source: rtems/c/src/libchip/network/if_fxp.c @ c140041b

4.104.114.84.95
Last change on this file since c140041b was c140041b, checked in by Ralf Corsepius <ralf.corsepius@…>, on Sep 19, 2005 at 3:46:17 AM

Include <errno.h> instead of <sys/errno.h>.

  • Property mode set to 100644
File size: 61.4 KB
Line 
1/*-
2 * Copyright (c) 1995, David Greenman
3 * Copyright (c) 2001 Jonathan Lemon <jlemon@freebsd.org>
4 * All rights reserved.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 *    notice unmodified, this list of conditions, and the following
11 *    disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 *    notice, this list of conditions and the following disclaimer in the
14 *    documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26 * SUCH DAMAGE.
27 *
28 * $FreeBSD: src/sys/dev/fxp/if_fxp.c,v 1.118 2001/09/05 23:33:58 brooks Exp $
29 */
30
31/*
32 * Intel EtherExpress Pro/100B PCI Fast Ethernet driver
33 */
34
35/*
36 * RTEMS Revision Preliminary History
37 *
38 * July XXX, 2002     W. Eric Norum <eric.norum@usask.ca>
39 *     Placed in RTEMS CVS repository.  All further modifications will be
40 *     noted in the CVS log and not in this comment.
41 *
42 * July 11, 2002     W. Eric Norum <eric.norum@usask.ca>
43 *     Minor modifications to get driver working with NIC on VersaLogic
44 *     Bobcat PC-104 single-board computer.  The Bobcat has no video
45 *     driver so printf/printk calls are directed to COM2:.  This
46 *     arrangement seems to require delays after the printk calls or
47 *     else things lock up.  Perhaps the RTEMS pc386 console code
48 *     should be modified to insert these delays itself.
49 *
50 * June 27, 2002     W. Eric Norum <eric.norum@usask.ca>
51 *     Obtained from Thomas Doerfler <Thomas.Doerfler@imd-systems.de>.
52 *     A big thank-you to Thomas for making this available.
53 *
54 * October 01, 2001  Thomas Doerfler <Thomas.Doerfler@imd-systems.de>
55 *     Original RTEMS modifications.
56 */
57
58#if defined(__i386__)
59
60/*#define DEBUG_OUT 0*/
61
62#include <rtems.h>
63#include <rtems/error.h>
64#include <rtems/rtems_bsdnet.h>
65#include <bsp.h>
66
67#include <errno.h>
68#include <sys/param.h>
69#include <sys/mbuf.h>
70#include <sys/socket.h>
71#include <sys/sockio.h>
72#include <net/if.h>
73#include <netinet/in.h>
74#include <netinet/if_ether.h>
75#include <sys/malloc.h>
76#include <sys/systm.h>
77#include <bsp.h>
78#include <pcibios.h>
79#include <bsp/irq.h>
80#include <rtems/pci.h>
81
82#ifdef NS
83#include <netns/ns.h>
84#include <netns/ns_if.h>
85#endif
86
87#include <net/bpf.h>
88
89#include <vm/vm.h>              /* for vtophys */
90
91#include <net/if_types.h>
92
93#include "if_fxpreg.h"
94#include "if_fxpvar.h"
95
96/*
97 * some adaptation replacements for RTEMS
98 */
99static rtems_interval fxp_ticksPerSecond;
100#define device_printf(device,format,args...) printk(format,## args)
101#define DELAY(n) rtems_task_wake_after(((n)*fxp_ticksPerSecond/1000000)+1)
102#ifdef DEBUG_OUT
103#define DBGLVL_PRINTK(LVL,format, args...)                   \
104if (DEBUG_OUT >= (LVL)) {                                    \
105  printk(format, ## args);                                   \
106}
107#else
108#define DBGLVL_PRINTK(LVL,format, args...)
109#endif
110
111/*
112 * RTEMS event used by interrupt handler to signal driver tasks.
113 * This must not be any of the events used by the network task synchronization.
114 */
115#define INTERRUPT_EVENT RTEMS_EVENT_1
116
117/*
118 * remapping between PCI device and CPU memmory address view...
119 */
120#if defined(__i386)
121#define vtophys(p) (u_int32_t)(p)
122#else
123#define vtophys(p) vtophys(p)
124#endif
125
126#define NFXPDRIVER 1
127static struct fxp_softc fxp_softc[NFXPDRIVER];
128static int fxp_is_verbose = TRUE;
129/*
130 * NOTE!  On the Alpha, we have an alignment constraint.  The
131 * card DMAs the packet immediately following the RFA.  However,
132 * the first thing in the packet is a 14-byte Ethernet header.
133 * This means that the packet is misaligned.  To compensate,
134 * we actually offset the RFA 2 bytes into the cluster.  This
135 * alignes the packet after the Ethernet header at a 32-bit
136 * boundary.  HOWEVER!  This means that the RFA is misaligned!
137 */
138#define RFA_ALIGNMENT_FUDGE     2
139
140/*
141 * Set initial transmit threshold at 64 (512 bytes). This is
142 * increased by 64 (512 bytes) at a time, to maximum of 192
143 * (1536 bytes), if an underrun occurs.
144 */
145static int tx_threshold = 64;
146
147/*
148 * The configuration byte map has several undefined fields which
149 * must be one or must be zero.  Set up a template for these bits
150 * only, (assuming a 82557 chip) leaving the actual configuration
151 * to fxp_init.
152 *
153 * See struct fxp_cb_config for the bit definitions.
154 */
155static u_char fxp_cb_config_template[] = {
156        0x0, 0x0,               /* cb_status */
157        0x0, 0x0,               /* cb_command */
158        0x0, 0x0, 0x0, 0x0,     /* link_addr */
159        0x0,    /*  0 */
160        0x0,    /*  1 */
161        0x0,    /*  2 */
162        0x0,    /*  3 */
163        0x0,    /*  4 */
164        0x0,    /*  5 */
165        0x32,   /*  6 */
166        0x0,    /*  7 */
167        0x0,    /*  8 */
168        0x0,    /*  9 */
169        0x6,    /* 10 */
170        0x0,    /* 11 */
171        0x0,    /* 12 */
172        0x0,    /* 13 */
173        0xf2,   /* 14 */
174        0x48,   /* 15 */
175        0x0,    /* 16 */
176        0x40,   /* 17 */
177        0xf0,   /* 18 */
178        0x0,    /* 19 */
179        0x3f,   /* 20 */
180        0x5     /* 21 */
181};
182
183struct fxp_ident {
184        u_int16_t       devid;
185        char            *name;
186        int                     warn;
187};
188
189#define UNTESTED 1
190
191/*
192 * Claim various Intel PCI device identifiers for this driver.  The
193 * sub-vendor and sub-device field are extensively used to identify
194 * particular variants, but we don't currently differentiate between
195 * them.
196 */
197static struct fxp_ident fxp_ident_table[] = {
198    { 0x1229,           "Intel Pro 10/100B/100+ Ethernet", 0 },
199    { 0x2449,           "Intel Pro/100 Ethernet", UNTESTED },
200    { 0x1209,           "Intel Embedded 10/100 Ethernet", 0 },
201    { 0x1029,           "Intel Pro/100 Ethernet", UNTESTED },
202    { 0x1030,           "Intel Pro/100 Ethernet", 0 },
203    { 0x1031,           "Intel Pro/100 Ethernet", UNTESTED },
204    { 0x1032,           "Intel Pro/100 Ethernet", UNTESTED },
205    { 0x1033,           "Intel Pro/100 Ethernet", UNTESTED },
206    { 0x1034,           "Intel Pro/100 Ethernet", UNTESTED },
207    { 0x1035,           "Intel Pro/100 Ethernet", UNTESTED },
208    { 0x1036,           "Intel Pro/100 Ethernet", UNTESTED },
209    { 0x1037,           "Intel Pro/100 Ethernet", UNTESTED },
210    { 0x1038,           "Intel Pro/100 Ethernet", UNTESTED },
211    { 0x103B,           "Intel Pro/100 Ethernet (82801BD PRO/100 VM (LOM))", 0 },
212    { 0,                NULL },
213};
214
215#if 0
216static int              fxp_probe(device_t dev);
217static int              fxp_attach(device_t dev);
218static int              fxp_detach(device_t dev);
219static int              fxp_shutdown(device_t dev);
220#endif
221int     fxp_output (struct ifnet *,
222           struct mbuf *, struct sockaddr *, struct rtentry *);
223
224
225static rtems_isr        fxp_intr(rtems_vector_number v);
226static void             fxp_init(void *xsc);
227static void             fxp_tick(void *xsc);
228static void             fxp_start(struct ifnet *ifp);
229static void             fxp_stop(struct fxp_softc *sc);
230static void             fxp_release(struct fxp_softc *sc);
231static int              fxp_ioctl(struct ifnet *ifp, u_long command,
232                            caddr_t data);
233static void             fxp_watchdog(struct ifnet *ifp);
234static int              fxp_add_rfabuf(struct fxp_softc *sc, struct mbuf *oldm);
235static void             fxp_mc_setup(struct fxp_softc *sc);
236static u_int16_t        fxp_eeprom_getword(struct fxp_softc *sc, int offset,
237                            int autosize);
238static void             fxp_eeprom_putword(struct fxp_softc *sc, int offset,
239                            u_int16_t data);
240static void             fxp_autosize_eeprom(struct fxp_softc *sc);
241static void             fxp_read_eeprom(struct fxp_softc *sc, u_short *data,
242                            int offset, int words);
243static void             fxp_write_eeprom(struct fxp_softc *sc, u_short *data,
244                            int offset, int words);
245#ifdef NOTUSED
246static int              fxp_ifmedia_upd(struct ifnet *ifp);
247static void             fxp_ifmedia_sts(struct ifnet *ifp,
248                            struct ifmediareq *ifmr);
249static int              fxp_serial_ifmedia_upd(struct ifnet *ifp);
250static void             fxp_serial_ifmedia_sts(struct ifnet *ifp,
251                            struct ifmediareq *ifmr);
252static volatile int     fxp_miibus_readreg(device_t dev, int phy, int reg);
253static void             fxp_miibus_writereg(device_t dev, int phy, int reg,
254                            int value);
255#endif
256static __inline void    fxp_lwcopy(volatile u_int32_t *src,
257                            volatile u_int32_t *dst);
258static __inline void    fxp_scb_wait(struct fxp_softc *sc);
259static __inline void    fxp_scb_cmd(struct fxp_softc *sc, int cmd);
260static __inline void    fxp_dma_wait(volatile u_int16_t *status,
261                            struct fxp_softc *sc);
262
263/*
264 * Inline function to copy a 16-bit aligned 32-bit quantity.
