source: rtems/c/src/lib/libcpu/m68k/m68040/fpsp/bindec.s @ 1d320bac

4.104.114.84.95
Last change on this file since 1d320bac was 1d320bac, checked in by Joel Sherrill <joel.sherrill@…>, on 07/09/97 at 23:41:20

This code was in the tree but not actually being compiled. There
were a number of minor problems which had to be fixed to get it
to compile including modifying the compile rule to handle C++ comments,
changing the syntax of the include statement, and getting rid of "%"
as part of register names.

  • Property mode set to 100644
File size: 28.3 KB
Line 
1//
2//      bindec.sa 3.4 1/3/91
3//
4//      bindec
5//
6//      Description:
7//              Converts an input in extended precision format
8//              to bcd format.
9//
10//      Input:
11//              a0 points to the input extended precision value
12//              value in memory; d0 contains the k-factor sign-extended
13//              to 32-bits.  The input may be either normalized,
14//              unnormalized, or denormalized.
15//
16//      Output: result in the FP_SCR1 space on the stack.
17//
18//      Saves and Modifies: D2-D7,A2,FP2
19//
20//      Algorithm:
21//
22//      A1.     Set RM and size ext;  Set SIGMA = sign of input. 
23//              The k-factor is saved for use in d7. Clear the
24//              BINDEC_FLG for separating normalized/denormalized
25//              input.  If input is unnormalized or denormalized,
26//              normalize it.
27//
28//      A2.     Set X = abs(input).
29//
30//      A3.     Compute ILOG.
31//              ILOG is the log base 10 of the input value.  It is
32//              approximated by adding e + 0.f when the original
33//              value is viewed as 2^^e * 1.f in extended precision. 
34//              This value is stored in d6.
35//
36//      A4.     Clr INEX bit.
37//              The operation in A3 above may have set INEX2. 
38//
39//      A5.     Set ICTR = 0;
40//              ICTR is a flag used in A13.  It must be set before the
41//              loop entry A6.
42//
43//      A6.     Calculate LEN.
44//              LEN is the number of digits to be displayed.  The
45//              k-factor can dictate either the total number of digits,
46//              if it is a positive number, or the number of digits
47//              after the decimal point which are to be included as
48//              significant.  See the 68882 manual for examples.
49//              If LEN is computed to be greater than 17, set OPERR in
50//              USER_FPSR.  LEN is stored in d4.
51//
52//      A7.     Calculate SCALE.
53//              SCALE is equal to 10^ISCALE, where ISCALE is the number
54//              of decimal places needed to insure LEN integer digits
55//              in the output before conversion to bcd. LAMBDA is the
56//              sign of ISCALE, used in A9. Fp1 contains
57//              10^^(abs(ISCALE)) using a rounding mode which is a
58//              function of the original rounding mode and the signs
59//              of ISCALE and X.  A table is given in the code.
60//
61//      A8.     Clr INEX; Force RZ.
62//              The operation in A3 above may have set INEX2. 
63//              RZ mode is forced for the scaling operation to insure
64//              only one rounding error.  The grs bits are collected in
65//              the INEX flag for use in A10.
66//
67//      A9.     Scale X -> Y.
68//              The mantissa is scaled to the desired number of
69//              significant digits.  The excess digits are collected
70//              in INEX2.
71//
72//      A10.    Or in INEX.
73//              If INEX is set, round error occurred.  This is
74//              compensated for by 'or-ing' in the INEX2 flag to
75//              the lsb of Y.
76//
77//      A11.    Restore original FPCR; set size ext.
78//              Perform FINT operation in the user's rounding mode.
79//              Keep the size to extended.
80//
81//      A12.    Calculate YINT = FINT(Y) according to user's rounding
82//              mode.  The FPSP routine sintd0 is used.  The output
83//              is in fp0.
84//
85//      A13.    Check for LEN digits.
86//              If the int operation results in more than LEN digits,
87//              or less than LEN -1 digits, adjust ILOG and repeat from
88//              A6.  This test occurs only on the first pass.  If the
89//              result is exactly 10^LEN, decrement ILOG and divide
90//              the mantissa by 10.
91//
92//      A14.    Convert the mantissa to bcd.
93//              The binstr routine is used to convert the LEN digit
94//              mantissa to bcd in memory.  The input to binstr is
95//              to be a fraction; i.e. (mantissa)/10^LEN and adjusted
96//              such that the decimal point is to the left of bit 63.
97//              The bcd digits are stored in the correct position in
98//              the final string area in memory.
99//
100//      A15.    Convert the exponent to bcd.
101//              As in A14 above, the exp is converted to bcd and the
102//              digits are stored in the final string.
103//              Test the length of the final exponent string.  If the
104//              length is 4, set operr.
105//
106//      A16.    Write sign bits to final string.
107//
108//      Implementation Notes:
109//
110//      The registers are used as follows:
111//
112//              d0: scratch; LEN input to binstr
113//              d1: scratch
114//              d2: upper 32-bits of mantissa for binstr
115//              d3: scratch;lower 32-bits of mantissa for binstr
116//              d4: LEN
117//                      d5: LAMBDA/ICTR
118//              d6: ILOG
119//              d7: k-factor
120//              a0: ptr for original operand/final result
121//              a1: scratch pointer
122//              a2: pointer to FP_X; abs(original value) in ext
123//              fp0: scratch
124//              fp1: scratch
125//              fp2: scratch
126//              F_SCR1:
127//              F_SCR2:
128//              L_SCR1:
129//              L_SCR2:
130
131//              Copyright (C) Motorola, Inc. 1990
132//                      All Rights Reserved
133//
134//      THIS IS UNPUBLISHED PROPRIETARY SOURCE CODE OF MOTOROLA
135//      The copyright notice above does not evidence any 
136//      actual or intended publication of such source code.
