl.left = p;
695
696            if (p1->avl.bal == 0)
697            {
698              p1->avl.bal = -1;
699              modified = false;
700            }
701            else
702            {
703              p->avl.bal = 0;
704              p1->avl.bal = 0;
705            }
706            p = p1;
707          }
708          else /* double RL-turn */
709          {
710            p2 = p1->avl.left;
711
712            p1->avl.left = p2->avl.right;
713            p2->avl.right = p1;
714            p->avl.right = p2->avl.left;
715            p2->avl.left = p;
716
717            if (p2->avl.bal == +1) p->avl.bal = -1; else p->avl.bal = 0;
718            if (p2->avl.bal == -1) p1->avl.bal = 1; else p1->avl.bal = 0;
719
720            p = p2;
721            p2->avl.bal = 0;
722          }
723          break;
724
725        default:
726          break;
727      }
728    }
729    else
730    {
731      /* rebalance right branch */
732      switch (p->avl.bal)
733      {
734        case +1:
735          p->avl.bal = 0;
736          break;
737
738        case  0:
739          p->avl.bal = -1;
740          modified = false;
741          break;
742
743        case -1:
744          p1 = p->avl.left;
745
746          if (p1->avl.bal <= 0) /* simple LL-turn */
747          {
748            p->avl.left = p1->avl.right;
749            p1->avl.right = p;
750            if (p1->avl.bal == 0)
751            {
752              p1->avl.bal = 1;
753              modified = false;
754            }
755            else
756            {
757              p->avl.bal = 0;
758              p1->avl.bal = 0;
759            }
760            p = p1;
761          }
762          else /* double LR-turn */
763          {
764            p2 = p1->avl.right;
765
766            p1->avl.right = p2->avl.left;
767            p2->avl.left = p1;
768            p->avl.left = p2->avl.right;
769            p2->avl.right = p;
770
771            if (p2->avl.bal == -1) p->avl.bal = 1; else p->avl.bal = 0;
772            if (p2->avl.bal == +1) p1->avl.bal = -1; else p1->avl.bal = 0;
773
774            p = p2;
775            p2->avl.bal = 0;
776          }
777          break;
778
779        default:
780          break;
781      }
782    }
783
784    if (buf_prev > buf_stack)
785    {
786      q = *(buf_prev - 1);
787
788      if (q->avl.cache == -1)
789      {
790        q->avl.left = p;
791      }
792      else
793      {
794        q->avl.right = p;
795      }
796    }
797    else
798    {
799      *root = p;
800      break;
801    }
802
803  }
804
805  return 0;
806}
807
808static void
809rtems_bdbuf_set_state (rtems_bdbuf_buffer *bd, rtems_bdbuf_buf_state state)
810{
811  bd->state = state;
812}
813
814/**
815 * Change the block number for the block size to the block number for the media
816 * block size. We have to use 64bit maths. There is no short cut here.
817 *
818 * @param block The logical block number in the block size terms.
819 * @param block_size The block size.
820 * @param media_block_size The block size of the media.
821 * @return rtems_blkdev_bnum The media block number.
822 */
823static rtems_blkdev_bnum
824rtems_bdbuf_media_block (rtems_blkdev_bnum block,
825                         size_t            block_size,
826                         size_t            media_block_size)
827{
828  return (rtems_blkdev_bnum)
829    ((((uint64_t) block) * block_size) / media_block_size);
830}
831
832/**
833 * Lock the mutex. A single task can nest calls.
834 *
835 * @param lock The mutex to lock.
836 * @param fatal_error_code The error code if the call fails.
837 */
838static void
839rtems_bdbuf_lock (rtems_id lock, uint32_t fatal_error_code)
840{
841  rtems_status_code sc = rtems_semaphore_obtain (lock,
842                                                 RTEMS_WAIT,
843                                                 RTEMS_NO_TIMEOUT);
844  if (sc != RTEMS_SUCCESSFUL)
845    rtems_fatal_error_occurred (fatal_error_code);
846}
847
848/**
849 * Unlock the mutex.
850 *
851 * @param lock The mutex to unlock.
852 * @param fatal_error_code The error code if the call fails.
853 */
854static void
855rtems_bdbuf_unlock (rtems_id lock, uint32_t fatal_error_code)
856{
857  rtems_status_code sc = rtems_semaphore_release (lock);
858  if (sc != RTEMS_SUCCESSFUL)
859    rtems_fatal_error_occurred (fatal_error_code);
860}
861
862/**
863 * Lock the cache. A single task can nest calls.
864 */
865static void
866rtems_bdbuf_lock_cache (void)
867{
868  rtems_bdbuf_lock (bdbuf_cache.lock, RTEMS_BLKDEV_FATAL_BDBUF_CACHE_LOCK);
869}
870
871/**
872 * Unlock the cache.
873 */
874static void
875rtems_bdbuf_unlock_cache (void)
876{
877  rtems_bdbuf_unlock (bdbuf_cache.lock, RTEMS_BLKDEV_FATAL_BDBUF_CACHE_UNLOCK);
878}
879
880/**
881 * Lock the cache's sync. A single task can nest calls.
882 */
883static void
884rtems_bdbuf_lock_sync (void)
885{
886  rtems_bdbuf_lock (bdbuf_cache.sync_lock, RTEMS_BLKDEV_FATAL_BDBUF_SYNC_LOCK);
887}
888
889/**
890 * Unlock the cache's sync lock. Any blocked writers are woken.
891 */
892static void
893rtems_bdbuf_unlock_sync (void)
894{
895  rtems_bdbuf_unlock (bdbuf_cache.sync_lock,
896                      RTEMS_BLKDEV_FATAL_BDBUF_SYNC_UNLOCK);
897}
898
899static void
900rtems_bdbuf_group_obtain (rtems_bdbuf_buffer *bd)
901{
902  ++bd->group->users;
903}
904
905static void
906rtems_bdbuf_group_release (rtems_bdbuf_buffer *bd)
907{
908  --bd->group->users;
909}
910
911static rtems_mode
912rtems_bdbuf_disable_preemption (void)
913{
914  rtems_status_code sc = RTEMS_SUCCESSFUL;
915  rtems_mode prev_mode = 0;
916
917  sc = rtems_task_mode (RTEMS_NO_PREEMPT, RTEMS_PREEMPT_MASK, &prev_mode);
918  if (sc != RTEMS_SUCCESSFUL)
919    rtems_fatal_error_occurred (RTEMS_BLKDEV_FATAL_BDBUF_PREEMPT_DIS);
920
921  return prev_mode;
922}
923
924static void
925rtems_bdbuf_restore_preemption (rtems_mode prev_mode)
926{
927  rtems_status_code sc = RTEMS_SUCCESSFUL;
928
929  sc = rtems_task_mode (prev_mode, RTEMS_ALL_MODE_MASKS, &prev_mode);
930  if (sc != RTEMS_SUCCESSFUL)
931    rtems_fatal_error_occurred (RTEMS_BLKDEV_FATAL_BDBUF_PREEMPT_RST);
932}
933
934/**
935 * Wait until woken. Semaphores are used so a number of tasks can wait and can
936 * be woken at once. Task events would require we maintain a list of tasks to
937 * be woken and this would require storage and we do not know the number of
938 * tasks that could be waiting.
939 *
940 * While we have the cache locked we can try and claim the semaphore and
941 * therefore know when we release the lock to the cache we will block until the
942 * semaphore is released. This may even happen before we get to block.
943 *
944 * A counter is used to save the release call when no one is waiting.
945 *
946 * The function assumes the cache is locked on entry and it will be locked on
947 * exit.
948 */
949static void
950rtems_bdbuf_anonymous_wait (rtems_bdbuf_waiters *waiters)
951{
952  rtems_status_code sc;
953  rtems_mode        prev_mode;
954 
955  /*
956   * Indicate we are waiting.
957   */
958  ++waiters->count;
959
960  /*
961   * Disable preemption then unlock the cache and block.  There is no POSIX
962   * condition variable in the core API so this is a work around.
963   *
964   * The issue is a task could preempt after the cache is unlocked because it is
965   * blocking or just hits that window, and before this task has blocked on the
966   * semaphore. If the preempting task flushes the queue this task will not see
967   * the flush and may block for ever or until another transaction flushes this
968   * semaphore.
969   */
970  prev_mode = rtems_bdbuf_disable_preemption ();
971 
972  /*
973   * Unlock the cache, wait, and lock the cache when we return.
974   */
975  rtems_bdbuf_unlock_cache ();
976
977  sc = rtems_semaphore_obtain (waiters->sema, RTEMS_WAIT, RTEMS_BDBUF_WAIT_TIMEOUT);
978
979  if (sc == RTEMS_TIMEOUT)
980    rtems_fatal_error_occurred (RTEMS_BLKDEV_FATAL_BDBUF_CACHE_WAIT_TO);
981 
982  if (sc != RTEMS_UNSATISFIED)
983    rtems_fatal_error_occurred (RTEMS_BLKDEV_FATAL_BDBUF_CACHE_WAIT_2);
984 
985  rtems_bdbuf_lock_cache ();
986
987  rtems_bdbuf_restore_preemption (prev_mode);
988 
989  --waiters->count;
990}
991
992static void
993rtems_bdbuf_wait (rtems_bdbuf_buffer *bd, rtems_bdbuf_waiters *waiters)
994{
995  rtems_bdbuf_group_obtain (bd);
996  ++bd->waiters;
997  rtems_bdbuf_anonymous_wait (waiters);
998  --bd->waiters;
999  rtems_bdbuf_group_release (bd);
1000}
1001
1002/**
1003 * Wake a blocked resource. The resource has a counter that lets us know if
1004 * there are any waiters.