265 */
266static __inline void
267fxp_lwcopy(volatile u_int32_t *src, volatile u_int32_t *dst)
268{
269#ifdef __i386__
270        *dst = *src;
271#else
272        volatile u_int16_t *a = (volatile u_int16_t*)src;
273        volatile u_int16_t *b = (volatile u_int16_t*)dst;
274
275        b[0] = a[0];
276        b[1] = a[1];
277#endif
278}
279
280/*
281 * inline access functions to pci space registers
282 */
283static __inline u_int8_t fxp_csr_read_1(struct fxp_softc *sc,int  reg) {
284  u_int8_t val;
285  if (sc->pci_regs_are_io) {
286    inport_byte(sc->pci_regs_base + reg,val);
287  }
288  else {
289    val = *(u_int8_t*)(sc->pci_regs_base+reg);
290  }
291  return val;
292}
293static __inline u_int32_t fxp_csr_read_2(struct fxp_softc *sc,int  reg) {
294  u_int16_t val;
295  if (sc->pci_regs_are_io) {
296    inport_word(sc->pci_regs_base + reg,val);
297  }
298  else {
299    val = *(u_int16_t*)(sc->pci_regs_base+reg);
300  }
301  return val;
302}
303static __inline u_int32_t fxp_csr_read_4(struct fxp_softc *sc,int  reg) {
304  u_int32_t val;
305  if (sc->pci_regs_are_io) {
306    inport_long(sc->pci_regs_base + reg,val);
307  }
308  else {
309    val = *(u_int32_t*)(sc->pci_regs_base+reg);
310  }
311  return val;
312}
313
314/*
315 * Wait for the previous command to be accepted (but not necessarily
316 * completed).
317 */
318static __inline void
319fxp_scb_wait(struct fxp_softc *sc)
320{
321        int i = 10000;
322
323        while (CSR_READ_1(sc, FXP_CSR_SCB_COMMAND) && --i)
324                DELAY(2);
325        if (i == 0)
326                device_printf(sc->dev, "SCB timeout: 0x%x 0x%x 0x%x 0x%x\n",
327                    CSR_READ_1(sc, FXP_CSR_SCB_COMMAND),
328                    CSR_READ_1(sc, FXP_CSR_SCB_STATACK),
329                    CSR_READ_1(sc, FXP_CSR_SCB_RUSCUS),
330                    CSR_READ_2(sc, FXP_CSR_FLOWCONTROL));
331}
332
333static __inline void
334fxp_scb_cmd(struct fxp_softc *sc, int cmd)
335{
336
337        if (cmd == FXP_SCB_COMMAND_CU_RESUME && sc->cu_resume_bug) {
338                CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_CB_COMMAND_NOP);
339                fxp_scb_wait(sc);
340        }
341        CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, cmd);
342}
343
344static __inline void
345fxp_dma_wait(volatile u_int16_t *status, struct fxp_softc *sc)
346{
347        int i = 10000;
348
349        while (!(*status & FXP_CB_STATUS_C) && --i)
350                DELAY(2);
351        if (i == 0)
352                device_printf(sc->dev, "DMA timeout\n");
353}
354
355static __inline unsigned int pci_get_vendor(struct fxp_softc *sc) {
356  u_int16_t vendor;
357  pcib_conf_read16(sc->pci_signature,0,&vendor);
358  return vendor;
359}
360
361static __inline unsigned int pci_get_device(struct fxp_softc *sc) {
362  u_int16_t device;
363  pcib_conf_read16(sc->pci_signature,2,&device);
364  return device;
365}
366
367static __inline unsigned int pci_get_subvendor(struct fxp_softc *sc) {
368  u_int16_t subvendor;
369  pcib_conf_read16(sc->pci_signature,0x2c,&subvendor);
370  return subvendor;
371}
372
373static __inline unsigned int pci_get_subdevice(struct fxp_softc *sc) {
374  u_int16_t subdevice;
375  pcib_conf_read16(sc->pci_signature,0x2e,&subdevice);
376  return subdevice;
377}
378
379static __inline unsigned int pci_get_revid(struct fxp_softc *sc) {
380  u_int8_t revid;
381  pcib_conf_read8(sc->pci_signature,0x08,&revid);
382  return revid;
383}
384
385static void nopOn(const rtems_irq_connect_data* notUsed)
386{
387  /*
388   * code should be moved from fxp_Enet_initialize_hardware
389   * to this location
390   */
391}
392
393static int fxpIsOn(const rtems_irq_connect_data* irq)
394{
395  return BSP_irq_enabled_at_i8259s (irq->name);
396}
397
398int
399rtems_fxp_attach(struct rtems_bsdnet_ifconfig *config, int attaching)
400{
401        int error = 0;
402        struct fxp_softc *sc;
403        struct ifnet *ifp;
404        u_int16_t val16;
405        u_int32_t val32;
406        u_int16_t data;
407        int i;
408        int s;
409        int unitNumber;
410        char *unitName;
411        u_int16_t dev_id;
412        u_int8_t interrupt;
413        int mtu;
414
415    /*
416     * Set up some timing values
417     */
418    rtems_clock_get(RTEMS_CLOCK_GET_TICKS_PER_SECOND, &fxp_ticksPerSecond);
419        DBGLVL_PRINTK(1,"fxp_attach called\n");
420
421        /*
422         * Parse driver name
423         */
424        if ((unitNumber = rtems_bsdnet_parse_driver_name (config, &unitName)) < 0)
425                return 0;
426
427        /*
428         * Is driver free?
429         */
430        if ((unitNumber <= 0) || (unitNumber > NFXPDRIVER)) {
431                device_printf(dev,"Bad FXP unit number.\n");
432                return 0;
433        }
434        sc = &fxp_softc[unitNumber - 1];
435        ifp = &sc->arpcom.ac_if;
436        if (ifp->if_softc != NULL) {
437                device_printf(dev,"FXP Driver already in use.\n");
438                return 0;
439        }
440
441        memset(sc, 0, sizeof(*sc));
442#ifdef NOTUSED
443        sc->dev = dev;
444        callout_handle_init(&sc->stat_ch);
445        mtx_init(&sc->sc_mtx, device_get_nameunit(dev), MTX_DEF | MTX_RECURSE);
446#endif
447        s = splimp();
448
449        /*
450         * find device on pci bus
451         */
452    { int j; int pbus, pdev, pfun;
453
454      for (j=0; fxp_ident_table[j].devid; j++ ) {
455                i = pci_find_device( 0x8086, fxp_ident_table[j].devid,
456                        unitNumber-1, &pbus, &pdev, &pfun );
457                sc->pci_signature =  PCIB_DEVSIG_MAKE( pbus, pdev, pfun );
458                DBGLVL_PRINTK(2,"fxp_attach: find_devid returned %d "
459                      "and pci signature 0x%x\n",
460                      i,sc->pci_signature);
461                if (PCIB_ERR_SUCCESS == i) {
462                  if ( UNTESTED == fxp_ident_table[j].warn ) {
463                        device_printf(dev,
464"WARNING: this chip version has NOT been reported to work under RTEMS yet.\n");
465                        device_printf(dev,
466"         If it works OK, report it as tested in 'c/src/libchip/network/if_fxp.c'\n");
467                        }
468                        break;
469                }
470          }
471        }
472
473        /*
474         * FIXME: add search for more device types...
475         */
476        if (i != PCIB_ERR_SUCCESS) {
477          device_printf(dev, "could not find 82559ER device\n");
478          return 0;
479        }
480
481
482        /*
483         * Enable bus mastering. Enable memory space too, in case
484         * BIOS/Prom forgot about it.
485         */
486        pcib_conf_read16(sc->pci_signature, PCI_COMMAND,&val16);
487        val16 |= (PCI_COMMAND_MEMORY|PCI_COMMAND_MASTER);
488        pcib_conf_write16(sc->pci_signature, PCI_COMMAND, val16);
489        DBGLVL_PRINTK(3,"fxp_attach: PCI_COMMAND_write = 0x%x\n",val16);
490        pcib_conf_read16(sc->pci_signature, PCI_COMMAND,&val16);
491        DBGLVL_PRINTK(4,"fxp_attach: PCI_COMMAND_read  = 0x%x\n",val16);
492
493        /*
494         * Figure out which we should try first - memory mapping or i/o mapping?
495         * We default to memory mapping. Then we accept an override from the
496         * command line. Then we check to see which one is enabled.
497         */
498#ifdef NOTUSED
499        m1 = PCI_COMMAND_MEMORY;
500        m2 = PCI_COMMAND_IO;
501        prefer_iomap = 0;
502        if (resource_int_value(device_get_name(dev), device_get_unit(dev),
503            "prefer_iomap", &prefer_iomap) == 0 && prefer_iomap != 0) {
504                m1 = PCI_COMMAND_IO;
505                m2 = PCI_COMMAND_MEMORY;
506        }
507
508        if (val & m1) {
509                sc->rtp = ((m1 == PCI_COMMAND_MEMORY)
510                           ? SYS_RES_MEMORY : SYS_RES_IOPORT);
511                sc->rgd = ((m1 == PCI_COMMAND_MEMORY)
512                           ? FXP_PCI_MMBA   : FXP_PCI_IOBA);
513                sc->mem = bus_alloc_resource(dev, sc->rtp, &sc->rgd,
514                                             0, ~0, 1, RF_ACTIVE);
515        }
516        if (sc->mem == NULL && (val & m2)) {
517                sc->rtp = ((m2 == PCI_COMMAND_MEMORY)
518                           ? SYS_RES_MEMORY : SYS_RES_IOPORT);
519                sc->rgd = ((m2 == PCI_COMMAND_MEMORY)
520                           ? FXP_PCI_MMBA : FXP_PCI_IOBA);
521                sc->mem = bus_alloc_resource(dev, sc->rtp, &sc->rgd,
522                                            0, ~0, 1, RF_ACTIVE);
523        }
524
525        if (!sc->mem) {
526                device_printf(dev, "could not map device registers\n");
527                error = ENXIO;
528                goto fail;
529        }
530        if (fxp_is_verbose) {
531                device_printf(dev, "using %s space register mapping\n",
532                   sc->rtp == SYS_RES_MEMORY? "memory" : "I/O");
533        }
534
535        sc->sc_st = rman_get_bustag(sc->mem);
536        sc->sc_sh = rman_get_bushandle(sc->mem);
537
538        /*
539         * Allocate our interrupt.
540         */
541        rid = 0;
542        sc->irq = bus_alloc_resource(dev, SYS_RES_IRQ, &rid, 0, ~0, 1,
543                                 RF_SHAREABLE | RF_ACTIVE);
544        if (sc->irq == NULL) {
545                device_printf(dev, "could not map interrupt\n");
546                error = ENXIO;
547                goto fail;
548        }
549
550        error = bus_setup_intr(dev, sc->irq, INTR_TYPE_NET,
551                               fxp_intr, sc, &sc->ih);
552        if (error) {
553                device_printf(dev, "could not setup irq\n");
554                goto fail;
555        }
556#endif
557
558        /*
559         * get mapping and base address of registers
560         */
561        pcib_conf_read16(sc->pci_signature, PCI_COMMAND,&val16);
562        DBGLVL_PRINTK(4,"fxp_attach: PCI_COMMAND_read  = 0x%x\n",val16);
563        if((val16 & PCI_COMMAND_IO) != 0) {
564          sc->pci_regs_are_io = TRUE;
565          pcib_conf_read32(sc->pci_signature,
566                           PCI_BASE_ADDRESS_1,
567                           &val32);
568          sc->pci_regs_base = val32 & PCI_BASE_ADDRESS_IO_MASK;
569        }
570        else {
571          sc->pci_regs_are_io = FALSE;
572          pcib_conf_read32(sc->pci_signature,
573                           PCI_BASE_ADDRESS_0,
574                           &val32);
575          sc->pci_regs_base = val32 & PCI_BASE_ADDRESS_MEM_MASK;
576        }
577        DBGLVL_PRINTK(3,"fxp_attach: CSR registers are mapped in %s space"
578                      " at address 0x%x\n",
579                      sc->pci_regs_are_io ? "I/O" : "MEM",
580                      sc->pci_regs_base);
581
582        /*
583         * get interrupt level to be used
584         */
585        pcib_conf_read8(sc->pci_signature, 60, &interrupt);
586        DBGLVL_PRINTK(3,"fxp_attach: interrupt = 0x%x\n",interrupt);
587        sc->irqInfo.name = (rtems_irq_number)interrupt;
588        /*
589         * Set up interrupts
590         */
591        sc->irqInfo.hdl = (rtems_irq_hdl)fxp_intr;
592        sc->irqInfo.on  = nopOn;
593        sc->irqInfo.off = nopOn;
594        sc->irqInfo.isOn = fxpIsOn;
595        s = BSP_install_rtems_irq_handler (&sc->irqInfo);
596        if (!s)
597          rtems_panic ("Can't attach fxp interrupt handler for irq %d\n",
598                       sc->irqInfo.name);
599        /*
600         * Reset to a stable state.
