source: rtems/c/src/libchip/network/if_fxp.c @ a4ce29f

4.104.114.84.95
Last change on this file since a4ce29f was a4ce29f, checked in by Jennifer Averett <Jennifer.Averett@…>, on 05/17/05 at 15:15:07

2005-05-17 Jennifer Averett <jennifer.averett@…>

  • ChangeLog?, libchip/network/if_fxp.c, libchip/serial/ns16550.c: Modified to use rtems/irq.h.
  • Property mode set to 100644
File size: 61.7 KB
Line 
1/*-
2 * Copyright (c) 1995, David Greenman
3 * Copyright (c) 2001 Jonathan Lemon <jlemon@freebsd.org>
4 * All rights reserved.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 *    notice unmodified, this list of conditions, and the following
11 *    disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 *    notice, this list of conditions and the following disclaimer in the
14 *    documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26 * SUCH DAMAGE.
27 *
28 * $FreeBSD: src/sys/dev/fxp/if_fxp.c,v 1.118 2001/09/05 23:33:58 brooks Exp $
29 */
30
31/*
32 * Intel EtherExpress Pro/100B PCI Fast Ethernet driver
33 */
34
35/*
36 * RTEMS Revision Preliminary History
37 *
38 * July XXX, 2002     W. Eric Norum <eric.norum@usask.ca>
39 *     Placed in RTEMS CVS repository.  All further modifications will be
40 *     noted in the CVS log and not in this comment.
41 *
42 * July 11, 2002     W. Eric Norum <eric.norum@usask.ca>
43 *     Minor modifications to get driver working with NIC on VersaLogic
44 *     Bobcat PC-104 single-board computer.  The Bobcat has no video
45 *     driver so printf/printk calls are directed to COM2:.  This
46 *     arrangement seems to require delays after the printk calls or
47 *     else things lock up.  Perhaps the RTEMS pc386 console code
48 *     should be modified to insert these delays itself.
49 *
50 * June 27, 2002     W. Eric Norum <eric.norum@usask.ca>
51 *     Obtained from Thomas Doerfler <Thomas.Doerfler@imd-systems.de>.
52 *     A big thank-you to Thomas for making this available.
53 *
54 * October 01, 2001  Thomas Doerfler <Thomas.Doerfler@imd-systems.de>
55 *     Original RTEMS modifications.
56 */
57
58#if defined(__i386__)
59
60/*#define DEBUG_OUT 0*/
61
62#include <rtems.h>
63#include <rtems/error.h>
64#include <rtems/rtems_bsdnet.h>
65#include <bsp.h>
66
67#include <sys/errno.h>
68#include <sys/param.h>
69#include <sys/mbuf.h>
70#include <sys/socket.h>
71#include <sys/sockio.h>
72#include <net/if.h>
73#include <netinet/in.h>
74#include <netinet/if_ether.h>
75#include <sys/malloc.h>
76#include <sys/systm.h>
77#include <bsp.h>
78#include <pcibios.h>
79#include <bsp/irq.h>
80#include <rtems/pci.h>
81
82#ifdef NS
83#include <netns/ns.h>
84#include <netns/ns_if.h>
85#endif
86
87#include <net/bpf.h>
88
89#include <vm/vm.h>              /* for vtophys */
90
91#include <net/if_types.h>
92
93#include "if_fxpreg.h"
94#include "if_fxpvar.h"
95
96/*
97 * some adaptation replacements for RTEMS
98 */
99static rtems_interval fxp_ticksPerSecond;
100#define device_printf(device,format,args...) printk(format,## args)
101#define DELAY(n) rtems_task_wake_after(((n)*fxp_ticksPerSecond/1000000)+1)
102#ifdef DEBUG_OUT
103#define DBGLVL_PRINTK(LVL,format, args...)                   \
104if (DEBUG_OUT >= (LVL)) {                                    \
105  printk(format, ## args);                                   \
106}
107#else
108#define DBGLVL_PRINTK(LVL,format, args...)
109#endif
110
111/*
112 * RTEMS event used by interrupt handler to signal driver tasks.
113 * This must not be any of the events used by the network task synchronization.
114 */
115#define INTERRUPT_EVENT RTEMS_EVENT_1
116
117/*
118 * remapping between PCI device and CPU memmory address view...
119 */
120#if defined(__i386)
121#define vtophys(p) (u_int32_t)(p)
122#else
123#define vtophys(p) vtophys(p)
124#endif
125
126#define NFXPDRIVER 1
127static struct fxp_softc fxp_softc[NFXPDRIVER];
128static int fxp_is_verbose = TRUE;
129/*
130 * NOTE!  On the Alpha, we have an alignment constraint.  The
131 * card DMAs the packet immediately following the RFA.  However,
132 * the first thing in the packet is a 14-byte Ethernet header.
133 * This means that the packet is misaligned.  To compensate,
134 * we actually offset the RFA 2 bytes into the cluster.  This
135 * alignes the packet after the Ethernet header at a 32-bit
136 * boundary.  HOWEVER!  This means that the RFA is misaligned!
137 */
138#define RFA_ALIGNMENT_FUDGE     2
139
140/*
141 * Set initial transmit threshold at 64 (512 bytes). This is
142 * increased by 64 (512 bytes) at a time, to maximum of 192
143 * (1536 bytes), if an underrun occurs.
144 */
145static int tx_threshold = 64;
146
147/*
148 * The configuration byte map has several undefined fields which
149 * must be one or must be zero.  Set up a template for these bits
150 * only, (assuming a 82557 chip) leaving the actual configuration
151 * to fxp_init.
152 *
153 * See struct fxp_cb_config for the bit definitions.
154 */
155static u_char fxp_cb_config_template[] = {
156        0x0, 0x0,               /* cb_status */
157        0x0, 0x0,               /* cb_command */
158        0x0, 0x0, 0x0, 0x0,     /* link_addr */
159        0x0,    /*  0 */
160        0x0,    /*  1 */
161        0x0,    /*  2 */
162        0x0,    /*  3 */
163        0x0,    /*  4 */
164        0x0,    /*  5 */
165        0x32,   /*  6 */
166        0x0,    /*  7 */
167        0x0,    /*  8 */
168        0x0,    /*  9 */
169        0x6,    /* 10 */
170        0x0,    /* 11 */
171        0x0,    /* 12 */
172        0x0,    /* 13 */
173        0xf2,   /* 14 */
174        0x48,   /* 15 */
175        0x0,    /* 16 */
176        0x40,   /* 17 */
177        0xf0,   /* 18 */
178        0x0,    /* 19 */
179        0x3f,   /* 20 */
180        0x5     /* 21 */
181};
182
183struct fxp_ident {
184        u_int16_t       devid;
185        char            *name;
186        int                     warn;
187};
188
189#define UNTESTED 1
190
191/*
192 * Claim various Intel PCI device identifiers for this driver.  The
193 * sub-vendor and sub-device field are extensively used to identify
194 * particular variants, but we don't currently differentiate between
195 * them.
196 */
197static struct fxp_ident fxp_ident_table[] = {
198    { 0x1229,           "Intel Pro 10/100B/100+ Ethernet", UNTESTED },
199    { 0x2449,           "Intel Pro/100 Ethernet", UNTESTED },
200    { 0x1209,           "Intel Embedded 10/100 Ethernet", 0 },
201    { 0x1029,           "Intel Pro/100 Ethernet", UNTESTED },
202    { 0x1030,           "Intel Pro/100 Ethernet", 0 },
203    { 0x1031,           "Intel Pro/100 Ethernet", UNTESTED },
204    { 0x1032,           "Intel Pro/100 Ethernet", UNTESTED },
205    { 0x1033,           "Intel Pro/100 Ethernet", UNTESTED },
206    { 0x1034,           "Intel Pro/100 Ethernet", UNTESTED },
207    { 0x1035,           "Intel Pro/100 Ethernet", UNTESTED },
208    { 0x1036,           "Intel Pro/100 Ethernet", UNTESTED },
209    { 0x1037,           "Intel Pro/100 Ethernet", UNTESTED },
210    { 0x1038,           "Intel Pro/100 Ethernet", UNTESTED },
211    { 0x103B,           "Intel Pro/100 Ethernet (82801BD PRO/100 VM (LOM))", 0 },
212    { 0,                NULL },
213};
214
215#if 0
216static int              fxp_probe(device_t dev);
217static int              fxp_attach(device_t dev);
218static int              fxp_detach(device_t dev);
219static int              fxp_shutdown(device_t dev);
220#endif
221int     fxp_output (struct ifnet *,
222           struct mbuf *, struct sockaddr *, struct rtentry *);
223
224
225static rtems_isr        fxp_intr(rtems_vector_number v);
226static void             fxp_init(void *xsc);
227static void             fxp_tick(void *xsc);
228static void             fxp_start(struct ifnet *ifp);
229static void             fxp_stop(struct fxp_softc *sc);
230static void             fxp_release(struct fxp_softc *sc);
231static int              fxp_ioctl(struct ifnet *ifp, u_long command,
232                            caddr_t data);
233static void             fxp_watchdog(struct ifnet *ifp);
234static int              fxp_add_rfabuf(struct fxp_softc *sc, struct mbuf *oldm);
235static void             fxp_mc_setup(struct fxp_softc *sc);
236static u_int16_t        fxp_eeprom_getword(struct fxp_softc *sc, int offset,
237                            int autosize);
238static void             fxp_eeprom_putword(struct fxp_softc *sc, int offset,
239                            u_int16_t data);
240static void             fxp_autosize_eeprom(struct fxp_softc *sc);
241static void             fxp_read_eeprom(struct fxp_softc *sc, u_short *data,
242                            int offset, int words);
243static void             fxp_write_eeprom(struct fxp_softc *sc, u_short *data,
244                            int offset, int words);
245#ifdef NOTUSED
246static int              fxp_ifmedia_upd(struct ifnet *ifp);
247static void             fxp_ifmedia_sts(struct ifnet *ifp,
248                            struct ifmediareq *ifmr);
249static int              fxp_serial_ifmedia_upd(struct ifnet *ifp);
250static void             fxp_serial_ifmedia_sts(struct ifnet *ifp,
251                            struct ifmediareq *ifmr);
252static volatile int     fxp_miibus_readreg(device_t dev, int phy, int reg);
253static void             fxp_miibus_writereg(device_t dev, int phy, int reg,
254                            int value);
255#endif
256static __inline void    fxp_lwcopy(volatile u_int32_t *src,
257                            volatile u_int32_t *dst);
258static __inline void    fxp_scb_wait(struct fxp_softc *sc);
259static __inline void    fxp_scb_cmd(struct fxp_softc *sc, int cmd);
260static __inline void    fxp_dma_wait(volatile u_int16_t *status,
261                            struct fxp_softc *sc);
262
263/*
264 * Inline function to copy a 16-bit aligned 32-bit quantity.
