source: rtems/c/src/lib/libcpu/m68k/m68040/fpsp/decbin.S @ 42e243e

4.104.115
Last change on this file since 42e243e was 42e243e, checked in by Ralf Corsepius <ralf.corsepius@…>, on 12/04/09 at 04:27:21

Whitespace removal.

  • Property mode set to 100644
File size: 15.9 KB
Line 
1//
2//      $Id$
3//
4//      decbin.sa 3.3 12/19/90
5//
6//      Description: Converts normalized packed bcd value pointed to by
7//      register A6 to extended-precision value in FP0.
8//
9//      Input: Normalized packed bcd value in ETEMP(a6).
10//
11//      Output: Exact floating-point representation of the packed bcd value.
12//
13//      Saves and Modifies: D2-D5
14//
15//      Speed: The program decbin takes ??? cycles to execute.
16//
17//      Object Size:
18//
19//      External Reference(s): None.
20//
21//      Algorithm:
22//      Expected is a normal bcd (i.e. non-exceptional; all inf, zero,
23//      and NaN operands are dispatched without entering this routine)
24//      value in 68881/882 format at location ETEMP(A6).
25//
26//      A1.     Convert the bcd exponent to binary by successive adds and muls.
27//      Set the sign according to SE. Subtract 16 to compensate
28//      for the mantissa which is to be interpreted as 17 integer
29//      digits, rather than 1 integer and 16 fraction digits.
30//      Note: this operation can never overflow.
31//
32//      A2. Convert the bcd mantissa to binary by successive
33//      adds and muls in FP0. Set the sign according to SM.
34//      The mantissa digits will be converted with the decimal point
35//      assumed following the least-significant digit.
36//      Note: this operation can never overflow.
37//
38//      A3. Count the number of leading/trailing zeros in the
39//      bcd string.  If SE is positive, count the leading zeros;
40//      if negative, count the trailing zeros.  Set the adjusted
41//      exponent equal to the exponent from A1 and the zero count
42//      added if SM = 1 and subtracted if SM = 0.  Scale the
43//      mantissa the equivalent of forcing in the bcd value:
44//
45//      SM = 0  a non-zero digit in the integer position
46//      SM = 1  a non-zero digit in Mant0, lsd of the fraction
47//
48//      this will insure that any value, regardless of its
49//      representation (ex. 0.1E2, 1E1, 10E0, 100E-1), is converted
50//      consistently.
51//
52//      A4. Calculate the factor 10^exp in FP1 using a table of
53//      10^(2^n) values.  To reduce the error in forming factors
54//      greater than 10^27, a directed rounding scheme is used with
55//      tables rounded to RN, RM, and RP, according to the table
56//      in the comments of the pwrten section.
57//
58//      A5. Form the final binary number by scaling the mantissa by
59//      the exponent factor.  This is done by multiplying the
60//      mantissa in FP0 by the factor in FP1 if the adjusted
61//      exponent sign is positive, and dividing FP0 by FP1 if
62//      it is negative.
63//
64//      Clean up and return.  Check if the final mul or div resulted
65//      in an inex2 exception.  If so, set inex1 in the fpsr and
66//      check if the inex1 exception is enabled.  If so, set d7 upper
67//      word to $0100.  This will signal unimp.sa that an enabled inex1
68//      exception occurred.  Unimp will fix the stack.
69//
70
71//              Copyright (C) Motorola, Inc. 1990
72//                      All Rights Reserved
73//
74//      THIS IS UNPUBLISHED PROPRIETARY SOURCE CODE OF MOTOROLA
75//      The copyright notice above does not evidence any
76//      actual or intended publication of such source code.
77
78//DECBIN    idnt    2,1 | Motorola 040 Floating Point Software Package
79
80        |section        8
81
82#include "fpsp.defs"
83
84//
85//      PTENRN, PTENRM, and PTENRP are arrays of powers of 10 rounded
86//      to nearest, minus, and plus, respectively.  The tables include
87//      10**{1,2,4,8,16,32,64,128,256,512,1024,2048,4096}.  No rounding
88//      is required until the power is greater than 27, however, all
89//      tables include the first 5 for ease of indexing.