601        CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SELECTIVE_RESET);
602         */
603        CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SOFTWARE_RESET);
604        DELAY(10);
605
606        sc->cbl_base = malloc(sizeof(struct fxp_cb_tx) * FXP_NTXCB,
607            M_DEVBUF, M_NOWAIT);
608        DBGLVL_PRINTK(3,"fxp_attach: sc->cbl_base = 0x%x\n",sc->cbl_base);
609        if (sc->cbl_base == NULL)
610                goto failmem;
611        else
612                memset(sc->cbl_base, 0, sizeof(struct fxp_cb_tx) * FXP_NTXCB);
613
614        sc->fxp_stats = malloc(sizeof(struct fxp_stats), M_DEVBUF,
615            M_NOWAIT);
616        DBGLVL_PRINTK(3,"fxp_attach: sc->fxp_stats = 0x%x\n",sc->fxp_stats);
617        if (sc->fxp_stats == NULL)
618                goto failmem;
619        else
620                memset(sc->fxp_stats, 0, sizeof(struct fxp_stats));
621
622        sc->mcsp = malloc(sizeof(struct fxp_cb_mcs), M_DEVBUF, M_NOWAIT);
623        DBGLVL_PRINTK(3,"fxp_attach: sc->mcsp = 0x%x\n",sc->mcsp);
624        if (sc->mcsp == NULL)
625                goto failmem;
626
627        /*
628         * Pre-allocate our receive buffers.
629         */
630        for (i = 0; i < FXP_NRFABUFS; i++) {
631                if (fxp_add_rfabuf(sc, NULL) != 0) {
632                        goto failmem;
633                }
634        }
635
636        /*
637         * Find out how large of an SEEPROM we have.
638         */
639        DBGLVL_PRINTK(3,"fxp_attach: calling fxp_autosize_eeprom\n");
640        fxp_autosize_eeprom(sc);
641
642        /*
643         * Determine whether we must use the 503 serial interface.
644         */
645        fxp_read_eeprom(sc, &data, 6, 1);
646        if ((data & FXP_PHY_DEVICE_MASK) != 0 &&
647            (data & FXP_PHY_SERIAL_ONLY))
648                sc->flags |= FXP_FLAG_SERIAL_MEDIA;
649
650        /*
651         * Find out the basic controller type; we currently only
652         * differentiate between a 82557 and greater.
653         */
654        fxp_read_eeprom(sc, &data, 5, 1);
655        if ((data >> 8) == 1)
656                sc->chip = FXP_CHIP_82557;
657        DBGLVL_PRINTK(3,"fxp_attach: sc->chip = %d\n",sc->chip);
658
659        /*
660         * Enable workarounds for certain chip revision deficiencies.
661         *
662         * Systems based on the ICH2/ICH2-M chip from Intel have a defect
663         * where the chip can cause a PCI protocol violation if it receives
664         * a CU_RESUME command when it is entering the IDLE state.  The
665         * workaround is to disable Dynamic Standby Mode, so the chip never
666         * deasserts CLKRUN#, and always remains in an active state.
667         *
668         * See Intel 82801BA/82801BAM Specification Update, Errata #30.
669         */
670#ifdef NOTUSED
671        i = pci_get_device(dev);
672#else
673        pcib_conf_read16(sc->pci_signature,2,&dev_id);
674        DBGLVL_PRINTK(3,"fxp_attach: device id = 0x%x\n",dev_id);
675#endif
676        if (dev_id == 0x2449 || (dev_id > 0x1030 && dev_id < 0x1039)) {
677        device_printf(dev, "*** See Intel 82801BA/82801BAM Specification Update, Errata #30. ***\n");
678                fxp_read_eeprom(sc, &data, 10, 1);
679                if (data & 0x02) {                      /* STB enable */
680                        u_int16_t cksum;
681                        int i;
682
683                        device_printf(dev,
684                    "*** DISABLING DYNAMIC STANDBY MODE IN EEPROM ***\n");
685                        data &= ~0x02;
686                        fxp_write_eeprom(sc, &data, 10, 1);
687                        device_printf(dev, "New EEPROM ID: 0x%x\n", data);
688                        cksum = 0;
689                        for (i = 0; i < (1 << sc->eeprom_size) - 1; i++) {
690                                fxp_read_eeprom(sc, &data, i, 1);
691                                cksum += data;
692                        }
693                        i = (1 << sc->eeprom_size) - 1;
694                        cksum = 0xBABA - cksum;
695                        fxp_read_eeprom(sc, &data, i, 1);
696                        fxp_write_eeprom(sc, &cksum, i, 1);
697                        device_printf(dev,
698                            "EEPROM checksum @ 0x%x: 0x%x -> 0x%x\n",
699                            i, data, cksum);
700                        /*
701                         * We need to do a full PCI reset here.  A software
702                         * reset to the port doesn't cut it, but let's try
703                         * anyway.
704                         */
705                        CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SOFTWARE_RESET);
706                        DELAY(50);
707                        device_printf(dev,
708            "*** PLEASE REBOOT THE SYSTEM NOW FOR CORRECT OPERATION ***\n");
709#if 1
710                        /*
711                         * If the user elects to continue, try the software
712                         * workaround, as it is better than nothing.
713                         */
714                        sc->flags |= FXP_FLAG_CU_RESUME_BUG;
715#endif
716                }
717        }
718
719        /*
720         * If we are not a 82557 chip, we can enable extended features.
721         */
722        if (sc->chip != FXP_CHIP_82557) {
723          u_int8_t tmp_val;
724                /*
725                 * If MWI is enabled in the PCI configuration, and there
726                 * is a valid cacheline size (8 or 16 dwords), then tell
727                 * the board to turn on MWI.
728                 */
729                pcib_conf_read8(sc->pci_signature,
730                                PCI_CACHE_LINE_SIZE,&tmp_val);
731                DBGLVL_PRINTK(3,"fxp_attach: CACHE_LINE_SIZE = %d\n",tmp_val);
732                if (val16 & PCI_COMMAND_MEMORY &&
733                    tmp_val != 0)
734                        sc->flags |= FXP_FLAG_MWI_ENABLE;
735
736                /* turn on the extended TxCB feature */
737                sc->flags |= FXP_FLAG_EXT_TXCB;
738
739                /* enable reception of long frames for VLAN */
740                sc->flags |= FXP_FLAG_LONG_PKT_EN;
741                DBGLVL_PRINTK(3,"fxp_attach: sc->flags = 0x%x\n",
742                              sc->flags);
743        }
744
745        /*
746         * Read MAC address.
747         */
748        fxp_read_eeprom(sc, (u_int16_t*)sc->arpcom.ac_enaddr, 0, 3);
749        if (fxp_is_verbose) {
750            device_printf(dev, "Ethernet address %x:%x:%x:%x:%x:%x %s \n",
751                ((u_int8_t*)sc->arpcom.ac_enaddr)[0],
752                ((u_int8_t*)sc->arpcom.ac_enaddr)[1],
753            ((u_int8_t*)sc->arpcom.ac_enaddr)[2],
754            ((u_int8_t*)sc->arpcom.ac_enaddr)[3],
755            ((u_int8_t*)sc->arpcom.ac_enaddr)[4],
756            ((u_int8_t*)sc->arpcom.ac_enaddr)[5],
757            sc->flags & FXP_FLAG_SERIAL_MEDIA ? ", 10Mbps" : "");
758                device_printf(dev, "PCI IDs: 0x%x 0x%x 0x%x 0x%x 0x%x\n",
759                    pci_get_vendor(sc), pci_get_device(sc),
760                    pci_get_subvendor(sc), pci_get_subdevice(sc),
761                    pci_get_revid(sc));
762                device_printf(dev, "Chip Type: %d\n", sc->chip);
763        }
764
765#ifdef NOTUSED /* do not set up interface at all... */
766        /*
767         * If this is only a 10Mbps device, then there is no MII, and
768         * the PHY will use a serial interface instead.
769         *
770         * The Seeq 80c24 AutoDUPLEX(tm) Ethernet Interface Adapter
771         * doesn't have a programming interface of any sort.  The
772         * media is sensed automatically based on how the link partner
773         * is configured.  This is, in essence, manual configuration.
774         */
775        if (sc->flags & FXP_FLAG_SERIAL_MEDIA) {
776                ifmedia_init(&sc->sc_media, 0, fxp_serial_ifmedia_upd,
777                    fxp_serial_ifmedia_sts);
778                ifmedia_add(&sc->sc_media, IFM_ETHER|IFM_MANUAL, 0, NULL);
779                ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_MANUAL);
780        } else {
781                if (mii_phy_probe(dev, &sc->miibus, fxp_ifmedia_upd,
782                    fxp_ifmedia_sts)) {
783                        device_printf(dev, "MII without any PHY!\n");
784                        error = ENXIO;
785                        goto fail;
786                }
787        }
788#endif
789        if (config->mtu)
790                mtu = config->mtu;
791        else
792                mtu = ETHERMTU;
793
794        ifp->if_softc = sc;
795        ifp->if_unit = unitNumber;
796        ifp->if_name = unitName;
797        ifp->if_mtu  = mtu;
798        ifp->if_baudrate = 100000000;
799        ifp->if_init = fxp_init;
800        ifp->if_ioctl = fxp_ioctl;
801        ifp->if_start = fxp_start;
802        ifp->if_output = ether_output;
803        ifp->if_watchdog = fxp_watchdog;
804        ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX /*| IFF_MULTICAST*/;
805        if (ifp->if_snd.ifq_maxlen == 0)
806                ifp->if_snd.ifq_maxlen = ifqmaxlen;
807
808        /*
809         * Attach the interface.
810         */
811        DBGLVL_PRINTK(3,"fxp_attach: calling if_attach\n");
812        if_attach (ifp);
813        DBGLVL_PRINTK(3,"fxp_attach: calling ether_if_attach\n");
814        ether_ifattach(ifp);
815        DBGLVL_PRINTK(3,"fxp_attach: return from ether_if_attach\n");
816
817#ifdef NOTUSED
818        /*
819         * Tell the upper layer(s) we support long frames.
820         */
821        ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
822#endif
823        /*
824         * Let the system queue as many packets as we have available
825         * TX descriptors.