265 */
266static __inline void
267fxp_lwcopy(volatile u_int32_t *src, volatile u_int32_t *dst)
268{
269#ifdef __i386__
270        *dst = *src;
271#else
272        volatile u_int16_t *a = (volatile u_int16_t*)src;
273        volatile u_int16_t *b = (volatile u_int16_t*)dst;
274
275        b[0] = a[0];
276        b[1] = a[1];
277#endif
278}
279
280/*
281 * inline access functions to pci space registers
282 */
283static __inline u_int8_t fxp_csr_read_1(struct fxp_softc *sc,int  reg) {
284  u_int8_t val;
285  if (sc->pci_regs_are_io) {
286    inport_byte(sc->pci_regs_base + reg,val);
287  }
288  else {
289    val = *(u_int8_t*)(sc->pci_regs_base+reg);
290  }
291  return val;
292}
293static __inline u_int32_t fxp_csr_read_2(struct fxp_softc *sc,int  reg) {
294  u_int16_t val;
295  if (sc->pci_regs_are_io) {
296    inport_word(sc->pci_regs_base + reg,val);
297  }
298  else {
299    val = *(u_int16_t*)(sc->pci_regs_base+reg);
300  }
301  return val;
302}
303static __inline u_int32_t fxp_csr_read_4(struct fxp_softc *sc,int  reg) {
304  u_int32_t val;
305  if (sc->pci_regs_are_io) {
306    inport_long(sc->pci_regs_base + reg,val);
307  }
308  else {
309    val = *(u_int32_t*)(sc->pci_regs_base+reg);
310  }
311  return val;
312}
313
314/*
315 * Wait for the previous command to be accepted (but not necessarily
316 * completed).
317 */
318static __inline void
319fxp_scb_wait(struct fxp_softc *sc)
320{
321        int i = 10000;
322
323        while (CSR_READ_1(sc, FXP_CSR_SCB_COMMAND) && --i)
324                DELAY(2);
325        if (i == 0)
326                device_printf(sc->dev, "SCB timeout: 0x%x 0x%x 0x%x 0x%x\n",
327                    CSR_READ_1(sc, FXP_CSR_SCB_COMMAND),
328                    CSR_READ_1(sc, FXP_CSR_SCB_STATACK),
329                    CSR_READ_1(sc, FXP_CSR_SCB_RUSCUS),
330                    CSR_READ_2(sc, FXP_CSR_FLOWCONTROL));
331}
332
333static __inline void
334fxp_scb_cmd(struct fxp_softc *sc, int cmd)
335{
336
337        if (cmd == FXP_SCB_COMMAND_CU_RESUME && sc->cu_resume_bug) {
338                CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_CB_COMMAND_NOP);
339                fxp_scb_wait(sc);
340        }
341        CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, cmd);
342}
343
344static __inline void
345fxp_dma_wait(volatile u_int16_t *status, struct fxp_softc *sc)
346{
347        int i = 10000;
348
349        while (!(*status & FXP_CB_STATUS_C) && --i)
350                DELAY(2);
351        if (i == 0)
352                device_printf(sc->dev, "DMA timeout\n");
353}
354
355static __inline unsigned int pci_get_vendor(struct fxp_softc *sc) {
356  u_int16_t vendor;
357  pcib_conf_read16(sc->pci_signature,0,&vendor);
358  return vendor;
359}
360
361static __inline unsigned int pci_get_device(struct fxp_softc *sc) {
362  u_int16_t device;
363  pcib_conf_read16(sc->pci_signature,2,&device);
364  return device;
365}
366
367static __inline unsigned int pci_get_subvendor(struct fxp_softc *sc) {
368  u_int16_t subvendor;
369  pcib_conf_read16(sc->pci_signature,0x2c,&subvendor);
370  return subvendor;
371}
372
373static __inline unsigned int pci_get_subdevice(struct fxp_softc *sc) {
374  u_int16_t subdevice;
375  pcib_conf_read16(sc->pci_signature,0x2e,&subdevice);
376  return subdevice;
377}
378
379static __inline unsigned int pci_get_revid(struct fxp_softc *sc) {
380  u_int8_t revid;
381  pcib_conf_read8(sc->pci_signature,0x08,&revid);
382  return revid;
383}
384
385static void nopOn(const rtems_irq_connect_data* notUsed)
386{
387  /*
388   * code should be moved from fxp_Enet_initialize_hardware
389   * to this location
390   */
391}
392
393static int fxpIsOn(const rtems_irq_connect_data* irq)
394{
395  return BSP_irq_enabled_at_i8259s (irq->name);
396}
397
398int
399rtems_fxp_attach(struct rtems_bsdnet_ifconfig *config, int attaching)
400{
401        int error = 0;
402        struct fxp_softc *sc;
403        struct ifnet *ifp;
404        u_int16_t val16;
405        u_int32_t val32;
406        u_int16_t data;
407        int i;
408        int s;
409        int unitNumber;
410        char *unitName;
411        u_int16_t dev_id;
412        u_int8_t interrupt;
413        int mtu;
414
415    /*
416     * Set up some timing values
417     */
418    rtems_clock_get(RTEMS_CLOCK_GET_TICKS_PER_SECOND, &fxp_ticksPerSecond);
419        DBGLVL_PRINTK(1,"fxp_attach called\n");
420
421        /*
422         * Parse driver name
423         */
424        if ((unitNumber = rtems_bsdnet_parse_driver_name (config, &unitName)) < 0)
425                return 0;
426
427        /*
428         * Is driver free?
429         */
430        if ((unitNumber <= 0) || (unitNumber > NFXPDRIVER)) {
431                device_printf(dev,"Bad FXP unit number.\n");
432                return 0;
433        }
434        sc = &fxp_softc[unitNumber - 1];
435        ifp = &sc->arpcom.ac_if;
436        if (ifp->if_softc != NULL) {
437                device_printf(dev,"FXP Driver already in use.\n");
438                return 0;
439        }
440
441        memset(sc, 0, sizeof(*sc));
442#ifdef NOTUSED
443        sc->dev = dev;
444        callout_handle_init(&sc->stat_ch);
445        mtx_init(&sc->sc_mtx, device_get_nameunit(dev), MTX_DEF | MTX_RECURSE);
446#endif
447        s = splimp();
448
449        /*
450         * init PCI Bios interface...
451         */
452        i = pci_initialize();
453        DBGLVL_PRINTK(2,"fxp_attach: pcib_init returned %d\n",i);
454        if (i != PCIB_ERR_SUCCESS) {
455          device_printf(dev, "could not initialize pci bios interface\n");
456          return 0;
457        }
458
459        /*
460         * find device on pci bus
461         */
462    { int j; int pbus, pdev, pfun;
463
464      for (j=0; fxp_ident_table[j].devid; j++ ) {
465                i = pci_find_device( 0x8086, fxp_ident_table[j].devid,
466                        unitNumber-1, &pbus, &pdev, &pfun );
467                sc->pci_signature =  PCIB_DEVSIG_MAKE( pbus, pdev, pfun );
468                DBGLVL_PRINTK(2,"fxp_attach: find_devid returned %d "
469                      "and pci signature 0x%x\n",
470                      i,sc->pci_signature);
471                if (PCIB_ERR_SUCCESS == i) {
472                  if ( UNTESTED == fxp_ident_table[j].warn ) {
473                        device_printf(dev,
474"WARNING: this chip version has NOT been reported to work under RTEMS yet.\n");
475                        device_printf(dev,
476"         If it works OK, report it as tested in 'c/src/libchip/network/if_fxp.c'\n");
477                        }
478                        break;
479                }
480          }
481        }
482
483        /*
484         * FIXME: add search for more device types...
485         */
486        if (i != PCIB_ERR_SUCCESS) {
487          device_printf(dev, "could not find 82559ER device\n");
488          return 0;
489        }
490
491
492        /*
493         * Enable bus mastering. Enable memory space too, in case
494         * BIOS/Prom forgot about it.
495         */
496        pcib_conf_read16(sc->pci_signature, PCI_COMMAND,&val16);
497        val16 |= (PCI_COMMAND_MEMORY|PCI_COMMAND_MASTER);
498        pcib_conf_write16(sc->pci_signature, PCI_COMMAND, val16);
499        DBGLVL_PRINTK(3,"fxp_attach: PCI_COMMAND_write = 0x%x\n",val16);
500        pcib_conf_read16(sc->pci_signature, PCI_COMMAND,&val16);
501        DBGLVL_PRINTK(4,"fxp_attach: PCI_COMMAND_read  = 0x%x\n",val16);
502
503        /*
504         * Figure out which we should try first - memory mapping or i/o mapping?
505         * We default to memory mapping. Then we accept an override from the
506         * command line. Then we check to see which one is enabled.
507         */
508#ifdef NOTUSED
509        m1 = PCI_COMMAND_MEMORY;
510        m2 = PCI_COMMAND_IO;
511        prefer_iomap = 0;
512        if (resource_int_value(device_get_name(dev), device_get_unit(dev),
513            "prefer_iomap", &prefer_iomap) == 0 && prefer_iomap != 0) {
514                m1 = PCI_COMMAND_IO;
515                m2 = PCI_COMMAND_MEMORY;
516        }
517
518        if (val & m1) {
519                sc->rtp = ((m1 == PCI_COMMAND_MEMORY)
520                           ? SYS_RES_MEMORY : SYS_RES_IOPORT);
521                sc->rgd = ((m1 == PCI_COMMAND_MEMORY)
522                           ? FXP_PCI_MMBA   : FXP_PCI_IOBA);
523                sc->mem = bus_alloc_resource(dev, sc->rtp, &sc->rgd,
524                                             0, ~0, 1, RF_ACTIVE);
525        }
526        if (sc->mem == NULL && (val & m2)) {
527                sc->rtp = ((m2 == PCI_COMMAND_MEMORY)
528                           ? SYS_RES_MEMORY : SYS_RES_IOPORT);
529                sc->rgd = ((m2 == PCI_COMMAND_MEMORY)
530                           ? FXP_PCI_MMBA : FXP_PCI_IOBA);
531                sc->mem = bus_alloc_resource(dev, sc->rtp, &sc->rgd,
532                                            0, ~0, 1, RF_ACTIVE);
533        }
534
535        if (!sc->mem) {
536                device_printf(dev, "could not map device registers\n");
537                error = ENXIO;
538                goto fail;
539        }
540        if (fxp_is_verbose) {
541                device_printf(dev, "using %s space register mapping\n",
542                   sc->rtp == SYS_RES_MEMORY? "memory" : "I/O");
543        }
544
545        sc->sc_st = rman_get_bustag(sc->mem);
546        sc->sc_sh = rman_get_bushandle(sc->mem);
547
548        /*
549         * Allocate our interrupt.