137
138//BINDEC    idnt    2,1 | Motorola 040 Floating Point Software Package
139
140#include "fpsp.defs"
141
142        |section        8
143
144// Constants in extended precision
145LOG2:   .long   0x3FFD0000,0x9A209A84,0xFBCFF798,0x00000000
146LOG2UP1:        .long   0x3FFD0000,0x9A209A84,0xFBCFF799,0x00000000
147
148// Constants in single precision
149FONE:   .long   0x3F800000,0x00000000,0x00000000,0x00000000
150FTWO:   .long   0x40000000,0x00000000,0x00000000,0x00000000
151FTEN:   .long   0x41200000,0x00000000,0x00000000,0x00000000
152F4933:  .long   0x459A2800,0x00000000,0x00000000,0x00000000
153
154RBDTBL:         .byte   0,0,0,0
155        .byte   3,3,2,2
156        .byte   3,2,2,3
157        .byte   2,3,3,2
158
159        |xref   binstr
160        |xref   sintdo
161        |xref   ptenrn,ptenrm,ptenrp
162
163        .global bindec
164        .global sc_mul
165bindec:
166        moveml  %d2-%d7/%a2,-(%a7)
167        fmovemx %fp0-%fp2,-(%a7)
168
169// A1. Set RM and size ext. Set SIGMA = sign input;
170//     The k-factor is saved for use in d7.  Clear BINDEC_FLG for
171//     separating  normalized/denormalized input.  If the input
172//     is a denormalized number, set the BINDEC_FLG memory word
173//     to signal denorm.  If the input is unnormalized, normalize
174//     the input and test for denormalized result. 
175//
176        fmovel  #rm_mode,%FPCR  //set RM and ext
177        movel   (%a0),L_SCR2(%a6)       //save exponent for sign check
178        movel   %d0,%d7         //move k-factor to d7
179        clrb    BINDEC_FLG(%a6) //clr norm/denorm flag
180        movew   STAG(%a6),%d0   //get stag
181        andiw   #0xe000,%d0     //isolate stag bits
182        beq     A2_str          //if zero, input is norm
183//
184// Normalize the denorm
185//
186un_de_norm:
187        movew   (%a0),%d0
188        andiw   #0x7fff,%d0     //strip sign of normalized exp
189        movel   4(%a0),%d1
190        movel   8(%a0),%d2
191norm_loop:
192        subw    #1,%d0
193        lsll    #1,%d2
194        roxll   #1,%d1
195        tstl    %d1
196        bges    norm_loop
197//
198// Test if the normalized input is denormalized
199//
200        tstw    %d0
201        bgts    pos_exp         //if greater than zero, it is a norm
202        st      BINDEC_FLG(%a6) //set flag for denorm
203pos_exp:
204        andiw   #0x7fff,%d0     //strip sign of normalized exp
205        movew   %d0,(%a0)
206        movel   %d1,4(%a0)
207        movel   %d2,8(%a0)
208
209// A2. Set X = abs(input).
210//
211A2_str:
212        movel   (%a0),FP_SCR2(%a6) // move input to work space
213        movel   4(%a0),FP_SCR2+4(%a6) // move input to work space
214        movel   8(%a0),FP_SCR2+8(%a6) // move input to work space
215        andil   #0x7fffffff,FP_SCR2(%a6) //create abs(X)
216
217// A3. Compute ILOG.
218//     ILOG is the log base 10 of the input value.  It is approx-
219//     imated by adding e + 0.f when the original value is viewed
220//     as 2^^e * 1.f in extended precision.  This value is stored
221//     in d6.
222//
223// Register usage:
224//      Input/Output
225//      d0: k-factor/exponent
226//      d2: x/x
227//      d3: x/x
228//      d4: x/x
229//      d5: x/x
230//      d6: x/ILOG
231//      d7: k-factor/Unchanged
232//      a0: ptr for original operand/final result
233//      a1: x/x
234//      a2: x/x
235//      fp0: x/float(ILOG)
236//      fp1: x/x
237//      fp2: x/x
238//      F_SCR1:x/x
239//      F_SCR2:Abs(X)/Abs(X) with $3fff exponent
240//      L_SCR1:x/x
241//      L_SCR2:first word of X packed/Unchanged
242
243        tstb    BINDEC_FLG(%a6) //check for denorm
244        beqs    A3_cont         //if clr, continue with norm
245        movel   #-4933,%d6      //force ILOG = -4933
246        bras    A4_str
247A3_cont:
248        movew   FP_SCR2(%a6),%d0        //move exp to d0
249        movew   #0x3fff,FP_SCR2(%a6) //replace exponent with 0x3fff
250        fmovex  FP_SCR2(%a6),%fp0       //now fp0 has 1.f
251        subw    #0x3fff,%d0     //strip off bias
252        faddw   %d0,%fp0                //add in exp
253        fsubs   FONE,%fp0       //subtract off 1.0
254        fbge    pos_res         //if pos, branch
255        fmulx   LOG2UP1,%fp0    //if neg, mul by LOG2UP1
256        fmovel  %fp0,%d6                //put ILOG in d6 as a lword
257        bras    A4_str          //go move out ILOG
258pos_res:
259        fmulx   LOG2,%fp0       //if pos, mul by LOG2
260        fmovel  %fp0,%d6                //put ILOG in d6 as a lword
261
262
263// A4. Clr INEX bit.