826         */
827        ifp->if_snd.ifq_maxlen = FXP_NTXCB - 1;
828
829        splx(s);
830        return (0);
831
832failmem:
833        device_printf(dev, "Failed to malloc memory\n");
834        error = ENOMEM;
835#ifdef NOTUSED
836fail:
837#endif
838        splx(s);
839        fxp_release(sc);
840        return (error);
841}
842
843/*
844 * release all resources
845 */
846static void
847fxp_release(struct fxp_softc *sc)
848{
849
850#ifdef NOTUSED
851        bus_generic_detach(sc->dev);
852        if (sc->miibus)
853                device_delete_child(sc->dev, sc->miibus);
854#endif
855        if (sc->cbl_base)
856                free(sc->cbl_base, M_DEVBUF);
857        if (sc->fxp_stats)
858                free(sc->fxp_stats, M_DEVBUF);
859        if (sc->mcsp)
860                free(sc->mcsp, M_DEVBUF);
861        if (sc->rfa_headm)
862                m_freem(sc->rfa_headm);
863
864#ifdef NOTUSED
865        if (sc->ih)
866                bus_teardown_intr(sc->dev, sc->irq, sc->ih);
867        if (sc->irq)
868                bus_release_resource(sc->dev, SYS_RES_IRQ, 0, sc->irq);
869        if (sc->mem)
870                bus_release_resource(sc->dev, sc->rtp, sc->rgd, sc->mem);
871        mtx_destroy(&sc->sc_mtx);
872#endif
873}
874
875#if NOTUSED
876/*
877 * Detach interface.
878 */
879static int
880fxp_detach(device_t dev)
881{
882        struct fxp_softc *sc = device_get_softc(dev);
883        int s;
884
885        /* disable interrupts */
886        CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, FXP_SCB_INTR_DISABLE);
887
888        s = splimp();
889
890        /*
891         * Stop DMA and drop transmit queue.
892         */
893        fxp_stop(sc);
894
895        /*
896         * Close down routes etc.
897         */
898        ether_ifdetach(&sc->arpcom.ac_if, ETHER_BPF_SUPPORTED);
899
900        /*
901         * Free all media structures.
902         */
903        ifmedia_removeall(&sc->sc_media);
904
905        splx(s);
906
907        /* Release our allocated resources. */
908        fxp_release(sc);
909
910        return (0);
911}
912
913/*
914 * Device shutdown routine. Called at system shutdown after sync. The
915 * main purpose of this routine is to shut off receiver DMA so that
916 * kernel memory doesn't get clobbered during warmboot.
917 */
918static int
919fxp_shutdown(device_t dev)
920{
921        /*
922         * Make sure that DMA is disabled prior to reboot. Not doing
923         * do could allow DMA to corrupt kernel memory during the
924         * reboot before the driver initializes.
925         */
926        fxp_stop((struct fxp_softc *) device_get_softc(dev));
927        return (0);
928}
929#endif
930
931/*
932 * Show interface statistics
933 */
934static void
935fxp_stats(struct fxp_softc *sc)
936{
937        struct ifnet *ifp = &sc->sc_if;
938
939        printf ("   Output packets:%-8lu", ifp->if_opackets);
940        printf ("    Collisions:%-8lu", ifp->if_collisions);
941        printf (" Output errors:%-8lu\n", ifp->if_oerrors);
942        printf ("    Input packets:%-8lu", ifp->if_ipackets);
943        printf ("  Input errors:%-8lu\n", ifp->if_ierrors);
944}
945
946static void
947fxp_eeprom_shiftin(struct fxp_softc *sc, int data, int length)
948{
949        u_int16_t reg;
950        int x;
951
952        /*
953         * Shift in data.
954         */
955        for (x = 1 << (length - 1); x; x >>= 1) {
956                if (data & x)
957                        reg = FXP_EEPROM_EECS | FXP_EEPROM_EEDI;
958                else
959                        reg = FXP_EEPROM_EECS;
960                CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
961                DELAY(1);
962                CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg | FXP_EEPROM_EESK);
963                DELAY(1);
964                CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
965                DELAY(1);
966        }
967}
968
969/*
970 * Read from the serial EEPROM. Basically, you manually shift in
971 * the read opcode (one bit at a time) and then shift in the address,
972 * and then you shift out the data (all of this one bit at a time).
973 * The word size is 16 bits, so you have to provide the address for
974 * every 16 bits of data.
975 */
976static u_int16_t
977fxp_eeprom_getword(struct fxp_softc *sc, int offset, int autosize)
978{
979        u_int16_t reg, data;
980        int x;
981
982        CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
983        /*
984         * Shift in read opcode.
985         */
986        fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_READ, 3);
987        /*
988         * Shift in address.
989         */
990        data = 0;
991        for (x = 1 << (sc->eeprom_size - 1); x; x >>= 1) {
992                if (offset & x)
993                        reg = FXP_EEPROM_EECS | FXP_EEPROM_EEDI;
994                else
995                        reg = FXP_EEPROM_EECS;
996                CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
997                DELAY(1);
998                CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg | FXP_EEPROM_EESK);
999                DELAY(1);
1000                CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
1001                DELAY(1);
1002                reg = CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) & FXP_EEPROM_EEDO;
1003                data++;
1004                if (autosize && reg == 0) {
1005                        sc->eeprom_size = data;
1006                        break;
1007                }
1008        }
1009        /*
1010         * Shift out data.
1011         */
1012        data = 0;
1013        reg = FXP_EEPROM_EECS;
1014        for (x = 1 << 15; x; x >>= 1) {
1015                CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg | FXP_EEPROM_EESK);
1016                DELAY(1);
1017                if (CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) & FXP_EEPROM_EEDO)
1018                        data |= x;
1019                CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
1020                DELAY(1);
1021        }
1022        CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
1023        DELAY(1);
1024
1025        return (data);
1026}
1027
1028static void
1029fxp_eeprom_putword(struct fxp_softc *sc, int offset, u_int16_t data)
1030{
1031        int i;
1032
1033        /*
1034         * Erase/write enable.
1035         */
1036        CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
1037        fxp_eeprom_shiftin(sc, 0x4, 3);
1038        fxp_eeprom_shiftin(sc, 0x03 << (sc->eeprom_size - 2), sc->eeprom_size);
1039        CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
1040        DELAY(1);
1041        /*
1042         * Shift in write opcode, address, data.
1043         */
1044        CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
1045        fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_WRITE, 3);
1046        fxp_eeprom_shiftin(sc, offset, sc->eeprom_size);
1047        fxp_eeprom_shiftin(sc, data, 16);
1048        CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
1049        DELAY(1);
1050        /*
1051         * Wait for EEPROM to finish up.
1052         */
1053        CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
1054        DELAY(1);
1055        for (i = 0; i < 1000; i++) {
1056                if (CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) & FXP_EEPROM_EEDO)
1057                        break;
1058                DELAY(50);
1059        }
1060        CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
1061        DELAY(1);
1062        /*
1063         * Erase/write disable.
1064         */
1065        CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
1066        fxp_eeprom_shiftin(sc, 0x4, 3);
1067        fxp_eeprom_shiftin(sc, 0, sc->eeprom_size);
1068        CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
1069        DELAY(1);
1070}
1071
1072/*
1073 * From NetBSD:
1074 *
1075 * Figure out EEPROM size.
1076 *
1077 * 559's can have either 64-word or 256-word EEPROMs, the 558
1078 * datasheet only talks about 64-word EEPROMs, and the 557 datasheet
1079 * talks about the existance of 16 to 256 word EEPROMs.
1080 *
1081 * The only known sizes are 64 and 256, where the 256 version is used
1082 * by CardBus cards to store CIS information.
1083 *
1084 * The address is shifted in msb-to-lsb, and after the last
1085 * address-bit the EEPROM is supposed to output a `dummy zero' bit,
1086 * after which follows the actual data. We try to detect this zero, by
1087 * probing the data-out bit in the EEPROM control register just after
1088 * having shifted in a bit. If the bit is zero, we assume we've
1089 * shifted enough address bits. The data-out should be tri-state,
1090 * before this, which should translate to a logical one.
1091 */
1092static void
1093fxp_autosize_eeprom(struct fxp_softc *sc)
1094{
1095
1096        /* guess maximum size of 256 words */
1097        sc->eeprom_size = 8;
1098
1099        /* autosize */
1100        (void) fxp_eeprom_getword(sc, 0, 1);
1101}
1102
1103static void
1104fxp_read_eeprom(struct fxp_softc *sc, u_short *data, int offset, int words)
1105{
1106        int i;
1107
1108        for (i = 0; i < words; i++) {
1109                data[i] = fxp_eeprom_getword(sc, offset + i, 0);
1110                DBGLVL_PRINTK(4,"fxp_eeprom_read(off=0x%x)=0x%x\n",
1111                              offset+i,data[i]);
1112        }
1113}
1114
1115static void
1116fxp_write_eeprom(struct fxp_softc *sc, u_short *data, int offset, int words)
1117{
1118        int i;
1119
1120        for (i = 0; i < words; i++)
1121                fxp_eeprom_putword(sc, offset + i, data[i]);
1122                DBGLVL_PRINTK(4,"fxp_eeprom_write(off=0x%x,0x%x)\n",
1123                              offset+i,data[i]);
1124}
1125
1126/*
1127 * Start packet transmission on the interface.
1128 */
1129static void
1130fxp_start(struct ifnet *ifp)
1131{
1132        struct fxp_softc *sc = ifp->if_softc;
1133        struct fxp_cb_tx *txp;
1134
1135        DBGLVL_PRINTK(3,"fxp_start called\n");
1136
1137        /*
1138         * See if we need to suspend xmit until the multicast filter
1139         * has been reprogrammed (which can only be done at the head
1140         * of the command chain).
1141         */
1142        if (sc->need_mcsetup) {
1143                return;
1144        }
1145
1146        txp = NULL;
1147
1148        /*
1149         * We're finished if there is nothing more to add to the list or if
1150         * we're all filled up with buffers to transmit.
1151         * NOTE: One TxCB is reserved to guarantee that fxp_mc_setup() can add
1152         *       a NOP command when needed.
1153         */
1154        while (ifp->if_snd.ifq_head != NULL && sc->tx_queued < FXP_NTXCB - 1) {
1155                struct mbuf *m, *mb_head;
1156                int segment;
1157
1158                /*
1159                 * Grab a packet to transmit.
1160                 */
1161                IF_DEQUEUE(&ifp->if_snd, mb_head);
1162
1163                /*
1164                 * Get pointer to next available tx desc.
1165                 */
1166                txp = sc->cbl_last->next;
1167
1168                /*
1169                 * Go through each of the mbufs in the chain and initialize
1170                 * the transmit buffer descriptors with the physical address
1171                 * and size of the mbuf.
1172                 */
1173tbdinit:
1174                for (m = mb_head, segment = 0; m != NULL; m = m->m_next) {
1175                        if (m->m_len != 0) {
1176                                if (segment == FXP_NTXSEG)
1177                                        break;
1178                                txp->tbd[segment].tb_addr =
1179                                    vtophys(mtod(m, vm_offset_t));
1180                                txp->tbd[segment].tb_size = m->m_len;
1181                                segment++;
1182                        }
1183                }
1184                if (m != NULL) {
1185                        struct mbuf *mn;
1186
1187                        /*
1188                         * We ran out of segments. We have to recopy this
1189                         * mbuf chain first. Bail out if we can't get the
1190                         * new buffers.