1005 */
1006static void
1007rtems_bdbuf_wake (const rtems_bdbuf_waiters *waiters)
1008{
1009  rtems_status_code sc = RTEMS_SUCCESSFUL;
1010
1011  if (waiters->count > 0)
1012  {
1013    sc = rtems_semaphore_flush (waiters->sema);
1014    if (sc != RTEMS_SUCCESSFUL)
1015      rtems_fatal_error_occurred (RTEMS_BLKDEV_FATAL_BDBUF_CACHE_WAKE);
1016  }
1017}
1018
1019static void
1020rtems_bdbuf_wake_swapper (void)
1021{
1022  rtems_status_code sc = rtems_event_send (bdbuf_cache.swapout,
1023                                           RTEMS_BDBUF_SWAPOUT_SYNC);
1024  if (sc != RTEMS_SUCCESSFUL)
1025    rtems_fatal_error_occurred (RTEMS_BLKDEV_FATAL_BDBUF_SO_WAKE);
1026}
1027
1028static bool
1029rtems_bdbuf_has_buffer_waiters (void)
1030{
1031  return bdbuf_cache.buffer_waiters.count;
1032}
1033
1034static void
1035rtems_bdbuf_add_to_modified_list_after_access (rtems_bdbuf_buffer *bd)
1036{
1037  if (bdbuf_cache.sync_active && bdbuf_cache.sync_device == bd->dev)
1038  {
1039    rtems_bdbuf_unlock_cache ();
1040
1041    /*
1042     * Wait for the sync lock.
1043     */
1044    rtems_bdbuf_lock_sync ();
1045
1046    rtems_bdbuf_unlock_sync ();
1047    rtems_bdbuf_lock_cache ();
1048  }
1049
1050  /*
1051   * Only the first modified release sets the timer and any further user
1052   * accesses do not change the timer value which should move down. This
1053   * assumes the user's hold of the buffer is much less than the time on the
1054   * modified list. Resetting the timer on each access which could result in a
1055   * buffer never getting to 0 and never being forced onto disk. This raises a
1056   * difficult question. Is a snapshot of a block that is changing better than
1057   * nothing being written ? We have tended to think we should hold changes for
1058   * only a specific period of time even if still changing and get onto disk
1059   * and letting the file system try and recover this position if it can.
1060   */
1061  if (bd->state == RTEMS_BDBUF_STATE_ACCESS)
1062    bd->hold_timer = bdbuf_config.swap_block_hold;
1063     
1064  rtems_bdbuf_set_state (bd, RTEMS_BDBUF_STATE_MODIFIED);
1065
1066  rtems_chain_append (&bdbuf_cache.modified, &bd->link);
1067
1068  if (bd->waiters)
1069    rtems_bdbuf_wake (&bdbuf_cache.access_waiters);
1070  else if (rtems_bdbuf_has_buffer_waiters ())
1071    rtems_bdbuf_wake_swapper ();
1072}
1073
1074static void
1075rtems_bdbuf_add_to_lru_list_after_access (rtems_bdbuf_buffer *bd)
1076{
1077  rtems_bdbuf_set_state (bd, RTEMS_BDBUF_STATE_CACHED);
1078
1079  rtems_chain_append (&bdbuf_cache.lru, &bd->link);
1080
1081  rtems_bdbuf_group_release (bd);
1082
1083  if (bd->waiters)
1084    rtems_bdbuf_wake (&bdbuf_cache.access_waiters);
1085  else
1086    rtems_bdbuf_wake (&bdbuf_cache.buffer_waiters);
1087}
1088
1089static void
1090rtems_bdbuf_add_to_sync_list_after_access (rtems_bdbuf_buffer *bd)
1091{
1092  rtems_bdbuf_set_state (bd, RTEMS_BDBUF_STATE_SYNC);
1093
1094  rtems_chain_append (&bdbuf_cache.sync, &bd->link);
1095
1096  if (bd->waiters)
1097    rtems_bdbuf_wake (&bdbuf_cache.access_waiters);
1098}
1099
1100/**
1101 * Compute the number of BDs per group for a given buffer size.
1102 *
1103 * @param size The buffer size. It can be any size and we scale up.
1104 */
1105static size_t
1106rtems_bdbuf_bds_per_group (size_t size)
1107{
1108  size_t bufs_per_size;
1109  size_t bds_per_size;
1110 
1111  if (size > bdbuf_config.buffer_max)
1112    return 0;
1113 
1114  bufs_per_size = ((size - 1) / bdbuf_config.buffer_min) + 1;
1115 
1116  for (bds_per_size = 1;
1117       bds_per_size < bufs_per_size;
1118       bds_per_size <<= 1)
1119    ;
1120
1121  return bdbuf_cache.max_bds_per_group / bds_per_size;
1122}
1123
1124static void
1125rtems_bdbuf_remove_from_cache_and_lru_list (rtems_bdbuf_buffer *bd)
1126{
1127  switch (bd->state)
1128  {
1129    case RTEMS_BDBUF_STATE_EMPTY:
1130      break;
1131    case RTEMS_BDBUF_STATE_CACHED:
1132      if (rtems_bdbuf_avl_remove (&bdbuf_cache.tree, bd) != 0)
1133        rtems_bdbuf_fatal (bd->state, RTEMS_BLKDEV_FATAL_BDBUF_STATE_3);
1134      break;
1135    default:
1136      rtems_bdbuf_fatal (bd->state, RTEMS_BLKDEV_FATAL_BDBUF_STATE_10);
1137  }
1138 
1139  rtems_chain_extract (&bd->link);
1140}
1141
1142static void
1143rtems_bdbuf_make_empty_and_add_to_lru_list (rtems_bdbuf_buffer *bd)
1144{
1145  rtems_bdbuf_set_state (bd, RTEMS_BDBUF_STATE_EMPTY);
1146  rtems_chain_prepend (&bdbuf_cache.lru, &bd->link);
1147}
1148
1149/**
1150 * Reallocate a group. The BDs currently allocated in the group are removed
1151 * from the ALV tree and any lists then the new BD's are prepended to the ready
1152 * list of the cache.
1153 *
1154 * @param group The group to reallocate.
1155 * @param new_bds_per_group The new count of BDs per group.
1156 * @return A buffer of this group.
1157 */
1158static rtems_bdbuf_buffer *
1159rtems_bdbuf_group_realloc (rtems_bdbuf_group* group, size_t new_bds_per_group)
1160{
1161  rtems_bdbuf_buffer* bd;
1162  size_t              b;
1163  size_t              bufs_per_bd;
1164
1165  if (rtems_bdbuf_tracer)
1166    printf ("bdbuf:realloc: %tu: %zd -> %zd\n",
1167            group - bdbuf_cache.groups, group->bds_per_group,
1168            new_bds_per_group);
1169 
1170  bufs_per_bd = bdbuf_cache.max_bds_per_group / group->bds_per_group;
1171 
1172  for (b = 0, bd = group->bdbuf;
1173       b < group->bds_per_group;
1174       b++, bd += bufs_per_bd)
1175    rtems_bdbuf_remove_from_cache_and_lru_list (bd);
1176 
1177  group->bds_per_group = new_bds_per_group;
1178  bufs_per_bd = bdbuf_cache.max_bds_per_group / new_bds_per_group;
1179 
1180  for (b = 1, bd = group->bdbuf + bufs_per_bd;
1181       b < group->bds_per_group;
1182       b++, bd += bufs_per_bd)
1183    rtems_bdbuf_make_empty_and_add_to_lru_list (bd);
1184
1185  if (b > 1)
1186    rtems_bdbuf_wake (&bdbuf_cache.buffer_waiters);
1187
1188  return group->bdbuf;
1189}
1190
1191static void
1192rtems_bdbuf_recycle_buffer (rtems_bdbuf_buffer *bd,
1193                            dev_t               dev,
1194                            rtems_blkdev_bnum   block)
1195{
1196  rtems_bdbuf_set_state (bd, RTEMS_BDBUF_STATE_FRESH);
1197
1198  bd->dev       = dev;
1199  bd->block     = block;
1200  bd->avl.left  = NULL;
1201  bd->avl.right = NULL;
1202  bd->error     = 0;
1203  bd->waiters   = 0;
1204
1205  if (rtems_bdbuf_avl_insert (&bdbuf_cache.tree, bd) != 0)
1206    rtems_fatal_error_occurred (RTEMS_BLKDEV_FATAL_BDBUF_RECYCLE);
1207}
1208
1209static rtems_bdbuf_buffer *
1210rtems_bdbuf_get_buffer_from_lru_list (dev_t             dev,
1211                                      rtems_blkdev_bnum block,
1212                                      size_t            bds_per_group)
1213{
1214  rtems_chain_node *node = rtems_chain_first (&bdbuf_cache.lru);
1215
1216  while (!rtems_chain_is_tail (&bdbuf_cache.lru, node))
1217  {
1218    rtems_bdbuf_buffer *bd = (rtems_bdbuf_buffer *) node;
1219    rtems_bdbuf_buffer *recycle_bd = NULL;
1220
1221    if (rtems_bdbuf_tracer)
1222      printf ("bdbuf:next-bd: %tu (%td:%" PRId32 ") %zd -> %zd\n",
1223              bd - bdbuf_cache.bds,
1224              bd->group - bdbuf_cache.groups, bd->group->users,
1225              bd->group->bds_per_group, bds_per_group);
1226
1227    /*
1228     * If nobody waits for this BD, we may recycle it.
1229     */
1230    if (bd->waiters == 0)
1231    {
1232      if (bd->group->bds_per_group == bds_per_group)
1233      {
1234        rtems_bdbuf_remove_from_cache_and_lru_list (bd);
1235
1236        recycle_bd = bd;
1237      }
1238      else if (bd->group->users == 0)
1239        recycle_bd = rtems_bdbuf_group_realloc (bd->group, bds_per_group);
1240    }
1241
1242    if (recycle_bd != NULL)
1243    {
1244      rtems_bdbuf_recycle_buffer (recycle_bd, dev, block);
1245
1246      return recycle_bd;
1247    }
1248
1249    node = rtems_chain_next (node);
1250  }
1251
1252  return NULL;
1253}
1254
1255/**
1256 * Initialise the cache.
1257 *
1258 * @return rtems_status_code The initialisation status.
1259 */
1260rtems_status_code
1261rtems_bdbuf_init (void)
1262{
1263  rtems_bdbuf_group*  group;
1264  rtems_bdbuf_buffer* bd;
1265  uint8_t*            buffer;
1266  size_t              b;
1267  size_t              cache_aligment;
1268  rtems_status_code   sc;
1269  rtems_mode          prev_mode;
1270
1271  if (rtems_bdbuf_tracer)
1272    printf ("bdbuf:init\n");
1273
1274  if (rtems_interrupt_is_in_progress())
1275    return RTEMS_CALLED_FROM_ISR;
1276
1277  /*
1278   * Check the configuration table values.
