source: rtems/c/src/lib/libcpu/m68k/m68040/fpsp/setox.s @ f9b93da

4.104.114.84.95
Last change on this file since f9b93da was f9b93da, checked in by Joel Sherrill <joel.sherrill@…>, on 04/16/97 at 17:33:04

Added the MC68040 Floating Point Support Package. This was ported
to RTEMS by Eric Norum. It is freely distributable and was acquired
from the Motorola WWW site. More info is in the FPSP README.

  • Property mode set to 100644
File size: 28.3 KB
Line 
1//
2//      setox.sa 3.1 12/10/90
3//
4//      The entry point setox computes the exponential of a value.
5//      setoxd does the same except the input value is a denormalized
6//      number. setoxm1 computes exp(X)-1, and setoxm1d computes
7//      exp(X)-1 for denormalized X.
8//
9//      INPUT
10//      -----
11//      Double-extended value in memory location pointed to by address
12//      register a0.
13//
14//      OUTPUT
15//      ------
16//      exp(X) or exp(X)-1 returned in floating-point register fp0.
17//
18//      ACCURACY and MONOTONICITY
19//      -------------------------
20//      The returned result is within 0.85 ulps in 64 significant bit, i.e.
21//      within 0.5001 ulp to 53 bits if the result is subsequently rounded
22//      to double precision. The result is provably monotonic in double
23//      precision.
24//
25//      SPEED
26//      -----
27//      Two timings are measured, both in the copy-back mode. The
28//      first one is measured when the function is invoked the first time
29//      (so the instructions and data are not in cache), and the
30//      second one is measured when the function is reinvoked at the same
31//      input argument.
32//
33//      The program setox takes approximately 210/190 cycles for input
34//      argument X whose magnitude is less than 16380 log2, which
35//      is the usual situation. For the less common arguments,
36//      depending on their values, the program may run faster or slower --
37//      but no worse than 10% slower even in the extreme cases.
38//
39//      The program setoxm1 takes approximately ???/??? cycles for input
40//      argument X, 0.25 <= |X| < 70log2. For |X| < 0.25, it takes
41//      approximately ???/??? cycles. For the less common arguments,
42//      depending on their values, the program may run faster or slower --
43//      but no worse than 10% slower even in the extreme cases.
44//
45//      ALGORITHM and IMPLEMENTATION NOTES
46//      ----------------------------------
47//
48//      setoxd
49//      ------
50//      Step 1. Set ans := 1.0
51//
52//      Step 2. Return  ans := ans + sign(X)*2^(-126). Exit.
53//      Notes:  This will always generate one exception -- inexact.
54//
55//
56//      setox
57//      -----
58//
59//      Step 1. Filter out extreme cases of input argument.
60//              1.1     If |X| >= 2^(-65), go to Step 1.3.
61//              1.2     Go to Step 7.
62//              1.3     If |X| < 16380 log(2), go to Step 2.
63//              1.4     Go to Step 8.
64//      Notes:  The usual case should take the branches 1.1 -> 1.3 -> 2.
65//               To avoid the use of floating-point comparisons, a
66//               compact representation of |X| is used. This format is a
67//               32-bit integer, the upper (more significant) 16 bits are
68//               the sign and biased exponent field of |X|; the lower 16
69//               bits are the 16 most significant fraction (including the
70//               explicit bit) bits of |X|. Consequently, the comparisons
71//               in Steps 1.1 and 1.3 can be performed by integer comparison.
72//               Note also that the constant 16380 log(2) used in Step 1.3
73//               is also in the compact form. Thus taking the branch
74//               to Step 2 guarantees |X| < 16380 log(2). There is no harm
75//               to have a small number of cases where |X| is less than,
76//               but close to, 16380 log(2) and the branch to Step 9 is
77//               taken.
78//
79//      Step 2. Calculate N = round-to-nearest-int( X * 64/log2 ).
80//              2.1     Set AdjFlag := 0 (indicates the branch 1.3 -> 2 was taken)
81//              2.2     N := round-to-nearest-integer( X * 64/log2 ).
82//              2.3     Calculate       J = N mod 64; so J = 0,1,2,..., or 63.
83//              2.4     Calculate       M = (N - J)/64; so N = 64M + J.
84//              2.5     Calculate the address of the stored value of 2^(J/64).
85//              2.6     Create the value Scale = 2^M.
86//      Notes:  The calculation in 2.2 is really performed by
87//
88//                      Z := X * constant
89//                      N := round-to-nearest-integer(Z)
90//
91//               where
92//
93//                      constant := single-precision( 64/log 2 ).
94//
95//               Using a single-precision constant avoids memory access.
96//               Another effect of using a single-precision "constant" is
97//               that the calculated value Z is
98//
99//                      Z = X*(64/log2)*(1+eps), |eps| <= 2^(-24).
100//
101//               This error has to be considered later in Steps 3 and 4.
102//
103//      Step 3. Calculate X - N*log2/64.
104//              3.1     R := X + N*L1, where L1 := single-precision(-log2/64).
105//              3.2     R := R + N*L2, L2 := extended-precision(-log2/64 - L1).
106//      Notes:  a) The way L1 and L2 are chosen ensures L1+L2 approximate
107//               the value      -log2/64        to 88 bits of accuracy.
108//               b) N*L1 is exact because N is no longer than 22 bits and
109//               L1 is no longer than 24 bits.
110//               c) The calculation X+N*L1 is also exact due to cancellation.
111//               Thus, R is practically X+N(L1+L2) to full 64 bits.
112//               d) It is important to estimate how large can |R| be after
113//               Step 3.2.
114//
115//                      N = rnd-to-int( X*64/log2 (1+eps) ), |eps|<=2^(-24)
116//                      X*64/log2 (1+eps)       =       N + f,  |f| <= 0.5
117//                      X*64/log2 - N   =       f - eps*X 64/log2
118//                      X - N*log2/64   =       f*log2/64 - eps*X
119//
120//
121//               Now |X| <= 16446 log2, thus
122//
123//                      |X - N*log2/64| <= (0.5 + 16446/2^(18))*log2/64
124//                                      <= 0.57 log2/64.