550         */
551        rid = 0;
552        sc->irq = bus_alloc_resource(dev, SYS_RES_IRQ, &rid, 0, ~0, 1,
553                                 RF_SHAREABLE | RF_ACTIVE);
554        if (sc->irq == NULL) {
555                device_printf(dev, "could not map interrupt\n");
556                error = ENXIO;
557                goto fail;
558        }
559
560        error = bus_setup_intr(dev, sc->irq, INTR_TYPE_NET,
561                               fxp_intr, sc, &sc->ih);
562        if (error) {
563                device_printf(dev, "could not setup irq\n");
564                goto fail;
565        }
566#endif
567
568        /*
569         * get mapping and base address of registers
570         */
571        pcib_conf_read16(sc->pci_signature, PCI_COMMAND,&val16);
572        DBGLVL_PRINTK(4,"fxp_attach: PCI_COMMAND_read  = 0x%x\n",val16);
573        if((val16 & PCI_COMMAND_IO) != 0) {
574          sc->pci_regs_are_io = TRUE;
575          pcib_conf_read32(sc->pci_signature,
576                           PCI_BASE_ADDRESS_1,
577                           &val32);
578          sc->pci_regs_base = val32 & PCI_BASE_ADDRESS_IO_MASK;
579        }
580        else {
581          sc->pci_regs_are_io = FALSE;
582          pcib_conf_read32(sc->pci_signature,
583                           PCI_BASE_ADDRESS_0,
584                           &val32);
585          sc->pci_regs_base = val32 & PCI_BASE_ADDRESS_MEM_MASK;
586        }
587        DBGLVL_PRINTK(3,"fxp_attach: CSR registers are mapped in %s space"
588                      " at address 0x%x\n",
589                      sc->pci_regs_are_io ? "I/O" : "MEM",
590                      sc->pci_regs_base);
591
592        /*
593         * get interrupt level to be used
594         */
595        pcib_conf_read8(sc->pci_signature, 60, &interrupt);
596        DBGLVL_PRINTK(3,"fxp_attach: interrupt = 0x%x\n",interrupt);
597        sc->irqInfo.name = (rtems_irq_number)interrupt;
598        /*
599         * Set up interrupts
600         */
601        sc->irqInfo.hdl = (rtems_irq_hdl)fxp_intr;
602        sc->irqInfo.on  = nopOn;
603        sc->irqInfo.off = nopOn;
604        sc->irqInfo.isOn = fxpIsOn;
605        s = BSP_install_rtems_irq_handler (&sc->irqInfo);
606        if (!s)
607          rtems_panic ("Can't attach fxp interrupt handler for irq %d\n",
608                       sc->irqInfo.name);
609        /*
610         * Reset to a stable state.
611        CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SELECTIVE_RESET);
612         */
613        CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SOFTWARE_RESET);
614        DELAY(10);
615
616        sc->cbl_base = malloc(sizeof(struct fxp_cb_tx) * FXP_NTXCB,
617            M_DEVBUF, M_NOWAIT);
618        DBGLVL_PRINTK(3,"fxp_attach: sc->cbl_base = 0x%x\n",sc->cbl_base);
619        if (sc->cbl_base == NULL)
620                goto failmem;
621        else
622                memset(sc->cbl_base, 0, sizeof(struct fxp_cb_tx) * FXP_NTXCB);
623
624        sc->fxp_stats = malloc(sizeof(struct fxp_stats), M_DEVBUF,
625            M_NOWAIT);
626        DBGLVL_PRINTK(3,"fxp_attach: sc->fxp_stats = 0x%x\n",sc->fxp_stats);
627        if (sc->fxp_stats == NULL)
628                goto failmem;
629        else
630                memset(sc->fxp_stats, 0, sizeof(struct fxp_stats));
631
632        sc->mcsp = malloc(sizeof(struct fxp_cb_mcs), M_DEVBUF, M_NOWAIT);
633        DBGLVL_PRINTK(3,"fxp_attach: sc->mcsp = 0x%x\n",sc->mcsp);
634        if (sc->mcsp == NULL)
635                goto failmem;
636
637        /*
638         * Pre-allocate our receive buffers.
639         */
640        for (i = 0; i < FXP_NRFABUFS; i++) {
641                if (fxp_add_rfabuf(sc, NULL) != 0) {
642                        goto failmem;
643                }
644        }
645
646        /*
647         * Find out how large of an SEEPROM we have.
648         */
649        DBGLVL_PRINTK(3,"fxp_attach: calling fxp_autosize_eeprom\n");
650        fxp_autosize_eeprom(sc);
651
652        /*
653         * Determine whether we must use the 503 serial interface.
654         */
655        fxp_read_eeprom(sc, &data, 6, 1);
656        if ((data & FXP_PHY_DEVICE_MASK) != 0 &&
657            (data & FXP_PHY_SERIAL_ONLY))
658                sc->flags |= FXP_FLAG_SERIAL_MEDIA;
659
660        /*
661         * Find out the basic controller type; we currently only
662         * differentiate between a 82557 and greater.
663         */
664        fxp_read_eeprom(sc, &data, 5, 1);
665        if ((data >> 8) == 1)
666                sc->chip = FXP_CHIP_82557;
667        DBGLVL_PRINTK(3,"fxp_attach: sc->chip = %d\n",sc->chip);
668
669        /*
670         * Enable workarounds for certain chip revision deficiencies.
671         *
672         * Systems based on the ICH2/ICH2-M chip from Intel have a defect
673         * where the chip can cause a PCI protocol violation if it receives
674         * a CU_RESUME command when it is entering the IDLE state.  The
675         * workaround is to disable Dynamic Standby Mode, so the chip never
676         * deasserts CLKRUN#, and always remains in an active state.
677         *
678         * See Intel 82801BA/82801BAM Specification Update, Errata #30.
679         */
680#ifdef NOTUSED
681        i = pci_get_device(dev);
682#else
683        pcib_conf_read16(sc->pci_signature,2,&dev_id);
684        DBGLVL_PRINTK(3,"fxp_attach: device id = 0x%x\n",dev_id);
685#endif
686        if (dev_id == 0x2449 || (dev_id > 0x1030 && dev_id < 0x1039)) {
687        device_printf(dev, "*** See Intel 82801BA/82801BAM Specification Update, Errata #30. ***\n");
688                fxp_read_eeprom(sc, &data, 10, 1);
689                if (data & 0x02) {                      /* STB enable */
690                        u_int16_t cksum;
691                        int i;
692
693                        device_printf(dev,
694                    "*** DISABLING DYNAMIC STANDBY MODE IN EEPROM ***\n");
695                        data &= ~0x02;
696                        fxp_write_eeprom(sc, &data, 10, 1);
697                        device_printf(dev, "New EEPROM ID: 0x%x\n", data);
698                        cksum = 0;
699                        for (i = 0; i < (1 << sc->eeprom_size) - 1; i++) {
700                                fxp_read_eeprom(sc, &data, i, 1);
701                                cksum += data;
702                        }
703                        i = (1 << sc->eeprom_size) - 1;
704                        cksum = 0xBABA - cksum;
705                        fxp_read_eeprom(sc, &data, i, 1);
706                        fxp_write_eeprom(sc, &cksum, i, 1);
707                        device_printf(dev,
708                            "EEPROM checksum @ 0x%x: 0x%x -> 0x%x\n",
709                            i, data, cksum);
710                        /*
711                         * We need to do a full PCI reset here.  A software
712                         * reset to the port doesn't cut it, but let's try
713                         * anyway.
714                         */
715                        CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SOFTWARE_RESET);
716                        DELAY(50);
717                        device_printf(dev,
718            "*** PLEASE REBOOT THE SYSTEM NOW FOR CORRECT OPERATION ***\n");
719#if 1
720                        /*
721                         * If the user elects to continue, try the software
722                         * workaround, as it is better than nothing.
723                         */
724                        sc->flags |= FXP_FLAG_CU_RESUME_BUG;
725#endif
726                }
727        }
728
729        /*
730         * If we are not a 82557 chip, we can enable extended features.
731         */
732        if (sc->chip != FXP_CHIP_82557) {
733          u_int8_t tmp_val;
734                /*
735                 * If MWI is enabled in the PCI configuration, and there
736                 * is a valid cacheline size (8 or 16 dwords), then tell
737                 * the board to turn on MWI.
738                 */
739                pcib_conf_read8(sc->pci_signature,
740                                PCI_CACHE_LINE_SIZE,&tmp_val);
741                DBGLVL_PRINTK(3,"fxp_attach: CACHE_LINE_SIZE = %d\n",tmp_val);
742                if (val16 & PCI_COMMAND_MEMORY &&
743                    tmp_val != 0)
744                        sc->flags |= FXP_FLAG_MWI_ENABLE;
745
746                /* turn on the extended TxCB feature */
747                sc->flags |= FXP_FLAG_EXT_TXCB;
748
749                /* enable reception of long frames for VLAN */
750                sc->flags |= FXP_FLAG_LONG_PKT_EN;
751                DBGLVL_PRINTK(3,"fxp_attach: sc->flags = 0x%x\n",
752                              sc->flags);
753        }
754
755        /*
756         * Read MAC address.
757         */
758        fxp_read_eeprom(sc, (u_int16_t*)sc->arpcom.ac_enaddr, 0, 3);
759        if (fxp_is_verbose) {
760            device_printf(dev, "Ethernet address %x:%x:%x:%x:%x:%x %s \n",
761                ((u_int8_t*)sc->arpcom.ac_enaddr)[0],
762                ((u_int8_t*)sc->arpcom.ac_enaddr)[1],
763            ((u_int8_t*)sc->arpcom.ac_enaddr)[2],
764            ((u_int8_t*)sc->arpcom.ac_enaddr)[3],
765            ((u_int8_t*)sc->arpcom.ac_enaddr)[4],
766            ((u_int8_t*)sc->arpcom.ac_enaddr)[5],
767            sc->flags & FXP_FLAG_SERIAL_MEDIA ? ", 10Mbps" : "");
768                device_printf(dev, "PCI IDs: 0x%x 0x%x 0x%x 0x%x 0x%x\n",
769                    pci_get_vendor(sc), pci_get_device(sc),
770                    pci_get_subvendor(sc), pci_get_subdevice(sc),
771                    pci_get_revid(sc));
772                device_printf(dev, "Chip Type: %d\n", sc->chip);
773        }
774
775#ifdef NOTUSED /* do not set up interface at all... */
776        /*
777         * If this is only a 10Mbps device, then there is no MII, and
778         * the PHY will use a serial interface instead.
779         *
780         * The Seeq 80c24 AutoDUPLEX(tm) Ethernet Interface Adapter
781         * doesn't have a programming interface of any sort.  The
782         * media is sensed automatically based on how the link partner
783         * is configured.  This is, in essence, manual configuration.
784         */
785        if (sc->flags & FXP_FLAG_SERIAL_MEDIA) {
786                ifmedia_init(&sc->sc_media, 0, fxp_serial_ifmedia_upd,
787                    fxp_serial_ifmedia_sts);
788                ifmedia_add(&sc->sc_media, IFM_ETHER|IFM_MANUAL, 0, NULL);
789                ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_MANUAL);
790        } else {
791                if (mii_phy_probe(dev, &sc->miibus, fxp_ifmedia_upd,
792                    fxp_ifmedia_sts)) {
793                        device_printf(dev, "MII without any PHY!\n");
794                        error = ENXIO;
795                        goto fail;
796                }
797        }
798#endif
799        if (config->mtu)
800                mtu = config->mtu;
801        else
802                mtu = ETHERMTU;
803
804        ifp->if_softc = sc;
805        ifp->if_unit = unitNumber;
806        ifp->if_name = unitName;
807        ifp->if_mtu  = mtu;
808        ifp->if_baudrate = 100000000;
809        ifp->if_init = fxp_init;
810        ifp->if_ioctl = fxp_ioctl;
811        ifp->if_start = fxp_start;
812        ifp->if_output = ether_output;
813        ifp->if_watchdog = fxp_watchdog;
814        ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX /*| IFF_MULTICAST*/;
815        if (ifp->if_snd.ifq_maxlen == 0)
816                ifp->if_snd.ifq_maxlen = ifqmaxlen;
817
818        /*
819         * Attach the interface.
820         */
821        DBGLVL_PRINTK(3,"fxp_attach: calling if_attach\n");
822        if_attach (ifp);
823        DBGLVL_PRINTK(3,"fxp_attach: calling ether_if_attach\n");
824        ether_ifattach(ifp);
825        DBGLVL_PRINTK(3,"fxp_attach: return from ether_if_attach\n");
826
827#ifdef NOTUSED
828        /*
829         * Tell the upper layer(s) we support long frames.