1279   */
1280  if ((bdbuf_config.buffer_max % bdbuf_config.buffer_min) != 0)
1281    return RTEMS_INVALID_NUMBER;
1282 
1283  /*
1284   * We use a special variable to manage the initialisation incase we have
1285   * completing threads doing this. You may get errors if the another thread
1286   * makes a call and we have not finished initialisation.
1287   */
1288  prev_mode = rtems_bdbuf_disable_preemption ();
1289  if (bdbuf_cache.initialised)
1290  {
1291    rtems_bdbuf_restore_preemption (prev_mode);
1292
1293    return RTEMS_RESOURCE_IN_USE;
1294  }
1295  memset(&bdbuf_cache, 0, sizeof(bdbuf_cache));
1296  bdbuf_cache.initialised = true;
1297  rtems_bdbuf_restore_preemption (prev_mode);
1298 
1299  /*
1300   * For unspecified cache alignments we use the CPU alignment.
1301   */
1302  cache_aligment = 32; /* FIXME rtems_cache_get_data_line_size() */
1303  if (cache_aligment <= 0)
1304    cache_aligment = CPU_ALIGNMENT;
1305
1306  bdbuf_cache.sync_device = BDBUF_INVALID_DEV;
1307
1308  rtems_chain_initialize_empty (&bdbuf_cache.swapout_workers);
1309  rtems_chain_initialize_empty (&bdbuf_cache.lru);
1310  rtems_chain_initialize_empty (&bdbuf_cache.modified);
1311  rtems_chain_initialize_empty (&bdbuf_cache.sync);
1312
1313  /*
1314   * Create the locks for the cache.
1315   */
1316  sc = rtems_semaphore_create (rtems_build_name ('B', 'D', 'C', 'l'),
1317                               1, RTEMS_BDBUF_CACHE_LOCK_ATTRIBS, 0,
1318                               &bdbuf_cache.lock);
1319  if (sc != RTEMS_SUCCESSFUL)
1320    goto error;
1321
1322  rtems_bdbuf_lock_cache ();
1323 
1324  sc = rtems_semaphore_create (rtems_build_name ('B', 'D', 'C', 's'),
1325                               1, RTEMS_BDBUF_CACHE_LOCK_ATTRIBS, 0,
1326                               &bdbuf_cache.sync_lock);
1327  if (sc != RTEMS_SUCCESSFUL)
1328    goto error;
1329 
1330  sc = rtems_semaphore_create (rtems_build_name ('B', 'D', 'C', 'a'),
1331                               0, RTEMS_BDBUF_CACHE_WAITER_ATTRIBS, 0,
1332                               &bdbuf_cache.access_waiters.sema);
1333  if (sc != RTEMS_SUCCESSFUL)
1334    goto error;
1335
1336  sc = rtems_semaphore_create (rtems_build_name ('B', 'D', 'C', 't'),
1337                               0, RTEMS_BDBUF_CACHE_WAITER_ATTRIBS, 0,
1338                               &bdbuf_cache.transfer_waiters.sema);
1339  if (sc != RTEMS_SUCCESSFUL)
1340    goto error;
1341
1342  sc = rtems_semaphore_create (rtems_build_name ('B', 'D', 'C', 'b'),
1343                               0, RTEMS_BDBUF_CACHE_WAITER_ATTRIBS, 0,
1344                               &bdbuf_cache.buffer_waiters.sema);
1345  if (sc != RTEMS_SUCCESSFUL)
1346    goto error;
1347 
1348  /*
1349   * Compute the various number of elements in the cache.
1350   */
1351  bdbuf_cache.buffer_min_count =
1352    bdbuf_config.size / bdbuf_config.buffer_min;
1353  bdbuf_cache.max_bds_per_group =
1354    bdbuf_config.buffer_max / bdbuf_config.buffer_min;
1355  bdbuf_cache.group_count =
1356    bdbuf_cache.buffer_min_count / bdbuf_cache.max_bds_per_group;
1357
1358  /*
1359   * Allocate the memory for the buffer descriptors.
1360   */
1361  bdbuf_cache.bds = calloc (sizeof (rtems_bdbuf_buffer),
1362                            bdbuf_cache.buffer_min_count);
1363  if (!bdbuf_cache.bds)
1364    goto error;
1365
1366  /*
1367   * Allocate the memory for the buffer descriptors.
1368   */
1369  bdbuf_cache.groups = calloc (sizeof (rtems_bdbuf_group),
1370                               bdbuf_cache.group_count);
1371  if (!bdbuf_cache.groups)
1372    goto error;
1373 
1374  /*
1375   * Allocate memory for buffer memory. The buffer memory will be cache
1376   * aligned. It is possible to free the memory allocated by rtems_memalign()
1377   * with free(). Return 0 if allocated.
1378   *
1379   * The memory allocate allows a
1380   */
1381  if (rtems_memalign ((void **) &bdbuf_cache.buffers,
1382                      cache_aligment,
1383                      bdbuf_cache.buffer_min_count * bdbuf_config.buffer_min) != 0)
1384    goto error;
1385
1386  /*
1387   * The cache is empty after opening so we need to add all the buffers to it
1388   * and initialise the groups.
1389   */
1390  for (b = 0, group = bdbuf_cache.groups,
1391         bd = bdbuf_cache.bds, buffer = bdbuf_cache.buffers;
1392       b < bdbuf_cache.buffer_min_count;
1393       b++, bd++, buffer += bdbuf_config.buffer_min)
1394  {
1395    bd->dev    = BDBUF_INVALID_DEV;
1396    bd->group  = group;
1397    bd->buffer = buffer;
1398   
1399    rtems_chain_append (&bdbuf_cache.lru, &bd->link);
1400
1401    if ((b % bdbuf_cache.max_bds_per_group) ==
1402        (bdbuf_cache.max_bds_per_group - 1))
1403      group++;
1404  }
1405
1406  for (b = 0,
1407         group = bdbuf_cache.groups,
1408         bd = bdbuf_cache.bds;
1409       b < bdbuf_cache.group_count;
1410       b++,
1411         group++,
1412         bd += bdbuf_cache.max_bds_per_group)
1413  {
1414    group->bds_per_group = bdbuf_cache.max_bds_per_group;
1415    group->bdbuf = bd;
1416  }
1417         
1418  /*
1419   * Create and start swapout task. This task will create and manage the worker
1420   * threads.
1421   */
1422  bdbuf_cache.swapout_enabled = true;
1423 
1424  sc = rtems_task_create (rtems_build_name('B', 'S', 'W', 'P'),
1425                          bdbuf_config.swapout_priority ?
1426                            bdbuf_config.swapout_priority :
1427                            RTEMS_BDBUF_SWAPOUT_TASK_PRIORITY_DEFAULT,
1428                          SWAPOUT_TASK_STACK_SIZE,
1429                          RTEMS_PREEMPT | RTEMS_NO_TIMESLICE | RTEMS_NO_ASR,
1430                          RTEMS_LOCAL | RTEMS_NO_FLOATING_POINT,
1431                          &bdbuf_cache.swapout);
1432  if (sc != RTEMS_SUCCESSFUL)
1433    goto error;
1434
1435  sc = rtems_task_start (bdbuf_cache.swapout,
1436                         rtems_bdbuf_swapout_task,
1437                         (rtems_task_argument) &bdbuf_cache);
1438  if (sc != RTEMS_SUCCESSFUL)
1439    goto error;
1440
1441  rtems_bdbuf_unlock_cache ();
1442
1443  return RTEMS_SUCCESSFUL;
1444
1445error:
1446
1447  if (bdbuf_cache.swapout != 0)
1448    rtems_task_delete (bdbuf_cache.swapout);
1449
1450  free (bdbuf_cache.buffers);
1451  free (bdbuf_cache.groups);
1452  free (bdbuf_cache.bds);
1453
1454  rtems_semaphore_delete (bdbuf_cache.buffer_waiters.sema);
1455  rtems_semaphore_delete (bdbuf_cache.access_waiters.sema);
1456  rtems_semaphore_delete (bdbuf_cache.transfer_waiters.sema);
1457  rtems_semaphore_delete (bdbuf_cache.sync_lock);
1458
1459  if (bdbuf_cache.lock != 0)
1460  {
1461    rtems_bdbuf_unlock_cache ();
1462    rtems_semaphore_delete (bdbuf_cache.lock);
1463  }
1464
1465  bdbuf_cache.initialised = false;
1466
1467  return RTEMS_UNSATISFIED;
1468}
1469
1470static void
1471rtems_bdbuf_wait_for_event (rtems_event_set event)
1472{
1473  rtems_status_code sc = RTEMS_SUCCESSFUL;
1474  rtems_event_set   out = 0;
1475 
1476  sc = rtems_event_receive (event,
1477                            RTEMS_EVENT_ALL | RTEMS_WAIT,
1478                            RTEMS_NO_TIMEOUT,
1479                            &out);
1480
1481  if (sc != RTEMS_SUCCESSFUL || out != event)
1482    rtems_fatal_error_occurred (RTEMS_BLKDEV_FATAL_BDBUF_WAIT_EVNT);
1483}
1484
1485static void
1486rtems_bdbuf_wait_for_access (rtems_bdbuf_buffer *bd)
1487{
1488  while (true)
1489  {
1490    switch (bd->state)
1491    {
1492      case RTEMS_BDBUF_STATE_FRESH:
1493        return;
1494      case RTEMS_BDBUF_STATE_MODIFIED:
1495        rtems_bdbuf_group_release (bd);
1496        /* Fall through */
1497      case RTEMS_BDBUF_STATE_CACHED:
1498        rtems_chain_extract (&bd->link);
1499        return;
1500      case RTEMS_BDBUF_STATE_ACCESS_MODIFIED:
1501      case RTEMS_BDBUF_STATE_ACCESS:
1502        rtems_bdbuf_wait (bd, &bdbuf_cache.access_waiters);
1503        break;
1504      case RTEMS_BDBUF_STATE_TRANSFER:
1505      case RTEMS_BDBUF_STATE_SYNC:
1506        rtems_bdbuf_wait (bd, &bdbuf_cache.transfer_waiters);
1507        break;
1508      default:
1509        rtems_bdbuf_fatal (bd->state, RTEMS_BLKDEV_FATAL_BDBUF_STATE_7);
1510    }
1511  }
1512}
1513
1514static void
1515rtems_bdbuf_request_sync_for_modified_buffer (rtems_bdbuf_buffer *bd)
1516{
1517  rtems_bdbuf_set_state (bd, RTEMS_BDBUF_STATE_SYNC);
1518  rtems_chain_extract (&bd->link);
1519  rtems_chain_append (&bdbuf_cache.sync, &bd->link);
1520  rtems_bdbuf_wake_swapper ();
1521}
1522
1523/**
1524 * @brief Waits until the buffer is ready for recycling.