125//               This bound will be used in Step 4.
126//
127//      Step 4. Approximate exp(R)-1 by a polynomial
128//                      p = R + R*R*(A1 + R*(A2 + R*(A3 + R*(A4 + R*A5))))
129//      Notes:  a) In order to reduce memory access, the coefficients are
130//               made as "short" as possible: A1 (which is 1/2), A4 and A5
131//               are single precision; A2 and A3 are double precision.
132//               b) Even with the restrictions above,
133//                      |p - (exp(R)-1)| < 2^(-68.8) for all |R| <= 0.0062.
134//               Note that 0.0062 is slightly bigger than 0.57 log2/64.
135//               c) To fully utilize the pipeline, p is separated into
136//               two independent pieces of roughly equal complexities
137//                      p = [ R + R*S*(A2 + S*A4) ]     +
138//                              [ S*(A1 + S*(A3 + S*A5)) ]
139//               where S = R*R.
140//
141//      Step 5. Compute 2^(J/64)*exp(R) = 2^(J/64)*(1+p) by
142//                              ans := T + ( T*p + t)
143//               where T and t are the stored values for 2^(J/64).
144//      Notes:  2^(J/64) is stored as T and t where T+t approximates
145//               2^(J/64) to roughly 85 bits; T is in extended precision
146//               and t is in single precision. Note also that T is rounded
147//               to 62 bits so that the last two bits of T are zero. The
148//               reason for such a special form is that T-1, T-2, and T-8
149//               will all be exact --- a property that will give much
150//               more accurate computation of the function EXPM1.
151//
152//      Step 6. Reconstruction of exp(X)
153//                      exp(X) = 2^M * 2^(J/64) * exp(R).
154//              6.1     If AdjFlag = 0, go to 6.3
155//              6.2     ans := ans * AdjScale
156//              6.3     Restore the user FPCR
157//              6.4     Return ans := ans * Scale. Exit.
158//      Notes:  If AdjFlag = 0, we have X = Mlog2 + Jlog2/64 + R,
159//               |M| <= 16380, and Scale = 2^M. Moreover, exp(X) will
160//               neither overflow nor underflow. If AdjFlag = 1, that
161//               means that
162//                      X = (M1+M)log2 + Jlog2/64 + R, |M1+M| >= 16380.
163//               Hence, exp(X) may overflow or underflow or neither.
164//               When that is the case, AdjScale = 2^(M1) where M1 is
165//               approximately M. Thus 6.2 will never cause over/underflow.
166//               Possible exception in 6.4 is overflow or underflow.
167//               The inexact exception is not generated in 6.4. Although
168//               one can argue that the inexact flag should always be
169//               raised, to simulate that exception cost to much than the
170//               flag is worth in practical uses.
171//
172//      Step 7. Return 1 + X.
173//              7.1     ans := X
174//              7.2     Restore user FPCR.
175//              7.3     Return ans := 1 + ans. Exit
176//      Notes:  For non-zero X, the inexact exception will always be
177//               raised by 7.3. That is the only exception raised by 7.3.
178//               Note also that we use the FMOVEM instruction to move X
179//               in Step 7.1 to avoid unnecessary trapping. (Although
180//               the FMOVEM may not seem relevant since X is normalized,
181//               the precaution will be useful in the library version of
182//               this code where the separate entry for denormalized inputs
183//               will be done away with.)
184//
185//      Step 8. Handle exp(X) where |X| >= 16380log2.
186//              8.1     If |X| > 16480 log2, go to Step 9.
187//              (mimic 2.2 - 2.6)
188//              8.2     N := round-to-integer( X * 64/log2 )
189//              8.3     Calculate J = N mod 64, J = 0,1,...,63
190//              8.4     K := (N-J)/64, M1 := truncate(K/2), M = K-M1, AdjFlag := 1.
191//              8.5     Calculate the address of the stored value 2^(J/64).
192//              8.6     Create the values Scale = 2^M, AdjScale = 2^M1.
193//              8.7     Go to Step 3.
194//      Notes:  Refer to notes for 2.2 - 2.6.
195//
196//      Step 9. Handle exp(X), |X| > 16480 log2.
197//              9.1     If X < 0, go to 9.3
198//              9.2     ans := Huge, go to 9.4
199//              9.3     ans := Tiny.
200//              9.4     Restore user FPCR.
201//              9.5     Return ans := ans * ans. Exit.
202//      Notes:  Exp(X) will surely overflow or underflow, depending on
203//               X's sign. "Huge" and "Tiny" are respectively large/tiny
204//               extended-precision numbers whose square over/underflow
205//               with an inexact result. Thus, 9.5 always raises the
206//               inexact together with either overflow or underflow.
207//
208//
209//      setoxm1d
210//      --------
211//
212//      Step 1. Set ans := 0
213//
214//      Step 2. Return  ans := X + ans. Exit.
215//      Notes:  This will return X with the appropriate rounding
216//               precision prescribed by the user FPCR.
217//
218//      setoxm1
219//      -------
220//
221//      Step 1. Check |X|
222//              1.1     If |X| >= 1/4, go to Step 1.3.
223//              1.2     Go to Step 7.
224//              1.3     If |X| < 70 log(2), go to Step 2.
225//              1.4     Go to Step 10.
226//      Notes:  The usual case should take the branches 1.1 -> 1.3 -> 2.
227//               However, it is conceivable |X| can be small very often
228//               because EXPM1 is intended to evaluate exp(X)-1 accurately
229//               when |X| is small. For further details on the comparisons,
230//               see the notes on Step 1 of setox.
231//
232//      Step 2. Calculate N = round-to-nearest-int( X * 64/log2 ).
233//              2.1     N := round-to-nearest-integer( X * 64/log2 ).