830         */
831        ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
832#endif
833        /*
834         * Let the system queue as many packets as we have available
835         * TX descriptors.
836         */
837        ifp->if_snd.ifq_maxlen = FXP_NTXCB - 1;
838
839        splx(s);
840        return (0);
841
842failmem:
843        device_printf(dev, "Failed to malloc memory\n");
844        error = ENOMEM;
845#ifdef NOTUSED
846fail:
847#endif
848        splx(s);
849        fxp_release(sc);
850        return (error);
851}
852
853/*
854 * release all resources
855 */
856static void
857fxp_release(struct fxp_softc *sc)
858{
859
860#ifdef NOTUSED
861        bus_generic_detach(sc->dev);
862        if (sc->miibus)
863                device_delete_child(sc->dev, sc->miibus);
864#endif
865        if (sc->cbl_base)
866                free(sc->cbl_base, M_DEVBUF);
867        if (sc->fxp_stats)
868                free(sc->fxp_stats, M_DEVBUF);
869        if (sc->mcsp)
870                free(sc->mcsp, M_DEVBUF);
871        if (sc->rfa_headm)
872                m_freem(sc->rfa_headm);
873
874#ifdef NOTUSED
875        if (sc->ih)
876                bus_teardown_intr(sc->dev, sc->irq, sc->ih);
877        if (sc->irq)
878                bus_release_resource(sc->dev, SYS_RES_IRQ, 0, sc->irq);
879        if (sc->mem)
880                bus_release_resource(sc->dev, sc->rtp, sc->rgd, sc->mem);
881        mtx_destroy(&sc->sc_mtx);
882#endif
883}
884
885#if NOTUSED
886/*
887 * Detach interface.
888 */
889static int
890fxp_detach(device_t dev)
891{
892        struct fxp_softc *sc = device_get_softc(dev);
893        int s;
894
895        /* disable interrupts */
896        CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, FXP_SCB_INTR_DISABLE);
897
898        s = splimp();
899
900        /*
901         * Stop DMA and drop transmit queue.
902         */
903        fxp_stop(sc);
904
905        /*
906         * Close down routes etc.
907         */
908        ether_ifdetach(&sc->arpcom.ac_if, ETHER_BPF_SUPPORTED);
909
910        /*
911         * Free all media structures.
912         */
913        ifmedia_removeall(&sc->sc_media);
914
915        splx(s);
916
917        /* Release our allocated resources. */
918        fxp_release(sc);
919
920        return (0);
921}
922
923/*
924 * Device shutdown routine. Called at system shutdown after sync. The
925 * main purpose of this routine is to shut off receiver DMA so that
926 * kernel memory doesn't get clobbered during warmboot.
927 */
928static int
929fxp_shutdown(device_t dev)
930{
931        /*
932         * Make sure that DMA is disabled prior to reboot. Not doing
933         * do could allow DMA to corrupt kernel memory during the
934         * reboot before the driver initializes.
935         */
936        fxp_stop((struct fxp_softc *) device_get_softc(dev));
937        return (0);
938}
939#endif
940
941/*
942 * Show interface statistics
943 */
944static void
945fxp_stats(struct fxp_softc *sc)
946{
947        struct ifnet *ifp = &sc->sc_if;
948
949        printf ("   Output packets:%-8lu", ifp->if_opackets);
950        printf ("    Collisions:%-8lu", ifp->if_collisions);
951        printf (" Output errors:%-8lu\n", ifp->if_oerrors);
952        printf ("    Input packets:%-8lu", ifp->if_ipackets);
953        printf ("  Input errors:%-8lu\n", ifp->if_ierrors);
954}
955
956static void
957fxp_eeprom_shiftin(struct fxp_softc *sc, int data, int length)
958{
959        u_int16_t reg;
960        int x;
961
962        /*
963         * Shift in data.
964         */
965        for (x = 1 << (length - 1); x; x >>= 1) {
966                if (data & x)
967                        reg = FXP_EEPROM_EECS | FXP_EEPROM_EEDI;
968                else
969                        reg = FXP_EEPROM_EECS;
970                CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
971                DELAY(1);
972                CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg | FXP_EEPROM_EESK);
973                DELAY(1);
974                CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
975                DELAY(1);
976        }
977}
978
979/*
980 * Read from the serial EEPROM. Basically, you manually shift in
981 * the read opcode (one bit at a time) and then shift in the address,
982 * and then you shift out the data (all of this one bit at a time).
983 * The word size is 16 bits, so you have to provide the address for
984 * every 16 bits of data.
985 */
986static u_int16_t
987fxp_eeprom_getword(struct fxp_softc *sc, int offset, int autosize)
988{
989        u_int16_t reg, data;
990        int x;
991
992        CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
993        /*
994         * Shift in read opcode.
995         */
996        fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_READ, 3);
997        /*
998         * Shift in address.
999         */
1000        data = 0;
1001        for (x = 1 << (sc->eeprom_size - 1); x; x >>= 1) {
1002                if (offset & x)
1003                        reg = FXP_EEPROM_EECS | FXP_EEPROM_EEDI;
1004                else
1005                        reg = FXP_EEPROM_EECS;
1006                CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
1007                DELAY(1);
1008                CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg | FXP_EEPROM_EESK);
1009                DELAY(1);
1010                CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
1011                DELAY(1);
1012                reg = CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) & FXP_EEPROM_EEDO;
1013                data++;
1014                if (autosize && reg == 0) {
1015                        sc->eeprom_size = data;
1016                        break;
1017                }
1018        }
1019        /*
1020         * Shift out data.
1021         */
1022        data = 0;
1023        reg = FXP_EEPROM_EECS;
1024        for (x = 1 << 15; x; x >>= 1) {
1025                CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg | FXP_EEPROM_EESK);
1026                DELAY(1);
1027                if (CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) & FXP_EEPROM_EEDO)
1028                        data |= x;
1029                CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
1030                DELAY(1);
1031        }
1032        CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
1033        DELAY(1);
1034
1035        return (data);
1036}
1037
1038static void
1039fxp_eeprom_putword(struct fxp_softc *sc, int offset, u_int16_t data)
1040{
1041        int i;
1042
1043        /*
1044         * Erase/write enable.
1045         */
1046        CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
1047        fxp_eeprom_shiftin(sc, 0x4, 3);
1048        fxp_eeprom_shiftin(sc, 0x03 << (sc->eeprom_size - 2), sc->eeprom_size);
1049        CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
1050        DELAY(1);
1051        /*
1052         * Shift in write opcode, address, data.
1053         */
1054        CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
1055        fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_WRITE, 3);
1056        fxp_eeprom_shiftin(sc, offset, sc->eeprom_size);
1057        fxp_eeprom_shiftin(sc, data, 16);
1058        CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
1059        DELAY(1);
1060        /*
1061         * Wait for EEPROM to finish up.
1062         */
1063        CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
1064        DELAY(1);
1065        for (i = 0; i < 1000; i++) {
1066                if (CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) & FXP_EEPROM_EEDO)
1067                        break;
1068                DELAY(50);
1069        }
1070        CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
1071        DELAY(1);
1072        /*
1073         * Erase/write disable.
1074         */
1075        CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
1076        fxp_eeprom_shiftin(sc, 0x4, 3);
1077        fxp_eeprom_shiftin(sc, 0, sc->eeprom_size);
1078        CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
1079        DELAY(1);
1080}
1081
1082/*
1083 * From NetBSD:
1084 *
1085 * Figure out EEPROM size.
1086 *
1087 * 559's can have either 64-word or 256-word EEPROMs, the 558
1088 * datasheet only talks about 64-word EEPROMs, and the 557 datasheet
1089 * talks about the existance of 16 to 256 word EEPROMs.
1090 *
1091 * The only known sizes are 64 and 256, where the 256 version is used
1092 * by CardBus cards to store CIS information.
1093 *
1094 * The address is shifted in msb-to-lsb, and after the last
1095 * address-bit the EEPROM is supposed to output a `dummy zero' bit,
1096 * after which follows the actual data. We try to detect this zero, by
1097 * probing the data-out bit in the EEPROM control register just after
1098 * having shifted in a bit. If the bit is zero, we assume we've
1099 * shifted enough address bits. The data-out should be tri-state,
1100 * before this, which should translate to a logical one.
1101 */
1102static void
1103fxp_autosize_eeprom(struct fxp_softc *sc)
1104{
1105
1106        /* guess maximum size of 256 words */
1107        sc->eeprom_size = 8;
1108
1109        /* autosize */
1110        (void) fxp_eeprom_getword(sc, 0, 1);
1111}
1112
1113static void
1114fxp_read_eeprom(struct fxp_softc *sc, u_short *data, int offset, int words)
1115{
1116        int i;
1117
1118        for (i = 0; i < words; i++) {
1119                data[i] = fxp_eeprom_getword(sc, offset + i, 0);
1120                DBGLVL_PRINTK(4,"fxp_eeprom_read(off=0x%x)=0x%x\n",
1121                              offset+i,data[i]);
1122        }
1123}
1124
1125static void
1126fxp_write_eeprom(struct fxp_softc *sc, u_short *data, int offset, int words)
1127{
1128        int i;
1129
1130        for (i = 0; i < words; i++)
1131                fxp_eeprom_putword(sc, offset + i, data[i]);
1132                DBGLVL_PRINTK(4,"fxp_eeprom_write(off=0x%x,0x%x)\n",
1133                              offset+i,data[i]);
1134}
1135
1136/*
1137 * Start packet transmission on the interface.
1138 */
1139static void
1140fxp_start(struct ifnet *ifp)
1141{
1142        struct fxp_softc *sc = ifp->if_softc;
1143        struct fxp_cb_tx *txp;
1144
1145        DBGLVL_PRINTK(3,"fxp_start called\n");
1146
1147        /*
1148         * See if we need to suspend xmit until the multicast filter
1149         * has been reprogrammed (which can only be done at the head
1150         * of the command chain).
1151         */
1152        if (sc->need_mcsetup) {
1153                return;
1154        }
1155
1156        txp = NULL;
1157
1158        /*
1159         * We're finished if there is nothing more to add to the list or if
1160         * we're all filled up with buffers to transmit.
1161         * NOTE: One TxCB is reserved to guarantee that fxp_mc_setup() can add
1162         *       a NOP command when needed.
1163         */
1164        while (ifp->if_snd.ifq_head != NULL && sc->tx_queued < FXP_NTXCB - 1) {
1165                struct mbuf *m, *mb_head;
1166                int segment;
1167
1168                /*
1169                 * Grab a packet to transmit.
1170                 */
1171                IF_DEQUEUE(&ifp->if_snd, mb_head);
1172
1173                /*
1174                 * Get pointer to next available tx desc.
1175                 */
1176                txp = sc->cbl_last->next;
1177
1178                /*
1179                 * Go through each of the mbufs in the chain and initialize
1180                 * the transmit buffer descriptors with the physical address
1181                 * and size of the mbuf.
1182                 */
1183tbdinit:
1184                for (m = mb_head, segment = 0; m != NULL; m = m->m_next) {
1185                        if (m->m_len != 0) {
1186                                if (segment == FXP_NTXSEG)
1187                                        break;
1188                                txp->tbd[segment].tb_addr =
1189                                    vtophys(mtod(m, vm_offset_t));
1190                                txp->tbd[segment].tb_size = m->m_len;
1191                                segment++;
1192                        }
1193                }
1194                if (m != NULL) {
1195                        struct mbuf *mn;
1196
1197                        /*
1198                         * We ran out of segments. We have to recopy this
1199                         * mbuf chain first. Bail out if we can't get the
1200                         * new buffers.
