source: rtems/cpukit/libblock/include/rtems/flashdisk.h @ 9de9b7d2

4.115
Last change on this file since 9de9b7d2 was b697bc6, checked in by Joel Sherrill <joel.sherrill@…>, on 01/10/13 at 21:06:42

cpukit: Use Consistent Beginning of Doxygen Group Notation

This is the result of a sed script which converts all uses
of @{ into a consistent form.

  • Property mode set to 100644
File size: 18.0 KB
Line 
1/**
2 * @file
3 *
4 * @ingroup RTEMSFDisk
5 *
6 * @brief Interface to a Flash Disk Block Device
7 *
8 * This file defines the interface to a flash disk block device.
9 */
10
11/*
12 * Copyright (C) 2007 Chris Johns
13 *
14 * The license and distribution terms for this file may be
15 * found in the file LICENSE in this distribution or at
16 * http://www.rtems.com/license/LICENSE.
17 */
18
19#if !defined (_RTEMS_FLASHDISK_H_)
20#define _RTEMS_FLASHDISK_H_
21
22#include <stdint.h>
23#include <sys/ioctl.h>
24
25#include <rtems.h>
26
27/**
28 * @defgroup RTEMSFDisk Flash Disk Device
29 *
30 * @ingroup rtems_blkdev
31 *
32 * Flash disk driver for RTEMS provides support for block based
33 * file systems on flash devices. The driver is not a flash file
34 * system nor does it try to compete with flash file systems. It
35 * currently does not journal how-ever block sequence numbering
36 * could be added to allow recovery of a past positions if
37 * a power down occurred while being updated.
38 *
39 * This flash driver provides block device support for most flash
40 * devices. The driver has been tested on NOR type devices such
41 * as the AMLV160 or M28W160. Support for NAND type devices may
42 * require driver changes to allow speedy recover of the block
43 * mapping data and to also handle the current use of word programming.
44 * Currently the page descriptors are stored in the first few pages
45 * of each segment.
46 *
47 * The driver supports devices, segments and pages. You provide
48 * to the driver the device descriptions as a table of device
49 * descriptors. Each device descriptor contain a table of
50 * segment descriptions or segment descriptors. The driver uses
51 * this information to manage the devices.
52 *
53 * A device is made up of segments. These are also called
54 * sectors or blocks. It is the smallest erasable part of a device.
55 * A device can have differing size segments at different
56 * offsets in the device. The segment descriptors support repeating
57 * segments that are continuous in the device. The driver breaks the
58 * segments up into pages. The first pages of a segment contain
59 * the page descriptors. A page descriptor hold the page flags,
60 * a CRC for the page of data and the block number the page
61 * holds. The block can appear in any order in the devices. A
62 * page is active if it hold a current block of data. If the
63 * used bit is set the page is counted as used. A page moves
64 * from erased to active to used then back to erased. If a block
65 * is written that is already in a page, the block is written to
66 * a new page the old page is flagged as used.
67 *
68 * At initialization time each segment's page descriptors are
69 * read into memory and scanned to determine the active pages,
70 * the used pages and the bad pages. If a segment has any erased
71 * pages it is queue on the available queue. If the segment has
72 * no erased pages it is queue on the used queue.
73 *
74 * The available queue is sorted from the least number available
75 * to the most number of available pages. A segment that has just
76 * been erased will placed at the end of the queue. A segment that
77 * has only a few available pages will be used sooner and once
78 * there are no available pages it is queued on the used queue.
79 * The used queue hold segments that have no available pages and
80 * is sorted from the least number of active pages to the most
81 * number of active pages.
82 *
83 * The driver is required to compact segments. Compacting takes
84 * the segment with the most number of available pages from the
85 * available queue then takes segments with the least number of
86 * active pages from the used queue until it has enough pages
87 * to fill the empty segment. As the active pages are moved
88 * they flagged as used and once the segment has only used pages
89 * it is erased.
90 *
91 * A flash block driver like this never knows if a page is not
92 * being used by the file-system. A typical file system is not
93 * design with the idea of erasing a block on a disk once it is
94 * not being used. The file-system will normally use a flag
95 * or a location as a marker to say that part of the disk is
96 * no longer in use. This means a number of blocks could be
97 * held in active pages but are no in use by the file system.
98 * The file system may also read blocks that have never been
99 * written to disk. This complicates the driver and may make
100 * the wear, usage and erase patterns harsher than a flash
101 * file system. The driver may also suffer from problems if
102 * power is lost.