234//              2.2     Calculate       J = N mod 64; so J = 0,1,2,..., or 63.
235//              2.3     Calculate       M = (N - J)/64; so N = 64M + J.
236//              2.4     Calculate the address of the stored value of 2^(J/64).
237//              2.5     Create the values Sc = 2^M and OnebySc := -2^(-M).
238//      Notes:  See the notes on Step 2 of setox.
239//
240//      Step 3. Calculate X - N*log2/64.
241//              3.1     R := X + N*L1, where L1 := single-precision(-log2/64).
242//              3.2     R := R + N*L2, L2 := extended-precision(-log2/64 - L1).
243//      Notes:  Applying the analysis of Step 3 of setox in this case
244//               shows that |R| <= 0.0055 (note that |X| <= 70 log2 in
245//               this case).
246//
247//      Step 4. Approximate exp(R)-1 by a polynomial
248//                      p = R+R*R*(A1+R*(A2+R*(A3+R*(A4+R*(A5+R*A6)))))
249//      Notes:  a) In order to reduce memory access, the coefficients are
250//               made as "short" as possible: A1 (which is 1/2), A5 and A6
251//               are single precision; A2, A3 and A4 are double precision.
252//               b) Even with the restriction above,
253//                      |p - (exp(R)-1)| <      |R| * 2^(-72.7)
254//               for all |R| <= 0.0055.
255//               c) To fully utilize the pipeline, p is separated into
256//               two independent pieces of roughly equal complexity
257//                      p = [ R*S*(A2 + S*(A4 + S*A6)) ]        +
258//                              [ R + S*(A1 + S*(A3 + S*A5)) ]
259//               where S = R*R.
260//
261//      Step 5. Compute 2^(J/64)*p by
262//                              p := T*p
263//               where T and t are the stored values for 2^(J/64).
264//      Notes:  2^(J/64) is stored as T and t where T+t approximates
265//               2^(J/64) to roughly 85 bits; T is in extended precision
266//               and t is in single precision. Note also that T is rounded
267//               to 62 bits so that the last two bits of T are zero. The
268//               reason for such a special form is that T-1, T-2, and T-8
269//               will all be exact --- a property that will be exploited
270//               in Step 6 below. The total relative error in p is no
271//               bigger than 2^(-67.7) compared to the final result.
272//
273//      Step 6. Reconstruction of exp(X)-1
274//                      exp(X)-1 = 2^M * ( 2^(J/64) + p - 2^(-M) ).
275//              6.1     If M <= 63, go to Step 6.3.
276//              6.2     ans := T + (p + (t + OnebySc)). Go to 6.6
277//              6.3     If M >= -3, go to 6.5.
278//              6.4     ans := (T + (p + t)) + OnebySc. Go to 6.6
279//              6.5     ans := (T + OnebySc) + (p + t).
280//              6.6     Restore user FPCR.
281//              6.7     Return ans := Sc * ans. Exit.
282//      Notes:  The various arrangements of the expressions give accurate
283//               evaluations.
284//
285//      Step 7. exp(X)-1 for |X| < 1/4.
286//              7.1     If |X| >= 2^(-65), go to Step 9.
287//              7.2     Go to Step 8.
288//
289//      Step 8. Calculate exp(X)-1, |X| < 2^(-65).
290//              8.1     If |X| < 2^(-16312), goto 8.3
291//              8.2     Restore FPCR; return ans := X - 2^(-16382). Exit.
292//              8.3     X := X * 2^(140).
293//              8.4     Restore FPCR; ans := ans - 2^(-16382).
294//               Return ans := ans*2^(140). Exit
295//      Notes:  The idea is to return "X - tiny" under the user
296//               precision and rounding modes. To avoid unnecessary
297//               inefficiency, we stay away from denormalized numbers the
298//               best we can. For |X| >= 2^(-16312), the straightforward
299//               8.2 generates the inexact exception as the case warrants.
300//
301//      Step 9. Calculate exp(X)-1, |X| < 1/4, by a polynomial
302//                      p = X + X*X*(B1 + X*(B2 + ... + X*B12))
303//      Notes:  a) In order to reduce memory access, the coefficients are
304//               made as "short" as possible: B1 (which is 1/2), B9 to B12
305//               are single precision; B3 to B8 are double precision; and
306//               B2 is double extended.
307//               b) Even with the restriction above,
308//                      |p - (exp(X)-1)| < |X| 2^(-70.6)
309//               for all |X| <= 0.251.
310//               Note that 0.251 is slightly bigger than 1/4.
311//               c) To fully preserve accuracy, the polynomial is computed
312//               as     X + ( S*B1 +    Q ) where S = X*X and
313//                      Q       =       X*S*(B2 + X*(B3 + ... + X*B12))
314//               d) To fully utilize the pipeline, Q is separated into
315//               two independent pieces of roughly equal complexity
316//                      Q = [ X*S*(B2 + S*(B4 + ... + S*B12)) ] +
317//                              [ S*S*(B3 + S*(B5 + ... + S*B11)) ]
318//
319//      Step 10.        Calculate exp(X)-1 for |X| >= 70 log 2.
320//              10.1 If X >= 70log2 , exp(X) - 1 = exp(X) for all practical
321//               purposes. Therefore, go to Step 1 of setox.
322//              10.2 If X <= -70log2, exp(X) - 1 = -1 for all practical purposes.
323//               ans := -1
324//               Restore user FPCR
325//               Return ans := ans + 2^(-126). Exit.
326//      Notes:  10.2 will always create an inexact and return -1 + tiny
327//               in the user rounding precision and mode.
328//
329//
330
331//              Copyright (C) Motorola, Inc. 1990
332//                      All Rights Reserved
333//
334//      THIS IS UNPUBLISHED PROPRIETARY SOURCE CODE OF MOTOROLA
335//      The copyright notice above does not evidence any 
336//      actual or intended publication of such source code.
