source: rtems/c/src/lib/libbsp/powerpc/support/new_exception_processing/cpu.h @ 3ac78af

4.104.114.84.95
Last change on this file since 3ac78af was 590aba4f, checked in by Joel Sherrill <joel.sherrill@…>, on 10/12/01 at 21:03:53

2001-10-12 Joel Sherrill <joel@…>

  • mpc6xx/clock/c_clock.c, mpc6xx/clock/c_clock.h, mpc8xx/clock/clock.c, mpc8xx/timer/timer.c, new_exception_processing/cpu.c, new_exception_processing/cpu.h, new_exception_processing/cpu_asm.S, old_exception_processing/cpu.c, old_exception_processing/cpu.h, old_exception_processing/cpu_asm.S, old_exception_processing/rtems.S: Fixed typo.
  • Property mode set to 100644
File size: 31.4 KB
Line 
1/*  cpu.h
2 *
3 *  This include file contains information pertaining to the PowerPC
4 *  processor.
5 *
6 *  Author:     Andrew Bray <andy@i-cubed.co.uk>
7 *
8 *  COPYRIGHT (c) 1995 by i-cubed ltd.
9 *
10 *  To anyone who acknowledges that this file is provided "AS IS"
11 *  without any express or implied warranty:
12 *      permission to use, copy, modify, and distribute this file
13 *      for any purpose is hereby granted without fee, provided that
14 *      the above copyright notice and this notice appears in all
15 *      copies, and that the name of i-cubed limited not be used in
16 *      advertising or publicity pertaining to distribution of the
17 *      software without specific, written prior permission.
18 *      i-cubed limited makes no representations about the suitability
19 *      of this software for any purpose.
20 *
21 *  Derived from c/src/exec/cpu/no_cpu/cpu.h:
22 *
23 *  COPYRIGHT (c) 1989-1997.
24 *  On-Line Applications Research Corporation (OAR).
25 *
26 *  The license and distribution terms for this file may be found in
27 *  the file LICENSE in this distribution or at
28 *  http://www.OARcorp.com/rtems/license.html.
29 *
30 *  $Id$
31 */
32
33#ifndef __CPU_h
34#define __CPU_h
35
36#ifdef __cplusplus
37extern "C" {
38#endif
39
40#include <rtems/score/ppc.h>               /* pick up machine definitions */
41#include <libcpu/cpu.h>
42 
43#ifndef ASM
44#include <rtems/score/ppctypes.h>
45#endif
46
47/* conditional compilation parameters */
48
49/*
50 *  Should the calls to _Thread_Enable_dispatch be inlined?
51 *
52 *  If TRUE, then they are inlined.
53 *  If FALSE, then a subroutine call is made.
54 *
55 *  Basically this is an example of the classic trade-off of size
56 *  versus speed.  Inlining the call (TRUE) typically increases the
57 *  size of RTEMS while speeding up the enabling of dispatching.
58 *  [NOTE: In general, the _Thread_Dispatch_disable_level will
59 *  only be 0 or 1 unless you are in an interrupt handler and that
60 *  interrupt handler invokes the executive.]  When not inlined
61 *  something calls _Thread_Enable_dispatch which in turns calls
62 *  _Thread_Dispatch.  If the enable dispatch is inlined, then
63 *  one subroutine call is avoided entirely.]
64 */
65
66#define CPU_INLINE_ENABLE_DISPATCH       FALSE
67
68/*
69 *  Should the body of the search loops in _Thread_queue_Enqueue_priority
70 *  be unrolled one time?  In unrolled each iteration of the loop examines
71 *  two "nodes" on the chain being searched.  Otherwise, only one node
72 *  is examined per iteration.
73 *
74 *  If TRUE, then the loops are unrolled.
75 *  If FALSE, then the loops are not unrolled.
76 *
77 *  The primary factor in making this decision is the cost of disabling
78 *  and enabling interrupts (_ISR_Flash) versus the cost of rest of the
79 *  body of the loop.  On some CPUs, the flash is more expensive than
80 *  one iteration of the loop body.  In this case, it might be desirable
81 *  to unroll the loop.  It is important to note that on some CPUs, this
82 *  code is the longest interrupt disable period in RTEMS.  So it is
83 *  necessary to strike a balance when setting this parameter.
84 */
85
86#define CPU_UNROLL_ENQUEUE_PRIORITY      FALSE
87
88/*
89 *  Does RTEMS manage a dedicated interrupt stack in software?
90 *
91 *  If TRUE, then a stack is allocated in _ISR_Handler_initialization.
92 *  If FALSE, nothing is done.
93 *
94 *  If the CPU supports a dedicated interrupt stack in hardware,
95 *  then it is generally the responsibility of the BSP to allocate it
96 *  and set it up.
97 *
98 *  If the CPU does not support a dedicated interrupt stack, then
99 *  the porter has two options: (1) execute interrupts on the
100 *  stack of the interrupted task, and (2) have RTEMS manage a dedicated
101 *  interrupt stack.