264//     The operation in A3 above may have set INEX2. 
265
266A4_str:
267        fmovel  #0,%FPSR                //zero all of fpsr - nothing needed
268
269
270// A5. Set ICTR = 0;
271//     ICTR is a flag used in A13.  It must be set before the
272//     loop entry A6. The lower word of d5 is used for ICTR.
273
274        clrw    %d5             //clear ICTR
275
276
277// A6. Calculate LEN.
278//     LEN is the number of digits to be displayed.  The k-factor
279//     can dictate either the total number of digits, if it is
280//     a positive number, or the number of digits after the
281//     original decimal point which are to be included as
282//     significant.  See the 68882 manual for examples.
283//     If LEN is computed to be greater than 17, set OPERR in
284//     USER_FPSR.  LEN is stored in d4.
285//
286// Register usage:
287//      Input/Output
288//      d0: exponent/Unchanged
289//      d2: x/x/scratch
290//      d3: x/x
291//      d4: exc picture/LEN
292//      d5: ICTR/Unchanged
293//      d6: ILOG/Unchanged
294//      d7: k-factor/Unchanged
295//      a0: ptr for original operand/final result
296//      a1: x/x
297//      a2: x/x
298//      fp0: float(ILOG)/Unchanged
299//      fp1: x/x
300//      fp2: x/x
301//      F_SCR1:x/x
302//      F_SCR2:Abs(X) with $3fff exponent/Unchanged
303//      L_SCR1:x/x
304//      L_SCR2:first word of X packed/Unchanged
305
306A6_str:
307        tstl    %d7             //branch on sign of k
308        bles    k_neg           //if k <= 0, LEN = ILOG + 1 - k
309        movel   %d7,%d4         //if k > 0, LEN = k
310        bras    len_ck          //skip to LEN check
311k_neg:
312        movel   %d6,%d4         //first load ILOG to d4
313        subl    %d7,%d4         //subtract off k
314        addql   #1,%d4          //add in the 1
315len_ck:
316        tstl    %d4             //LEN check: branch on sign of LEN
317        bles    LEN_ng          //if neg, set LEN = 1
318        cmpl    #17,%d4         //test if LEN > 17
319        bles    A7_str          //if not, forget it
320        movel   #17,%d4         //set max LEN = 17
321        tstl    %d7             //if negative, never set OPERR
322        bles    A7_str          //if positive, continue
323        orl     #opaop_mask,USER_FPSR(%a6) //set OPERR & AIOP in USER_FPSR
324        bras    A7_str          //finished here
325LEN_ng:
326        moveql  #1,%d4          //min LEN is 1
327
328
329// A7. Calculate SCALE.
330//     SCALE is equal to 10^ISCALE, where ISCALE is the number
331//     of decimal places needed to insure LEN integer digits
332//     in the output before conversion to bcd. LAMBDA is the sign
333//     of ISCALE, used in A9.  Fp1 contains 10^^(abs(ISCALE)) using
334//     the rounding mode as given in the following table (see
335//     Coonen, p. 7.23 as ref.; however, the SCALE variable is
336//     of opposite sign in bindec.sa from Coonen).
337//
338//      Initial                                 USE
339//      FPCR[6:5]       LAMBDA  SIGN(X)         FPCR[6:5]
340//      ----------------------------------------------
341//       RN     00         0       0            00/0    RN
342//       RN     00         0       1            00/0    RN
343//       RN     00         1       0            00/0    RN
344//       RN     00         1       1            00/0    RN
345//       RZ     01         0       0            11/3    RP
346//       RZ     01         0       1            11/3    RP
347//       RZ     01         1       0            10/2    RM
348//       RZ     01         1       1            10/2    RM
349//       RM     10         0       0            11/3    RP
350//       RM     10         0       1            10/2    RM
351//       RM     10         1       0            10/2    RM
352//       RM     10         1       1            11/3    RP
353//       RP     11         0       0            10/2    RM
354//       RP     11         0       1            11/3    RP
355//       RP     11         1       0            11/3    RP
356//       RP     11         1       1            10/2    RM
357//
358// Register usage:
359//      Input/Output
360//      d0: exponent/scratch - final is 0
361//      d2: x/0 or 24 for A9
362//      d3: x/scratch - offset ptr into PTENRM array
363//      d4: LEN/Unchanged
364//      d5: 0/ICTR:LAMBDA
365//      d6: ILOG/ILOG or k if ((k<=0)&(ILOG<k))
366//      d7: k-factor/Unchanged