337
338//setox idnt    2,1 | Motorola 040 Floating Point Software Package
339
340        |section        8
341
342        .include "fpsp.defs"
343
344L2:     .long   0x3FDC0000,0x82E30865,0x4361C4C6,0x00000000
345
346EXPA3:  .long   0x3FA55555,0x55554431
347EXPA2:  .long   0x3FC55555,0x55554018
348
349HUGE:   .long   0x7FFE0000,0xFFFFFFFF,0xFFFFFFFF,0x00000000
350TINY:   .long   0x00010000,0xFFFFFFFF,0xFFFFFFFF,0x00000000
351
352EM1A4:  .long   0x3F811111,0x11174385
353EM1A3:  .long   0x3FA55555,0x55554F5A
354
355EM1A2:  .long   0x3FC55555,0x55555555,0x00000000,0x00000000
356
357EM1B8:  .long   0x3EC71DE3,0xA5774682
358EM1B7:  .long   0x3EFA01A0,0x19D7CB68
359
360EM1B6:  .long   0x3F2A01A0,0x1A019DF3
361EM1B5:  .long   0x3F56C16C,0x16C170E2
362
363EM1B4:  .long   0x3F811111,0x11111111
364EM1B3:  .long   0x3FA55555,0x55555555
365
366EM1B2:  .long   0x3FFC0000,0xAAAAAAAA,0xAAAAAAAB
367        .long   0x00000000
368
369TWO140: .long   0x48B00000,0x00000000
370TWON140:        .long   0x37300000,0x00000000
371
372EXPTBL:
373        .long   0x3FFF0000,0x80000000,0x00000000,0x00000000
374        .long   0x3FFF0000,0x8164D1F3,0xBC030774,0x9F841A9B
375        .long   0x3FFF0000,0x82CD8698,0xAC2BA1D8,0x9FC1D5B9
376        .long   0x3FFF0000,0x843A28C3,0xACDE4048,0xA0728369
377        .long   0x3FFF0000,0x85AAC367,0xCC487B14,0x1FC5C95C
378        .long   0x3FFF0000,0x871F6196,0x9E8D1010,0x1EE85C9F
379        .long   0x3FFF0000,0x88980E80,0x92DA8528,0x9FA20729
380        .long   0x3FFF0000,0x8A14D575,0x496EFD9C,0xA07BF9AF
381        .long   0x3FFF0000,0x8B95C1E3,0xEA8BD6E8,0xA0020DCF
382        .long   0x3FFF0000,0x8D1ADF5B,0x7E5BA9E4,0x205A63DA
383        .long   0x3FFF0000,0x8EA4398B,0x45CD53C0,0x1EB70051
384        .long   0x3FFF0000,0x9031DC43,0x1466B1DC,0x1F6EB029
385        .long   0x3FFF0000,0x91C3D373,0xAB11C338,0xA0781494
386        .long   0x3FFF0000,0x935A2B2F,0x13E6E92C,0x9EB319B0
387        .long   0x3FFF0000,0x94F4EFA8,0xFEF70960,0x2017457D
388        .long   0x3FFF0000,0x96942D37,0x20185A00,0x1F11D537
389        .long   0x3FFF0000,0x9837F051,0x8DB8A970,0x9FB952DD
390        .long   0x3FFF0000,0x99E04593,0x20B7FA64,0x1FE43087
391        .long   0x3FFF0000,0x9B8D39B9,0xD54E5538,0x1FA2A818
392        .long   0x3FFF0000,0x9D3ED9A7,0x2CFFB750,0x1FDE494D
393        .long   0x3FFF0000,0x9EF53260,0x91A111AC,0x20504890
394        .long   0x3FFF0000,0xA0B0510F,0xB9714FC4,0xA073691C
395        .long   0x3FFF0000,0xA2704303,0x0C496818,0x1F9B7A05
396        .long   0x3FFF0000,0xA43515AE,0x09E680A0,0xA0797126
397        .long   0x3FFF0000,0xA5FED6A9,0xB15138EC,0xA071A140
398        .long   0x3FFF0000,0xA7CD93B4,0xE9653568,0x204F62DA
399        .long   0x3FFF0000,0xA9A15AB4,0xEA7C0EF8,0x1F283C4A
400        .long   0x3FFF0000,0xAB7A39B5,0xA93ED338,0x9F9A7FDC
401        .long   0x3FFF0000,0xAD583EEA,0x42A14AC8,0xA05B3FAC
402        .long   0x3FFF0000,0xAF3B78AD,0x690A4374,0x1FDF2610
403        .long   0x3FFF0000,0xB123F581,0xD2AC2590,0x9F705F90
404        .long   0x3FFF0000,0xB311C412,0xA9112488,0x201F678A
405        .long   0x3FFF0000,0xB504F333,0xF9DE6484,0x1F32FB13
406        .long   0x3FFF0000,0xB6FD91E3,0x28D17790,0x20038B30
407        .long   0x3FFF0000,0xB8FBAF47,0x62FB9EE8,0x200DC3CC
408        .long   0x3FFF0000,0xBAFF5AB2,0x133E45FC,0x9F8B2AE6
409        .long   0x3FFF0000,0xBD08A39F,0x580C36C0,0xA02BBF70
410        .long   0x3FFF0000,0xBF1799B6,0x7A731084,0xA00BF518
411        .long   0x3FFF0000,0xC12C4CCA,0x66709458,0xA041DD41
412        .long   0x3FFF0000,0xC346CCDA,0x24976408,0x9FDF137B
413        .long   0x3FFF0000,0xC5672A11,0x5506DADC,0x201F1568
414        .long   0x3FFF0000,0xC78D74C8,0xABB9B15C,0x1FC13A2E
415        .long   0x3FFF0000,0xC9B9BD86,0x6E2F27A4,0xA03F8F03
416        .long   0x3FFF0000,0xCBEC14FE,0xF2727C5C,0x1FF4907D
417        .long   0x3FFF0000,0xCE248C15,0x1F8480E4,0x9E6E53E4
418        .long   0x3FFF0000,0xD06333DA,0xEF2B2594,0x1FD6D45C
419        .long   0x3FFF0000,0xD2A81D91,0xF12AE45C,0xA076EDB9
420        .long   0x3FFF0000,0xD4F35AAB,0xCFEDFA20,0x9FA6DE21