1191                         */
1192                        MGETHDR(mn, M_DONTWAIT, MT_DATA);
1193                        if (mn == NULL) {
1194                                m_freem(mb_head);
1195                                break;
1196                        }
1197                        if (mb_head->m_pkthdr.len > MHLEN) {
1198                                MCLGET(mn, M_DONTWAIT);
1199                                if ((mn->m_flags & M_EXT) == 0) {
1200                                        m_freem(mn);
1201                                        m_freem(mb_head);
1202                                        break;
1203                                }
1204                        }
1205                        m_copydata(mb_head, 0, mb_head->m_pkthdr.len,
1206                            mtod(mn, caddr_t));
1207                        mn->m_pkthdr.len = mn->m_len = mb_head->m_pkthdr.len;
1208                        m_freem(mb_head);
1209                        mb_head = mn;
1210                        goto tbdinit;
1211                }
1212
1213                txp->tbd_number = segment;
1214                txp->mb_head = mb_head;
1215                txp->cb_status = 0;
1216                if (sc->tx_queued != FXP_CXINT_THRESH - 1) {
1217                        txp->cb_command =
1218                            FXP_CB_COMMAND_XMIT | FXP_CB_COMMAND_SF |
1219                            FXP_CB_COMMAND_S;
1220                } else {
1221                        txp->cb_command =
1222                            FXP_CB_COMMAND_XMIT | FXP_CB_COMMAND_SF |
1223                            FXP_CB_COMMAND_S | FXP_CB_COMMAND_I;
1224                        /*
1225                         * Set a 5 second timer just in case we don't hear
1226                         * from the card again.
1227                         */
1228                        ifp->if_timer = 5;
1229                }
1230                txp->tx_threshold = tx_threshold;
1231
1232                /*
1233                 * Advance the end of list forward.
1234                 */
1235
1236#ifdef __alpha__
1237                /*
1238                 * On platforms which can't access memory in 16-bit
1239                 * granularities, we must prevent the card from DMA'ing
1240                 * up the status while we update the command field.
1241                 * This could cause us to overwrite the completion status.
1242                 */
1243                atomic_clear_short(&sc->cbl_last->cb_command,
1244                    FXP_CB_COMMAND_S);
1245#else
1246                sc->cbl_last->cb_command &= ~FXP_CB_COMMAND_S;
1247#endif /*__alpha__*/
1248                sc->cbl_last = txp;
1249
1250                /*
1251                 * Advance the beginning of the list forward if there are
1252                 * no other packets queued (when nothing is queued, cbl_first
1253                 * sits on the last TxCB that was sent out).
1254                 */
1255                if (sc->tx_queued == 0)
1256                        sc->cbl_first = txp;
1257
1258                sc->tx_queued++;
1259
1260#ifdef NOTUSED
1261                /*
1262                 * Pass packet to bpf if there is a listener.
1263                 */
1264                if (ifp->if_bpf)
1265                        bpf_mtap(ifp, mb_head);
1266#endif
1267        }
1268
1269        /*
1270         * We're finished. If we added to the list, issue a RESUME to get DMA
1271         * going again if suspended.
1272         */
1273        if (txp != NULL) {
1274                fxp_scb_wait(sc);
1275                fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_RESUME);
1276        }
1277}
1278
1279/*
1280 * Process interface interrupts.
1281 */
1282static rtems_isr fxp_intr(rtems_vector_number v)
1283{
1284  /*
1285   * FIXME: currently only works with one interface...
1286   */
1287  struct fxp_softc *sc = &(fxp_softc[0]);
1288
1289  /*
1290   * disable interrupts
1291   */
1292  CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, FXP_SCB_INTR_DISABLE);
1293  /*
1294   * send event to deamon
1295   */
1296  rtems_event_send (sc->daemonTid, INTERRUPT_EVENT);
1297}
1298
1299static void fxp_daemon(void *xsc)
1300{
1301        struct fxp_softc *sc = xsc;
1302        struct ifnet *ifp = &sc->sc_if;
1303        u_int8_t statack;
1304        rtems_event_set events;
1305        rtems_interrupt_level level;
1306
1307#ifdef NOTUSED
1308        if (sc->suspended) {
1309                return;
1310        }
1311#endif
1312        for (;;) {
1313
1314        DBGLVL_PRINTK(4,"fxp_daemon waiting for event\n");
1315          /*
1316           * wait for event to receive from interrupt function
1317           */
1318          rtems_bsdnet_event_receive (INTERRUPT_EVENT,
1319                                      RTEMS_WAIT|RTEMS_EVENT_ANY,
1320                                      RTEMS_NO_TIMEOUT,
1321                                      &events);
1322          while ((statack = CSR_READ_1(sc, FXP_CSR_SCB_STATACK)) != 0) {
1323            DBGLVL_PRINTK(4,"fxp_daemon: processing event, statack = 0x%x\n",
1324                          statack);
1325#ifdef NOTUSED
1326                /*
1327                 * It should not be possible to have all bits set; the
1328                 * FXP_SCB_INTR_SWI bit always returns 0 on a read.  If
1329                 * all bits are set, this may indicate that the card has
1330                 * been physically ejected, so ignore it.
1331                 */
1332                if (statack == 0xff)
1333                        return;
1334#endif
1335
1336                /*
1337                 * First ACK all the interrupts in this pass.
1338                 */
1339                CSR_WRITE_1(sc, FXP_CSR_SCB_STATACK, statack);
1340
1341                /*
1342                 * Free any finished transmit mbuf chains.
1343                 *
1344                 * Handle the CNA event likt a CXTNO event. It used to
1345                 * be that this event (control unit not ready) was not
1346                 * encountered, but it is now with the SMPng modifications.
1347                 * The exact sequence of events that occur when the interface
1348                 * is brought up are different now, and if this event
1349                 * goes unhandled, the configuration/rxfilter setup sequence
1350                 * can stall for several seconds. The result is that no
1351                 * packets go out onto the wire for about 5 to 10 seconds
1352                 * after the interface is ifconfig'ed for the first time.
1353                 */
1354                if (statack & (FXP_SCB_STATACK_CXTNO | FXP_SCB_STATACK_CNA)) {
1355                        struct fxp_cb_tx *txp;
1356
1357                        for (txp = sc->cbl_first; sc->tx_queued &&
1358                            (txp->cb_status & FXP_CB_STATUS_C) != 0;
1359                            txp = txp->next) {
1360                                if (txp->mb_head != NULL) {
1361                                        m_freem(txp->mb_head);
1362                                        txp->mb_head = NULL;
1363                                }
1364                                sc->tx_queued--;
1365                        }
1366                        sc->cbl_first = txp;
1367                        ifp->if_timer = 0;
1368                        if (sc->tx_queued == 0) {
1369                                if (sc->need_mcsetup)
1370                                        fxp_mc_setup(sc);
1371                        }
1372                        /*
1373                         * Try to start more packets transmitting.
1374                         */
1375                        if (ifp->if_snd.ifq_head != NULL)
1376                                fxp_start(ifp);
1377                }
1378                /*
1379                 * Process receiver interrupts. If a no-resource (RNR)
1380                 * condition exists, get whatever packets we can and
1381                 * re-start the receiver.
1382                 */
1383                if (statack & (FXP_SCB_STATACK_FR | FXP_SCB_STATACK_RNR)) {
1384                        struct mbuf *m;
1385                        struct fxp_rfa *rfa;
1386rcvloop:
1387                        m = sc->rfa_headm;
1388                        rfa = (struct fxp_rfa *)(m->m_ext.ext_buf +
1389                            RFA_ALIGNMENT_FUDGE);
1390
1391                        if (rfa->rfa_status & FXP_RFA_STATUS_C) {
1392                                /*
1393                                 * Remove first packet from the chain.
1394                                 */
1395                                sc->rfa_headm = m->m_next;
1396                                m->m_next = NULL;
1397
1398                                /*
1399                                 * Add a new buffer to the receive chain.
1400                                 * If this fails, the old buffer is recycled
1401                                 * instead.
1402                                 */
1403                                if (fxp_add_rfabuf(sc, m) == 0) {
1404                                        struct ether_header *eh;
1405                                        int total_len;
1406
1407                                        total_len = rfa->actual_size &
1408                                            (MCLBYTES - 1);
1409                                        if (total_len <
1410                                            sizeof(struct ether_header)) {
1411                                                m_freem(m);
1412                                                goto rcvloop;
1413                                        }
1414
1415                                        /*
1416                                         * Drop the packet if it has CRC
1417                                         * errors.  This test is only needed
1418                                         * when doing 802.1q VLAN on the 82557
1419                                         * chip.
1420                                         */
1421                                        if (rfa->rfa_status &
1422                                            FXP_RFA_STATUS_CRC) {
1423                                                m_freem(m);
1424                                                goto rcvloop;
1425                                        }
1426
1427                                        m->m_pkthdr.rcvif = ifp;
1428                                        m->m_pkthdr.len = m->m_len = total_len;
1429                                        eh = mtod(m, struct ether_header *);
1430                                        m->m_data +=
1431                                            sizeof(struct ether_header);
1432                                        m->m_len -=
1433                                            sizeof(struct ether_header);
1434                                        m->m_pkthdr.len = m->m_len;
1435                                        ether_input(ifp, eh, m);
1436                                }
1437                                goto rcvloop;
1438                        }
1439                        if (statack & FXP_SCB_STATACK_RNR) {
1440                                fxp_scb_wait(sc);
1441                                CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL,
1442                                    vtophys(sc->rfa_headm->m_ext.ext_buf) +
1443                                        RFA_ALIGNMENT_FUDGE);
1444                                fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_START);
1445                        }
1446                }
1447          }
1448          /*
1449           * reenable interrupts
1450           */
1451          rtems_interrupt_disable (level);
1452          CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL,0);
1453          rtems_interrupt_enable (level);
1454        }
1455}
1456
1457/*
1458 * Update packet in/out/collision statistics. The i82557 doesn't
1459 * allow you to access these counters without doing a fairly
1460 * expensive DMA to get _all_ of the statistics it maintains, so
1461 * we do this operation here only once per second. The statistics
1462 * counters in the kernel are updated from the previous dump-stats
1463 * DMA and then a new dump-stats DMA is started. The on-chip
1464 * counters are zeroed when the DMA completes. If we can't start
1465 * the DMA immediately, we don't wait - we just prepare to read
1466 * them again next time.
1467 */
1468static void
1469fxp_tick(void *xsc)
1470{
1471        struct fxp_softc *sc = xsc;
1472        struct ifnet *ifp = &sc->sc_if;
1473        struct fxp_stats *sp = sc->fxp_stats;
1474        struct fxp_cb_tx *txp;
1475        int s;
1476
1477        DBGLVL_PRINTK(4,"fxp_tick called\n");
1478
1479        ifp->if_opackets += sp->tx_good;
1480        ifp->if_collisions += sp->tx_total_collisions;
1481        if (sp->rx_good) {
1482                ifp->if_ipackets += sp->rx_good;
1483                sc->rx_idle_secs = 0;
1484        } else {
1485                /*
1486                 * Receiver's been idle for another second.