1201                         */
1202                        MGETHDR(mn, M_DONTWAIT, MT_DATA);
1203                        if (mn == NULL) {
1204                                m_freem(mb_head);
1205                                break;
1206                        }
1207                        if (mb_head->m_pkthdr.len > MHLEN) {
1208                                MCLGET(mn, M_DONTWAIT);
1209                                if ((mn->m_flags & M_EXT) == 0) {
1210                                        m_freem(mn);
1211                                        m_freem(mb_head);
1212                                        break;
1213                                }
1214                        }
1215                        m_copydata(mb_head, 0, mb_head->m_pkthdr.len,
1216                            mtod(mn, caddr_t));
1217                        mn->m_pkthdr.len = mn->m_len = mb_head->m_pkthdr.len;
1218                        m_freem(mb_head);
1219                        mb_head = mn;
1220                        goto tbdinit;
1221                }
1222
1223                txp->tbd_number = segment;
1224                txp->mb_head = mb_head;
1225                txp->cb_status = 0;
1226                if (sc->tx_queued != FXP_CXINT_THRESH - 1) {
1227                        txp->cb_command =
1228                            FXP_CB_COMMAND_XMIT | FXP_CB_COMMAND_SF |
1229                            FXP_CB_COMMAND_S;
1230                } else {
1231                        txp->cb_command =
1232                            FXP_CB_COMMAND_XMIT | FXP_CB_COMMAND_SF |
1233                            FXP_CB_COMMAND_S | FXP_CB_COMMAND_I;
1234                        /*
1235                         * Set a 5 second timer just in case we don't hear
1236                         * from the card again.
1237                         */
1238                        ifp->if_timer = 5;
1239                }
1240                txp->tx_threshold = tx_threshold;
1241
1242                /*
1243                 * Advance the end of list forward.
1244                 */
1245
1246#ifdef __alpha__
1247                /*
1248                 * On platforms which can't access memory in 16-bit
1249                 * granularities, we must prevent the card from DMA'ing
1250                 * up the status while we update the command field.
1251                 * This could cause us to overwrite the completion status.
1252                 */
1253                atomic_clear_short(&sc->cbl_last->cb_command,
1254                    FXP_CB_COMMAND_S);
1255#else
1256                sc->cbl_last->cb_command &= ~FXP_CB_COMMAND_S;
1257#endif /*__alpha__*/
1258                sc->cbl_last = txp;
1259
1260                /*
1261                 * Advance the beginning of the list forward if there are
1262                 * no other packets queued (when nothing is queued, cbl_first
1263                 * sits on the last TxCB that was sent out).
1264                 */
1265                if (sc->tx_queued == 0)
1266                        sc->cbl_first = txp;
1267
1268                sc->tx_queued++;
1269
1270#ifdef NOTUSED
1271                /*
1272                 * Pass packet to bpf if there is a listener.
1273                 */
1274                if (ifp->if_bpf)
1275                        bpf_mtap(ifp, mb_head);
1276#endif
1277        }
1278
1279        /*
1280         * We're finished. If we added to the list, issue a RESUME to get DMA
1281         * going again if suspended.
1282         */
1283        if (txp != NULL) {
1284                fxp_scb_wait(sc);
1285                fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_RESUME);
1286        }
1287}
1288
1289/*
1290 * Process interface interrupts.
1291 */
1292static rtems_isr fxp_intr(rtems_vector_number v)
1293{
1294  /*
1295   * FIXME: currently only works with one interface...
1296   */
1297  struct fxp_softc *sc = &(fxp_softc[0]);
1298
1299  /*
1300   * disable interrupts
1301   */
1302  CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, FXP_SCB_INTR_DISABLE);
1303  /*
1304   * send event to deamon
1305   */
1306  rtems_event_send (sc->daemonTid, INTERRUPT_EVENT);
1307}
1308
1309static void fxp_daemon(void *xsc)
1310{
1311        struct fxp_softc *sc = xsc;
1312        struct ifnet *ifp = &sc->sc_if;
1313        u_int8_t statack;
1314        rtems_event_set events;
1315        rtems_interrupt_level level;
1316
1317#ifdef NOTUSED
1318        if (sc->suspended) {
1319                return;
1320        }
1321#endif
1322        for (;;) {
1323
1324        DBGLVL_PRINTK(4,"fxp_daemon waiting for event\n");
1325          /*
1326           * wait for event to receive from interrupt function
1327           */
1328          rtems_bsdnet_event_receive (INTERRUPT_EVENT,
1329                                      RTEMS_WAIT|RTEMS_EVENT_ANY,
1330                                      RTEMS_NO_TIMEOUT,
1331                                      &events);
1332          while ((statack = CSR_READ_1(sc, FXP_CSR_SCB_STATACK)) != 0) {
1333            DBGLVL_PRINTK(4,"fxp_daemon: processing event, statack = 0x%x\n",
1334                          statack);
1335#ifdef NOTUSED
1336                /*
1337                 * It should not be possible to have all bits set; the
1338                 * FXP_SCB_INTR_SWI bit always returns 0 on a read.  If
1339                 * all bits are set, this may indicate that the card has
1340                 * been physically ejected, so ignore it.
1341                 */
1342                if (statack == 0xff)
1343                        return;
1344#endif
1345
1346                /*
1347                 * First ACK all the interrupts in this pass.
1348                 */
1349                CSR_WRITE_1(sc, FXP_CSR_SCB_STATACK, statack);
1350
1351                /*
1352                 * Free any finished transmit mbuf chains.
1353                 *
1354                 * Handle the CNA event likt a CXTNO event. It used to
1355                 * be that this event (control unit not ready) was not
1356                 * encountered, but it is now with the SMPng modifications.
1357                 * The exact sequence of events that occur when the interface
1358                 * is brought up are different now, and if this event
1359                 * goes unhandled, the configuration/rxfilter setup sequence
1360                 * can stall for several seconds. The result is that no
1361                 * packets go out onto the wire for about 5 to 10 seconds
1362                 * after the interface is ifconfig'ed for the first time.
1363                 */
1364                if (statack & (FXP_SCB_STATACK_CXTNO | FXP_SCB_STATACK_CNA)) {
1365                        struct fxp_cb_tx *txp;
1366
1367                        for (txp = sc->cbl_first; sc->tx_queued &&
1368                            (txp->cb_status & FXP_CB_STATUS_C) != 0;
1369                            txp = txp->next) {
1370                                if (txp->mb_head != NULL) {
1371                                        m_freem(txp->mb_head);
1372                                        txp->mb_head = NULL;
1373                                }
1374                                sc->tx_queued--;
1375                        }
1376                        sc->cbl_first = txp;
1377                        ifp->if_timer = 0;
1378                        if (sc->tx_queued == 0) {
1379                                if (sc->need_mcsetup)
1380                                        fxp_mc_setup(sc);
1381                        }
1382                        /*
1383                         * Try to start more packets transmitting.
1384                         */
1385                        if (ifp->if_snd.ifq_head != NULL)
1386                                fxp_start(ifp);
1387                }
1388                /*
1389                 * Process receiver interrupts. If a no-resource (RNR)
1390                 * condition exists, get whatever packets we can and
1391                 * re-start the receiver.
1392                 */
1393                if (statack & (FXP_SCB_STATACK_FR | FXP_SCB_STATACK_RNR)) {
1394                        struct mbuf *m;
1395                        struct fxp_rfa *rfa;
1396rcvloop:
1397                        m = sc->rfa_headm;
1398                        rfa = (struct fxp_rfa *)(m->m_ext.ext_buf +
1399                            RFA_ALIGNMENT_FUDGE);
1400
1401                        if (rfa->rfa_status & FXP_RFA_STATUS_C) {
1402                                /*
1403                                 * Remove first packet from the chain.
1404                                 */
1405                                sc->rfa_headm = m->m_next;
1406                                m->m_next = NULL;
1407
1408                                /*
1409                                 * Add a new buffer to the receive chain.
1410                                 * If this fails, the old buffer is recycled
1411                                 * instead.
1412                                 */
1413                                if (fxp_add_rfabuf(sc, m) == 0) {
1414                                        struct ether_header *eh;
1415                                        int total_len;
1416
1417                                        total_len = rfa->actual_size &
1418                                            (MCLBYTES - 1);
1419                                        if (total_len <
1420                                            sizeof(struct ether_header)) {
1421                                                m_freem(m);
1422                                                goto rcvloop;
1423                                        }
1424
1425                                        /*
1426                                         * Drop the packet if it has CRC
1427                                         * errors.  This test is only needed
1428                                         * when doing 802.1q VLAN on the 82557
1429                                         * chip.
1430                                         */
1431                                        if (rfa->rfa_status &
1432                                            FXP_RFA_STATUS_CRC) {
1433                                                m_freem(m);
1434                                                goto rcvloop;
1435                                        }
1436
1437                                        m->m_pkthdr.rcvif = ifp;
1438                                        m->m_pkthdr.len = m->m_len = total_len;
1439                                        eh = mtod(m, struct ether_header *);
1440                                        m->m_data +=
1441                                            sizeof(struct ether_header);
1442                                        m->m_len -=
1443                                            sizeof(struct ether_header);
1444                                        m->m_pkthdr.len = m->m_len;
1445                                        ether_input(ifp, eh, m);
1446                                }
1447                                goto rcvloop;
1448                        }
1449                        if (statack & FXP_SCB_STATACK_RNR) {
1450                                fxp_scb_wait(sc);
1451                                CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL,
1452                                    vtophys(sc->rfa_headm->m_ext.ext_buf) +
1453                                        RFA_ALIGNMENT_FUDGE);
1454                                fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_START);
1455                        }
1456                }
1457          }
1458          /*
1459           * reenable interrupts
1460           */
1461          rtems_interrupt_disable (level);
1462          CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL,0);
1463          rtems_interrupt_enable (level);
1464        }
1465}
1466
1467/*
1468 * Update packet in/out/collision statistics. The i82557 doesn't
1469 * allow you to access these counters without doing a fairly
1470 * expensive DMA to get _all_ of the statistics it maintains, so
1471 * we do this operation here only once per second. The statistics
1472 * counters in the kernel are updated from the previous dump-stats
1473 * DMA and then a new dump-stats DMA is started. The on-chip
1474 * counters are zeroed when the DMA completes. If we can't start
1475 * the DMA immediately, we don't wait - we just prepare to read
1476 * them again next time.
1477 */
1478static void
1479fxp_tick(void *xsc)
1480{
1481        struct fxp_softc *sc = xsc;
1482        struct ifnet *ifp = &sc->sc_if;
1483        struct fxp_stats *sp = sc->fxp_stats;
1484        struct fxp_cb_tx *txp;
1485        int s;
1486
1487        DBGLVL_PRINTK(4,"fxp_tick called\n");
1488
1489        ifp->if_opackets += sp->tx_good;
1490        ifp->if_collisions += sp->tx_total_collisions;
1491        if (sp->rx_good) {
1492                ifp->if_ipackets += sp->rx_good;
1493                sc->rx_idle_secs = 0;
1494        } else {
1495                /*
1496                 * Receiver's been idle for another second.