367//      a0: ptr for original operand/final result
368//      a1: x/ptr to PTENRM array
369//      a2: x/x
370//      fp0: float(ILOG)/Unchanged
371//      fp1: x/10^ISCALE
372//      fp2: x/x
373//      F_SCR1:x/x
374//      F_SCR2:Abs(X) with $3fff exponent/Unchanged
375//      L_SCR1:x/x
376//      L_SCR2:first word of X packed/Unchanged
377
378A7_str:
379        tstl    %d7             //test sign of k
380        bgts    k_pos           //if pos and > 0, skip this
381        cmpl    %d6,%d7         //test k - ILOG
382        blts    k_pos           //if ILOG >= k, skip this
383        movel   %d7,%d6         //if ((k<0) & (ILOG < k)) ILOG = k
384k_pos: 
385        movel   %d6,%d0         //calc ILOG + 1 - LEN in d0
386        addql   #1,%d0          //add the 1
387        subl    %d4,%d0         //sub off LEN
388        swap    %d5             //use upper word of d5 for LAMBDA
389        clrw    %d5             //set it zero initially
390        clrw    %d2             //set up d2 for very small case
391        tstl    %d0             //test sign of ISCALE
392        bges    iscale          //if pos, skip next inst
393        addqw   #1,%d5          //if neg, set LAMBDA true
394        cmpl    #0xffffecd4,%d0 //test iscale <= -4908
395        bgts    no_inf          //if false, skip rest
396        addil   #24,%d0         //add in 24 to iscale
397        movel   #24,%d2         //put 24 in d2 for A9
398no_inf:
399        negl    %d0             //and take abs of ISCALE
400iscale:
401        fmoves  FONE,%fp1       //init fp1 to 1
402        bfextu  USER_FPCR(%a6){#26:#2},%d1 //get initial rmode bits
403        lslw    #1,%d1          //put them in bits 2:1
404        addw    %d5,%d1         //add in LAMBDA
405        lslw    #1,%d1          //put them in bits 3:1
406        tstl    L_SCR2(%a6)     //test sign of original x
407        bges    x_pos           //if pos, don't set bit 0
408        addql   #1,%d1          //if neg, set bit 0
409x_pos:
410        leal    RBDTBL,%a2      //load rbdtbl base
411        moveb   (%a2,%d1),%d3   //load d3 with new rmode
412        lsll    #4,%d3          //put bits in proper position
413        fmovel  %d3,%fpcr               //load bits into fpu
414        lsrl    #4,%d3          //put bits in proper position
415        tstb    %d3             //decode new rmode for pten table
416        bnes    not_rn          //if zero, it is RN
417        leal    PTENRN,%a1      //load a1 with RN table base
418        bras    rmode           //exit decode
419not_rn:
420        lsrb    #1,%d3          //get lsb in carry
421        bccs    not_rp          //if carry clear, it is RM
422        leal    PTENRP,%a1      //load a1 with RP table base
423        bras    rmode           //exit decode
424not_rp:
425        leal    PTENRM,%a1      //load a1 with RM table base
426rmode:
427        clrl    %d3             //clr table index
428e_loop:
429        lsrl    #1,%d0          //shift next bit into carry
430        bccs    e_next          //if zero, skip the mul
431        fmulx   (%a1,%d3),%fp1  //mul by 10**(d3_bit_no)
432e_next:
433        addl    #12,%d3         //inc d3 to next pwrten table entry
434        tstl    %d0             //test if ISCALE is zero
435        bnes    e_loop          //if not, loop
436
437
438// A8. Clr INEX; Force RZ.
439//     The operation in A3 above may have set INEX2. 
440//     RZ mode is forced for the scaling operation to insure
441//     only one rounding error.  The grs bits are collected in
442//     the INEX flag for use in A10.
443//
444// Register usage:
445//      Input/Output
446
447        fmovel  #0,%FPSR                //clr INEX
448        fmovel  #rz_mode,%FPCR  //set RZ rounding mode
449
450
451// A9. Scale X -> Y.
452//     The mantissa is scaled to the desired number of significant
453//     digits.  The excess digits are collected in INEX2. If mul,
454//     Check d2 for excess 10 exponential value.  If not zero,
455//     the iscale value would have caused the pwrten calculation
456//     to overflow.  Only a negative iscale can cause this, so
457//     multiply by 10^(d2), which is now only allowed to be 24,
458//     with a multiply by 10^8 and 10^16, which is exact since
459//     10^24 is exact.  If the input was denormalized, we must
460//     create a busy stack frame with the mul command and the
461//     two operands, and allow the fpu to complete the multiply.