103 *
104 * There are some flash disk specific IO control request types.
105 * To use open the device and issue the ioctl() call.
106 *
107 * @code
108 *  int fd = open ("/dev/flashdisk0", O_WRONLY, 0);
109 *  if (fd < 0)
110 *  {
111 *    printf ("driver open failed: %s\n", strerror (errno));
112 *    exit (1);
113 *  }
114 *  if (ioctl (fd, RTEMS_FDISK_IOCTL_ERASE_DISK) < 0)
115 *  {
116 *    printf ("driver erase failed: %s\n", strerror (errno));
117 *    exit (1);
118 *  }
119 *  close (fd);
120 * @endcode
121 */
122/**@{**/
123
124/**
125 * @brief The base name of the flash disks.
126 */
127#define RTEMS_FLASHDISK_DEVICE_BASE_NAME "/dev/fdd"
128
129#define RTEMS_FDISK_IOCTL_ERASE_DISK   _IO('B', 128)
130#define RTEMS_FDISK_IOCTL_COMPACT      _IO('B', 129)
131#define RTEMS_FDISK_IOCTL_ERASE_USED   _IO('B', 130)
132#define RTEMS_FDISK_IOCTL_MONITORING   _IO('B', 131)
133#define RTEMS_FDISK_IOCTL_INFO_LEVEL   _IO('B', 132)
134#define RTEMS_FDISK_IOCTL_PRINT_STATUS _IO('B', 133)
135
136/**
137 * @brief Flash Disk Monitoring Data allows a user to obtain
138 * the current status of the disk.
139 */
140typedef struct rtems_fdisk_monitor_data
141{
142  uint32_t block_size;
143  uint32_t block_count;
144  uint32_t unavail_blocks;
145  uint32_t device_count;
146  uint32_t segment_count;
147  uint32_t page_count;
148  uint32_t blocks_used;
149  uint32_t segs_available;
150  uint32_t segs_used;
151  uint32_t segs_failed;
152  uint32_t seg_erases;
153  uint32_t pages_desc;
154  uint32_t pages_active;
155  uint32_t pages_used;
156  uint32_t pages_bad;
157  uint32_t info_level;
158} rtems_fdisk_monitor_data;
159
160/**
161 * @brief Flash Segment Descriptor holds, number of continuous segments in the
162 * device of this type, the base segment number in the device, the address
163 * offset of the base segment in the device, and the size of segment.
164 *
165 * Typically this structure is part of a table of segments in the
166 * device which is referenced in the flash disk configuration table.
167 * The reference is kept in the driver and used all the time to
168 * manage the flash device, therefore it must always exist.
169 */
170typedef struct rtems_fdisk_segment_desc
171{
172  uint16_t count;    /**< Number of segments of this type in a row. */
173  uint16_t segment;  /**< The base segment number. */
174  uint32_t offset;   /**< Address offset of base segment in device. */
175  uint32_t size;     /**< Size of the segment in bytes. */
176} rtems_fdisk_segment_desc;
177
178/**
179 * @brief Return the number of kilo-bytes.
180 */
181#define RTEMS_FDISK_KBYTES(_k) (UINT32_C(1024) * (_k))
182
183/**
184 * Forward declaration of the device descriptor.
185 */
186struct rtems_fdisk_device_desc;
187
188/**
189 * @brief Flash Low Level driver handlers.
190 *
191 * Typically this structure is part of a table of handlers in the
192 * device which is referenced in the flash disk configuration table.
193 * The reference is kept in the driver and used all the time to
194 * manage the flash device, therefore it must always exist.
195 */
196typedef struct rtems_fdisk_driver_handlers
197{
198  /**
199   * Read data from the device into the buffer. Return an errno
200   * error number if the device cannot be read. A segment descriptor
201   * can describe more than one segment in a device if the device has
202   * repeating segments. The segment number is the device segment to
203   * access and the segment descriptor must reference the segment
204   * being requested. For example the segment number must resided in
205   * the range [base, base + count).
206   *
207   * @param sd The segment descriptor.
208   * @param device The device to read data from.
209   * @param segment The segment within the device to read.
210   * @param offset The offset in the segment to read.
211   * @param buffer The buffer to read the data into.
212   * @param size The amount of data to read.
213   * @retval 0 No error.
214   * @retval EIO The read did not complete.