1525 *
1526 * @retval @c true Buffer is valid and may be recycled.
1527 * @retval @c false Buffer is invalid and has to searched again.
1528 */
1529static bool
1530rtems_bdbuf_wait_for_recycle (rtems_bdbuf_buffer *bd)
1531{
1532  while (true)
1533  {
1534    switch (bd->state)
1535    {
1536      case RTEMS_BDBUF_STATE_EMPTY:
1537        return true;
1538      case RTEMS_BDBUF_STATE_MODIFIED:
1539        rtems_bdbuf_request_sync_for_modified_buffer (bd);
1540        break;
1541      case RTEMS_BDBUF_STATE_CACHED:
1542        if (bd->waiters == 0)
1543          return true;
1544        else
1545        {
1546          /*
1547           * It is essential that we wait here without a special wait count and
1548           * without the group in use.  Otherwise we could trigger a wait ping
1549           * pong with another recycle waiter.  The state of the buffer is
1550           * arbitrary afterwards.
1551           */
1552          rtems_bdbuf_anonymous_wait (&bdbuf_cache.buffer_waiters);
1553          return false;
1554        }
1555      case RTEMS_BDBUF_STATE_ACCESS_MODIFIED:
1556      case RTEMS_BDBUF_STATE_ACCESS:
1557        rtems_bdbuf_wait (bd, &bdbuf_cache.access_waiters);
1558        break;
1559      case RTEMS_BDBUF_STATE_TRANSFER:
1560      case RTEMS_BDBUF_STATE_SYNC:
1561        rtems_bdbuf_wait (bd, &bdbuf_cache.transfer_waiters);
1562        break;
1563      default:
1564        rtems_bdbuf_fatal (bd->state, RTEMS_BLKDEV_FATAL_BDBUF_STATE_8);
1565    }
1566  }
1567
1568  return true;
1569}
1570
1571static void
1572rtems_bdbuf_wait_for_sync_done (rtems_bdbuf_buffer *bd)
1573{
1574  while (true)
1575  {
1576    switch (bd->state)
1577    {
1578      case RTEMS_BDBUF_STATE_CACHED:
1579      case RTEMS_BDBUF_STATE_MODIFIED:
1580      case RTEMS_BDBUF_STATE_ACCESS:
1581      case RTEMS_BDBUF_STATE_ACCESS_MODIFIED:
1582        return;
1583      case RTEMS_BDBUF_STATE_SYNC:
1584      case RTEMS_BDBUF_STATE_TRANSFER:
1585        rtems_bdbuf_wait (bd, &bdbuf_cache.transfer_waiters);
1586        break;
1587      default:
1588        rtems_bdbuf_fatal (bd->state, RTEMS_BLKDEV_FATAL_BDBUF_STATE_9);
1589    }
1590  }
1591}
1592
1593static void
1594rtems_bdbuf_wait_for_buffer (void)
1595{
1596  if (!rtems_chain_is_empty (&bdbuf_cache.modified))
1597    rtems_bdbuf_wake_swapper ();
1598 
1599  rtems_bdbuf_anonymous_wait (&bdbuf_cache.buffer_waiters);
1600}
1601
1602static rtems_bdbuf_buffer *
1603rtems_bdbuf_get_buffer_for_read_ahead (dev_t             dev,
1604                                       rtems_blkdev_bnum block,
1605                                       size_t            bds_per_group)
1606{
1607  rtems_bdbuf_buffer *bd = NULL;
1608 
1609  bd = rtems_bdbuf_avl_search (&bdbuf_cache.tree, dev, block);
1610
1611  if (bd == NULL)
1612  {
1613    bd = rtems_bdbuf_get_buffer_from_lru_list (dev, block, bds_per_group);
1614
1615    if (bd != NULL)
1616      rtems_bdbuf_group_obtain (bd);
1617  }
1618  else
1619    /*
1620     * The buffer is in the cache.  So it is already available or in use, and
1621     * thus no need for a read ahead.
1622     */
1623    bd = NULL;
1624
1625  return bd;
1626}
1627
1628static rtems_bdbuf_buffer *
1629rtems_bdbuf_get_buffer_for_access (dev_t             dev,
1630                                   rtems_blkdev_bnum block,
1631                                   size_t            bds_per_group)
1632{
1633  rtems_bdbuf_buffer *bd = NULL;
1634 
1635  do
1636  {
1637    bd = rtems_bdbuf_avl_search (&bdbuf_cache.tree, dev, block);
1638
1639    if (bd != NULL)
1640    {
1641      if (bd->group->bds_per_group != bds_per_group)
1642      {
1643        if (rtems_bdbuf_wait_for_recycle (bd))
1644        {
1645          rtems_bdbuf_remove_from_cache_and_lru_list (bd);
1646          rtems_bdbuf_make_empty_and_add_to_lru_list (bd);
1647          rtems_bdbuf_wake (&bdbuf_cache.buffer_waiters);
1648        }
1649        bd = NULL;
1650      }
1651    }
1652    else
1653    {
1654      bd = rtems_bdbuf_get_buffer_from_lru_list (dev, block, bds_per_group);
1655
1656      if (bd == NULL)
1657        rtems_bdbuf_wait_for_buffer ();
1658    }
1659  }
1660  while (bd == NULL);
1661
1662  rtems_bdbuf_wait_for_access (bd);
1663  rtems_bdbuf_group_obtain (bd);
1664
1665  return bd;
1666}
1667
1668static rtems_status_code
1669rtems_bdbuf_obtain_disk (dev_t               dev,
1670                         rtems_blkdev_bnum   block,
1671                         rtems_disk_device **dd_ptr,
1672                         rtems_blkdev_bnum  *media_block_ptr,
1673                         size_t             *bds_per_group_ptr)
1674{
1675  rtems_disk_device *dd = NULL;
1676
1677  if (!bdbuf_cache.initialised)
1678    return RTEMS_NOT_CONFIGURED;
1679
1680  /*
1681   * Do not hold the cache lock when obtaining the disk table.
1682   */
1683  dd = rtems_disk_obtain (dev);
1684  if (dd == NULL)
1685    return RTEMS_INVALID_ID;
1686
1687  *dd_ptr = dd;
1688
1689  if (media_block_ptr != NULL)
1690  {
1691    /*
1692     * Compute the media block number. Drivers work with media block number not
1693     * the block number a BD may have as this depends on the block size set by
1694     * the user.
1695     */
1696    rtems_blkdev_bnum mb = rtems_bdbuf_media_block (block,
1697                                                    dd->block_size,
1698                                                    dd->media_block_size);
1699    if (mb >= dd->size)
1700    {
1701      rtems_disk_release(dd);
1702      return RTEMS_INVALID_NUMBER;
1703    }
1704
1705    *media_block_ptr = mb + dd->start;
1706  }
1707
1708  if (bds_per_group_ptr != NULL)
1709  {
1710    size_t bds_per_group = rtems_bdbuf_bds_per_group (dd->block_size);
1711
1712    if (bds_per_group == 0)
1713    {
1714      rtems_disk_release (dd);
1715      return RTEMS_INVALID_NUMBER;
1716    }
1717
1718    *bds_per_group_ptr = bds_per_group;
1719  }
1720
1721  return RTEMS_SUCCESSFUL;
1722}
1723
1724static void
1725rtems_bdbuf_release_disk (rtems_disk_device *dd)
1726{
1727  rtems_status_code sc = RTEMS_SUCCESSFUL;
1728
1729  sc = rtems_disk_release (dd);
1730  if (sc != RTEMS_SUCCESSFUL)
1731    rtems_fatal_error_occurred (RTEMS_BLKDEV_FATAL_BDBUF_DISK_REL);
1732}
1733
1734rtems_status_code
1735rtems_bdbuf_get (dev_t                dev,
1736                 rtems_blkdev_bnum    block,
1737                 rtems_bdbuf_buffer **bd_ptr)
1738{
1739  rtems_status_code   sc = RTEMS_SUCCESSFUL;
1740  rtems_disk_device  *dd = NULL;
1741  rtems_bdbuf_buffer *bd = NULL;
1742  rtems_blkdev_bnum   media_block = 0;
1743  size_t              bds_per_group = 0;
1744
1745  sc = rtems_bdbuf_obtain_disk (dev, block, &dd, &media_block, &bds_per_group);
1746  if (sc != RTEMS_SUCCESSFUL)
1747    return sc;
1748
1749  rtems_bdbuf_lock_cache ();
1750
1751  /*
1752   * Print the block index relative to the physical disk.
1753   */
1754  if (rtems_bdbuf_tracer)
1755    printf ("bdbuf:get: %" PRIu32 " (%" PRIu32 ") (dev = %08x)\n",
1756            media_block, block, (unsigned) dev);
1757
1758  bd = rtems_bdbuf_get_buffer_for_access (dev, media_block, bds_per_group);
1759
1760  switch (bd->state)
1761  {
1762    case RTEMS_BDBUF_STATE_CACHED:
1763    case RTEMS_BDBUF_STATE_FRESH:
1764      rtems_bdbuf_set_state (bd, RTEMS_BDBUF_STATE_ACCESS);
1765      break;
1766    case RTEMS_BDBUF_STATE_MODIFIED:
1767      /*
1768       * To get a modified buffer could be considered a bug in the caller
1769       * because you should not be getting an already modified buffer but user
1770       * may have modified a byte in a block then decided to seek the start and
1771       * write the whole block and the file system will have no record of this
1772       * so just gets the block to fill.