462//
463// Register usage:
464//      Input/Output
465//      d0: FPCR with RZ mode/Unchanged
466//      d2: 0 or 24/unchanged
467//      d3: x/x
468//      d4: LEN/Unchanged
469//      d5: ICTR:LAMBDA
470//      d6: ILOG/Unchanged
471//      d7: k-factor/Unchanged
472//      a0: ptr for original operand/final result
473//      a1: ptr to PTENRM array/Unchanged
474//      a2: x/x
475//      fp0: float(ILOG)/X adjusted for SCALE (Y)
476//      fp1: 10^ISCALE/Unchanged
477//      fp2: x/x
478//      F_SCR1:x/x
479//      F_SCR2:Abs(X) with $3fff exponent/Unchanged
480//      L_SCR1:x/x
481//      L_SCR2:first word of X packed/Unchanged
482
483A9_str:
484        fmovex  (%a0),%fp0      //load X from memory
485        fabsx   %fp0            //use abs(X)
486        tstw    %d5             //LAMBDA is in lower word of d5
487        bnes    sc_mul          //if neg (LAMBDA = 1), scale by mul
488        fdivx   %fp1,%fp0               //calculate X / SCALE -> Y to fp0
489        bras    A10_st          //branch to A10
490
491sc_mul:
492        tstb    BINDEC_FLG(%a6) //check for denorm
493        beqs    A9_norm         //if norm, continue with mul
494        fmovemx %fp1-%fp1,-(%a7)        //load ETEMP with 10^ISCALE
495        movel   8(%a0),-(%a7)   //load FPTEMP with input arg
496        movel   4(%a0),-(%a7)
497        movel   (%a0),-(%a7)
498        movel   #18,%d3         //load count for busy stack
499A9_loop:
500        clrl    -(%a7)          //clear lword on stack
501        dbf     %d3,A9_loop     
502        moveb   VER_TMP(%a6),(%a7) //write current version number
503        moveb   #BUSY_SIZE-4,1(%a7) //write current busy size
504        moveb   #0x10,0x44(%a7) //set fcefpte[15] bit
505        movew   #0x0023,0x40(%a7)       //load cmdreg1b with mul command
506        moveb   #0xfe,0x8(%a7)  //load all 1s to cu savepc
507        frestore (%a7)+         //restore frame to fpu for completion
508        fmulx   36(%a1),%fp0    //multiply fp0 by 10^8
509        fmulx   48(%a1),%fp0    //multiply fp0 by 10^16
510        bras    A10_st
511A9_norm:
512        tstw    %d2             //test for small exp case
513        beqs    A9_con          //if zero, continue as normal
514        fmulx   36(%a1),%fp0    //multiply fp0 by 10^8
515        fmulx   48(%a1),%fp0    //multiply fp0 by 10^16
516A9_con:
517        fmulx   %fp1,%fp0               //calculate X * SCALE -> Y to fp0
518
519
520// A10. Or in INEX.
521//      If INEX is set, round error occurred.  This is compensated
522//      for by 'or-ing' in the INEX2 flag to the lsb of Y.
523//
524// Register usage:
525//      Input/Output
526//      d0: FPCR with RZ mode/FPSR with INEX2 isolated
527//      d2: x/x
528//      d3: x/x
529//      d4: LEN/Unchanged
530//      d5: ICTR:LAMBDA
531//      d6: ILOG/Unchanged
532//      d7: k-factor/Unchanged
533//      a0: ptr for original operand/final result
534//      a1: ptr to PTENxx array/Unchanged
535//      a2: x/ptr to FP_SCR2(a6)
536//      fp0: Y/Y with lsb adjusted
537//      fp1: 10^ISCALE/Unchanged
538//      fp2: x/x
539
540A10_st:
541        fmovel  %FPSR,%d0               //get FPSR
542        fmovex  %fp0,FP_SCR2(%a6)       //move Y to memory
543        leal    FP_SCR2(%a6),%a2        //load a2 with ptr to FP_SCR2
544        btstl   #9,%d0          //check if INEX2 set
545        beqs    A11_st          //if clear, skip rest
546        oril    #1,8(%a2)       //or in 1 to lsb of mantissa
547        fmovex  FP_SCR2(%a6),%fp0       //write adjusted Y back to fpu
548
549
550// A11. Restore original FPCR; set size ext.
551//      Perform FINT operation in the user's rounding mode.  Keep
552//      the size to extended.  The sintdo entry point in the sint
553//      routine expects the FPCR value to be in USER_FPCR for
554//      mode and precision.  The original FPCR is saved in L_SCR1.
555
556A11_st:
557        movel   USER_FPCR(%a6),L_SCR1(%a6) //save it for later
558        andil   #0x00000030,USER_FPCR(%a6) //set size to ext,
559//                                      ;block exceptions
560
561
562// A12. Calculate YINT = FINT(Y) according to user's rounding mode.
563//      The FPSP routine sintd0 is used.  The output is in fp0.
564//
565// Register usage:
566//      Input/Output
567//      d0: FPSR with AINEX cleared/FPCR with size set to ext
568//      d2: x/x/scratch
569//      d3: x/x
570//      d4: LEN/Unchanged
571//      d5: ICTR:LAMBDA/Unchanged
572//      d6: ILOG/Unchanged
573//      d7: k-factor/Unchanged
574//      a0: ptr for original operand/src ptr for sintdo
575//      a1: ptr to PTENxx array/Unchanged
576//      a2: ptr to FP_SCR2(a6)/Unchanged
577//      a6: temp pointer to FP_SCR2(a6) - orig value saved and restored
578//      fp0: Y/YINT
579//      fp1: 10^ISCALE/Unchanged
580//      fp2: x/x
581//      F_SCR1:x/x
582//      F_SCR2:Y adjusted for inex/Y with original exponent
583//      L_SCR1:x/original USER_FPCR
584//      L_SCR2:first word of X packed/Unchanged
585
586A12_st:
587        moveml  %d0-%d1/%a0-%a1,-(%a7)  //save regs used by sintd0     
588        movel   L_SCR1(%a6),-(%a7)
589        movel   L_SCR2(%a6),-(%a7)
590        leal    FP_SCR2(%a6),%a0                //a0 is ptr to F_SCR2(a6)
591        fmovex  %fp0,(%a0)              //move Y to memory at FP_SCR2(a6)
592        tstl    L_SCR2(%a6)             //test sign of original operand
593        bges    do_fint                 //if pos, use Y
594        orl     #0x80000000,(%a0)               //if neg, use -Y
595do_fint:
596        movel   USER_FPSR(%a6),-(%a7)
597        bsr     sintdo                  //sint routine returns int in fp0
598        moveb   (%a7),USER_FPSR(%a6)
599        addl    #4,%a7
600        movel   (%a7)+,L_SCR2(%a6)
601        movel   (%a7)+,L_SCR1(%a6)
602        moveml  (%a7)+,%d0-%d1/%a0-%a1  //restore regs used by sint     
603        movel   L_SCR2(%a6),FP_SCR2(%a6)        //restore original exponent
604        movel   L_SCR1(%a6),USER_FPCR(%a6) //restore user's FPCR
605
606
607// A13. Check for LEN digits.