215   */
216  int (*read) (const rtems_fdisk_segment_desc* sd,
217               uint32_t                        device,
218               uint32_t                        segment,
219               uint32_t                        offset,
220               void*                           buffer,
221               uint32_t                        size);
222
223  /**
224   * Write data from the buffer to the device. Return an errno
225   * error number if the device cannot be written to. A segment
226   * descriptor can describe more than segment in a device if the
227   * device has repeating segments. The segment number is the device
228   * segment to access and the segment descriptor must reference
229   * the segment being requested. For example the segment number must
230   * resided in the range [base, base + count).
231   *
232   * @param sd The segment descriptor.
233   * @param device The device to write data from.
234   * @param segment The segment within the device to write to.
235   * @param offset The offset in the segment to write.
236   * @param buffer The buffer to write the data from.
237   * @param size The amount of data to write.
238   * @retval 0 No error.
239   * @retval EIO The write did not complete or verify.
240   */
241  int (*write) (const rtems_fdisk_segment_desc* sd,
242                uint32_t                        device,
243                uint32_t                        segment,
244                uint32_t                        offset,
245                const void*                     buffer,
246                uint32_t                        size);
247
248  /**
249   * Blank a segment in the device. Return an errno error number
250   * if the device cannot be read or is not blank. A segment descriptor
251   * can describe more than segment in a device if the device has
252   * repeating segments. The segment number is the device segment to
253   * access and the segment descriptor must reference the segment
254   * being requested. For example the segment number must resided in
255   * the range [base, base + count).
256   *
257   * @param sd The segment descriptor.
258   * @param device The device to read data from.
259   * @param segment The segment within the device to read.
260   * @param offset The offset in the segment to checl.
261   * @param size The amount of data to check.
262   * @retval 0 No error.
263   * @retval EIO The segment is not blank.
264   */
265  int (*blank) (const rtems_fdisk_segment_desc* sd,
266                uint32_t                        device,
267                uint32_t                        segment,
268                uint32_t                        offset,
269                uint32_t                        size);
270
271  /**
272   * Verify data in the buffer to the data in the device. Return an
273   * errno error number if the device cannot be read. A segment
274   * descriptor can describe more than segment in a device if the
275   * device has repeating segments. The segment number is the
276   * segment to access and the segment descriptor must reference
277   * the device segment being requested. For example the segment number
278   * must resided in the range [base, base + count).
279   *
280   * @param sd The segment descriptor.
281   * @param device The device to verify data in.
282   * @param segment The segment within the device to verify.
283   * @param offset The offset in the segment to verify.
284   * @param buffer The buffer to verify the data in the device with.
285   * @param size The amount of data to verify.
286   * @retval 0 No error.
287   * @retval EIO The data did not verify.
288   */
289  int (*verify) (const rtems_fdisk_segment_desc* sd,
290                 uint32_t                        device,
291                 uint32_t                        segment,
292                 uint32_t                        offset,
293                 const void*                     buffer,
294                 uint32_t                        size);
295
296  /**
297   * Erase the segment. Return an errno error number if the
298   * segment cannot be erased. A segment descriptor can describe
299   * more than segment in a device if the device has repeating
300   * segments. The segment number is the device segment to access and
301   * the segment descriptor must reference the segment being requested.
302   *
303   * @param sd The segment descriptor.
304   * @param device The device to erase the segment of.
305   * @param segment The segment within the device to erase.
306   * @retval 0 No error.
307   * @retval EIO The segment was not erased.
308   */
309  int (*erase) (const rtems_fdisk_segment_desc* sd,
310                uint32_t                        device,
311                uint32_t                        segment);
312
313  /**
314   * Erase the device. Return an errno error number if the
315   * segment cannot be erased. A segment descriptor can describe
316   * more than segment in a device if the device has repeating
317   * segments. The segment number is the segment to access and
318   * the segment descriptor must reference the segment being requested.
319   *
320   * @param sd The segment descriptor.
321   * @param device The device to erase.
322   * @retval 0 No error.
323   * @retval EIO The device was not erased.
324   */
325  int (*erase_device) (const struct rtems_fdisk_device_desc* dd,
326                       uint32_t                              device);
327
328} rtems_fdisk_driver_handlers;
329
330/**
331 * @brief Flash Device Descriptor holds the segments in a device.
332 *
333 * The placing of the segments in a device decriptor allows the low level
334 * driver to share the segment descriptors for a number of devices.
335 *
336 * Typically this structure is part of a table of segments in the
337 * device which is referenced in the flash disk configuration table.
338 * The reference is kept in the driver and used all the time to
339 * manage the flash device, therefore it must always exist.