1497                 */
1498                sc->rx_idle_secs++;
1499        }
1500        ifp->if_ierrors +=
1501            sp->rx_crc_errors +
1502            sp->rx_alignment_errors +
1503            sp->rx_rnr_errors +
1504            sp->rx_overrun_errors;
1505        /*
1506         * If any transmit underruns occured, bump up the transmit
1507         * threshold by another 512 bytes (64 * 8).
1508         */
1509        if (sp->tx_underruns) {
1510                ifp->if_oerrors += sp->tx_underruns;
1511                if (tx_threshold < 192)
1512                        tx_threshold += 64;
1513        }
1514        s = splimp();
1515        /*
1516         * Release any xmit buffers that have completed DMA. This isn't
1517         * strictly necessary to do here, but it's advantagous for mbufs
1518         * with external storage to be released in a timely manner rather
1519         * than being defered for a potentially long time. This limits
1520         * the delay to a maximum of one second.
1521         */
1522        for (txp = sc->cbl_first; sc->tx_queued &&
1523            (txp->cb_status & FXP_CB_STATUS_C) != 0;
1524            txp = txp->next) {
1525                if (txp->mb_head != NULL) {
1526                        m_freem(txp->mb_head);
1527                        txp->mb_head = NULL;
1528                }
1529                sc->tx_queued--;
1530        }
1531        sc->cbl_first = txp;
1532        /*
1533         * If we haven't received any packets in FXP_MAC_RX_IDLE seconds,
1534         * then assume the receiver has locked up and attempt to clear
1535         * the condition by reprogramming the multicast filter. This is
1536         * a work-around for a bug in the 82557 where the receiver locks
1537         * up if it gets certain types of garbage in the syncronization
1538         * bits prior to the packet header. This bug is supposed to only
1539         * occur in 10Mbps mode, but has been seen to occur in 100Mbps
1540         * mode as well (perhaps due to a 10/100 speed transition).
1541         */
1542        if (sc->rx_idle_secs > FXP_MAX_RX_IDLE) {
1543                sc->rx_idle_secs = 0;
1544                fxp_mc_setup(sc);
1545        }
1546        /*
1547         * If there is no pending command, start another stats
1548         * dump. Otherwise punt for now.
1549         */
1550        if (CSR_READ_1(sc, FXP_CSR_SCB_COMMAND) == 0) {
1551                /*
1552                 * Start another stats dump.
1553                 */
1554                fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_DUMPRESET);
1555        } else {
1556                /*
1557                 * A previous command is still waiting to be accepted.
1558                 * Just zero our copy of the stats and wait for the
1559                 * next timer event to update them.
1560                 */
1561                sp->tx_good = 0;
1562                sp->tx_underruns = 0;
1563                sp->tx_total_collisions = 0;
1564
1565                sp->rx_good = 0;
1566                sp->rx_crc_errors = 0;
1567                sp->rx_alignment_errors = 0;
1568                sp->rx_rnr_errors = 0;
1569                sp->rx_overrun_errors = 0;
1570        }
1571#ifdef NOTUSED
1572        if (sc->miibus != NULL)
1573                mii_tick(device_get_softc(sc->miibus));
1574#endif
1575        splx(s);
1576        /*
1577         * Schedule another timeout one second from now.
1578         */
1579        if (sc->stat_ch == fxp_timeout_running) {
1580          timeout(fxp_tick, sc, hz);
1581        }
1582        else if (sc->stat_ch == fxp_timeout_stop_rq) {
1583          sc->stat_ch = fxp_timeout_stopped;
1584        }
1585}
1586
1587/*
1588 * Stop the interface. Cancels the statistics updater and resets
1589 * the interface.
1590 */
1591static void
1592fxp_stop(struct fxp_softc *sc)
1593{
1594        struct ifnet *ifp = &sc->sc_if;
1595        struct fxp_cb_tx *txp;
1596        int i;
1597
1598        DBGLVL_PRINTK(2,"fxp_stop called\n");
1599
1600        ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1601        ifp->if_timer = 0;
1602
1603        /*
1604         * stop stats updater.
1605         */
1606        if (sc->stat_ch == fxp_timeout_running) {
1607          DBGLVL_PRINTK(3,"fxp_stop: trying to stop stat update tick\n");
1608          sc->stat_ch = fxp_timeout_stop_rq;
1609          while(sc->stat_ch != fxp_timeout_stopped) {
1610            rtems_bsdnet_semaphore_release();
1611            rtems_task_wake_after(fxp_ticksPerSecond);
1612            rtems_bsdnet_semaphore_obtain();
1613          }
1614          DBGLVL_PRINTK(3,"fxp_stop: stat update tick stopped\n");
1615        }
1616        /*
1617         * Issue software reset
1618         */
1619        DBGLVL_PRINTK(3,"fxp_stop: issue software reset\n");
1620        CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SELECTIVE_RESET);
1621        DELAY(10);
1622
1623        /*
1624         * Release any xmit buffers.
1625         */
1626        DBGLVL_PRINTK(3,"fxp_stop: releasing xmit buffers\n");
1627        txp = sc->cbl_base;
1628        if (txp != NULL) {
1629                for (i = 0; i < FXP_NTXCB; i++) {
1630                        if (txp[i].mb_head != NULL) {
1631                                m_freem(txp[i].mb_head);
1632                                txp[i].mb_head = NULL;
1633                        }
1634                }
1635        }
1636        sc->tx_queued = 0;
1637
1638        /*
1639         * Free all the receive buffers then reallocate/reinitialize
1640         */
1641        DBGLVL_PRINTK(3,"fxp_stop: free and reinit all receive buffers\n");
1642        if (sc->rfa_headm != NULL)
1643                m_freem(sc->rfa_headm);
1644        sc->rfa_headm = NULL;
1645        sc->rfa_tailm = NULL;
1646        for (i = 0; i < FXP_NRFABUFS; i++) {
1647                if (fxp_add_rfabuf(sc, NULL) != 0) {
1648                        /*
1649                         * This "can't happen" - we're at splimp()
1650                         * and we just freed all the buffers we need
1651                         * above.
1652                         */
1653                        panic("fxp_stop: no buffers!");
1654                }
1655        }
1656        DBGLVL_PRINTK(2,"fxp_stop: finished\n");
1657}
1658
1659/*
1660 * Watchdog/transmission transmit timeout handler. Called when a
1661 * transmission is started on the interface, but no interrupt is
1662 * received before the timeout. This usually indicates that the
1663 * card has wedged for some reason.
1664 */
1665static void
1666fxp_watchdog(struct ifnet *ifp)
1667{
1668        struct fxp_softc *sc = ifp->if_softc;
1669
1670        device_printf(sc->dev, "device timeout\n");
1671        ifp->if_oerrors++;
1672
1673        fxp_init(sc);
1674}
1675
1676static void
1677fxp_init(void *xsc)
1678{
1679        struct fxp_softc *sc = xsc;
1680        struct ifnet *ifp = &sc->sc_if;
1681        struct fxp_cb_config *cbp;
1682        struct fxp_cb_ias *cb_ias;
1683        struct fxp_cb_tx *txp;
1684        int i, prm, s;
1685
1686rtems_task_wake_after(100);
1687        DBGLVL_PRINTK(2,"fxp_init called\n");
1688
1689        s = splimp();
1690        /*
1691         * Cancel any pending I/O
1692         */
1693        /*
1694         * E. Norum 2004-10-11
1695         * Add line suggested by "Eugene Denisov" <dea@sendmail.ru>.
1696         * Prevents lockup at initialization.
1697         */
1698        sc->stat_ch = fxp_timeout_stopped;
1699        fxp_stop(sc);
1700
1701        prm = (ifp->if_flags & IFF_PROMISC) ? 1 : 0;
1702
1703        DBGLVL_PRINTK(5,"fxp_init: Initializing base of CBL and RFA memory\n");
1704        /*
1705         * Initialize base of CBL and RFA memory. Loading with zero
1706         * sets it up for regular linear addressing.
1707         */
1708        CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, 0);
1709        fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_BASE);
1710
1711        fxp_scb_wait(sc);
1712        fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_BASE);
1713
1714        /*
1715         * Initialize base of dump-stats buffer.
1716         */
1717        DBGLVL_PRINTK(5,"fxp_init: Initializing base of dump-stats buffer\n");
1718        fxp_scb_wait(sc);
1719        CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, vtophys(sc->fxp_stats));
1720        fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_DUMP_ADR);
1721
1722        /*
1723         * We temporarily use memory that contains the TxCB list to
1724         * construct the config CB. The TxCB list memory is rebuilt
1725         * later.
1726         */
1727        cbp = (struct fxp_cb_config *) sc->cbl_base;
1728        DBGLVL_PRINTK(5,"fxp_init: cbp = 0x%x\n",cbp);
1729
1730        /*
1731         * This memcpy is kind of disgusting, but there are a bunch of must be
1732         * zero and must be one bits in this structure and this is the easiest
1733         * way to initialize them all to proper values.