1773       */
1774      rtems_bdbuf_set_state (bd, RTEMS_BDBUF_STATE_ACCESS_MODIFIED);
1775      break;
1776    default:
1777      rtems_bdbuf_fatal (bd->state, RTEMS_BLKDEV_FATAL_BDBUF_STATE_2);
1778      break;
1779  }
1780 
1781  if (rtems_bdbuf_tracer)
1782  {
1783    rtems_bdbuf_show_users ("get", bd);
1784    rtems_bdbuf_show_usage ();
1785  }
1786
1787  rtems_bdbuf_unlock_cache ();
1788
1789  rtems_bdbuf_release_disk (dd);
1790
1791  *bd_ptr = bd;
1792
1793  return RTEMS_SUCCESSFUL;
1794}
1795
1796/**
1797 * Call back handler called by the low level driver when the transfer has
1798 * completed. This function may be invoked from interrupt handler.
1799 *
1800 * @param arg Arbitrary argument specified in block device request
1801 *            structure (in this case - pointer to the appropriate
1802 *            block device request structure).
1803 * @param status I/O completion status
1804 * @param error errno error code if status != RTEMS_SUCCESSFUL
1805 */
1806static void
1807rtems_bdbuf_read_done (void* arg, rtems_status_code status, int error)
1808{
1809  rtems_blkdev_request* req = (rtems_blkdev_request*) arg;
1810
1811  req->error = error;
1812  req->status = status;
1813
1814  rtems_event_send (req->io_task, RTEMS_BDBUF_TRANSFER_SYNC);
1815}
1816
1817static void
1818rtems_bdbuf_create_read_request (rtems_blkdev_request *req,
1819                                 rtems_disk_device    *dd,
1820                                 rtems_blkdev_bnum     media_block,
1821                                 size_t                bds_per_group)
1822{
1823  rtems_bdbuf_buffer *bd = NULL;
1824  rtems_blkdev_bnum   media_block_end = dd->start + dd->size;
1825  rtems_blkdev_bnum   media_block_count = dd->block_size / dd->media_block_size;
1826  dev_t               dev = dd->dev;
1827  uint32_t            block_size = dd->block_size;
1828  uint32_t            transfer_index = 1;
1829  uint32_t            transfer_count = bdbuf_config.max_read_ahead_blocks + 1;
1830
1831  if (media_block_end - media_block < transfer_count)
1832    transfer_count = media_block_end - media_block;
1833
1834  bd = rtems_bdbuf_get_buffer_for_access (dev, media_block, bds_per_group);
1835
1836  req->bufnum = 0;
1837
1838  req->bufs [0].user   = bd;
1839  req->bufs [0].block  = media_block;
1840  req->bufs [0].length = block_size;
1841  req->bufs [0].buffer = bd->buffer;
1842
1843  switch (bd->state)
1844  {
1845    case RTEMS_BDBUF_STATE_CACHED:
1846    case RTEMS_BDBUF_STATE_MODIFIED:
1847      return;
1848    case RTEMS_BDBUF_STATE_FRESH:
1849      break;
1850    default:
1851      rtems_bdbuf_fatal (bd->state, RTEMS_BLKDEV_FATAL_BDBUF_STATE_1);
1852      break;
1853  }
1854
1855  while (transfer_index < transfer_count)
1856  {
1857    rtems_bdbuf_set_state (bd, RTEMS_BDBUF_STATE_TRANSFER);
1858
1859    if (rtems_bdbuf_tracer)
1860      rtems_bdbuf_show_users ("reading", bd);
1861
1862    media_block += media_block_count;
1863
1864    bd = rtems_bdbuf_get_buffer_for_read_ahead (dev, media_block,
1865                                                bds_per_group);
1866
1867    if (bd == NULL)
1868      break;
1869   
1870    req->bufs [transfer_index].user   = bd;
1871    req->bufs [transfer_index].block  = media_block;
1872    req->bufs [transfer_index].length = block_size;
1873    req->bufs [transfer_index].buffer = bd->buffer;
1874
1875    ++transfer_index;
1876  }
1877
1878  req->bufnum = transfer_index;
1879}
1880
1881static rtems_bdbuf_buffer *
1882rtems_bdbuf_execute_read_request (rtems_blkdev_request *req,
1883                                  rtems_disk_device    *dd)
1884{
1885  if (req->bufnum)
1886  {
1887    /*
1888     * Unlock the cache. We have the buffer for the block and it will be in the
1889     * access or transfer state. We may also have a number of read ahead blocks
1890     * if we need to transfer data. At this point any other threads can gain
1891     * access to the cache and if they are after any of the buffers we have
1892     * they will block and be woken when the buffer is returned to the cache.
1893     *
1894     * If a transfer is needed the I/O operation will occur with pre-emption
1895     * enabled and the cache unlocked. This is a change to the previous version
1896     * of the bdbuf code.
1897     */
1898    int      result = 0;
1899    int      error = 0;
1900    uint32_t transfer_index = 0;
1901    bool     wake_transfer = false;
1902    bool     wake_buffer = false;
1903                         
1904    rtems_bdbuf_unlock_cache ();
1905
1906    req->req = RTEMS_BLKDEV_REQ_READ;
1907    req->req_done = rtems_bdbuf_read_done;
1908    req->done_arg = req;
1909    req->io_task = rtems_task_self ();
1910    req->status = RTEMS_RESOURCE_IN_USE;
1911    req->error = 0;
1912 
1913    result = dd->ioctl (dd, RTEMS_BLKIO_REQUEST, req);
1914
1915    if (result == 0)
1916    {
1917      rtems_bdbuf_wait_for_event (RTEMS_BDBUF_TRANSFER_SYNC);
1918      error = req->error;
1919    }
1920    else
1921      error = errno;
1922   
1923    rtems_bdbuf_lock_cache ();
1924
1925    for (transfer_index = 0; transfer_index < req->bufnum; ++transfer_index)
1926    {
1927      rtems_bdbuf_buffer *bd = req->bufs [transfer_index].user;
1928      bool waiters = bd->waiters;
1929
1930      rtems_bdbuf_set_state (bd, RTEMS_BDBUF_STATE_CACHED);
1931
1932      if (waiters)
1933        wake_transfer = true;
1934
1935      bd->error = error;
1936
1937      if (rtems_bdbuf_tracer)
1938        rtems_bdbuf_show_users ("read-ahead", bd);
1939
1940      if (transfer_index > 0)
1941      {
1942        /*
1943         * This is a read ahead buffer.
1944         */
1945
1946        rtems_bdbuf_group_release (bd);
1947
1948        if (!waiters)
1949          wake_buffer = true;
1950
1951        if (error == 0 || waiters)
1952          rtems_chain_append (&bdbuf_cache.lru, &bd->link);
1953        else
1954        {
1955          rtems_bdbuf_set_state (bd, RTEMS_BDBUF_STATE_EMPTY);
1956          rtems_chain_prepend (&bdbuf_cache.lru, &bd->link);
1957          if (rtems_bdbuf_avl_remove (&bdbuf_cache.tree, bd) != 0)
1958            rtems_fatal_error_occurred (RTEMS_BLKDEV_FATAL_BDBUF_CACHE_RM);
1959        }
1960      }
1961    }
1962
1963    if (wake_transfer)
1964      rtems_bdbuf_wake (&bdbuf_cache.transfer_waiters);
1965
1966    if (wake_buffer)
1967      rtems_bdbuf_wake (&bdbuf_cache.buffer_waiters);
1968  }
1969
1970  return req->bufs [0].user;
1971}
1972
1973rtems_status_code
1974rtems_bdbuf_read (dev_t                dev,
1975                  rtems_blkdev_bnum    block,
1976                  rtems_bdbuf_buffer **bd_ptr)
1977{
1978  rtems_status_code     sc = RTEMS_SUCCESSFUL;
1979  rtems_disk_device    *dd = NULL;
1980  rtems_bdbuf_buffer   *bd = NULL;
1981  rtems_blkdev_request *req = NULL;
1982  rtems_blkdev_bnum     media_block = 0;
1983  size_t                bds_per_group = 0;
1984
1985  sc = rtems_bdbuf_obtain_disk (dev, block, &dd, &media_block, &bds_per_group);
1986  if (sc != RTEMS_SUCCESSFUL)
1987    return sc;
1988
1989  /*
1990   * TODO: This type of request structure is wrong and should be removed.