102 *
103 *  If this is TRUE, CPU_ALLOCATE_INTERRUPT_STACK should also be TRUE.
104 *
105 *  Only one of CPU_HAS_SOFTWARE_INTERRUPT_STACK and
106 *  CPU_HAS_HARDWARE_INTERRUPT_STACK should be set to TRUE.  It is
107 *  possible that both are FALSE for a particular CPU.  Although it
108 *  is unclear what that would imply about the interrupt processing
109 *  procedure on that CPU.
110 */
111
112#define CPU_HAS_SOFTWARE_INTERRUPT_STACK TRUE
113
114/*
115 *  Does this CPU have hardware support for a dedicated interrupt stack?
116 *
117 *  If TRUE, then it must be installed during initialization.
118 *  If FALSE, then no installation is performed.
119 *
120 *  If this is TRUE, CPU_ALLOCATE_INTERRUPT_STACK should also be TRUE.
121 *
122 *  Only one of CPU_HAS_SOFTWARE_INTERRUPT_STACK and
123 *  CPU_HAS_HARDWARE_INTERRUPT_STACK should be set to TRUE.  It is
124 *  possible that both are FALSE for a particular CPU.  Although it
125 *  is unclear what that would imply about the interrupt processing
126 *  procedure on that CPU.
127 */
128
129#define CPU_HAS_HARDWARE_INTERRUPT_STACK FALSE
130
131/*
132 *  Does RTEMS allocate a dedicated interrupt stack in the Interrupt Manager?
133 *
134 *  If TRUE, then the memory is allocated during initialization.
135 *  If FALSE, then the memory is allocated during initialization.
136 *
137 *  This should be TRUE is CPU_HAS_SOFTWARE_INTERRUPT_STACK is TRUE
138 *  or CPU_INSTALL_HARDWARE_INTERRUPT_STACK is TRUE.
139 */
140
141#define CPU_ALLOCATE_INTERRUPT_STACK FALSE
142
143/*
144 *  Does the RTEMS invoke the user's ISR with the vector number and
145 *  a pointer to the saved interrupt frame (1) or just the vector
146 *  number (0)?
147 */
148
149#define CPU_ISR_PASSES_FRAME_POINTER 0
150
151/*
152 *  Does the CPU have hardware floating point?
153 *
154 *  If TRUE, then the RTEMS_FLOATING_POINT task attribute is supported.
155 *  If FALSE, then the RTEMS_FLOATING_POINT task attribute is ignored.
156 *
157 *  If there is a FP coprocessor such as the i387 or mc68881, then
158 *  the answer is TRUE.
159 *
160 *  The macro name "PPC_HAS_FPU" should be made CPU specific.
161 *  It indicates whether or not this CPU model has FP support.  For
162 *  example, it would be possible to have an i386_nofp CPU model
163 *  which set this to false to indicate that you have an i386 without
164 *  an i387 and wish to leave floating point support out of RTEMS.
165 */
166
167#if ( PPC_HAS_FPU == 1 )
168#define CPU_HARDWARE_FP     TRUE
169#else
170#define CPU_HARDWARE_FP     FALSE
171#endif
172
173/*
174 *  Are all tasks RTEMS_FLOATING_POINT tasks implicitly?
175 *
176 *  If TRUE, then the RTEMS_FLOATING_POINT task attribute is assumed.
177 *  If FALSE, then the RTEMS_FLOATING_POINT task attribute is followed.
178 *
179 *  So far, the only CPU in which this option has been used is the
180 *  HP PA-RISC.  The HP C compiler and gcc both implicitly use the
181 *  floating point registers to perform integer multiplies.  If
182 *  a function which you would not think utilize the FP unit DOES,
183 *  then one can not easily predict which tasks will use the FP hardware.
184 *  In this case, this option should be TRUE.
185 *
186 *  If CPU_HARDWARE_FP is FALSE, then this should be FALSE as well.
187 */
188
189#define CPU_ALL_TASKS_ARE_FP     FALSE
190
191/*
192 *  Should the IDLE task have a floating point context?
193 *
194 *  If TRUE, then the IDLE task is created as a RTEMS_FLOATING_POINT task
195 *  and it has a floating point context which is switched in and out.
196 *  If FALSE, then the IDLE task does not have a floating point context.
197 *
198 *  Setting this to TRUE negatively impacts the time required to preempt
199 *  the IDLE task from an interrupt because the floating point context
200 *  must be saved as part of the preemption.
201 */
202
203#define CPU_IDLE_TASK_IS_FP      FALSE
204
205/*
206 *  Should the saving of the floating point registers be deferred
207 *  until a context switch is made to another different floating point
208 *  task?
209 *
210 *  If TRUE, then the floating point context will not be stored until
211 *  necessary.  It will remain in the floating point registers and not
212 *  disturned until another floating point task is switched to.
213 *
214 *  If FALSE, then the floating point context is saved when a floating
215 *  point task is switched out and restored when the next floating point
216 *  task is restored.  The state of the floating point registers between
217 *  those two operations is not specified.