1487                 */
1488                sc->rx_idle_secs++;
1489        }
1490        ifp->if_ierrors +=
1491            sp->rx_crc_errors +
1492            sp->rx_alignment_errors +
1493            sp->rx_rnr_errors +
1494            sp->rx_overrun_errors;
1495        /*
1496         * If any transmit underruns occured, bump up the transmit
1497         * threshold by another 512 bytes (64 * 8).
1498         */
1499        if (sp->tx_underruns) {
1500                ifp->if_oerrors += sp->tx_underruns;
1501                if (tx_threshold < 192)
1502                        tx_threshold += 64;
1503        }
1504        s = splimp();
1505        /*
1506         * Release any xmit buffers that have completed DMA. This isn't
1507         * strictly necessary to do here, but it's advantagous for mbufs
1508         * with external storage to be released in a timely manner rather
1509         * than being defered for a potentially long time. This limits
1510         * the delay to a maximum of one second.
1511         */
1512        for (txp = sc->cbl_first; sc->tx_queued &&
1513            (txp->cb_status & FXP_CB_STATUS_C) != 0;
1514            txp = txp->next) {
1515                if (txp->mb_head != NULL) {
1516                        m_freem(txp->mb_head);
1517                        txp->mb_head = NULL;
1518                }
1519                sc->tx_queued--;
1520        }
1521        sc->cbl_first = txp;
1522        /*
1523         * If we haven't received any packets in FXP_MAC_RX_IDLE seconds,
1524         * then assume the receiver has locked up and attempt to clear
1525         * the condition by reprogramming the multicast filter. This is
1526         * a work-around for a bug in the 82557 where the receiver locks
1527         * up if it gets certain types of garbage in the syncronization
1528         * bits prior to the packet header. This bug is supposed to only
1529         * occur in 10Mbps mode, but has been seen to occur in 100Mbps
1530         * mode as well (perhaps due to a 10/100 speed transition).
1531         */
1532        if (sc->rx_idle_secs > FXP_MAX_RX_IDLE) {
1533                sc->rx_idle_secs = 0;
1534                fxp_mc_setup(sc);
1535        }
1536        /*
1537         * If there is no pending command, start another stats
1538         * dump. Otherwise punt for now.
1539         */
1540        if (CSR_READ_1(sc, FXP_CSR_SCB_COMMAND) == 0) {
1541                /*
1542                 * Start another stats dump.
1543                 */
1544                fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_DUMPRESET);
1545        } else {
1546                /*
1547                 * A previous command is still waiting to be accepted.
1548                 * Just zero our copy of the stats and wait for the
1549                 * next timer event to update them.
1550                 */
1551                sp->tx_good = 0;
1552                sp->tx_underruns = 0;
1553                sp->tx_total_collisions = 0;
1554
1555                sp->rx_good = 0;
1556                sp->rx_crc_errors = 0;
1557                sp->rx_alignment_errors = 0;
1558                sp->rx_rnr_errors = 0;
1559                sp->rx_overrun_errors = 0;
1560        }
1561#ifdef NOTUSED
1562        if (sc->miibus != NULL)
1563                mii_tick(device_get_softc(sc->miibus));
1564#endif
1565        splx(s);
1566        /*
1567         * Schedule another timeout one second from now.
1568         */
1569        if (sc->stat_ch == fxp_timeout_running) {
1570          timeout(fxp_tick, sc, hz);
1571        }
1572        else if (sc->stat_ch == fxp_timeout_stop_rq) {
1573          sc->stat_ch = fxp_timeout_stopped;
1574        }
1575}
1576
1577/*
1578 * Stop the interface. Cancels the statistics updater and resets
1579 * the interface.
1580 */
1581static void
1582fxp_stop(struct fxp_softc *sc)
1583{
1584        struct ifnet *ifp = &sc->sc_if;
1585        struct fxp_cb_tx *txp;
1586        int i;
1587
1588        DBGLVL_PRINTK(2,"fxp_stop called\n");
1589
1590        ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1591        ifp->if_timer = 0;
1592
1593        /*
1594         * stop stats updater.
1595         */
1596        if (sc->stat_ch == fxp_timeout_running) {
1597          DBGLVL_PRINTK(3,"fxp_stop: trying to stop stat update tick\n");
1598          sc->stat_ch = fxp_timeout_stop_rq;
1599          while(sc->stat_ch != fxp_timeout_stopped) {
1600            rtems_bsdnet_semaphore_release();
1601            rtems_task_wake_after(fxp_ticksPerSecond);
1602            rtems_bsdnet_semaphore_obtain();
1603          }
1604          DBGLVL_PRINTK(3,"fxp_stop: stat update tick stopped\n");
1605        }
1606        /*
1607         * Issue software reset
1608         */
1609        DBGLVL_PRINTK(3,"fxp_stop: issue software reset\n");
1610        CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SELECTIVE_RESET);
1611        DELAY(10);
1612
1613        /*
1614         * Release any xmit buffers.
1615         */
1616        DBGLVL_PRINTK(3,"fxp_stop: releasing xmit buffers\n");
1617        txp = sc->cbl_base;
1618        if (txp != NULL) {
1619                for (i = 0; i < FXP_NTXCB; i++) {
1620                        if (txp[i].mb_head != NULL) {
1621                                m_freem(txp[i].mb_head);
1622                                txp[i].mb_head = NULL;
1623                        }
1624                }
1625        }
1626        sc->tx_queued = 0;
1627
1628        /*
1629         * Free all the receive buffers then reallocate/reinitialize
1630         */
1631        DBGLVL_PRINTK(3,"fxp_stop: free and reinit all receive buffers\n");
1632        if (sc->rfa_headm != NULL)
1633                m_freem(sc->rfa_headm);
1634        sc->rfa_headm = NULL;
1635        sc->rfa_tailm = NULL;
1636        for (i = 0; i < FXP_NRFABUFS; i++) {
1637                if (fxp_add_rfabuf(sc, NULL) != 0) {
1638                        /*
1639                         * This "can't happen" - we're at splimp()
1640                         * and we just freed all the buffers we need
1641                         * above.
1642                         */
1643                        panic("fxp_stop: no buffers!");
1644                }
1645        }
1646        DBGLVL_PRINTK(2,"fxp_stop: finished\n");
1647}
1648
1649/*
1650 * Watchdog/transmission transmit timeout handler. Called when a
1651 * transmission is started on the interface, but no interrupt is
1652 * received before the timeout. This usually indicates that the
1653 * card has wedged for some reason.
1654 */
1655static void
1656fxp_watchdog(struct ifnet *ifp)
1657{
1658        struct fxp_softc *sc = ifp->if_softc;
1659
1660        device_printf(sc->dev, "device timeout\n");
1661        ifp->if_oerrors++;
1662
1663        fxp_init(sc);
1664}
1665
1666static void
1667fxp_init(void *xsc)
1668{
1669        struct fxp_softc *sc = xsc;
1670        struct ifnet *ifp = &sc->sc_if;
1671        struct fxp_cb_config *cbp;
1672        struct fxp_cb_ias *cb_ias;
1673        struct fxp_cb_tx *txp;
1674        int i, prm, s;
1675
1676rtems_task_wake_after(100);
1677        DBGLVL_PRINTK(2,"fxp_init called\n");
1678
1679        s = splimp();
1680        /*
1681         * Cancel any pending I/O
1682         */
1683        /*
1684         * E. Norum 2004-10-11
1685         * Add line suggested by "Eugene Denisov" <dea@sendmail.ru>.
1686         * Prevents lockup at initialization.
1687         */
1688        sc->stat_ch = fxp_timeout_stopped;
1689        fxp_stop(sc);
1690
1691        prm = (ifp->if_flags & IFF_PROMISC) ? 1 : 0;
1692
1693        DBGLVL_PRINTK(5,"fxp_init: Initializing base of CBL and RFA memory\n");
1694        /*
1695         * Initialize base of CBL and RFA memory. Loading with zero
1696         * sets it up for regular linear addressing.
1697         */
1698        CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, 0);
1699        fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_BASE);
1700
1701        fxp_scb_wait(sc);
1702        fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_BASE);
1703
1704        /*
1705         * Initialize base of dump-stats buffer.
1706         */
1707        DBGLVL_PRINTK(5,"fxp_init: Initializing base of dump-stats buffer\n");
1708        fxp_scb_wait(sc);
1709        CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, vtophys(sc->fxp_stats));
1710        fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_DUMP_ADR);
1711
1712        /*
1713         * We temporarily use memory that contains the TxCB list to
1714         * construct the config CB. The TxCB list memory is rebuilt
1715         * later.
1716         */
1717        cbp = (struct fxp_cb_config *) sc->cbl_base;
1718        DBGLVL_PRINTK(5,"fxp_init: cbp = 0x%x\n",cbp);
1719
1720        /*
1721         * This memcpy is kind of disgusting, but there are a bunch of must be
1722         * zero and must be one bits in this structure and this is the easiest
1723         * way to initialize them all to proper values.