1991   */
1992#define bdbuf_alloc(size) __builtin_alloca (size)
1993
1994  req = bdbuf_alloc (sizeof (rtems_blkdev_request) +
1995                     sizeof ( rtems_blkdev_sg_buffer) *
1996                      (bdbuf_config.max_read_ahead_blocks + 1));
1997 
1998  if (rtems_bdbuf_tracer)
1999    printf ("bdbuf:read: %" PRIu32 " (%" PRIu32 ") (dev = %08x)\n",
2000            media_block + dd->start, block, (unsigned) dev);
2001
2002  rtems_bdbuf_lock_cache ();
2003  rtems_bdbuf_create_read_request (req, dd, media_block, bds_per_group);
2004
2005  bd = rtems_bdbuf_execute_read_request (req, dd);
2006
2007  switch (bd->state)
2008  {
2009    case RTEMS_BDBUF_STATE_CACHED:
2010      rtems_bdbuf_set_state (bd, RTEMS_BDBUF_STATE_ACCESS);
2011      break;
2012    case RTEMS_BDBUF_STATE_MODIFIED:
2013      rtems_bdbuf_set_state (bd, RTEMS_BDBUF_STATE_ACCESS_MODIFIED);
2014      break;
2015    default:
2016      rtems_bdbuf_fatal (bd->state, RTEMS_BLKDEV_FATAL_BDBUF_STATE_4);
2017      break;
2018  }
2019
2020  if (rtems_bdbuf_tracer)
2021  {
2022    rtems_bdbuf_show_users ("read", bd);
2023    rtems_bdbuf_show_usage ();
2024  }
2025 
2026  rtems_bdbuf_unlock_cache ();
2027  rtems_bdbuf_release_disk (dd);
2028
2029  *bd_ptr = bd;
2030
2031  return RTEMS_SUCCESSFUL;
2032}
2033
2034static rtems_status_code
2035rtems_bdbuf_check_bd_and_lock_cache (rtems_bdbuf_buffer *bd, const char *kind)
2036{
2037  if (!bdbuf_cache.initialised)
2038    return RTEMS_NOT_CONFIGURED;
2039  if (bd == NULL)
2040    return RTEMS_INVALID_ADDRESS;
2041  if (rtems_bdbuf_tracer)
2042  {
2043    printf ("bdbuf:%s: %" PRIu32 "\n", kind, bd->block);
2044    rtems_bdbuf_show_users (kind, bd);
2045  }
2046  rtems_bdbuf_lock_cache();
2047
2048  return RTEMS_SUCCESSFUL;
2049}
2050
2051rtems_status_code
2052rtems_bdbuf_release (rtems_bdbuf_buffer *bd)
2053{
2054  rtems_status_code sc = RTEMS_SUCCESSFUL;
2055
2056  sc = rtems_bdbuf_check_bd_and_lock_cache (bd, "release");
2057  if (sc != RTEMS_SUCCESSFUL)
2058    return sc;
2059
2060  switch (bd->state)
2061  {
2062    case RTEMS_BDBUF_STATE_ACCESS:
2063      rtems_bdbuf_add_to_lru_list_after_access (bd);
2064      break;
2065    case RTEMS_BDBUF_STATE_ACCESS_MODIFIED:
2066      rtems_bdbuf_add_to_modified_list_after_access (bd);
2067      break;
2068    default:
2069      rtems_bdbuf_fatal (bd->state, RTEMS_BLKDEV_FATAL_BDBUF_STATE_0);
2070      break;
2071  }
2072 
2073  if (rtems_bdbuf_tracer)
2074    rtems_bdbuf_show_usage ();
2075 
2076  rtems_bdbuf_unlock_cache ();
2077
2078  return RTEMS_SUCCESSFUL;
2079}
2080
2081rtems_status_code
2082rtems_bdbuf_release_modified (rtems_bdbuf_buffer *bd)
2083{
2084  rtems_status_code sc = RTEMS_SUCCESSFUL;
2085
2086  sc = rtems_bdbuf_check_bd_and_lock_cache (bd, "release modified");
2087  if (sc != RTEMS_SUCCESSFUL)
2088    return sc;
2089
2090  switch (bd->state)
2091  {
2092    case RTEMS_BDBUF_STATE_ACCESS:
2093    case RTEMS_BDBUF_STATE_ACCESS_MODIFIED:
2094      rtems_bdbuf_add_to_modified_list_after_access (bd);
2095      break;
2096    default:
2097      rtems_bdbuf_fatal (bd->state, RTEMS_BLKDEV_FATAL_BDBUF_STATE_6);
2098      break;
2099  }
2100 
2101  if (rtems_bdbuf_tracer)
2102    rtems_bdbuf_show_usage ();
2103 
2104  rtems_bdbuf_unlock_cache ();
2105
2106  return RTEMS_SUCCESSFUL;
2107}
2108
2109rtems_status_code
2110rtems_bdbuf_sync (rtems_bdbuf_buffer *bd)
2111{
2112  rtems_status_code sc = RTEMS_SUCCESSFUL;
2113
2114  sc = rtems_bdbuf_check_bd_and_lock_cache (bd, "sync");
2115  if (sc != RTEMS_SUCCESSFUL)
2116    return sc;
2117
2118  switch (bd->state)
2119  {
2120    case RTEMS_BDBUF_STATE_ACCESS:
2121    case RTEMS_BDBUF_STATE_ACCESS_MODIFIED:
2122      rtems_bdbuf_add_to_sync_list_after_access (bd);
2123      break;
2124    default:
2125      rtems_bdbuf_fatal (bd->state, RTEMS_BLKDEV_FATAL_BDBUF_STATE_5);
2126      break;
2127  }
2128 
2129  if (rtems_bdbuf_tracer)
2130    rtems_bdbuf_show_usage ();
2131
2132  rtems_bdbuf_wake_swapper ();
2133  rtems_bdbuf_wait_for_sync_done (bd);
2134
2135  /*
2136   * If no one intercepts the sync, we created a cached buffer which may be
2137   * recycled.
2138   */
2139  if (bd->state == RTEMS_BDBUF_STATE_CACHED && bd->waiters == 0)
2140    rtems_bdbuf_wake (&bdbuf_cache.buffer_waiters);
2141
2142  rtems_bdbuf_unlock_cache ();
2143 
2144  return RTEMS_SUCCESSFUL;
2145}
2146
2147rtems_status_code
2148rtems_bdbuf_syncdev (dev_t dev)
2149{
2150  rtems_status_code  sc = RTEMS_SUCCESSFUL;
2151  rtems_disk_device *dd = NULL;
2152
2153  if (rtems_bdbuf_tracer)
2154    printf ("bdbuf:syncdev: %08x\n", (unsigned) dev);
2155
2156  sc = rtems_bdbuf_obtain_disk (dev, 0, &dd, NULL, NULL);
2157  if (sc != RTEMS_SUCCESSFUL)
2158    return sc;
2159
2160  /*
2161   * Take the sync lock before locking the cache. Once we have the sync lock we
2162   * can lock the cache. If another thread has the sync lock it will cause this
2163   * thread to block until it owns the sync lock then it can own the cache. The
2164   * sync lock can only be obtained with the cache unlocked.
2165   */
2166  rtems_bdbuf_lock_sync ();
2167  rtems_bdbuf_lock_cache (); 
2168
2169  /*
2170   * Set the cache to have a sync active for a specific device and let the swap
2171   * out task know the id of the requester to wake when done.
2172   *
2173   * The swap out task will negate the sync active flag when no more buffers
2174   * for the device are held on the "modified for sync" queues.
2175   */
2176  bdbuf_cache.sync_active    = true;
2177  bdbuf_cache.sync_requester = rtems_task_self ();
2178  bdbuf_cache.sync_device    = dev;
2179 
2180  rtems_bdbuf_wake_swapper ();
2181  rtems_bdbuf_unlock_cache ();
2182  rtems_bdbuf_wait_for_event (RTEMS_BDBUF_TRANSFER_SYNC);
2183  rtems_bdbuf_unlock_sync ();
2184  rtems_bdbuf_release_disk (dd);
2185
2186  return RTEMS_SUCCESSFUL;
2187}
2188
2189/**
2190 * Call back handler called by the low level driver when the transfer has
2191 * completed. This function may be invoked from interrupt handlers.
2192 *
2193 * @param arg Arbitrary argument specified in block device request
2194 *            structure (in this case - pointer to the appropriate
2195 *            block device request structure).
2196 * @param status I/O completion status
2197 * @param error errno error code if status != RTEMS_SUCCESSFUL
2198 */
2199static void
2200rtems_bdbuf_write_done(void *arg, rtems_status_code status, int error)
2201{
2202  rtems_blkdev_request* req = (rtems_blkdev_request*) arg;
2203
2204  req->error = error;
2205  req->status = status;
2206
2207  rtems_event_send (req->io_task, RTEMS_BDBUF_TRANSFER_SYNC);
2208}
2209
2210/**
2211 * Swapout transfer to the driver. The driver will break this I/O into groups
2212 * of consecutive write requests is multiple consecutive buffers are required
2213 * by the driver.
2214 *
2215 * @param transfer The transfer transaction.
2216 */
2217static void
2218rtems_bdbuf_swapout_write (rtems_bdbuf_swapout_transfer* transfer)
2219{
2220  rtems_disk_device* dd;
2221 
2222  if (rtems_bdbuf_tracer)
2223    printf ("bdbuf:swapout transfer: %08x\n", (unsigned) transfer->dev);
2224
2225  /*
2226   * If there are buffers to transfer to the media transfer them.
2227   */
2228  if (!rtems_chain_is_empty (&transfer->bds))
2229  {
2230    /*
2231     * Obtain the disk device. The cache's mutex has been released to avoid a
2232     * dead lock.
2233     */
2234    dd = rtems_disk_obtain (transfer->dev);
2235    if (dd)
2236    {
2237      /*
2238       * The last block number used when the driver only supports
2239       * continuous blocks in a single request.
2240       */
2241      uint32_t last_block = 0;
2242
2243      /*
2244       * Number of buffers per bd. This is used to detect the next
2245       * block.
2246       */
2247      uint32_t bufs_per_bd = dd->block_size / bdbuf_config.buffer_min;
2248     
2249      /*
2250       * Take as many buffers as configured and pass to the driver. Note, the
2251       * API to the drivers has an array of buffers and if a chain was passed
2252       * we could have just passed the list. If the driver API is updated it
2253       * should be possible to make this change with little effect in this
2254       * code. The array that is passed is broken in design and should be
2255       * removed. Merging members of a struct into the first member is
2256       * trouble waiting to happen.
2257       */
2258      transfer->write_req->status = RTEMS_RESOURCE_IN_USE;
2259      transfer->write_req->error = 0;
2260      transfer->write_req->bufnum = 0;
2261
2262      while (!rtems_chain_is_empty (&transfer->bds))
2263      {
2264        rtems_bdbuf_buffer* bd =
2265          (rtems_bdbuf_buffer*) rtems_chain_get (&transfer->bds);
2266
2267        bool write = false;
2268       
2269        /*
2270         * If the device only accepts sequential buffers and this is not the
2271         * first buffer (the first is always sequential, and the buffer is not
2272         * sequential then put the buffer back on the transfer chain and write
2273         * the committed buffers.
2274         */
2275       
2276        if (rtems_bdbuf_tracer)
2277          printf ("bdbuf:swapout write: bd:%" PRIu32 ", bufnum:%" PRIu32 " mode:%s\n",
2278                  bd->block, transfer->write_req->bufnum,
2279                  dd->phys_dev->capabilities &
2280                  RTEMS_BLKDEV_CAP_MULTISECTOR_CONT ? "MULIT" : "SCAT");
2281       
2282        if ((dd->phys_dev->capabilities & RTEMS_BLKDEV_CAP_MULTISECTOR_CONT) &&
2283            transfer->write_req->bufnum &&
2284            (bd->block != (last_block + bufs_per_bd)))
2285        {
2286          rtems_chain_prepend (&transfer->bds, &bd->link);
2287          write = true;
2288        }
2289        else
2290        {
2291          rtems_blkdev_sg_buffer* buf;
2292          buf = &transfer->write_req->bufs[transfer->write_req->bufnum];
2293          transfer->write_req->bufnum++;
2294          buf->user   = bd;
2295          buf->block  = bd->block;
2296          buf->length = dd->block_size;
2297          buf->buffer = bd->buffer;
2298          last_block  = bd->block;
2299        }
2300
2301        /*
2302         * Perform the transfer if there are no more buffers, or the transfer
2303         * size has reached the configured max. value.