608//      If the int operation results in more than LEN digits,
609//      or less than LEN -1 digits, adjust ILOG and repeat from
610//      A6.  This test occurs only on the first pass.  If the
611//      result is exactly 10^LEN, decrement ILOG and divide
612//      the mantissa by 10.  The calculation of 10^LEN cannot
613//      be inexact, since all powers of ten upto 10^27 are exact
614//      in extended precision, so the use of a previous power-of-ten
615//      table will introduce no error.
616//
617//
618// Register usage:
619//      Input/Output
620//      d0: FPCR with size set to ext/scratch final = 0
621//      d2: x/x
622//      d3: x/scratch final = x
623//      d4: LEN/LEN adjusted
624//      d5: ICTR:LAMBDA/LAMBDA:ICTR
625//      d6: ILOG/ILOG adjusted
626//      d7: k-factor/Unchanged
627//      a0: pointer into memory for packed bcd string formation
628//      a1: ptr to PTENxx array/Unchanged
629//      a2: ptr to FP_SCR2(a6)/Unchanged
630//      fp0: int portion of Y/abs(YINT) adjusted
631//      fp1: 10^ISCALE/Unchanged
632//      fp2: x/10^LEN
633//      F_SCR1:x/x
634//      F_SCR2:Y with original exponent/Unchanged
635//      L_SCR1:original USER_FPCR/Unchanged
636//      L_SCR2:first word of X packed/Unchanged
637
638A13_st:
639        swap    %d5             //put ICTR in lower word of d5
640        tstw    %d5             //check if ICTR = 0
641        bne     not_zr          //if non-zero, go to second test
642//
643// Compute 10^(LEN-1)
644//
645        fmoves  FONE,%fp2       //init fp2 to 1.0
646        movel   %d4,%d0         //put LEN in d0
647        subql   #1,%d0          //d0 = LEN -1
648        clrl    %d3             //clr table index
649l_loop:
650        lsrl    #1,%d0          //shift next bit into carry
651        bccs    l_next          //if zero, skip the mul
652        fmulx   (%a1,%d3),%fp2  //mul by 10**(d3_bit_no)
653l_next:
654        addl    #12,%d3         //inc d3 to next pwrten table entry
655        tstl    %d0             //test if LEN is zero
656        bnes    l_loop          //if not, loop
657//
658// 10^LEN-1 is computed for this test and A14.  If the input was
659// denormalized, check only the case in which YINT > 10^LEN.
660//
661        tstb    BINDEC_FLG(%a6) //check if input was norm
662        beqs    A13_con         //if norm, continue with checking
663        fabsx   %fp0            //take abs of YINT
664        bra     test_2
665//
666// Compare abs(YINT) to 10^(LEN-1) and 10^LEN
667//
668A13_con:
669        fabsx   %fp0            //take abs of YINT
670        fcmpx   %fp2,%fp0               //compare abs(YINT) with 10^(LEN-1)
671        fbge    test_2          //if greater, do next test
672        subql   #1,%d6          //subtract 1 from ILOG
673        movew   #1,%d5          //set ICTR
674        fmovel  #rm_mode,%FPCR  //set rmode to RM
675        fmuls   FTEN,%fp2       //compute 10^LEN
676        bra     A6_str          //return to A6 and recompute YINT
677test_2:
678        fmuls   FTEN,%fp2       //compute 10^LEN
679        fcmpx   %fp2,%fp0               //compare abs(YINT) with 10^LEN
680        fblt    A14_st          //if less, all is ok, go to A14
681        fbgt    fix_ex          //if greater, fix and redo
682        fdivs   FTEN,%fp0       //if equal, divide by 10
683        addql   #1,%d6          // and inc ILOG
684        bras    A14_st          // and continue elsewhere
685fix_ex:
686        addql   #1,%d6          //increment ILOG by 1
687        movew   #1,%d5          //set ICTR
688        fmovel  #rm_mode,%FPCR  //set rmode to RM
689        bra     A6_str          //return to A6 and recompute YINT
690//
691// Since ICTR <> 0, we have already been through one adjustment,
692// and shouldn't have another; this is to check if abs(YINT) = 10^LEN
693// 10^LEN is again computed using whatever table is in a1 since the
694// value calculated cannot be inexact.