1724         */
1725        memcpy( (void *)(u_int32_t*)(volatile void *)&cbp->cb_status,
1726                fxp_cb_config_template,
1727                sizeof(fxp_cb_config_template));
1728
1729        cbp->cb_status =        0;
1730        cbp->cb_command =       FXP_CB_COMMAND_CONFIG | FXP_CB_COMMAND_EL;
1731        cbp->link_addr =        -1;     /* (no) next command */
1732        cbp->byte_count =       22;     /* (22) bytes to config */
1733        cbp->rx_fifo_limit =    8;      /* rx fifo threshold (32 bytes) */
1734        cbp->tx_fifo_limit =    0;      /* tx fifo threshold (0 bytes) */
1735        cbp->adaptive_ifs =     0;      /* (no) adaptive interframe spacing */
1736        cbp->mwi_enable =       sc->flags & FXP_FLAG_MWI_ENABLE ? 1 : 0;
1737        cbp->type_enable =      0;      /* actually reserved */
1738        cbp->read_align_en =    sc->flags & FXP_FLAG_READ_ALIGN ? 1 : 0;
1739        cbp->end_wr_on_cl =     sc->flags & FXP_FLAG_WRITE_ALIGN ? 1 : 0;
1740        cbp->rx_dma_bytecount = 0;      /* (no) rx DMA max */
1741        cbp->tx_dma_bytecount = 0;      /* (no) tx DMA max */
1742        cbp->dma_mbce =         0;      /* (disable) dma max counters */
1743        cbp->late_scb =         0;      /* (don't) defer SCB update */
1744        cbp->direct_dma_dis =   1;      /* disable direct rcv dma mode */
1745        cbp->tno_int_or_tco_en =0;      /* (disable) tx not okay interrupt */
1746        cbp->ci_int =           1;      /* interrupt on CU idle */
1747        cbp->ext_txcb_dis =     sc->flags & FXP_FLAG_EXT_TXCB ? 0 : 1;
1748        cbp->ext_stats_dis =    1;      /* disable extended counters */
1749        cbp->keep_overrun_rx =  0;      /* don't pass overrun frames to host */
1750        cbp->save_bf =          sc->chip == FXP_CHIP_82557 ? 1 : prm;
1751        cbp->disc_short_rx =    !prm;   /* discard short packets */
1752        cbp->underrun_retry =   1;      /* retry mode (once) on DMA underrun */
1753        cbp->two_frames =       0;      /* do not limit FIFO to 2 frames */
1754        cbp->dyn_tbd =          0;      /* (no) dynamic TBD mode */
1755        cbp->mediatype =        sc->flags & FXP_FLAG_SERIAL_MEDIA ? 0 : 1;
1756        cbp->csma_dis =         0;      /* (don't) disable link */
1757        cbp->tcp_udp_cksum =    0;      /* (don't) enable checksum */
1758        cbp->vlan_tco =         0;      /* (don't) enable vlan wakeup */
1759        cbp->link_wake_en =     0;      /* (don't) assert PME# on link change */
1760        cbp->arp_wake_en =      0;      /* (don't) assert PME# on arp */
1761        cbp->mc_wake_en =       0;      /* (don't) enable PME# on mcmatch */
1762        cbp->nsai =             1;      /* (don't) disable source addr insert */
1763        cbp->preamble_length =  2;      /* (7 byte) preamble */
1764        cbp->loopback =         0;      /* (don't) loopback */
1765        cbp->linear_priority =  0;      /* (normal CSMA/CD operation) */
1766        cbp->linear_pri_mode =  0;      /* (wait after xmit only) */
1767        cbp->interfrm_spacing = 6;      /* (96 bits of) interframe spacing */
1768        cbp->promiscuous =      prm;    /* promiscuous mode */
1769        cbp->bcast_disable =    0;      /* (don't) disable broadcasts */
1770        cbp->wait_after_win =   0;      /* (don't) enable modified backoff alg*/
1771        cbp->ignore_ul =        0;      /* consider U/L bit in IA matching */
1772        cbp->crc16_en =         0;      /* (don't) enable crc-16 algorithm */
1773        cbp->crscdt =           sc->flags & FXP_FLAG_SERIAL_MEDIA ? 1 : 0;
1774
1775        cbp->stripping =        !prm;   /* truncate rx packet to byte count */
1776        cbp->padding =          1;      /* (do) pad short tx packets */
1777        cbp->rcv_crc_xfer =     0;      /* (don't) xfer CRC to host */
1778        cbp->long_rx_en =       sc->flags & FXP_FLAG_LONG_PKT_EN ? 1 : 0;
1779        cbp->ia_wake_en =       0;      /* (don't) wake up on address match */
1780        cbp->magic_pkt_dis =    0;      /* (don't) disable magic packet */
1781                                        /* must set wake_en in PMCSR also */
1782        cbp->force_fdx =        0;      /* (don't) force full duplex */
1783        cbp->fdx_pin_en =       1;      /* (enable) FDX# pin */
1784        cbp->multi_ia =         0;      /* (don't) accept multiple IAs */
1785        cbp->mc_all =           sc->flags & FXP_FLAG_ALL_MCAST ? 1 : 0;
1786
1787        DBGLVL_PRINTK(5,"fxp_init: cbp initialized\n");
1788        if (sc->chip == FXP_CHIP_82557) {
1789                /*
1790                 * The 82557 has no hardware flow control, the values
1791                 * below are the defaults for the chip.
1792                 */
1793                cbp->fc_delay_lsb =     0;
1794                cbp->fc_delay_msb =     0x40;
1795                cbp->pri_fc_thresh =    3;
1796                cbp->tx_fc_dis =        0;
1797                cbp->rx_fc_restop =     0;
1798                cbp->rx_fc_restart =    0;
1799                cbp->fc_filter =        0;
1800                cbp->pri_fc_loc =       1;
1801        } else {
1802                cbp->fc_delay_lsb =     0x1f;
1803                cbp->fc_delay_msb =     0x01;
1804                cbp->pri_fc_thresh =    3;
1805                cbp->tx_fc_dis =        0;      /* enable transmit FC */
1806                cbp->rx_fc_restop =     1;      /* enable FC restop frames */
1807                cbp->rx_fc_restart =    1;      /* enable FC restart frames */
1808                cbp->fc_filter =        !prm;   /* drop FC frames to host */
1809                cbp->pri_fc_loc =       1;      /* FC pri location (byte31) */
1810        }
1811
1812        /*
1813         * Start the config command/DMA.
1814         */
1815        DBGLVL_PRINTK(5,"fxp_init: starting config command/DMA\n");
1816        fxp_scb_wait(sc);
1817        CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, vtophys(&cbp->cb_status));
1818        fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
1819        /* ...and wait for it to complete. */
1820        fxp_dma_wait(&cbp->cb_status, sc);
1821
1822        /*
1823         * Now initialize the station address. Temporarily use the TxCB
1824         * memory area like we did above for the config CB.
1825         */
1826        DBGLVL_PRINTK(5,"fxp_init: initialize station address\n");
1827        cb_ias = (struct fxp_cb_ias *) sc->cbl_base;
1828        cb_ias->cb_status = 0;
1829        cb_ias->cb_command = FXP_CB_COMMAND_IAS | FXP_CB_COMMAND_EL;
1830        cb_ias->link_addr = -1;
1831        memcpy((void *)(u_int32_t*)(volatile void *)cb_ias->macaddr,
1832            sc->arpcom.ac_enaddr,
1833            sizeof(sc->arpcom.ac_enaddr));
1834
1835        /*
1836         * Start the IAS (Individual Address Setup) command/DMA.
1837         */
1838        DBGLVL_PRINTK(5,"fxp_init: start IAS command/DMA\n");
1839        fxp_scb_wait(sc);
1840        fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
1841        /* ...and wait for it to complete. */
1842        fxp_dma_wait(&cb_ias->cb_status, sc);
1843
1844        /*
1845         * Initialize transmit control block (TxCB) list.
1846         */
1847
1848        DBGLVL_PRINTK(5,"fxp_init: initialize TxCB list\n");
1849        txp = sc->cbl_base;
1850        memset(txp, 0, sizeof(struct fxp_cb_tx) * FXP_NTXCB);
1851        for (i = 0; i < FXP_NTXCB; i++) {
1852                txp[i].cb_status = FXP_CB_STATUS_C | FXP_CB_STATUS_OK;
1853                txp[i].cb_command = FXP_CB_COMMAND_NOP;
1854                txp[i].link_addr =
1855                    vtophys(&txp[(i + 1) & FXP_TXCB_MASK].cb_status);
1856                if (sc->flags & FXP_FLAG_EXT_TXCB)
1857                        txp[i].tbd_array_addr = vtophys(&txp[i].tbd[2]);
1858                else
1859                        txp[i].tbd_array_addr = vtophys(&txp[i].tbd[0]);
1860                txp[i].next = &txp[(i + 1) & FXP_TXCB_MASK];
1861        }
1862        /*
1863         * Set the suspend flag on the first TxCB and start the control
1864         * unit. It will execute the NOP and then suspend.
1865         */
1866        DBGLVL_PRINTK(5,"fxp_init: setup suspend flag\n");
1867        txp->cb_command = FXP_CB_COMMAND_NOP | FXP_CB_COMMAND_S;
1868        sc->cbl_first = sc->cbl_last = txp;
1869        sc->tx_queued = 1;
1870
1871        fxp_scb_wait(sc);
1872        fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
1873
1874        /*
1875         * Initialize receiver buffer area - RFA.
1876         */
1877        DBGLVL_PRINTK(5,"fxp_init: initialize RFA\n");
1878        fxp_scb_wait(sc);
1879        CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL,
1880            vtophys(sc->rfa_headm->m_ext.ext_buf) + RFA_ALIGNMENT_FUDGE);
1881        fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_START);
1882
1883#ifdef NOTUSED
1884        /*
1885         * Set current media.
1886         */
1887        if (sc->miibus != NULL)
1888                mii_mediachg(device_get_softc(sc->miibus));
1889#endif
1890
1891        ifp->if_flags |= IFF_RUNNING;
1892        ifp->if_flags &= ~IFF_OACTIVE;
1893
1894        if (sc->daemonTid == 0) {
1895                /*
1896                 * Start driver task
1897                 */
1898                sc->daemonTid = rtems_bsdnet_newproc ("FXPd", 4096, fxp_daemon, sc);
1899
1900        }
1901        /*
1902         * Enable interrupts.
1903         */
1904        CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, 0);
1905        splx(s);
1906
1907        /*
1908         * Start stats updater.
1909         */
1910        sc->stat_ch = fxp_timeout_running;
1911        DBGLVL_PRINTK(2,"fxp_init: stats updater timeout called with hz=%d\n", hz);
1912        timeout(fxp_tick, sc, hz);
1913        DBGLVL_PRINTK(2,"fxp_init finished\n");
1914}
1915
1916#ifdef NOTUSED
1917static int
1918fxp_serial_ifmedia_upd(struct ifnet *ifp)
1919{
1920
1921        return (0);
1922}
1923
1924static void
1925fxp_serial_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
1926{
1927
1928        ifmr->ifm_active = IFM_ETHER|IFM_MANUAL;
1929}
1930
1931/*
1932 * Change media according to request.
1933 */
1934static int
1935fxp_ifmedia_upd(struct ifnet *ifp)
1936{
1937        struct fxp_softc *sc = ifp->if_softc;
1938        struct mii_data *mii;
1939
1940        mii = device_get_softc(sc->miibus);
1941        mii_mediachg(mii);
1942        return (0);
1943}
1944
1945/*
1946 * Notify the world which media we're using.
1947 */
1948static void
1949fxp_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
1950{
1951        struct fxp_softc *sc = ifp->if_softc;
1952        struct mii_data *mii;
1953
1954        mii = device_get_softc(sc->miibus);
1955        mii_pollstat(mii);
1956        ifmr->ifm_active = mii->mii_media_active;
1957        ifmr->ifm_status = mii->mii_media_status;
1958
1959        if (ifmr->ifm_status & IFM_10_T && sc->flags & FXP_FLAG_CU_RESUME_BUG)
1960                sc->cu_resume_bug = 1;
1961        else
1962                sc->cu_resume_bug = 0;
1963}
1964#endif
1965
1966/*
1967 * Add a buffer to the end of the RFA buffer list.
1968 * Return 0 if successful, 1 for failure. A failure results in
1969 * adding the 'oldm' (if non-NULL) on to the end of the list -
1970 * tossing out its old contents and recycling it.
1971 * The RFA struct is stuck at the beginning of mbuf cluster and the
1972 * data pointer is fixed up to point just past it.
1973 */
1974static int
1975fxp_add_rfabuf(struct fxp_softc *sc, struct mbuf *oldm)
1976{
1977        u_int32_t v;
1978        struct mbuf *m;
1979        struct fxp_rfa *rfa, *p_rfa;
1980
1981        DBGLVL_PRINTK(4,"fxp_add_rfabuf called\n");
1982
1983        MGETHDR(m, M_DONTWAIT, MT_DATA);
1984        if (m != NULL) {
1985                MCLGET(m, M_DONTWAIT);
1986                if ((m->m_flags & M_EXT) == 0) {
1987                        m_freem(m);
1988                        if (oldm == NULL)
1989                                return 1;
1990                        m = oldm;
1991                        m->m_data = m->m_ext.ext_buf;
1992                }
1993        } else {
1994                if (oldm == NULL)
1995                        return 1;
1996                m = oldm;
1997                m->m_data = m->m_ext.ext_buf;
1998        }
1999
2000        /*
2001         * Move the data pointer up so that the incoming data packet
2002         * will be 32-bit aligned.
2003         */
2004        m->m_data += RFA_ALIGNMENT_FUDGE;
2005
2006        /*
2007         * Get a pointer to the base of the mbuf cluster and move
2008         * data start past it.