1734         */
1735        memcpy( (void *)(u_int32_t*)(volatile void *)&cbp->cb_status,
1736                fxp_cb_config_template,
1737                sizeof(fxp_cb_config_template));
1738
1739        cbp->cb_status =        0;
1740        cbp->cb_command =       FXP_CB_COMMAND_CONFIG | FXP_CB_COMMAND_EL;
1741        cbp->link_addr =        -1;     /* (no) next command */
1742        cbp->byte_count =       22;     /* (22) bytes to config */
1743        cbp->rx_fifo_limit =    8;      /* rx fifo threshold (32 bytes) */
1744        cbp->tx_fifo_limit =    0;      /* tx fifo threshold (0 bytes) */
1745        cbp->adaptive_ifs =     0;      /* (no) adaptive interframe spacing */
1746        cbp->mwi_enable =       sc->flags & FXP_FLAG_MWI_ENABLE ? 1 : 0;
1747        cbp->type_enable =      0;      /* actually reserved */
1748        cbp->read_align_en =    sc->flags & FXP_FLAG_READ_ALIGN ? 1 : 0;
1749        cbp->end_wr_on_cl =     sc->flags & FXP_FLAG_WRITE_ALIGN ? 1 : 0;
1750        cbp->rx_dma_bytecount = 0;      /* (no) rx DMA max */
1751        cbp->tx_dma_bytecount = 0;      /* (no) tx DMA max */
1752        cbp->dma_mbce =         0;      /* (disable) dma max counters */
1753        cbp->late_scb =         0;      /* (don't) defer SCB update */
1754        cbp->direct_dma_dis =   1;      /* disable direct rcv dma mode */
1755        cbp->tno_int_or_tco_en =0;      /* (disable) tx not okay interrupt */
1756        cbp->ci_int =           1;      /* interrupt on CU idle */
1757        cbp->ext_txcb_dis =     sc->flags & FXP_FLAG_EXT_TXCB ? 0 : 1;
1758        cbp->ext_stats_dis =    1;      /* disable extended counters */
1759        cbp->keep_overrun_rx =  0;      /* don't pass overrun frames to host */
1760        cbp->save_bf =          sc->chip == FXP_CHIP_82557 ? 1 : prm;
1761        cbp->disc_short_rx =    !prm;   /* discard short packets */
1762        cbp->underrun_retry =   1;      /* retry mode (once) on DMA underrun */
1763        cbp->two_frames =       0;      /* do not limit FIFO to 2 frames */
1764        cbp->dyn_tbd =          0;      /* (no) dynamic TBD mode */
1765        cbp->mediatype =        sc->flags & FXP_FLAG_SERIAL_MEDIA ? 0 : 1;
1766        cbp->csma_dis =         0;      /* (don't) disable link */
1767        cbp->tcp_udp_cksum =    0;      /* (don't) enable checksum */
1768        cbp->vlan_tco =         0;      /* (don't) enable vlan wakeup */
1769        cbp->link_wake_en =     0;      /* (don't) assert PME# on link change */
1770        cbp->arp_wake_en =      0;      /* (don't) assert PME# on arp */
1771        cbp->mc_wake_en =       0;      /* (don't) enable PME# on mcmatch */
1772        cbp->nsai =             1;      /* (don't) disable source addr insert */
1773        cbp->preamble_length =  2;      /* (7 byte) preamble */
1774        cbp->loopback =         0;      /* (don't) loopback */
1775        cbp->linear_priority =  0;      /* (normal CSMA/CD operation) */
1776        cbp->linear_pri_mode =  0;      /* (wait after xmit only) */
1777        cbp->interfrm_spacing = 6;      /* (96 bits of) interframe spacing */
1778        cbp->promiscuous =      prm;    /* promiscuous mode */
1779        cbp->bcast_disable =    0;      /* (don't) disable broadcasts */
1780        cbp->wait_after_win =   0;      /* (don't) enable modified backoff alg*/
1781        cbp->ignore_ul =        0;      /* consider U/L bit in IA matching */
1782        cbp->crc16_en =         0;      /* (don't) enable crc-16 algorithm */
1783        cbp->crscdt =           sc->flags & FXP_FLAG_SERIAL_MEDIA ? 1 : 0;
1784
1785        cbp->stripping =        !prm;   /* truncate rx packet to byte count */
1786        cbp->padding =          1;      /* (do) pad short tx packets */
1787        cbp->rcv_crc_xfer =     0;      /* (don't) xfer CRC to host */
1788        cbp->long_rx_en =       sc->flags & FXP_FLAG_LONG_PKT_EN ? 1 : 0;
1789        cbp->ia_wake_en =       0;      /* (don't) wake up on address match */
1790        cbp->magic_pkt_dis =    0;      /* (don't) disable magic packet */
1791                                        /* must set wake_en in PMCSR also */
1792        cbp->force_fdx =        0;      /* (don't) force full duplex */
1793        cbp->fdx_pin_en =       1;      /* (enable) FDX# pin */
1794        cbp->multi_ia =         0;      /* (don't) accept multiple IAs */
1795        cbp->mc_all =           sc->flags & FXP_FLAG_ALL_MCAST ? 1 : 0;
1796
1797        DBGLVL_PRINTK(5,"fxp_init: cbp initialized\n");
1798        if (sc->chip == FXP_CHIP_82557) {
1799                /*
1800                 * The 82557 has no hardware flow control, the values
1801                 * below are the defaults for the chip.
1802                 */
1803                cbp->fc_delay_lsb =     0;
1804                cbp->fc_delay_msb =     0x40;
1805                cbp->pri_fc_thresh =    3;
1806                cbp->tx_fc_dis =        0;
1807                cbp->rx_fc_restop =     0;
1808                cbp->rx_fc_restart =    0;
1809                cbp->fc_filter =        0;
1810                cbp->pri_fc_loc =       1;
1811        } else {
1812                cbp->fc_delay_lsb =     0x1f;
1813                cbp->fc_delay_msb =     0x01;
1814                cbp->pri_fc_thresh =    3;
1815                cbp->tx_fc_dis =        0;      /* enable transmit FC */
1816                cbp->rx_fc_restop =     1;      /* enable FC restop frames */
1817                cbp->rx_fc_restart =    1;      /* enable FC restart frames */
1818                cbp->fc_filter =        !prm;   /* drop FC frames to host */
1819                cbp->pri_fc_loc =       1;      /* FC pri location (byte31) */
1820        }
1821
1822        /*
1823         * Start the config command/DMA.
1824         */
1825        DBGLVL_PRINTK(5,"fxp_init: starting config command/DMA\n");
1826        fxp_scb_wait(sc);
1827        CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, vtophys(&cbp->cb_status));
1828        fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
1829        /* ...and wait for it to complete. */
1830        fxp_dma_wait(&cbp->cb_status, sc);
1831
1832        /*
1833         * Now initialize the station address. Temporarily use the TxCB
1834         * memory area like we did above for the config CB.
1835         */
1836        DBGLVL_PRINTK(5,"fxp_init: initialize station address\n");
1837        cb_ias = (struct fxp_cb_ias *) sc->cbl_base;
1838        cb_ias->cb_status = 0;
1839        cb_ias->cb_command = FXP_CB_COMMAND_IAS | FXP_CB_COMMAND_EL;
1840        cb_ias->link_addr = -1;
1841        memcpy((void *)(u_int32_t*)(volatile void *)cb_ias->macaddr,
1842            sc->arpcom.ac_enaddr,
1843            sizeof(sc->arpcom.ac_enaddr));
1844
1845        /*
1846         * Start the IAS (Individual Address Setup) command/DMA.
1847         */
1848        DBGLVL_PRINTK(5,"fxp_init: start IAS command/DMA\n");
1849        fxp_scb_wait(sc);
1850        fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
1851        /* ...and wait for it to complete. */
1852        fxp_dma_wait(&cb_ias->cb_status, sc);
1853
1854        /*
1855         * Initialize transmit control block (TxCB) list.
1856         */
1857
1858        DBGLVL_PRINTK(5,"fxp_init: initialize TxCB list\n");
1859        txp = sc->cbl_base;
1860        memset(txp, 0, sizeof(struct fxp_cb_tx) * FXP_NTXCB);
1861        for (i = 0; i < FXP_NTXCB; i++) {
1862                txp[i].cb_status = FXP_CB_STATUS_C | FXP_CB_STATUS_OK;
1863                txp[i].cb_command = FXP_CB_COMMAND_NOP;
1864                txp[i].link_addr =
1865                    vtophys(&txp[(i + 1) & FXP_TXCB_MASK].cb_status);
1866                if (sc->flags & FXP_FLAG_EXT_TXCB)
1867                        txp[i].tbd_array_addr = vtophys(&txp[i].tbd[2]);
1868                else
1869                        txp[i].tbd_array_addr = vtophys(&txp[i].tbd[0]);
1870                txp[i].next = &txp[(i + 1) & FXP_TXCB_MASK];
1871        }
1872        /*
1873         * Set the suspend flag on the first TxCB and start the control
1874         * unit. It will execute the NOP and then suspend.
1875         */
1876        DBGLVL_PRINTK(5,"fxp_init: setup suspend flag\n");
1877        txp->cb_command = FXP_CB_COMMAND_NOP | FXP_CB_COMMAND_S;
1878        sc->cbl_first = sc->cbl_last = txp;
1879        sc->tx_queued = 1;
1880
1881        fxp_scb_wait(sc);
1882        fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
1883
1884        /*
1885         * Initialize receiver buffer area - RFA.
1886         */
1887        DBGLVL_PRINTK(5,"fxp_init: initialize RFA\n");
1888        fxp_scb_wait(sc);
1889        CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL,
1890            vtophys(sc->rfa_headm->m_ext.ext_buf) + RFA_ALIGNMENT_FUDGE);
1891        fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_START);
1892
1893#ifdef NOTUSED
1894        /*
1895         * Set current media.
1896         */
1897        if (sc->miibus != NULL)
1898                mii_mediachg(device_get_softc(sc->miibus));
1899#endif
1900
1901        ifp->if_flags |= IFF_RUNNING;
1902        ifp->if_flags &= ~IFF_OACTIVE;
1903
1904        if (sc->daemonTid == 0) {
1905                /*
1906                 * Start driver task
1907                 */
1908                sc->daemonTid = rtems_bsdnet_newproc ("FXPd", 4096, fxp_daemon, sc);
1909
1910        }
1911        /*
1912         * Enable interrupts.
1913         */
1914        CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, 0);
1915        splx(s);
1916
1917        /*
1918         * Start stats updater.
1919         */
1920        sc->stat_ch = fxp_timeout_running;
1921        DBGLVL_PRINTK(2,"fxp_init: stats updater timeout called with hz=%d\n", hz);
1922        timeout(fxp_tick, sc, hz);
1923        DBGLVL_PRINTK(2,"fxp_init finished\n");
1924}
1925
1926#ifdef NOTUSED
1927static int
1928fxp_serial_ifmedia_upd(struct ifnet *ifp)
1929{
1930
1931        return (0);
1932}
1933
1934static void
1935fxp_serial_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
1936{
1937
1938        ifmr->ifm_active = IFM_ETHER|IFM_MANUAL;
1939}
1940
1941/*
1942 * Change media according to request.
1943 */
1944static int
1945fxp_ifmedia_upd(struct ifnet *ifp)
1946{
1947        struct fxp_softc *sc = ifp->if_softc;
1948        struct mii_data *mii;
1949
1950        mii = device_get_softc(sc->miibus);
1951        mii_mediachg(mii);
1952        return (0);
1953}
1954
1955/*
1956 * Notify the world which media we're using.
1957 */
1958static void
1959fxp_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
1960{
1961        struct fxp_softc *sc = ifp->if_softc;
1962        struct mii_data *mii;
1963
1964        mii = device_get_softc(sc->miibus);
1965        mii_pollstat(mii);
1966        ifmr->ifm_active = mii->mii_media_active;
1967        ifmr->ifm_status = mii->mii_media_status;
1968
1969        if (ifmr->ifm_status & IFM_10_T && sc->flags & FXP_FLAG_CU_RESUME_BUG)
1970                sc->cu_resume_bug = 1;
1971        else
1972                sc->cu_resume_bug = 0;
1973}
1974#endif
1975
1976/*
1977 * Add a buffer to the end of the RFA buffer list.
1978 * Return 0 if successful, 1 for failure. A failure results in
1979 * adding the 'oldm' (if non-NULL) on to the end of the list -
1980 * tossing out its old contents and recycling it.
1981 * The RFA struct is stuck at the beginning of mbuf cluster and the
1982 * data pointer is fixed up to point just past it.
1983 */
1984static int
1985fxp_add_rfabuf(struct fxp_softc *sc, struct mbuf *oldm)
1986{
1987        u_int32_t v;
1988        struct mbuf *m;
1989        struct fxp_rfa *rfa, *p_rfa;
1990
1991        DBGLVL_PRINTK(4,"fxp_add_rfabuf called\n");
1992
1993        MGETHDR(m, M_DONTWAIT, MT_DATA);
1994        if (m != NULL) {
1995                MCLGET(m, M_DONTWAIT);
1996                if ((m->m_flags & M_EXT) == 0) {
1997                        m_freem(m);
1998                        if (oldm == NULL)
1999                                return 1;
2000                        m = oldm;
2001                        m->m_data = m->m_ext.ext_buf;
2002                }
2003        } else {
2004                if (oldm == NULL)
2005                        return 1;
2006                m = oldm;
2007                m->m_data = m->m_ext.ext_buf;
2008        }
2009
2010        /*
2011         * Move the data pointer up so that the incoming data packet
2012         * will be 32-bit aligned.
2013         */
2014        m->m_data += RFA_ALIGNMENT_FUDGE;
2015
2016        /*
2017         * Get a pointer to the base of the mbuf cluster and move
2018         * data start past it.