421        .long   0x3FFF0000,0xD744FCCA,0xD69D6AF4,0x1EE69A2F
422        .long   0x3FFF0000,0xD99D15C2,0x78AFD7B4,0x207F439F
423        .long   0x3FFF0000,0xDBFBB797,0xDAF23754,0x201EC207
424        .long   0x3FFF0000,0xDE60F482,0x5E0E9124,0x9E8BE175
425        .long   0x3FFF0000,0xE0CCDEEC,0x2A94E110,0x20032C4B
426        .long   0x3FFF0000,0xE33F8972,0xBE8A5A50,0x2004DFF5
427        .long   0x3FFF0000,0xE5B906E7,0x7C8348A8,0x1E72F47A
428        .long   0x3FFF0000,0xE8396A50,0x3C4BDC68,0x1F722F22
429        .long   0x3FFF0000,0xEAC0C6E7,0xDD243930,0xA017E945
430        .long   0x3FFF0000,0xED4F301E,0xD9942B84,0x1F401A5B
431        .long   0x3FFF0000,0xEFE4B99B,0xDCDAF5CC,0x9FB9A9E3
432        .long   0x3FFF0000,0xF281773C,0x59FFB138,0x20744C05
433        .long   0x3FFF0000,0xF5257D15,0x2486CC2C,0x1F773A19
434        .long   0x3FFF0000,0xF7D0DF73,0x0AD13BB8,0x1FFE90D5
435        .long   0x3FFF0000,0xFA83B2DB,0x722A033C,0xA041ED22
436        .long   0x3FFF0000,0xFD3E0C0C,0xF486C174,0x1F853F3A
437
438        .set    ADJFLAG,L_SCR2
439        .set    SCALE,FP_SCR1
440        .set    ADJSCALE,FP_SCR2
441        .set    SC,FP_SCR3
442        .set    ONEBYSC,FP_SCR4
443
444        | xref  t_frcinx
445        |xref   t_extdnrm
446        |xref   t_unfl
447        |xref   t_ovfl
448
449        .global setoxd
450setoxd:
451//--entry point for EXP(X), X is denormalized
452        movel           (%a0),%d0
453        andil           #0x80000000,%d0
454        oril            #0x00800000,%d0         // ...sign(X)*2^(-126)
455        movel           %d0,-(%sp)
456        fmoves          #0x3F800000,%fp0
457        fmovel          %d1,%fpcr
458        fadds           (%sp)+,%fp0
459        bra             t_frcinx
460
461        .global setox
462setox:
463//--entry point for EXP(X), here X is finite, non-zero, and not NaN's
464
465//--Step 1.
466        movel           (%a0),%d0        // ...load part of input X
467        andil           #0x7FFF0000,%d0 // ...biased expo. of X
468        cmpil           #0x3FBE0000,%d0 // ...2^(-65)
469        bges            EXPC1           // ...normal case
470        bra             EXPSM
471
472EXPC1:
473//--The case |X| >= 2^(-65)
474        movew           4(%a0),%d0      // ...expo. and partial sig. of |X|
475        cmpil           #0x400CB167,%d0 // ...16380 log2 trunc. 16 bits
476        blts            EXPMAIN  // ...normal case
477        bra             EXPBIG
478
479EXPMAIN:
480//--Step 2.
481//--This is the normal branch:  2^(-65) <= |X| < 16380 log2.
482        fmovex          (%a0),%fp0      // ...load input from (a0)
483
484        fmovex          %fp0,%fp1
485        fmuls           #0x42B8AA3B,%fp0        // ...64/log2 * X
486        fmovemx %fp2-%fp2/%fp3,-(%a7)           // ...save fp2
487        movel           #0,ADJFLAG(%a6)
488        fmovel          %fp0,%d0                // ...N = int( X * 64/log2 )
489        lea             EXPTBL,%a1
490        fmovel          %d0,%fp0                // ...convert to floating-format
491
492        movel           %d0,L_SCR1(%a6) // ...save N temporarily
493        andil           #0x3F,%d0               // ...D0 is J = N mod 64
494        lsll            #4,%d0
495        addal           %d0,%a1         // ...address of 2^(J/64)
496        movel           L_SCR1(%a6),%d0
497        asrl            #6,%d0          // ...D0 is M
498        addiw           #0x3FFF,%d0     // ...biased expo. of 2^(M)
499        movew           L2,L_SCR1(%a6)  // ...prefetch L2, no need in CB
500
501EXPCONT1:
502//--Step 3.
503//--fp1,fp2 saved on the stack. fp0 is N, fp1 is X,
504//--a0 points to 2^(J/64), D0 is biased expo. of 2^(M)
505        fmovex          %fp0,%fp2
506        fmuls           #0xBC317218,%fp0        // ...N * L1, L1 = lead(-log2/64)
507        fmulx           L2,%fp2         // ...N * L2, L1+L2 = -log2/64
508        faddx           %fp1,%fp0               // ...X + N*L1
509        faddx           %fp2,%fp0               // ...fp0 is R, reduced arg.
510//      MOVE.W          #$3FA5,EXPA3    ...load EXPA3 in cache
511
512//--Step 4.