695//
696not_zr:
697        fmoves  FONE,%fp2       //init fp2 to 1.0
698        movel   %d4,%d0         //put LEN in d0
699        clrl    %d3             //clr table index
700z_loop:
701        lsrl    #1,%d0          //shift next bit into carry
702        bccs    z_next          //if zero, skip the mul
703        fmulx   (%a1,%d3),%fp2  //mul by 10**(d3_bit_no)
704z_next:
705        addl    #12,%d3         //inc d3 to next pwrten table entry
706        tstl    %d0             //test if LEN is zero
707        bnes    z_loop          //if not, loop
708        fabsx   %fp0            //get abs(YINT)
709        fcmpx   %fp2,%fp0               //check if abs(YINT) = 10^LEN
710        fbne    A14_st          //if not, skip this
711        fdivs   FTEN,%fp0       //divide abs(YINT) by 10
712        addql   #1,%d6          //and inc ILOG by 1
713        addql   #1,%d4          // and inc LEN
714        fmuls   FTEN,%fp2       // if LEN++, the get 10^^LEN
715
716
717// A14. Convert the mantissa to bcd.
718//      The binstr routine is used to convert the LEN digit
719//      mantissa to bcd in memory.  The input to binstr is
720//      to be a fraction; i.e. (mantissa)/10^LEN and adjusted
721//      such that the decimal point is to the left of bit 63.
722//      The bcd digits are stored in the correct position in
723//      the final string area in memory.
724//
725//
726// Register usage:
727//      Input/Output
728//      d0: x/LEN call to binstr - final is 0
729//      d1: x/0
730//      d2: x/ms 32-bits of mant of abs(YINT)
731//      d3: x/ls 32-bits of mant of abs(YINT)
732//      d4: LEN/Unchanged
733//      d5: ICTR:LAMBDA/LAMBDA:ICTR
734//      d6: ILOG
735//      d7: k-factor/Unchanged
736//      a0: pointer into memory for packed bcd string formation
737//          /ptr to first mantissa byte in result string
738//      a1: ptr to PTENxx array/Unchanged
739//      a2: ptr to FP_SCR2(a6)/Unchanged
740//      fp0: int portion of Y/abs(YINT) adjusted
741//      fp1: 10^ISCALE/Unchanged
742//      fp2: 10^LEN/Unchanged
743//      F_SCR1:x/Work area for final result
744//      F_SCR2:Y with original exponent/Unchanged
745//      L_SCR1:original USER_FPCR/Unchanged
746//      L_SCR2:first word of X packed/Unchanged
747
748A14_st:
749        fmovel  #rz_mode,%FPCR  //force rz for conversion
750        fdivx   %fp2,%fp0               //divide abs(YINT) by 10^LEN
751        leal    FP_SCR1(%a6),%a0
752        fmovex  %fp0,(%a0)      //move abs(YINT)/10^LEN to memory
753        movel   4(%a0),%d2      //move 2nd word of FP_RES to d2
754        movel   8(%a0),%d3      //move 3rd word of FP_RES to d3
755        clrl    4(%a0)          //zero word 2 of FP_RES
756        clrl    8(%a0)          //zero word 3 of FP_RES
757        movel   (%a0),%d0               //move exponent to d0
758        swap    %d0             //put exponent in lower word
759        beqs    no_sft          //if zero, don't shift
760        subil   #0x3ffd,%d0     //sub bias less 2 to make fract
761        tstl    %d0             //check if > 1
762        bgts    no_sft          //if so, don't shift
763        negl    %d0             //make exp positive
764m_loop:
765        lsrl    #1,%d2          //shift d2:d3 right, add 0s
766        roxrl   #1,%d3          //the number of places
767        dbf     %d0,m_loop      //given in d0
768no_sft:
769        tstl    %d2             //check for mantissa of zero
770        bnes    no_zr           //if not, go on
771        tstl    %d3             //continue zero check
772        beqs    zer_m           //if zero, go directly to binstr
773no_zr:
774        clrl    %d1             //put zero in d1 for addx
775        addil   #0x00000080,%d3 //inc at bit 7
776        addxl   %d1,%d2         //continue inc
777        andil   #0xffffff80,%d3 //strip off lsb not used by 882
778zer_m:
779        movel   %d4,%d0         //put LEN in d0 for binstr call
780        addql   #3,%a0          //a0 points to M16 byte in result
781        bsr     binstr          //call binstr to convert mant
782
783
784// A15. Convert the exponent to bcd.
785//      As in A14 above, the exp is converted to bcd and the
786//      digits are stored in the final string.
787//
788//      Digits are stored in L_SCR1(a6) on return from BINDEC as:
789//
790//       32               16 15                0
791//      -----------------------------------------
792//      |  0 | e3 | e2 | e1 | e4 |  X |  X |  X |
793//      -----------------------------------------
794//
795// And are moved into their proper places in FP_SCR1.  If digit e4
796// is non-zero, OPERR is signaled.  In all cases, all 4 digits are
797// written as specified in the 881/882 manual for packed decimal.