2304         */
2305
2306        if (rtems_chain_is_empty (&transfer->bds) ||
2307            (transfer->write_req->bufnum >= bdbuf_config.max_write_blocks))
2308          write = true;
2309
2310        if (write)
2311        {
2312          int result;
2313          uint32_t b;
2314
2315          if (rtems_bdbuf_tracer)
2316            printf ("bdbuf:swapout write: writing bufnum:%" PRIu32 "\n",
2317                    transfer->write_req->bufnum);
2318
2319          /*
2320           * Perform the transfer. No cache locks, no preemption, only the disk
2321           * device is being held.
2322           */
2323          result = dd->ioctl (dd, RTEMS_BLKIO_REQUEST, transfer->write_req);
2324          if (result < 0)
2325          {
2326            rtems_bdbuf_lock_cache ();
2327             
2328            for (b = 0; b < transfer->write_req->bufnum; b++)
2329            {
2330              bd = transfer->write_req->bufs[b].user;
2331              rtems_bdbuf_set_state (bd, RTEMS_BDBUF_STATE_MODIFIED);
2332              bd->error = errno;
2333
2334              /*
2335               * Place back on the cache's modified queue and try again.
2336               *
2337               * @warning Not sure this is the best option but I do not know
2338               *          what else can be done.
2339               */
2340              rtems_chain_append (&bdbuf_cache.modified, &bd->link);
2341            }
2342          }
2343          else
2344          {
2345            rtems_bdbuf_wait_for_event (RTEMS_BDBUF_TRANSFER_SYNC);
2346
2347            rtems_bdbuf_lock_cache ();
2348
2349            for (b = 0; b < transfer->write_req->bufnum; b++)
2350            {
2351              bd = transfer->write_req->bufs[b].user;
2352              rtems_bdbuf_set_state (bd, RTEMS_BDBUF_STATE_CACHED);
2353              bd->error = 0;
2354
2355              rtems_bdbuf_group_release (bd);
2356
2357              if (rtems_bdbuf_tracer)
2358                rtems_bdbuf_show_users ("write", bd);
2359
2360              rtems_chain_append (&bdbuf_cache.lru, &bd->link);
2361             
2362              if (bd->waiters)
2363                rtems_bdbuf_wake (&bdbuf_cache.transfer_waiters);
2364              else
2365                rtems_bdbuf_wake (&bdbuf_cache.buffer_waiters);
2366            }
2367          }
2368
2369          if (rtems_bdbuf_tracer)
2370            rtems_bdbuf_show_usage ();
2371
2372          rtems_bdbuf_unlock_cache ();
2373
2374          transfer->write_req->status = RTEMS_RESOURCE_IN_USE;
2375          transfer->write_req->error = 0;
2376          transfer->write_req->bufnum = 0;
2377        }
2378      }
2379         
2380      rtems_disk_release (dd);
2381    }
2382    else
2383    {
2384      /*
2385       * We have buffers but no device. Put the BDs back onto the
2386       * ready queue and exit.
2387       */
2388      /* @todo fixme */
2389    }
2390  }
2391}
2392
2393/**
2394 * Process the modified list of buffers. There is a sync or modified list that
2395 * needs to be handled so we have a common function to do the work.
2396 *
2397 * @param dev The device to handle. If BDBUF_INVALID_DEV no device is selected
2398 * so select the device of the first buffer to be written to disk.
2399 * @param chain The modified chain to process.
2400 * @param transfer The chain to append buffers to be written too.
2401 * @param sync_active If true this is a sync operation so expire all timers.
2402 * @param update_timers If true update the timers.
2403 * @param timer_delta It update_timers is true update the timers by this
2404 *                    amount.
2405 */
2406static void
2407rtems_bdbuf_swapout_modified_processing (dev_t*               dev,
2408                                         rtems_chain_control* chain,
2409                                         rtems_chain_control* transfer,
2410                                         bool                 sync_active,
2411                                         bool                 update_timers,
2412                                         uint32_t             timer_delta)
2413{
2414  if (!rtems_chain_is_empty (chain))
2415  {
2416    rtems_chain_node* node = rtems_chain_head (chain);
2417    node = node->next;
2418
2419    while (!rtems_chain_is_tail (chain, node))
2420    {
2421      rtems_bdbuf_buffer* bd = (rtems_bdbuf_buffer*) node;
2422   
2423      /*
2424       * Check if the buffer's hold timer has reached 0. If a sync is active
2425       * or someone waits for a buffer force all the timers to 0.
2426       *
2427       * @note Lots of sync requests will skew this timer. It should be based
2428       *       on TOD to be accurate. Does it matter ?
2429       */
2430      if (sync_active || rtems_bdbuf_has_buffer_waiters ())
2431        bd->hold_timer = 0;
2432 
2433      if (bd->hold_timer)
2434      {
2435        if (update_timers)
2436        {
2437          if (bd->hold_timer > timer_delta)
2438            bd->hold_timer -= timer_delta;
2439          else
2440            bd->hold_timer = 0;
2441        }
2442
2443        if (bd->hold_timer)
2444        {
2445          node = node->next;
2446          continue;
2447        }
2448      }
2449
2450      /*
2451       * This assumes we can set dev_t to BDBUF_INVALID_DEV which is just an
2452       * assumption. Cannot use the transfer list being empty the sync dev
2453       * calls sets the dev to use.
2454       */
2455      if (*dev == BDBUF_INVALID_DEV)
2456        *dev = bd->dev;
2457
2458      if (bd->dev == *dev)
2459      {
2460        rtems_chain_node* next_node = node->next;
2461        rtems_chain_node* tnode = rtems_chain_tail (transfer);
2462   
2463        /*
2464         * The blocks on the transfer list are sorted in block order. This
2465         * means multi-block transfers for drivers that require consecutive
2466         * blocks perform better with sorted blocks and for real disks it may
2467         * help lower head movement.
2468         */
2469
2470        rtems_bdbuf_set_state (bd, RTEMS_BDBUF_STATE_TRANSFER);
2471
2472        rtems_chain_extract (node);
2473
2474        tnode = tnode->previous;
2475         
2476        while (node && !rtems_chain_is_head (transfer, tnode))
2477        {
2478          rtems_bdbuf_buffer* tbd = (rtems_bdbuf_buffer*) tnode;
2479
2480          if (bd->block > tbd->block)
2481          {
2482            rtems_chain_insert (tnode, node);
2483            node = NULL;
2484          }
2485          else
2486            tnode = tnode->previous;
2487        }
2488       
2489        if (node)
2490          rtems_chain_prepend (transfer, node);
2491         
2492        node = next_node;
2493      }
2494      else
2495      {
2496        node = node->next;
2497      }
2498    }
2499  }
2500}
2501
2502/**
2503 * Process the cache's modified buffers. Check the sync list first then the
2504 * modified list extracting the buffers suitable to be written to disk. We have
2505 * a device at a time. The task level loop will repeat this operation while
2506 * there are buffers to be written. If the transfer fails place the buffers
2507 * back on the modified list and try again later. The cache is unlocked while
2508 * the buffers are being written to disk.
2509 *
2510 * @param timer_delta It update_timers is true update the timers by this
2511 *                    amount.
2512 * @param update_timers If true update the timers.
2513 * @param transfer The transfer transaction data.
2514 *
2515 * @retval true Buffers where written to disk so scan again.
2516 * @retval false No buffers where written to disk.
2517 */
2518static bool
2519rtems_bdbuf_swapout_processing (unsigned long                 timer_delta,
2520                                bool                          update_timers,
2521                                rtems_bdbuf_swapout_transfer* transfer)
2522{
2523  rtems_bdbuf_swapout_worker* worker;
2524  bool                        transfered_buffers = false;
2525
2526  rtems_bdbuf_lock_cache ();
2527
2528  /*
2529   * If a sync is active do not use a worker because the current code does not
2530   * cleaning up after. We need to know the buffers have been written when
2531   * syncing to the release sync lock and currently worker threads do not
2532   * return to here. We do not know the worker is the last in a sequence of
2533   * sync writes until after we have it running so we do not know to tell it to
2534   * release the lock. The simplest solution is to get the main swap out task
2535   * perform all sync operations.
2536   */
2537  if (bdbuf_cache.sync_active)
2538    worker = NULL;
2539  else
2540  {
2541    worker = (rtems_bdbuf_swapout_worker*)
2542      rtems_chain_get (&bdbuf_cache.swapout_workers);
2543    if (worker)
2544      transfer = &worker->transfer;
2545  }
2546 
2547  rtems_chain_initialize_empty (&transfer->bds);
2548  transfer->dev = BDBUF_INVALID_DEV;
2549 
2550  /*
2551   * When the sync is for a device limit the sync to that device. If the sync
2552   * is for a buffer handle process the devices in the order on the sync
2553   * list. This means the dev is BDBUF_INVALID_DEV.
2554   */
2555  if (bdbuf_cache.sync_active)
2556    transfer->dev = bdbuf_cache.sync_device;
2557 
2558  /*
2559   * If we have any buffers in the sync queue move them to the modified
2560   * list. The first sync buffer will select the device we use.
2561   */
2562  rtems_bdbuf_swapout_modified_processing (&transfer->dev,
2563                                           &bdbuf_cache.sync,
2564                                           &transfer->bds,
2565                                           true, false,
2566                                           timer_delta);
2567
2568  /*
2569   * Process the cache's modified list.