2019         */
2020        rfa = mtod(m, struct fxp_rfa *);
2021        m->m_data += sizeof(struct fxp_rfa);
2022        rfa->size = (u_int16_t)(MCLBYTES - sizeof(struct fxp_rfa) - RFA_ALIGNMENT_FUDGE);
2023
2024        /*
2025         * Initialize the rest of the RFA.  Note that since the RFA
2026         * is misaligned, we cannot store values directly.  Instead,
2027         * we use an optimized, inline copy.
2028         */
2029
2030        rfa->rfa_status = 0;
2031        rfa->rfa_control = FXP_RFA_CONTROL_EL;
2032        rfa->actual_size = 0;
2033
2034        v = -1;
2035        fxp_lwcopy(&v, (volatile u_int32_t*) rfa->link_addr);
2036        fxp_lwcopy(&v, (volatile u_int32_t*) rfa->rbd_addr);
2037
2038        /*
2039         * If there are other buffers already on the list, attach this
2040         * one to the end by fixing up the tail to point to this one.
2041         */
2042        if (sc->rfa_headm != NULL) {
2043                p_rfa = (struct fxp_rfa *) (sc->rfa_tailm->m_ext.ext_buf +
2044                    RFA_ALIGNMENT_FUDGE);
2045                sc->rfa_tailm->m_next = m;
2046                v = vtophys(rfa);
2047                fxp_lwcopy(&v, (volatile u_int32_t*) p_rfa->link_addr);
2048                p_rfa->rfa_control = 0;
2049        } else {
2050                sc->rfa_headm = m;
2051        }
2052        sc->rfa_tailm = m;
2053
2054        return (m == oldm);
2055}
2056
2057#ifdef NOTUSED
2058static volatile int
2059fxp_miibus_readreg(device_t dev, int phy, int reg)
2060{
2061        struct fxp_softc *sc = device_get_softc(dev);
2062        int count = 10000;
2063        int value;
2064
2065        CSR_WRITE_4(sc, FXP_CSR_MDICONTROL,
2066            (FXP_MDI_READ << 26) | (reg << 16) | (phy << 21));
2067
2068        while (((value = CSR_READ_4(sc, FXP_CSR_MDICONTROL)) & 0x10000000) == 0
2069            && count--)
2070                DELAY(10);
2071
2072        if (count <= 0)
2073                device_printf(dev, "fxp_miibus_readreg: timed out\n");
2074
2075        return (value & 0xffff);
2076}
2077
2078static void
2079fxp_miibus_writereg(device_t dev, int phy, int reg, int value)
2080{
2081        struct fxp_softc *sc = device_get_softc(dev);
2082        int count = 10000;
2083
2084        CSR_WRITE_4(sc, FXP_CSR_MDICONTROL,
2085            (FXP_MDI_WRITE << 26) | (reg << 16) | (phy << 21) |
2086            (value & 0xffff));
2087
2088        while ((CSR_READ_4(sc, FXP_CSR_MDICONTROL) & 0x10000000) == 0 &&
2089            count--)
2090                DELAY(10);
2091
2092        if (count <= 0)
2093                device_printf(dev, "fxp_miibus_writereg: timed out\n");
2094}
2095#endif
2096
2097static int
2098fxp_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
2099{
2100        struct fxp_softc *sc = ifp->if_softc;
2101#ifdef NOTUSED
2102        struct ifreq *ifr = (struct ifreq *)data;
2103        struct mii_data *mii;
2104#endif
2105        int s, error = 0;
2106
2107        DBGLVL_PRINTK(2,"fxp_ioctl called\n");
2108
2109        s = splimp();
2110
2111        switch (command) {
2112        case SIOCSIFADDR:
2113        case SIOCGIFADDR:
2114        case SIOCSIFMTU:
2115                error = ether_ioctl(ifp, command, data);
2116                break;
2117
2118        case SIOCSIFFLAGS:
2119                if (ifp->if_flags & IFF_ALLMULTI)
2120                        sc->flags |= FXP_FLAG_ALL_MCAST;
2121                else
2122                        sc->flags &= ~FXP_FLAG_ALL_MCAST;
2123
2124                /*
2125                 * If interface is marked up and not running, then start it.
2126                 * If it is marked down and running, stop it.
2127                 * XXX If it's up then re-initialize it. This is so flags
2128                 * such as IFF_PROMISC are handled.
2129                 */
2130                if (ifp->if_flags & IFF_UP) {
2131                        fxp_init(sc);
2132                } else {
2133                        if (ifp->if_flags & IFF_RUNNING)
2134                                fxp_stop(sc);
2135                }
2136                break;
2137
2138        case SIOCADDMULTI:
2139        case SIOCDELMULTI:
2140                if (ifp->if_flags & IFF_ALLMULTI)
2141                        sc->flags |= FXP_FLAG_ALL_MCAST;
2142                else
2143                        sc->flags &= ~FXP_FLAG_ALL_MCAST;
2144                /*
2145                 * Multicast list has changed; set the hardware filter
2146                 * accordingly.
2147                 */
2148                if ((sc->flags & FXP_FLAG_ALL_MCAST) == 0)
2149                        fxp_mc_setup(sc);
2150                /*
2151                 * fxp_mc_setup() can set FXP_FLAG_ALL_MCAST, so check it
2152                 * again rather than else {}.
2153                 */
2154                if (sc->flags & FXP_FLAG_ALL_MCAST)
2155                        fxp_init(sc);
2156                error = 0;
2157                break;
2158
2159#ifdef NOTUSED
2160        case SIOCSIFMEDIA:
2161        case SIOCGIFMEDIA:
2162                if (sc->miibus != NULL) {
2163                        mii = device_get_softc(sc->miibus);
2164                        error = ifmedia_ioctl(ifp, ifr,
2165                            &mii->mii_media, command);
2166                } else {
2167                        error = ifmedia_ioctl(ifp, ifr, &sc->sc_media, command);
2168                }
2169                break;
2170#endif
2171
2172    case SIO_RTEMS_SHOW_STATS:
2173        fxp_stats(sc);
2174        break;
2175
2176        default:
2177                error = EINVAL;
2178        }
2179        splx(s);
2180        return (error);
2181}
2182
2183/*
2184 * Program the multicast filter.
2185 *
2186 * We have an artificial restriction that the multicast setup command
2187 * must be the first command in the chain, so we take steps to ensure
2188 * this. By requiring this, it allows us to keep up the performance of
2189 * the pre-initialized command ring (esp. link pointers) by not actually
2190 * inserting the mcsetup command in the ring - i.e. its link pointer
2191 * points to the TxCB ring, but the mcsetup descriptor itself is not part
2192 * of it. We then can do 'CU_START' on the mcsetup descriptor and have it
2193 * lead into the regular TxCB ring when it completes.
2194 *
2195 * This function must be called at splimp.
2196 */
2197static void
2198fxp_mc_setup(struct fxp_softc *sc)
2199{
2200        struct fxp_cb_mcs *mcsp = sc->mcsp;
2201        struct ifnet *ifp = &sc->sc_if;
2202#ifdef NOTUSED
2203        struct ifmultiaddr *ifma;
2204#endif
2205        int nmcasts;
2206        int count;
2207
2208        DBGLVL_PRINTK(2,"fxp_mc_setup called\n");
2209
2210        /*
2211         * If there are queued commands, we must wait until they are all
2212         * completed. If we are already waiting, then add a NOP command
2213         * with interrupt option so that we're notified when all commands
2214         * have been completed - fxp_start() ensures that no additional
2215         * TX commands will be added when need_mcsetup is true.
2216         */
2217        if (sc->tx_queued) {
2218                struct fxp_cb_tx *txp;
2219
2220                /*
2221                 * need_mcsetup will be true if we are already waiting for the
2222                 * NOP command to be completed (see below). In this case, bail.
2223                 */
2224                if (sc->need_mcsetup)
2225                        return;
2226                sc->need_mcsetup = 1;
2227
2228                /*
2229                 * Add a NOP command with interrupt so that we are notified when all
2230                 * TX commands have been processed.
2231                 */
2232                txp = sc->cbl_last->next;
2233                txp->mb_head = NULL;
2234                txp->cb_status = 0;
2235                txp->cb_command = FXP_CB_COMMAND_NOP |
2236                    FXP_CB_COMMAND_S | FXP_CB_COMMAND_I;
2237                /*
2238                 * Advance the end of list forward.
2239                 */
2240                sc->cbl_last->cb_command &= ~FXP_CB_COMMAND_S;
2241                sc->cbl_last = txp;
2242                sc->tx_queued++;
2243                /*
2244                 * Issue a resume in case the CU has just suspended.
2245                 */
2246                fxp_scb_wait(sc);
2247                fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_RESUME);
2248                /*
2249                 * Set a 5 second timer just in case we don't hear from the
2250                 * card again.
2251                 */
2252                ifp->if_timer = 5;
2253
2254                return;
2255        }
2256        sc->need_mcsetup = 0;
2257
2258        /*
2259         * Initialize multicast setup descriptor.
2260         */
2261        mcsp->next = sc->cbl_base;
2262        mcsp->mb_head = NULL;
2263        mcsp->cb_status = 0;
2264        mcsp->cb_command = FXP_CB_COMMAND_MCAS |
2265            FXP_CB_COMMAND_S | FXP_CB_COMMAND_I;
2266        mcsp->link_addr = vtophys(&sc->cbl_base->cb_status);
2267
2268        nmcasts = 0;
2269#ifdef NOTUSED /* FIXME: Multicast not supported? */
2270        if ((sc->flags & FXP_FLAG_ALL_MCAST) == 0) {
2271#if __FreeBSD_version < 500000
2272                LIST_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
2273#else
2274                TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
2275#endif
2276                        if (ifma->ifma_addr->sa_family != AF_LINK)
2277                                continue;
2278                        if (nmcasts >= MAXMCADDR) {
2279                                sc->flags |= FXP_FLAG_ALL_MCAST;
2280                                nmcasts = 0;
2281                                break;
2282                        }
2283                        memcpy((void *)(uintptr_t)(volatile void *)
2284                                &sc->mcsp->mc_addr[nmcasts][0],
2285                                LLADDR((struct sockaddr_dl *)ifma->ifma_addr), 6);
2286                        nmcasts++;
2287                }
2288        }
2289#endif
2290        mcsp->mc_cnt = nmcasts * 6;
2291        sc->cbl_first = sc->cbl_last = (struct fxp_cb_tx *) mcsp;
2292        sc->tx_queued = 1;
2293
2294        /*
2295         * Wait until command unit is not active. This should never
2296         * be the case when nothing is queued, but make sure anyway.
2297         */
2298        count = 100;
2299        while ((CSR_READ_1(sc, FXP_CSR_SCB_RUSCUS) >> 6) ==
2300            FXP_SCB_CUS_ACTIVE && --count)
2301                DELAY(10);
2302        if (count == 0) {
2303                device_printf(sc->dev, "command queue timeout\n");
2304                return;
2305        }
2306
2307        /*
2308         * Start the multicast setup command.
2309         */
2310        fxp_scb_wait(sc);
2311        CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, vtophys(&mcsp->cb_status));
2312        fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
2313
2314        ifp->if_timer = 2;
2315        return;
2316        }
2317
2318#endif /* defined(__i386__) */
Note: See TracBrowser for help on using the repository browser.