90//
91        |xref   PTENRN
92        |xref   PTENRM
93        |xref   PTENRP
94
95RTABLE: .byte   0,0,0,0
96        .byte   2,3,2,3
97        .byte   2,3,3,2
98        .byte   3,2,2,3
99
100        .global decbin
101        .global calc_e
102        .global pwrten
103        .global calc_m
104        .global norm
105        .global ap_st_z
106        .global ap_st_n
107//
108        .set    FNIBS,7
109        .set    FSTRT,0
110//
111        .set    ESTRT,4
112        .set    EDIGITS,2       //
113//
114// Constants in single precision
115FZERO:  .long   0x00000000
116FONE:   .long   0x3F800000
117FTEN:   .long   0x41200000
118
119        .set    TEN,10
120
121//
122decbin:
123        | fmovel        #0,FPCR         ;clr real fpcr
124        moveml  %d2-%d5,-(%a7)
125//
126// Calculate exponent:
127//  1. Copy bcd value in memory for use as a working copy.
128//  2. Calculate absolute value of exponent in d1 by mul and add.
129//  3. Correct for exponent sign.
130//  4. Subtract 16 to compensate for interpreting the mant as all integer digits.
131//     (i.e., all digits assumed left of the decimal point.)
132//
133// Register usage:
134//
135//  calc_e:
136//      (*)  d0: temp digit storage
137//      (*)  d1: accumulator for binary exponent
138//      (*)  d2: digit count
139//      (*)  d3: offset pointer
140//      ( )  d4: first word of bcd
141//      ( )  a0: pointer to working bcd value
142//      ( )  a6: pointer to original bcd value
143//      (*)  FP_SCR1: working copy of original bcd value
144//      (*)  L_SCR1: copy of original exponent word
145//
146calc_e:
147        movel   #EDIGITS,%d2    //# of nibbles (digits) in fraction part
148        moveql  #ESTRT,%d3      //counter to pick up digits
149        leal    FP_SCR1(%a6),%a0        //load tmp bcd storage address
150        movel   ETEMP(%a6),(%a0)        //save input bcd value
151        movel   ETEMP_HI(%a6),4(%a0) //save words 2 and 3
152        movel   ETEMP_LO(%a6),8(%a0) //and work with these
153        movel   (%a0),%d4       //get first word of bcd
154        clrl    %d1             //zero d1 for accumulator
155e_gd:
156        mulul   #TEN,%d1        //mul partial product by one digit place
157        bfextu  %d4{%d3:#4},%d0 //get the digit and zero extend into d0
158        addl    %d0,%d1         //d1 = d1 + d0
159        addqb   #4,%d3          //advance d3 to the next digit
160        dbf     %d2,e_gd        //if we have used all 3 digits, exit loop
161        btst    #30,%d4         //get SE
162        beqs    e_pos           //don't negate if pos
163        negl    %d1             //negate before subtracting
164e_pos:
165        subl    #16,%d1         //sub to compensate for shift of mant
166        bges    e_save          //if still pos, do not neg
167        negl    %d1             //now negative, make pos and set SE
168        orl     #0x40000000,%d4 //set SE in d4,
169        orl     #0x40000000,(%a0)       //and in working bcd
170e_save:
171        movel   %d1,L_SCR1(%a6) //save exp in memory
172//
173//
174// Calculate mantissa:
175//  1. Calculate absolute value of mantissa in fp0 by mul and add.
176//  2. Correct for mantissa sign.
177//     (i.e., all digits assumed left of the decimal point.)
178//
179// Register usage:
180//
181//  calc_m:
182//      (*)  d0: temp digit storage
183//      (*)  d1: lword counter
184//      (*)  d2: digit count
185//      (*)  d3: offset pointer
186//      ( )  d4: words 2 and 3 of bcd
187//      ( )  a0: pointer to working bcd value
188//      ( )  a6: pointer to original bcd value
189//      (*) fp0: mantissa accumulator
190//      ( )  FP_SCR1: working copy of original bcd value
191//      ( )  L_SCR1: copy of original exponent word
192//
193calc_m:
194        moveql  #1,%d1          //word counter, init to 1
195        fmoves  FZERO,%fp0      //accumulator
196//
197//
198//  Since the packed number has a long word between the first & second parts,
199//  get the integer digit then skip down & get the rest of the
200//  mantissa.  We will unroll the loop once.
201//
202        bfextu  (%a0){#28:#4},%d0       //integer part is ls digit in long word
203        faddb   %d0,%fp0                //add digit to sum in fp0
204//
205//
206//  Get the rest of the mantissa.