2009         */
2010        rfa = mtod(m, struct fxp_rfa *);
2011        m->m_data += sizeof(struct fxp_rfa);
2012        rfa->size = (u_int16_t)(MCLBYTES - sizeof(struct fxp_rfa) - RFA_ALIGNMENT_FUDGE);
2013
2014        /*
2015         * Initialize the rest of the RFA.  Note that since the RFA
2016         * is misaligned, we cannot store values directly.  Instead,
2017         * we use an optimized, inline copy.
2018         */
2019
2020        rfa->rfa_status = 0;
2021        rfa->rfa_control = FXP_RFA_CONTROL_EL;
2022        rfa->actual_size = 0;
2023
2024        v = -1;
2025        fxp_lwcopy(&v, (volatile u_int32_t*) rfa->link_addr);
2026        fxp_lwcopy(&v, (volatile u_int32_t*) rfa->rbd_addr);
2027
2028        /*
2029         * If there are other buffers already on the list, attach this
2030         * one to the end by fixing up the tail to point to this one.
2031         */
2032        if (sc->rfa_headm != NULL) {
2033                p_rfa = (struct fxp_rfa *) (sc->rfa_tailm->m_ext.ext_buf +
2034                    RFA_ALIGNMENT_FUDGE);
2035                sc->rfa_tailm->m_next = m;
2036                v = vtophys(rfa);
2037                fxp_lwcopy(&v, (volatile u_int32_t*) p_rfa->link_addr);
2038                p_rfa->rfa_control = 0;
2039        } else {
2040                sc->rfa_headm = m;
2041        }
2042        sc->rfa_tailm = m;
2043
2044        return (m == oldm);
2045}
2046
2047#ifdef NOTUSED
2048static volatile int
2049fxp_miibus_readreg(device_t dev, int phy, int reg)
2050{
2051        struct fxp_softc *sc = device_get_softc(dev);
2052        int count = 10000;
2053        int value;
2054
2055        CSR_WRITE_4(sc, FXP_CSR_MDICONTROL,
2056            (FXP_MDI_READ << 26) | (reg << 16) | (phy << 21));
2057
2058        while (((value = CSR_READ_4(sc, FXP_CSR_MDICONTROL)) & 0x10000000) == 0
2059            && count--)
2060                DELAY(10);
2061
2062        if (count <= 0)
2063                device_printf(dev, "fxp_miibus_readreg: timed out\n");
2064
2065        return (value & 0xffff);
2066}
2067
2068static void
2069fxp_miibus_writereg(device_t dev, int phy, int reg, int value)
2070{
2071        struct fxp_softc *sc = device_get_softc(dev);
2072        int count = 10000;
2073
2074        CSR_WRITE_4(sc, FXP_CSR_MDICONTROL,
2075            (FXP_MDI_WRITE << 26) | (reg << 16) | (phy << 21) |
2076            (value & 0xffff));
2077
2078        while ((CSR_READ_4(sc, FXP_CSR_MDICONTROL) & 0x10000000) == 0 &&
2079            count--)
2080                DELAY(10);
2081
2082        if (count <= 0)
2083                device_printf(dev, "fxp_miibus_writereg: timed out\n");
2084}
2085#endif
2086
2087static int
2088fxp_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
2089{
2090        struct fxp_softc *sc = ifp->if_softc;
2091#ifdef NOTUSED
2092        struct ifreq *ifr = (struct ifreq *)data;
2093        struct mii_data *mii;
2094#endif
2095        int s, error = 0;
2096
2097        DBGLVL_PRINTK(2,"fxp_ioctl called\n");
2098
2099        s = splimp();
2100
2101        switch (command) {
2102        case SIOCSIFADDR:
2103        case SIOCGIFADDR:
2104        case SIOCSIFMTU:
2105                error = ether_ioctl(ifp, command, data);
2106                break;
2107
2108        case SIOCSIFFLAGS:
2109                if (ifp->if_flags & IFF_ALLMULTI)
2110                        sc->flags |= FXP_FLAG_ALL_MCAST;
2111                else
2112                        sc->flags &= ~FXP_FLAG_ALL_MCAST;
2113
2114                /*
2115                 * If interface is marked up and not running, then start it.
2116                 * If it is marked down and running, stop it.
2117                 * XXX If it's up then re-initialize it. This is so flags
2118                 * such as IFF_PROMISC are handled.
2119                 */
2120                if (ifp->if_flags & IFF_UP) {
2121                        fxp_init(sc);
2122                } else {
2123                        if (ifp->if_flags & IFF_RUNNING)
2124                                fxp_stop(sc);
2125                }
2126                break;
2127
2128        case SIOCADDMULTI:
2129        case SIOCDELMULTI:
2130                if (ifp->if_flags & IFF_ALLMULTI)
2131                        sc->flags |= FXP_FLAG_ALL_MCAST;
2132                else
2133                        sc->flags &= ~FXP_FLAG_ALL_MCAST;
2134                /*
2135                 * Multicast list has changed; set the hardware filter
2136                 * accordingly.
2137                 */
2138                if ((sc->flags & FXP_FLAG_ALL_MCAST) == 0)
2139                        fxp_mc_setup(sc);
2140                /*
2141                 * fxp_mc_setup() can set FXP_FLAG_ALL_MCAST, so check it
2142                 * again rather than else {}.
2143                 */
2144                if (sc->flags & FXP_FLAG_ALL_MCAST)
2145                        fxp_init(sc);
2146                error = 0;
2147                break;
2148
2149#ifdef NOTUSED
2150        case SIOCSIFMEDIA:
2151        case SIOCGIFMEDIA:
2152                if (sc->miibus != NULL) {
2153                        mii = device_get_softc(sc->miibus);
2154                        error = ifmedia_ioctl(ifp, ifr,
2155                            &mii->mii_media, command);
2156                } else {
2157                        error = ifmedia_ioctl(ifp, ifr, &sc->sc_media, command);
2158                }
2159                break;
2160#endif
2161
2162    case SIO_RTEMS_SHOW_STATS:
2163        fxp_stats(sc);
2164        break;
2165
2166        default:
2167                error = EINVAL;
2168        }
2169        splx(s);
2170        return (error);
2171}
2172
2173/*
2174 * Program the multicast filter.
2175 *
2176 * We have an artificial restriction that the multicast setup command
2177 * must be the first command in the chain, so we take steps to ensure
2178 * this. By requiring this, it allows us to keep up the performance of
2179 * the pre-initialized command ring (esp. link pointers) by not actually
2180 * inserting the mcsetup command in the ring - i.e. its link pointer
2181 * points to the TxCB ring, but the mcsetup descriptor itself is not part
2182 * of it. We then can do 'CU_START' on the mcsetup descriptor and have it
2183 * lead into the regular TxCB ring when it completes.
2184 *
2185 * This function must be called at splimp.
2186 */
2187static void
2188fxp_mc_setup(struct fxp_softc *sc)
2189{
2190        struct fxp_cb_mcs *mcsp = sc->mcsp;
2191        struct ifnet *ifp = &sc->sc_if;
2192#ifdef NOTUSED
2193        struct ifmultiaddr *ifma;
2194#endif
2195        int nmcasts;
2196        int count;
2197
2198        DBGLVL_PRINTK(2,"fxp_mc_setup called\n");
2199
2200        /*
2201         * If there are queued commands, we must wait until they are all
2202         * completed. If we are already waiting, then add a NOP command
2203         * with interrupt option so that we're notified when all commands
2204         * have been completed - fxp_start() ensures that no additional
2205         * TX commands will be added when need_mcsetup is true.
2206         */
2207        if (sc->tx_queued) {
2208                struct fxp_cb_tx *txp;
2209
2210                /*
2211                 * need_mcsetup will be true if we are already waiting for the
2212                 * NOP command to be completed (see below). In this case, bail.
2213                 */
2214                if (sc->need_mcsetup)
2215                        return;
2216                sc->need_mcsetup = 1;
2217
2218                /*
2219                 * Add a NOP command with interrupt so that we are notified when all
2220                 * TX commands have been processed.
2221                 */
2222                txp = sc->cbl_last->next;
2223                txp->mb_head = NULL;
2224                txp->cb_status = 0;
2225                txp->cb_command = FXP_CB_COMMAND_NOP |
2226                    FXP_CB_COMMAND_S | FXP_CB_COMMAND_I;
2227                /*
2228                 * Advance the end of list forward.
2229                 */
2230                sc->cbl_last->cb_command &= ~FXP_CB_COMMAND_S;
2231                sc->cbl_last = txp;
2232                sc->tx_queued++;
2233                /*
2234                 * Issue a resume in case the CU has just suspended.
2235                 */
2236                fxp_scb_wait(sc);
2237                fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_RESUME);
2238                /*
2239                 * Set a 5 second timer just in case we don't hear from the
2240                 * card again.
2241                 */
2242                ifp->if_timer = 5;
2243
2244                return;
2245        }
2246        sc->need_mcsetup = 0;
2247
2248        /*
2249         * Initialize multicast setup descriptor.
2250         */
2251        mcsp->next = sc->cbl_base;
2252        mcsp->mb_head = NULL;
2253        mcsp->cb_status = 0;
2254        mcsp->cb_command = FXP_CB_COMMAND_MCAS |
2255            FXP_CB_COMMAND_S | FXP_CB_COMMAND_I;
2256        mcsp->link_addr = vtophys(&sc->cbl_base->cb_status);
2257
2258        nmcasts = 0;
2259#ifdef NOTUSED /* FIXME: Multicast not supported? */
2260        if ((sc->flags & FXP_FLAG_ALL_MCAST) == 0) {
2261#if __FreeBSD_version < 500000
2262                LIST_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
2263#else
2264                TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
2265#endif
2266                        if (ifma->ifma_addr->sa_family != AF_LINK)
2267                                continue;
2268                        if (nmcasts >= MAXMCADDR) {
2269                                sc->flags |= FXP_FLAG_ALL_MCAST;
2270                                nmcasts = 0;
2271                                break;
2272                        }
2273                        memcpy((void *)(uintptr_t)(volatile void *)
2274                                &sc->mcsp->mc_addr[nmcasts][0],
2275                                LLADDR((struct sockaddr_dl *)ifma->ifma_addr), 6);
2276                        nmcasts++;
2277                }
2278        }
2279#endif
2280        mcsp->mc_cnt = nmcasts * 6;
2281        sc->cbl_first = sc->cbl_last = (struct fxp_cb_tx *) mcsp;
2282        sc->tx_queued = 1;
2283
2284        /*
2285         * Wait until command unit is not active. This should never
2286         * be the case when nothing is queued, but make sure anyway.
2287         */
2288        count = 100;
2289        while ((CSR_READ_1(sc, FXP_CSR_SCB_RUSCUS) >> 6) ==
2290            FXP_SCB_CUS_ACTIVE && --count)
2291                DELAY(10);
2292        if (count == 0) {
2293                device_printf(sc->dev, "command queue timeout\n");
2294                return;
2295        }
2296
2297        /*
2298         * Start the multicast setup command.
2299         */
2300        fxp_scb_wait(sc);
2301        CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, vtophys(&mcsp->cb_status));
2302        fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
2303
2304        ifp->if_timer = 2;
2305        return;
2306        }
2307
2308#endif /* defined(__i386__) */
Note: See TracBrowser for help on using the repository browser.