513//--WE NOW COMPUTE EXP(R)-1 BY A POLYNOMIAL
514//-- R + R*R*(A1 + R*(A2 + R*(A3 + R*(A4 + R*A5))))
515//--TO FULLY UTILIZE THE PIPELINE, WE COMPUTE S = R*R
516//--[R+R*S*(A2+S*A4)] + [S*(A1+S*(A3+S*A5))]
517
518        fmovex          %fp0,%fp1
519        fmulx           %fp1,%fp1               // ...fp1 IS S = R*R
520
521        fmoves          #0x3AB60B70,%fp2        // ...fp2 IS A5
522//      MOVE.W          #0,2(%a1)       ...load 2^(J/64) in cache
523
524        fmulx           %fp1,%fp2               // ...fp2 IS S*A5
525        fmovex          %fp1,%fp3
526        fmuls           #0x3C088895,%fp3        // ...fp3 IS S*A4
527
528        faddd           EXPA3,%fp2      // ...fp2 IS A3+S*A5
529        faddd           EXPA2,%fp3      // ...fp3 IS A2+S*A4
530
531        fmulx           %fp1,%fp2               // ...fp2 IS S*(A3+S*A5)
532        movew           %d0,SCALE(%a6)  // ...SCALE is 2^(M) in extended
533        clrw            SCALE+2(%a6)
534        movel           #0x80000000,SCALE+4(%a6)
535        clrl            SCALE+8(%a6)
536
537        fmulx           %fp1,%fp3               // ...fp3 IS S*(A2+S*A4)
538
539        fadds           #0x3F000000,%fp2        // ...fp2 IS A1+S*(A3+S*A5)
540        fmulx           %fp0,%fp3               // ...fp3 IS R*S*(A2+S*A4)
541
542        fmulx           %fp1,%fp2               // ...fp2 IS S*(A1+S*(A3+S*A5))
543        faddx           %fp3,%fp0               // ...fp0 IS R+R*S*(A2+S*A4),
544//                                      ...fp3 released
545
546        fmovex          (%a1)+,%fp1     // ...fp1 is lead. pt. of 2^(J/64)
547        faddx           %fp2,%fp0               // ...fp0 is EXP(R) - 1
548//                                      ...fp2 released
549
550//--Step 5
551//--final reconstruction process
552//--EXP(X) = 2^M * ( 2^(J/64) + 2^(J/64)*(EXP(R)-1) )
553
554        fmulx           %fp1,%fp0               // ...2^(J/64)*(Exp(R)-1)
555        fmovemx (%a7)+,%fp2-%fp2/%fp3   // ...fp2 restored
556        fadds           (%a1),%fp0      // ...accurate 2^(J/64)
557
558        faddx           %fp1,%fp0               // ...2^(J/64) + 2^(J/64)*...
559        movel           ADJFLAG(%a6),%d0
560
561//--Step 6
562        tstl            %d0
563        beqs            NORMAL
564ADJUST:
565        fmulx           ADJSCALE(%a6),%fp0
566NORMAL:
567        fmovel          %d1,%FPCR               // ...restore user FPCR
568        fmulx           SCALE(%a6),%fp0 // ...multiply 2^(M)
569        bra             t_frcinx
570
571EXPSM:
572//--Step 7
573        fmovemx (%a0),%fp0-%fp0 // ...in case X is denormalized
574        fmovel          %d1,%FPCR
575        fadds           #0x3F800000,%fp0        // ...1+X in user mode
576        bra             t_frcinx
577
578EXPBIG:
579//--Step 8
580        cmpil           #0x400CB27C,%d0 // ...16480 log2
581        bgts            EXP2BIG
582//--Steps 8.2 -- 8.6
583        fmovex          (%a0),%fp0      // ...load input from (a0)
584
585        fmovex          %fp0,%fp1
586        fmuls           #0x42B8AA3B,%fp0        // ...64/log2 * X
587        fmovemx  %fp2-%fp2/%fp3,-(%a7)          // ...save fp2
588        movel           #1,ADJFLAG(%a6)
589        fmovel          %fp0,%d0                // ...N = int( X * 64/log2 )
590        lea             EXPTBL,%a1
591        fmovel          %d0,%fp0                // ...convert to floating-format
592        movel           %d0,L_SCR1(%a6)                 // ...save N temporarily
593        andil           #0x3F,%d0                // ...D0 is J = N mod 64
594        lsll            #4,%d0
595        addal           %d0,%a1                 // ...address of 2^(J/64)
596        movel           L_SCR1(%a6),%d0
597        asrl            #6,%d0                  // ...D0 is K
598        movel           %d0,L_SCR1(%a6)                 // ...save K temporarily
599        asrl            #1,%d0                  // ...D0 is M1
600        subl            %d0,L_SCR1(%a6)                 // ...a1 is M
601        addiw           #0x3FFF,%d0             // ...biased expo. of 2^(M1)
602        movew           %d0,ADJSCALE(%a6)               // ...ADJSCALE := 2^(M1)
603        clrw            ADJSCALE+2(%a6)
604        movel           #0x80000000,ADJSCALE+4(%a6)
605        clrl            ADJSCALE+8(%a6)
606        movel           L_SCR1(%a6),%d0                 // ...D0 is M
607        addiw           #0x3FFF,%d0             // ...biased expo. of 2^(M)
608        bra             EXPCONT1                // ...go back to Step 3
609
610EXP2BIG:
611//--Step 9
612        fmovel          %d1,%FPCR
613        movel           (%a0),%d0
614        bclrb           #sign_bit,(%a0)         // ...setox always returns positive
615        cmpil           #0,%d0
616        blt             t_unfl
617        bra             t_ovfl
618
619        .global setoxm1d
620setoxm1d:
621//--entry point for EXPM1(X), here X is denormalized
622//--Step 0.
623        bra             t_extdnrm
624
625
626        .global setoxm1
627setoxm1:
628//--entry point for EXPM1(X), here X is finite, non-zero, non-NaN
629
630//--Step 1.