207//
208loadlw:
209        movel   (%a0,%d1.L*4),%d4       //load mantissa longword into d4
210        moveql  #FSTRT,%d3      //counter to pick up digits
211        moveql  #FNIBS,%d2      //reset number of digits per a0 ptr
212md2b:
213        fmuls   FTEN,%fp0       //fp0 = fp0 * 10
214        bfextu  %d4{%d3:#4},%d0 //get the digit and zero extend
215        faddb   %d0,%fp0        //fp0 = fp0 + digit
216//
217//
218//  If all the digits (8) in that long word have been converted (d2=0),
219//  then inc d1 (=2) to point to the next long word and reset d3 to 0
220//  to initialize the digit offset, and set d2 to 7 for the digit count;
221//  else continue with this long word.
222//
223        addqb   #4,%d3          //advance d3 to the next digit
224        dbf     %d2,md2b                //check for last digit in this lw
225nextlw:
226        addql   #1,%d1          //inc lw pointer in mantissa
227        cmpl    #2,%d1          //test for last lw
228        ble     loadlw          //if not, get last one
229
230//
231//  Check the sign of the mant and make the value in fp0 the same sign.
232//
233m_sign:
234        btst    #31,(%a0)       //test sign of the mantissa
235        beq     ap_st_z         //if clear, go to append/strip zeros
236        fnegx   %fp0            //if set, negate fp0
237
238//
239// Append/strip zeros:
240//
241//  For adjusted exponents which have an absolute value greater than 27*,
242//  this routine calculates the amount needed to normalize the mantissa
243//  for the adjusted exponent.  That number is subtracted from the exp
244//  if the exp was positive, and added if it was negative.  The purpose
245//  of this is to reduce the value of the exponent and the possibility
246//  of error in calculation of pwrten.
247//
248//  1. Branch on the sign of the adjusted exponent.
249//  2p.(positive exp)
250//   2. Check M16 and the digits in lwords 2 and 3 in descending order.
251//   3. Add one for each zero encountered until a non-zero digit.
252//   4. Subtract the count from the exp.
253//   5. Check if the exp has crossed zero in #3 above; make the exp abs
254//         and set SE.
255//      6. Multiply the mantissa by 10**count.
256//  2n.(negative exp)
257//   2. Check the digits in lwords 3 and 2 in descending order.
258//   3. Add one for each zero encountered until a non-zero digit.
259//   4. Add the count to the exp.
260//   5. Check if the exp has crossed zero in #3 above; clear SE.
261//   6. Divide the mantissa by 10**count.
262//
263//  *Why 27?  If the adjusted exponent is within -28 < expA < 28, than
264//   any adjustment due to append/strip zeros will drive the resultant
265//   exponent towards zero.  Since all pwrten constants with a power
266//   of 27 or less are exact, there is no need to use this routine to
267//   attempt to lessen the resultant exponent.
268//
269// Register usage:
270//
271//  ap_st_z:
272//      (*)  d0: temp digit storage
273//      (*)  d1: zero count
274//      (*)  d2: digit count
275//      (*)  d3: offset pointer
276//      ( )  d4: first word of bcd
277//      (*)  d5: lword counter
278//      ( )  a0: pointer to working bcd value
279//      ( )  FP_SCR1: working copy of original bcd value
280//      ( )  L_SCR1: copy of original exponent word
281//
282//
283// First check the absolute value of the exponent to see if this
284// routine is necessary.  If so, then check the sign of the exponent
285// and do append (+) or strip (-) zeros accordingly.
286// This section handles a positive adjusted exponent.
287//
288ap_st_z:
289        movel   L_SCR1(%a6),%d1 //load expA for range test
290        cmpl    #27,%d1         //test is with 27
291        ble     pwrten          //if abs(expA) <28, skip ap/st zeros
292        btst    #30,(%a0)       //check sign of exp
293        bne     ap_st_n         //if neg, go to neg side
294        clrl    %d1             //zero count reg
295        movel   (%a0),%d4               //load lword 1 to d4
296        bfextu  %d4{#28:#4},%d0 //get M16 in d0
297        bnes    ap_p_fx         //if M16 is non-zero, go fix exp
298        addql   #1,%d1          //inc zero count
299        moveql  #1,%d5          //init lword counter
300        movel   (%a0,%d5.L*4),%d4       //get lword 2 to d4
301        bnes    ap_p_cl         //if lw 2 is zero, skip it
302        addql   #8,%d1          //and inc count by 8
303        addql   #1,%d5          //inc lword counter
304        movel   (%a0,%d5.L*4),%d4       //get lword 3 to d4
305ap_p_cl:
306        clrl    %d3             //init offset reg
307        moveql  #7,%d2          //init digit counter
308ap_p_gd:
309        bfextu  %d4{%d3:#4},%d0 //get digit
310        bnes    ap_p_fx         //if non-zero, go to fix exp
311        addql   #4,%d3          //point to next digit
312        addql   #1,%d1          //inc digit counter
313        dbf     %d2,ap_p_gd     //get next digit
314ap_p_fx:
315        movel   %d1,%d0         //copy counter to d2
316        movel   L_SCR1(%a6),%d1 //get adjusted exp from memory
317        subl    %d0,%d1         //subtract count from exp
318        bges    ap_p_fm         //if still pos, go to pwrten
319        negl    %d1             //now its neg; get abs
320        movel   (%a0),%d4               //load lword 1 to d4
321        orl     #0x40000000,%d4 // and set SE in d4
322        orl     #0x40000000,(%a0)       // and in memory
323//
324// Calculate the mantissa multiplier to compensate for the striping of
325// zeros from the mantissa.