340 */
341typedef struct rtems_fdisk_device_desc
342{
343  uint32_t                           segment_count; /**< Number of segments. */
344  const rtems_fdisk_segment_desc*    segments;      /**< Array of segments. */
345  const rtems_fdisk_driver_handlers* flash_ops;     /**< Device handlers. */
346} rtems_fdisk_device_desc;
347
348/**
349 * @brief RTEMS Flash Disk configuration table used to initialise the
350 * driver.
351 *
352 * The unavailable blocks count is the number of blocks less than the
353 * available number of blocks the file system is given. This means there
354 * will always be that number of blocks available when the file system
355 * thinks the disk is full. The compaction code needs blocks to compact
356 * with so you will never be able to have all the blocks allocated to the
357 * file system and be able to full the disk.
358 *
359 * The compacting segment count is the number of segments that are
360 * moved into a new segment. A high number will mean more segments with
361 * low active page counts and high used page counts will be moved into
362 * avaliable pages how-ever this extends the compaction time due to
363 * time it takes the erase the pages. There is no pont making this number
364 * greater than the maximum number of pages in a segment.
365 *
366 * The available compacting segment count is the level when compaction occurs
367 * when writing. If you set this to 0 then compaction will fail because
368 * there will be no segments to compact into.
369 *
370 * The info level can be 0 for off with error, and abort messages allowed.
371 * Level 1 is warning messages, level 1 is informational messages, and level 3
372 * is debugging type prints. The info level can be turned off with a compile
373 * time directive on the command line to the compiler of:
374 *
375 *     -DRTEMS_FDISK_TRACE=0
376 */
377typedef struct rtems_flashdisk_config
378{
379  uint32_t                       block_size;     /**< The block size. */
380  uint32_t                       device_count;   /**< The number of devices. */
381  const rtems_fdisk_device_desc* devices;        /**< The device descriptions. */
382  uint32_t                       flags;          /**< Set of flags to control
383                                                      driver. */
384  /**
385   * Number of blocks not available to the file system.  This number must be
386   * greater than or equal to the number of blocks in the largest segment to
387   * avoid starvation of erased blocks.
388   */
389  uint32_t                       unavail_blocks;
390
391  uint32_t                       compact_segs;   /**< Max number of segs to
392                                                      compact in one pass. */
393  /**
394   * The number of segments when compaction occurs when writing.  In case the
395   * number of segments in the available queue is less than or equal to this
396   * number the compaction process will be triggered.  The available queue
397   * contains all segments with erased blocks.
398   */
399  uint32_t                       avail_compact_segs;
400  uint32_t                       info_level;     /**< Default info level. */
401} rtems_flashdisk_config;
402
403/*
404 * Driver flags.
405 */
406
407/**
408 * Leave the erasing of used segment to the background handler.
409 */
410#define RTEMS_FDISK_BACKGROUND_ERASE (1 << 0)
411
412/**
413 * Leave the compacting of of used segment to the background handler.
414 */
415#define RTEMS_FDISK_BACKGROUND_COMPACT (1 << 1)
416
417/**
418 * Check the pages during initialisation to see which pages are
419 * valid and which are not. This could slow down initialising the
420 * disk driver.
421 */
422#define RTEMS_FDISK_CHECK_PAGES (1 << 2)
423
424/**
425 * Blank check the flash device before writing to them. This is needed if
426 * you think you have a driver or device problem.
427 */
428#define RTEMS_FDISK_BLANK_CHECK_BEFORE_WRITE (1 << 3)
429
430/**
431 * Flash disk device driver initialization. Place in a table as the
432 * initialisation entry and remainder of the entries are the
433 * RTEMS block device generic handlers.
434 *
435 * @param major Flash disk major device number.
436 * @param minor Minor device number, not applicable.
437 * @param arg Initialization argument, not applicable.
438 * @return The rtems_device_driver is actually just
439 *         rtems_status_code.
440 */
441rtems_device_driver
442rtems_fdisk_initialize (rtems_device_major_number major,
443                        rtems_device_minor_number minor,
444                        void*                     arg);
445
446/**
447 * @brief External reference to the configuration. Please supply.
448 * Support is present in confdefs.h for providing this variable.
449 */
450extern const rtems_flashdisk_config rtems_flashdisk_configuration[];
451
452/**
453 * @brief External reference to the number of configurations. Please supply.
454 * Support is present in confdefs.h for providing this variable.
455 */
456extern uint32_t rtems_flashdisk_configuration_size;
457
458/** @} */
459
460#endif
Note: See TracBrowser for help on using the repository browser.