798//
799// Register usage:
800//      Input/Output
801//      d0: x/LEN call to binstr - final is 0
802//      d1: x/scratch (0);shift count for final exponent packing
803//      d2: x/ms 32-bits of exp fraction/scratch
804//      d3: x/ls 32-bits of exp fraction
805//      d4: LEN/Unchanged
806//      d5: ICTR:LAMBDA/LAMBDA:ICTR
807//      d6: ILOG
808//      d7: k-factor/Unchanged
809//      a0: ptr to result string/ptr to L_SCR1(a6)
810//      a1: ptr to PTENxx array/Unchanged
811//      a2: ptr to FP_SCR2(a6)/Unchanged
812//      fp0: abs(YINT) adjusted/float(ILOG)
813//      fp1: 10^ISCALE/Unchanged
814//      fp2: 10^LEN/Unchanged
815//      F_SCR1:Work area for final result/BCD result
816//      F_SCR2:Y with original exponent/ILOG/10^4
817//      L_SCR1:original USER_FPCR/Exponent digits on return from binstr
818//      L_SCR2:first word of X packed/Unchanged
819
820A15_st:
821        tstb    BINDEC_FLG(%a6) //check for denorm
822        beqs    not_denorm
823        ftstx   %fp0            //test for zero
824        fbeq    den_zero        //if zero, use k-factor or 4933
825        fmovel  %d6,%fp0                //float ILOG
826        fabsx   %fp0            //get abs of ILOG
827        bras    convrt
828den_zero:
829        tstl    %d7             //check sign of the k-factor
830        blts    use_ilog        //if negative, use ILOG
831        fmoves  F4933,%fp0      //force exponent to 4933
832        bras    convrt          //do it
833use_ilog:
834        fmovel  %d6,%fp0                //float ILOG
835        fabsx   %fp0            //get abs of ILOG
836        bras    convrt
837not_denorm:
838        ftstx   %fp0            //test for zero
839        fbne    not_zero        //if zero, force exponent
840        fmoves  FONE,%fp0       //force exponent to 1
841        bras    convrt          //do it
842not_zero:       
843        fmovel  %d6,%fp0                //float ILOG
844        fabsx   %fp0            //get abs of ILOG
845convrt:
846        fdivx   24(%a1),%fp0    //compute ILOG/10^4
847        fmovex  %fp0,FP_SCR2(%a6)       //store fp0 in memory
848        movel   4(%a2),%d2      //move word 2 to d2
849        movel   8(%a2),%d3      //move word 3 to d3
850        movew   (%a2),%d0               //move exp to d0
851        beqs    x_loop_fin      //if zero, skip the shift
852        subiw   #0x3ffd,%d0     //subtract off bias
853        negw    %d0             //make exp positive
854x_loop:
855        lsrl    #1,%d2          //shift d2:d3 right
856        roxrl   #1,%d3          //the number of places
857        dbf     %d0,x_loop      //given in d0
858x_loop_fin:
859        clrl    %d1             //put zero in d1 for addx
860        addil   #0x00000080,%d3 //inc at bit 6
861        addxl   %d1,%d2         //continue inc
862        andil   #0xffffff80,%d3 //strip off lsb not used by 882
863        movel   #4,%d0          //put 4 in d0 for binstr call
864        leal    L_SCR1(%a6),%a0 //a0 is ptr to L_SCR1 for exp digits
865        bsr     binstr          //call binstr to convert exp
866        movel   L_SCR1(%a6),%d0 //load L_SCR1 lword to d0
867        movel   #12,%d1         //use d1 for shift count
868        lsrl    %d1,%d0         //shift d0 right by 12
869        bfins   %d0,FP_SCR1(%a6){#4:#12} //put e3:e2:e1 in FP_SCR1
870        lsrl    %d1,%d0         //shift d0 right by 12
871        bfins   %d0,FP_SCR1(%a6){#16:#4} //put e4 in FP_SCR1
872        tstb    %d0             //check if e4 is zero
873        beqs    A16_st          //if zero, skip rest
874        orl     #opaop_mask,USER_FPSR(%a6) //set OPERR & AIOP in USER_FPSR
875
876
877// A16. Write sign bits to final string.
878//         Sigma is bit 31 of initial value; RHO is bit 31 of d6 (ILOG).
879//
880// Register usage:
881//      Input/Output
882//      d0: x/scratch - final is x
883//      d2: x/x
884//      d3: x/x
885//      d4: LEN/Unchanged
886//      d5: ICTR:LAMBDA/LAMBDA:ICTR
887//      d6: ILOG/ILOG adjusted
888//      d7: k-factor/Unchanged
889//      a0: ptr to L_SCR1(a6)/Unchanged
890//      a1: ptr to PTENxx array/Unchanged
891//      a2: ptr to FP_SCR2(a6)/Unchanged
892//      fp0: float(ILOG)/Unchanged
893//      fp1: 10^ISCALE/Unchanged
894//      fp2: 10^LEN/Unchanged
895//      F_SCR1:BCD result with correct signs
896//      F_SCR2:ILOG/10^4
897//      L_SCR1:Exponent digits on return from binstr
898//      L_SCR2:first word of X packed/Unchanged
899
900A16_st:
901        clrl    %d0             //clr d0 for collection of signs
902        andib   #0x0f,FP_SCR1(%a6) //clear first nibble of FP_SCR1
903        tstl    L_SCR2(%a6)     //check sign of original mantissa
904        bges    mant_p          //if pos, don't set SM
905        moveql  #2,%d0          //move 2 in to d0 for SM
906mant_p:
907        tstl    %d6             //check sign of ILOG
908        bges    wr_sgn          //if pos, don't set SE
909        addql   #1,%d0          //set bit 0 in d0 for SE
910wr_sgn:
911        bfins   %d0,FP_SCR1(%a6){#0:#2} //insert SM and SE into FP_SCR1
912
913// Clean up and restore all registers used.
914
915        fmovel  #0,%FPSR                //clear possible inex2/ainex bits
916        fmovemx (%a7)+,%fp0-%fp2
917        moveml  (%a7)+,%d2-%d7/%a2
918        rts
919
920        |end
Note: See TracBrowser for help on using the repository browser.