326//
327ap_p_fm:
328        movel   #PTENRN,%a1     //get address of power-of-ten table
329        clrl    %d3             //init table index
330        fmoves  FONE,%fp1       //init fp1 to 1
331        moveql  #3,%d2          //init d2 to count bits in counter
332ap_p_el:
333        asrl    #1,%d0          //shift lsb into carry
334        bccs    ap_p_en         //if 1, mul fp1 by pwrten factor
335        fmulx   (%a1,%d3),%fp1  //mul by 10**(d3_bit_no)
336ap_p_en:
337        addl    #12,%d3         //inc d3 to next rtable entry
338        tstl    %d0             //check if d0 is zero
339        bnes    ap_p_el         //if not, get next bit
340        fmulx   %fp1,%fp0               //mul mantissa by 10**(no_bits_shifted)
341        bra     pwrten          //go calc pwrten
342//
343// This section handles a negative adjusted exponent.
344//
345ap_st_n:
346        clrl    %d1             //clr counter
347        moveql  #2,%d5          //set up d5 to point to lword 3
348        movel   (%a0,%d5.L*4),%d4       //get lword 3
349        bnes    ap_n_cl         //if not zero, check digits
350        subl    #1,%d5          //dec d5 to point to lword 2
351        addql   #8,%d1          //inc counter by 8
352        movel   (%a0,%d5.L*4),%d4       //get lword 2
353ap_n_cl:
354        movel   #28,%d3         //point to last digit
355        moveql  #7,%d2          //init digit counter
356ap_n_gd:
357        bfextu  %d4{%d3:#4},%d0 //get digit
358        bnes    ap_n_fx         //if non-zero, go to exp fix
359        subql   #4,%d3          //point to previous digit
360        addql   #1,%d1          //inc digit counter
361        dbf     %d2,ap_n_gd     //get next digit
362ap_n_fx:
363        movel   %d1,%d0         //copy counter to d0
364        movel   L_SCR1(%a6),%d1 //get adjusted exp from memory
365        subl    %d0,%d1         //subtract count from exp
366        bgts    ap_n_fm         //if still pos, go fix mantissa
367        negl    %d1             //take abs of exp and clr SE
368        movel   (%a0),%d4               //load lword 1 to d4
369        andl    #0xbfffffff,%d4 // and clr SE in d4
370        andl    #0xbfffffff,(%a0)       // and in memory
371//
372// Calculate the mantissa multiplier to compensate for the appending of
373// zeros to the mantissa.
374//
375ap_n_fm:
376        movel   #PTENRN,%a1     //get address of power-of-ten table
377        clrl    %d3             //init table index
378        fmoves  FONE,%fp1       //init fp1 to 1
379        moveql  #3,%d2          //init d2 to count bits in counter
380ap_n_el:
381        asrl    #1,%d0          //shift lsb into carry
382        bccs    ap_n_en         //if 1, mul fp1 by pwrten factor
383        fmulx   (%a1,%d3),%fp1  //mul by 10**(d3_bit_no)
384ap_n_en:
385        addl    #12,%d3         //inc d3 to next rtable entry
386        tstl    %d0             //check if d0 is zero
387        bnes    ap_n_el         //if not, get next bit
388        fdivx   %fp1,%fp0               //div mantissa by 10**(no_bits_shifted)
389//
390//
391// Calculate power-of-ten factor from adjusted and shifted exponent.