2570   */
2571  rtems_bdbuf_swapout_modified_processing (&transfer->dev,
2572                                           &bdbuf_cache.modified,
2573                                           &transfer->bds,
2574                                           bdbuf_cache.sync_active,
2575                                           update_timers,
2576                                           timer_delta);
2577
2578  /*
2579   * We have all the buffers that have been modified for this device so the
2580   * cache can be unlocked because the state of each buffer has been set to
2581   * TRANSFER.
2582   */
2583  rtems_bdbuf_unlock_cache ();
2584
2585  /*
2586   * If there are buffers to transfer to the media transfer them.
2587   */
2588  if (!rtems_chain_is_empty (&transfer->bds))
2589  {
2590    if (worker)
2591    {
2592      rtems_status_code sc = rtems_event_send (worker->id,
2593                                               RTEMS_BDBUF_SWAPOUT_SYNC);
2594      if (sc != RTEMS_SUCCESSFUL)
2595        rtems_fatal_error_occurred (RTEMS_BLKDEV_FATAL_BDBUF_SO_WAKE);
2596    }
2597    else
2598    {
2599      rtems_bdbuf_swapout_write (transfer);
2600    }
2601   
2602    transfered_buffers = true;
2603  }
2604   
2605  if (bdbuf_cache.sync_active && !transfered_buffers)
2606  {
2607    rtems_id sync_requester;
2608    rtems_bdbuf_lock_cache ();
2609    sync_requester = bdbuf_cache.sync_requester;
2610    bdbuf_cache.sync_active = false;
2611    bdbuf_cache.sync_requester = 0;
2612    rtems_bdbuf_unlock_cache ();
2613    if (sync_requester)
2614      rtems_event_send (sync_requester, RTEMS_BDBUF_TRANSFER_SYNC);
2615  }
2616 
2617  return transfered_buffers;
2618}
2619
2620/**
2621 * Allocate the write request and initialise it for good measure.
2622 *
2623 * @return rtems_blkdev_request* The write reference memory.
2624 */
2625static rtems_blkdev_request*
2626rtems_bdbuf_swapout_writereq_alloc (void)
2627{
2628  /*
2629   * @note chrisj The rtems_blkdev_request and the array at the end is a hack.
2630   * I am disappointment at finding code like this in RTEMS. The request should
2631   * have been a rtems_chain_control. Simple, fast and less storage as the node
2632   * is already part of the buffer structure.
2633   */
2634  rtems_blkdev_request* write_req =
2635    malloc (sizeof (rtems_blkdev_request) +
2636            (bdbuf_config.max_write_blocks * sizeof (rtems_blkdev_sg_buffer)));
2637
2638  if (!write_req)
2639    rtems_fatal_error_occurred (RTEMS_BLKDEV_FATAL_BDBUF_SO_NOMEM);
2640
2641  write_req->req = RTEMS_BLKDEV_REQ_WRITE;
2642  write_req->req_done = rtems_bdbuf_write_done;
2643  write_req->done_arg = write_req;
2644  write_req->io_task = rtems_task_self ();
2645
2646  return write_req;
2647}
2648
2649/**
2650 * The swapout worker thread body.
2651 *
2652 * @param arg A pointer to the worker thread's private data.
2653 * @return rtems_task Not used.
2654 */
2655static rtems_task
2656rtems_bdbuf_swapout_worker_task (rtems_task_argument arg)
2657{
2658  rtems_bdbuf_swapout_worker* worker = (rtems_bdbuf_swapout_worker*) arg;
2659
2660  while (worker->enabled)
2661  {
2662    rtems_bdbuf_wait_for_event (RTEMS_BDBUF_SWAPOUT_SYNC);
2663
2664    rtems_bdbuf_swapout_write (&worker->transfer);
2665
2666    rtems_bdbuf_lock_cache ();
2667
2668    rtems_chain_initialize_empty (&worker->transfer.bds);
2669    worker->transfer.dev = BDBUF_INVALID_DEV;
2670
2671    rtems_chain_append (&bdbuf_cache.swapout_workers, &worker->link);
2672   
2673    rtems_bdbuf_unlock_cache ();
2674  }
2675
2676  free (worker->transfer.write_req);
2677  free (worker);
2678
2679  rtems_task_delete (RTEMS_SELF);
2680}
2681
2682/**
2683 * Open the swapout worker threads.
2684 */
2685static void
2686rtems_bdbuf_swapout_workers_open (void)
2687{
2688  rtems_status_code sc;
2689  size_t            w;
2690 
2691  rtems_bdbuf_lock_cache ();
2692 
2693  for (w = 0; w < bdbuf_config.swapout_workers; w++)
2694  {
2695    rtems_bdbuf_swapout_worker* worker;
2696
2697    worker = malloc (sizeof (rtems_bdbuf_swapout_worker));
2698    if (!worker)
2699      rtems_fatal_error_occurred (RTEMS_BLKDEV_FATAL_BDBUF_SO_NOMEM);
2700
2701    rtems_chain_append (&bdbuf_cache.swapout_workers, &worker->link);
2702    worker->enabled = true;
2703    worker->transfer.write_req = rtems_bdbuf_swapout_writereq_alloc ();
2704   
2705    rtems_chain_initialize_empty (&worker->transfer.bds);
2706    worker->transfer.dev = BDBUF_INVALID_DEV;
2707
2708    sc = rtems_task_create (rtems_build_name('B', 'D', 'o', 'a' + w),
2709                            (bdbuf_config.swapout_priority ?
2710                             bdbuf_config.swapout_priority :
2711                             RTEMS_BDBUF_SWAPOUT_TASK_PRIORITY_DEFAULT),
2712                            SWAPOUT_TASK_STACK_SIZE,
2713                            RTEMS_PREEMPT | RTEMS_NO_TIMESLICE | RTEMS_NO_ASR,
2714                            RTEMS_LOCAL | RTEMS_NO_FLOATING_POINT,
2715                            &worker->id);
2716    if (sc != RTEMS_SUCCESSFUL)
2717      rtems_fatal_error_occurred (RTEMS_BLKDEV_FATAL_BDBUF_SO_WK_CREATE);
2718
2719    sc = rtems_task_start (worker->id,
2720                           rtems_bdbuf_swapout_worker_task,
2721                           (rtems_task_argument) worker);
2722    if (sc != RTEMS_SUCCESSFUL)
2723      rtems_fatal_error_occurred (RTEMS_BLKDEV_FATAL_BDBUF_SO_WK_START);
2724  }
2725 
2726  rtems_bdbuf_unlock_cache ();
2727}
2728
2729/**
2730 * Close the swapout worker threads.
2731 */
2732static void
2733rtems_bdbuf_swapout_workers_close (void)
2734{
2735  rtems_chain_node* node;
2736 
2737  rtems_bdbuf_lock_cache ();
2738 
2739  node = rtems_chain_first (&bdbuf_cache.swapout_workers);
2740  while (!rtems_chain_is_tail (&bdbuf_cache.swapout_workers, node))
2741  {
2742    rtems_bdbuf_swapout_worker* worker = (rtems_bdbuf_swapout_worker*) node;
2743    worker->enabled = false;
2744    rtems_event_send (worker->id, RTEMS_BDBUF_SWAPOUT_SYNC);
2745    node = rtems_chain_next (node);
2746  }
2747 
2748  rtems_bdbuf_unlock_cache ();
2749}
2750
2751/**
2752 * Body of task which takes care on flushing modified buffers to the disk.
2753 *
2754 * @param arg A pointer to the global cache data. Use the global variable and
2755 *            not this.
2756 * @return rtems_task Not used.
2757 */
2758static rtems_task
2759rtems_bdbuf_swapout_task (rtems_task_argument arg)
2760{
2761  rtems_bdbuf_swapout_transfer transfer;
2762  uint32_t                     period_in_ticks;
2763  const uint32_t               period_in_msecs = bdbuf_config.swapout_period;;
2764  uint32_t                     timer_delta;
2765
2766  transfer.write_req = rtems_bdbuf_swapout_writereq_alloc ();
2767  rtems_chain_initialize_empty (&transfer.bds);
2768  transfer.dev = BDBUF_INVALID_DEV;
2769
2770  /*
2771   * Localise the period.
2772   */
2773  period_in_ticks = RTEMS_MICROSECONDS_TO_TICKS (period_in_msecs * 1000);
2774
2775  /*
2776   * This is temporary. Needs to be changed to use the real time clock.
2777   */
2778  timer_delta = period_in_msecs;
2779
2780  /*
2781   * Create the worker threads.
2782   */
2783  rtems_bdbuf_swapout_workers_open ();
2784 
2785  while (bdbuf_cache.swapout_enabled)
2786  {
2787    rtems_event_set   out;
2788    rtems_status_code sc;
2789
2790    /*
2791     * Only update the timers once in the processing cycle.
2792     */
2793    bool update_timers = true;
2794   
2795    /*
2796     * If we write buffers to any disk perform a check again. We only write a
2797     * single device at a time and the cache may have more than one device's
2798     * buffers modified waiting to be written.
2799     */
2800    bool transfered_buffers;
2801
2802    do
2803    {
2804      transfered_buffers = false;
2805
2806      /*
2807       * Extact all the buffers we find for a specific device. The device is
2808       * the first one we find on a modified list. Process the sync queue of
2809       * buffers first.
2810       */
2811      if (rtems_bdbuf_swapout_processing (timer_delta,
2812                                          update_timers,
2813                                          &transfer))
2814      {
2815        transfered_buffers = true;
2816      }
2817     
2818      /*
2819       * Only update the timers once.
2820       */
2821      update_timers = false;
2822    }
2823    while (transfered_buffers);
2824
2825    sc = rtems_event_receive (RTEMS_BDBUF_SWAPOUT_SYNC,
2826                              RTEMS_EVENT_ALL | RTEMS_WAIT,
2827                              period_in_ticks,
2828                              &out);
2829
2830    if ((sc != RTEMS_SUCCESSFUL) && (sc != RTEMS_TIMEOUT))
2831      rtems_fatal_error_occurred (BLKDEV_FATAL_BDBUF_SWAPOUT_RE);
2832  }
2833
2834  rtems_bdbuf_swapout_workers_close ();
2835 
2836  free (transfer.write_req);
2837
2838  rtems_task_delete (RTEMS_SELF);
2839}
Note: See TracBrowser for help on using the repository browser.