631//--Step 1.1
632        movel           (%a0),%d0        // ...load part of input X
633        andil           #0x7FFF0000,%d0 // ...biased expo. of X
634        cmpil           #0x3FFD0000,%d0 // ...1/4
635        bges            EM1CON1  // ...|X| >= 1/4
636        bra             EM1SM
637
638EM1CON1:
639//--Step 1.3
640//--The case |X| >= 1/4
641        movew           4(%a0),%d0      // ...expo. and partial sig. of |X|
642        cmpil           #0x4004C215,%d0 // ...70log2 rounded up to 16 bits
643        bles            EM1MAIN  // ...1/4 <= |X| <= 70log2
644        bra             EM1BIG
645
646EM1MAIN:
647//--Step 2.
648//--This is the case:   1/4 <= |X| <= 70 log2.
649        fmovex          (%a0),%fp0      // ...load input from (a0)
650
651        fmovex          %fp0,%fp1
652        fmuls           #0x42B8AA3B,%fp0        // ...64/log2 * X
653        fmovemx %fp2-%fp2/%fp3,-(%a7)           // ...save fp2
654//      MOVE.W          #$3F81,EM1A4            ...prefetch in CB mode
655        fmovel          %fp0,%d0                // ...N = int( X * 64/log2 )
656        lea             EXPTBL,%a1
657        fmovel          %d0,%fp0                // ...convert to floating-format
658
659        movel           %d0,L_SCR1(%a6)                 // ...save N temporarily
660        andil           #0x3F,%d0                // ...D0 is J = N mod 64
661        lsll            #4,%d0
662        addal           %d0,%a1                 // ...address of 2^(J/64)
663        movel           L_SCR1(%a6),%d0
664        asrl            #6,%d0                  // ...D0 is M
665        movel           %d0,L_SCR1(%a6)                 // ...save a copy of M
666//      MOVE.W          #$3FDC,L2               ...prefetch L2 in CB mode
667
668//--Step 3.
669//--fp1,fp2 saved on the stack. fp0 is N, fp1 is X,
670//--a0 points to 2^(J/64), D0 and a1 both contain M
671        fmovex          %fp0,%fp2
672        fmuls           #0xBC317218,%fp0        // ...N * L1, L1 = lead(-log2/64)
673        fmulx           L2,%fp2         // ...N * L2, L1+L2 = -log2/64
674        faddx           %fp1,%fp0        // ...X + N*L1
675        faddx           %fp2,%fp0        // ...fp0 is R, reduced arg.
676//      MOVE.W          #$3FC5,EM1A2            ...load EM1A2 in cache
677        addiw           #0x3FFF,%d0             // ...D0 is biased expo. of 2^M
678
679//--Step 4.
680//--WE NOW COMPUTE EXP(R)-1 BY A POLYNOMIAL
681//-- R + R*R*(A1 + R*(A2 + R*(A3 + R*(A4 + R*(A5 + R*A6)))))
682//--TO FULLY UTILIZE THE PIPELINE, WE COMPUTE S = R*R
683//--[R*S*(A2+S*(A4+S*A6))] + [R+S*(A1+S*(A3+S*A5))]
684
685        fmovex          %fp0,%fp1
686        fmulx           %fp1,%fp1               // ...fp1 IS S = R*R
687
688        fmoves          #0x3950097B,%fp2        // ...fp2 IS a6
689//      MOVE.W          #0,2(%a1)       ...load 2^(J/64) in cache
690
691        fmulx           %fp1,%fp2               // ...fp2 IS S*A6
692        fmovex          %fp1,%fp3
693        fmuls           #0x3AB60B6A,%fp3        // ...fp3 IS S*A5
694
695        faddd           EM1A4,%fp2      // ...fp2 IS A4+S*A6
696        faddd           EM1A3,%fp3      // ...fp3 IS A3+S*A5
697        movew           %d0,SC(%a6)             // ...SC is 2^(M) in extended
698        clrw            SC+2(%a6)
699        movel           #0x80000000,SC+4(%a6)
700        clrl            SC+8(%a6)
701
702        fmulx           %fp1,%fp2               // ...fp2 IS S*(A4+S*A6)
703        movel           L_SCR1(%a6),%d0         // ...D0 is     M
704        negw            %d0             // ...D0 is -M
705        fmulx           %fp1,%fp3               // ...fp3 IS S*(A3+S*A5)
706        addiw           #0x3FFF,%d0     // ...biased expo. of 2^(-M)
707        faddd           EM1A2,%fp2      // ...fp2 IS A2+S*(A4+S*A6)
708        fadds           #0x3F000000,%fp3        // ...fp3 IS A1+S*(A3+S*A5)
709
710        fmulx           %fp1,%fp2               // ...fp2 IS S*(A2+S*(A4+S*A6))
711        oriw            #0x8000,%d0     // ...signed/expo. of -2^(-M)
712        movew           %d0,ONEBYSC(%a6)        // ...OnebySc is -2^(-M)
713        clrw            ONEBYSC+2(%a6)
714        movel           #0x80000000,ONEBYSC+4(%a6)
715        clrl            ONEBYSC+8(%a6)
716        fmulx           %fp3,%fp1               // ...fp1 IS S*(A1+S*(A3+S*A5))
717//                                      ...fp3 released
718
719        fmulx           %fp0,%fp2               // ...fp2 IS R*S*(A2+S*(A4+S*A6))
720        faddx           %fp1,%fp0               // ...fp0 IS R+S*(A1+S*(A3+S*A5))
721//                                      ...fp1 released
722
723        faddx           %fp2,%fp0               // ...fp0 IS EXP(R)-1
724//                                      ...fp2 released
725        fmovemx (%a7)+,%fp2-%fp2/%fp3   // ...fp2 restored
726
727//--Step 5
728//--Compute 2^(J/64)*p
729
730        fmulx           (%a1),%fp0      // ...2^(J/64)*(Exp(R)-1)
731
732//--Step 6
733//--Step 6.1
734        movel           L_SCR1(%a6),%d0         // ...retrieve M
735        cmpil           #63,%d0
736        bles            MLE63
737//--Step 6.2    M >= 64
738        fmoves          12(%a1),%fp1    // ...fp1 is t
739        faddx           ONEBYSC(%a6),%fp1       // ...fp1 is t+OnebySc
740        faddx           %fp1,%fp0               // ...p+(t+OnebySc), fp1 released
741        faddx           (%a1),%fp0      // ...T+(p+(t+OnebySc))
742        bras            EM1SCALE
743MLE63:
744//--Step 6.3    M <= 63
745        cmpil           #-3,%d0
746        bges            MGEN3
747MLTN3:
748//--Step 6.4    M <= -4
749        fadds           12(%a1),%fp0    // ...p+t
750        faddx           (%a1),%fp0      // ...T+(p+t)
751        faddx           ONEBYSC(%a6),%fp0       // ...OnebySc + (T+(p+t))
752        bras            EM1SCALE
753MGEN3:
754//--Step 6.5    -3 <= M <= 63
755        fmovex          (%a1)+,%fp1     // ...fp1 is T
756        fadds           (%a1),%fp0      // ...fp0 is p+t
757        faddx           ONEBYSC(%a6),%fp1       // ...fp1 is T+OnebySc
758        faddx           %fp1,%fp0               // ...(T+OnebySc)+(p+t)
759
760EM1SCALE:
761//--Step 6.6
762        fmovel          %d1,%FPCR
763        fmulx           SC(%a6),%fp0
764
765        bra             t_frcinx
766
767EM1SM:
768//--Step 7      |X| < 1/4.