392//
393// Register usage:
394//
395//  pwrten:
396//      (*)  d0: temp
397//      ( )  d1: exponent
398//      (*)  d2: {FPCR[6:5],SM,SE} as index in RTABLE; temp
399//      (*)  d3: FPCR work copy
400//      ( )  d4: first word of bcd
401//      (*)  a1: RTABLE pointer
402//  calc_p:
403//      (*)  d0: temp
404//      ( )  d1: exponent
405//      (*)  d3: PWRTxx table index
406//      ( )  a0: pointer to working copy of bcd
407//      (*)  a1: PWRTxx pointer
408//      (*) fp1: power-of-ten accumulator
409//
410// Pwrten calculates the exponent factor in the selected rounding mode
411// according to the following table:
412//
413//      Sign of Mant  Sign of Exp  Rounding Mode  PWRTEN Rounding Mode
414//
415//      ANY       ANY   RN      RN
416//
417//       +         +    RP      RP
418//       -         +    RP      RM
419//       +         -    RP      RM
420//       -         -    RP      RP
421//
422//       +         +    RM      RM
423//       -         +    RM      RP
424//       +         -    RM      RP
425//       -         -    RM      RM
426//
427//       +         +    RZ      RM
428//       -         +    RZ      RM
429//       +         -    RZ      RP
430//       -         -    RZ      RP
431//
432//
433pwrten:
434        movel   USER_FPCR(%a6),%d3 //get user's FPCR
435        bfextu  %d3{#26:#2},%d2 //isolate rounding mode bits
436        movel   (%a0),%d4               //reload 1st bcd word to d4
437        asll    #2,%d2          //format d2 to be
438        bfextu  %d4{#0:#2},%d0  // {FPCR[6],FPCR[5],SM,SE}
439        addl    %d0,%d2         //in d2 as index into RTABLE
440        leal    RTABLE,%a1      //load rtable base
441        moveb   (%a1,%d2),%d0   //load new rounding bits from table
442        clrl    %d3                     //clear d3 to force no exc and extended
443        bfins   %d0,%d3{#26:#2} //stuff new rounding bits in FPCR
444        fmovel  %d3,%FPCR               //write new FPCR
445        asrl    #1,%d0          //write correct PTENxx table
446        bccs    not_rp          //to a1
447        leal    PTENRP,%a1      //it is RP
448        bras    calc_p          //go to init section
449not_rp:
450        asrl    #1,%d0          //keep checking
451        bccs    not_rm
452        leal    PTENRM,%a1      //it is RM
453        bras    calc_p          //go to init section
454not_rm:
455        leal    PTENRN,%a1      //it is RN
456calc_p:
457        movel   %d1,%d0         //copy exp to d0;use d0
458        bpls    no_neg          //if exp is negative,
459        negl    %d0             //invert it
460        orl     #0x40000000,(%a0)       //and set SE bit
461no_neg:
462        clrl    %d3             //table index
463        fmoves  FONE,%fp1       //init fp1 to 1
464e_loop:
465        asrl    #1,%d0          //shift next bit into carry
466        bccs    e_next          //if zero, skip the mul
467        fmulx   (%a1,%d3),%fp1  //mul by 10**(d3_bit_no)
468e_next:
469        addl    #12,%d3         //inc d3 to next rtable entry
470        tstl    %d0             //check if d0 is zero
471        bnes    e_loop          //not zero, continue shifting
472//
473//
474//  Check the sign of the adjusted exp and make the value in fp0 the
475//  same sign. If the exp was pos then multiply fp1*fp0;
476//  else divide fp0/fp1.
477//
478// Register Usage:
479//  norm:
480//      ( )  a0: pointer to working bcd value
481//      (*) fp0: mantissa accumulator
482//      ( ) fp1: scaling factor - 10**(abs(exp))
483//
484norm:
485        btst    #30,(%a0)       //test the sign of the exponent
486        beqs    mul             //if clear, go to multiply
487div:
488        fdivx   %fp1,%fp0               //exp is negative, so divide mant by exp
489        bras    end_dec
490mul:
491        fmulx   %fp1,%fp0               //exp is positive, so multiply by exp
492//
493//
494// Clean up and return with result in fp0.
495//
496// If the final mul/div in decbin incurred an inex exception,
497// it will be inex2, but will be reported as inex1 by get_op.
498//
499end_dec:
500        fmovel  %FPSR,%d0               //get status register
501        bclrl   #inex2_bit+8,%d0        //test for inex2 and clear it
502        fmovel  %d0,%FPSR               //return status reg w/o inex2
503        beqs    no_exc          //skip this if no exc
504        orl     #inx1a_mask,USER_FPSR(%a6) //set inex1/ainex
505no_exc:
506        moveml  (%a7)+,%d2-%d5
507        rts
508        |end
Note: See TracBrowser for help on using the repository browser.