769        cmpil           #0x3FBE0000,%d0 // ...2^(-65)
770        bges            EM1POLY
771
772EM1TINY:
773//--Step 8      |X| < 2^(-65)
774        cmpil           #0x00330000,%d0 // ...2^(-16312)
775        blts            EM12TINY
776//--Step 8.2
777        movel           #0x80010000,SC(%a6)     // ...SC is -2^(-16382)
778        movel           #0x80000000,SC+4(%a6)
779        clrl            SC+8(%a6)
780        fmovex          (%a0),%fp0
781        fmovel          %d1,%FPCR
782        faddx           SC(%a6),%fp0
783
784        bra             t_frcinx
785
786EM12TINY:
787//--Step 8.3
788        fmovex          (%a0),%fp0
789        fmuld           TWO140,%fp0
790        movel           #0x80010000,SC(%a6)
791        movel           #0x80000000,SC+4(%a6)
792        clrl            SC+8(%a6)
793        faddx           SC(%a6),%fp0
794        fmovel          %d1,%FPCR
795        fmuld           TWON140,%fp0
796
797        bra             t_frcinx
798
799EM1POLY:
800//--Step 9      exp(X)-1 by a simple polynomial
801        fmovex          (%a0),%fp0      // ...fp0 is X
802        fmulx           %fp0,%fp0               // ...fp0 is S := X*X
803        fmovemx %fp2-%fp2/%fp3,-(%a7)   // ...save fp2
804        fmoves          #0x2F30CAA8,%fp1        // ...fp1 is B12
805        fmulx           %fp0,%fp1               // ...fp1 is S*B12
806        fmoves          #0x310F8290,%fp2        // ...fp2 is B11
807        fadds           #0x32D73220,%fp1        // ...fp1 is B10+S*B12
808
809        fmulx           %fp0,%fp2               // ...fp2 is S*B11
810        fmulx           %fp0,%fp1               // ...fp1 is S*(B10 + ...
811
812        fadds           #0x3493F281,%fp2        // ...fp2 is B9+S*...
813        faddd           EM1B8,%fp1      // ...fp1 is B8+S*...
814
815        fmulx           %fp0,%fp2               // ...fp2 is S*(B9+...
816        fmulx           %fp0,%fp1               // ...fp1 is S*(B8+...
817
818        faddd           EM1B7,%fp2      // ...fp2 is B7+S*...
819        faddd           EM1B6,%fp1      // ...fp1 is B6+S*...
820
821        fmulx           %fp0,%fp2               // ...fp2 is S*(B7+...
822        fmulx           %fp0,%fp1               // ...fp1 is S*(B6+...
823
824        faddd           EM1B5,%fp2      // ...fp2 is B5+S*...
825        faddd           EM1B4,%fp1      // ...fp1 is B4+S*...
826
827        fmulx           %fp0,%fp2               // ...fp2 is S*(B5+...
828        fmulx           %fp0,%fp1               // ...fp1 is S*(B4+...
829
830        faddd           EM1B3,%fp2      // ...fp2 is B3+S*...
831        faddx           EM1B2,%fp1      // ...fp1 is B2+S*...
832
833        fmulx           %fp0,%fp2               // ...fp2 is S*(B3+...
834        fmulx           %fp0,%fp1               // ...fp1 is S*(B2+...
835
836        fmulx           %fp0,%fp2               // ...fp2 is S*S*(B3+...)
837        fmulx           (%a0),%fp1      // ...fp1 is X*S*(B2...
838
839        fmuls           #0x3F000000,%fp0        // ...fp0 is S*B1
840        faddx           %fp2,%fp1               // ...fp1 is Q
841//                                      ...fp2 released
842
843        fmovemx (%a7)+,%fp2-%fp2/%fp3   // ...fp2 restored
844
845        faddx           %fp1,%fp0               // ...fp0 is S*B1+Q
846//                                      ...fp1 released
847
848        fmovel          %d1,%FPCR
849        faddx           (%a0),%fp0
850
851        bra             t_frcinx
852
853EM1BIG:
854//--Step 10     |X| > 70 log2
855        movel           (%a0),%d0
856        cmpil           #0,%d0
857        bgt             EXPC1
858//--Step 10.2
859        fmoves          #0xBF800000,%fp0        // ...fp0 is -1
860        fmovel          %d1,%FPCR
861        fadds           #0x00800000,%fp0        // ...-1 + 2^(-126)
862
863        bra             t_frcinx
864
865        |end
Note: See TracBrowser for help on using the repository browser.