218 *
219 *  If the floating point context does NOT have to be saved as part of
220 *  interrupt dispatching, then it should be safe to set this to TRUE.
221 *
222 *  Setting this flag to TRUE results in using a different algorithm
223 *  for deciding when to save and restore the floating point context.
224 *  The deferred FP switch algorithm minimizes the number of times
225 *  the FP context is saved and restored.  The FP context is not saved
226 *  until a context switch is made to another, different FP task.
227 *  Thus in a system with only one FP task, the FP context will never
228 *  be saved or restored.
229 */
230/*
231 *  ACB Note:  This could make debugging tricky..
232 */
233
234#define CPU_USE_DEFERRED_FP_SWITCH       TRUE
235
236/*
237 *  Does this port provide a CPU dependent IDLE task implementation?
238 *
239 *  If TRUE, then the routine _CPU_Thread_Idle_body
240 *  must be provided and is the default IDLE thread body instead of
241 *  _CPU_Thread_Idle_body.
242 *
243 *  If FALSE, then use the generic IDLE thread body if the BSP does
244 *  not provide one.
245 *
246 *  This is intended to allow for supporting processors which have
247 *  a low power or idle mode.  When the IDLE thread is executed, then
248 *  the CPU can be powered down.
249 *
250 *  The order of precedence for selecting the IDLE thread body is:
251 *
252 *    1.  BSP provided
253 *    2.  CPU dependent (if provided)
254 *    3.  generic (if no BSP and no CPU dependent)
255 */
256
257#define CPU_PROVIDES_IDLE_THREAD_BODY    FALSE
258
259/*
260 *  Does the stack grow up (toward higher addresses) or down
261 *  (toward lower addresses)?
262 *
263 *  If TRUE, then the grows upward.
264 *  If FALSE, then the grows toward smaller addresses.
265 */
266
267#define CPU_STACK_GROWS_UP               FALSE
268
269/*
270 *  The following is the variable attribute used to force alignment
271 *  of critical RTEMS structures.  On some processors it may make
272 *  sense to have these aligned on tighter boundaries than
273 *  the minimum requirements of the compiler in order to have as
274 *  much of the critical data area as possible in a cache line.
275 *
276 *  The placement of this macro in the declaration of the variables
277 *  is based on the syntactically requirements of the GNU C
278 *  "__attribute__" extension.  For example with GNU C, use
279 *  the following to force a structures to a 32 byte boundary.
280 *
281 *      __attribute__ ((aligned (32)))
282 *
283 *  NOTE:  Currently only the Priority Bit Map table uses this feature.
284 *         To benefit from using this, the data must be heavily
285 *         used so it will stay in the cache and used frequently enough
286 *         in the executive to justify turning this on.
287 */
288
289#define CPU_STRUCTURE_ALIGNMENT \
290  __attribute__ ((aligned (PPC_CACHE_ALIGNMENT)))
291
292/*
293 *  Define what is required to specify how the network to host conversion
294 *  routines are handled.
295 */
296
297#define CPU_HAS_OWN_HOST_TO_NETWORK_ROUTINES     FALSE
298#define CPU_BIG_ENDIAN                           TRUE
299#define CPU_LITTLE_ENDIAN                        FALSE
300
301
302/*
303 *  Processor defined structures
304 *
305 *  Examples structures include the descriptor tables from the i386
306 *  and the processor control structure on the i960ca.
307 */
308
309/* may need to put some structures here.  */
310
311/*
312 * Contexts
313 *
314 *  Generally there are 2 types of context to save.
315 *     1. Interrupt registers to save
316 *     2. Task level registers to save
317 *
318 *  This means we have the following 3 context items:
319 *     1. task level context stuff::  Context_Control
320 *     2. floating point task stuff:: Context_Control_fp
321 *     3. special interrupt level context :: Context_Control_interrupt
322 *
323 *  On some processors, it is cost-effective to save only the callee
324 *  preserved registers during a task context switch.  This means
325 *  that the ISR code needs to save those registers which do not
326 *  persist across function calls.  It is not mandatory to make this
327 *  distinctions between the caller/callee saves registers for the
328 *  purpose of minimizing context saved during task switch and on interrupts.
329 *  If the cost of saving extra registers is minimal, simplicity is the
330 *  choice.  Save the same context on interrupt entry as for tasks in
331 *  this case.
332 *
333 *  Additionally, if gdb is to be made aware of RTEMS tasks for this CPU, then
334 *  care should be used in designing the context area.
335 *
336 *  On some CPUs with hardware floating point support, the Context_Control_fp
337 *  structure will not be used or it simply consist of an array of a
338 *  fixed number of bytes.   This is done when the floating point context
339 *  is dumped by a "FP save context" type instruction and the format
340 *  is not really defined by the CPU.  In this case, there is no need
341 *  to figure out the exact format -- only the size.  Of course, although
342 *  this is enough information for RTEMS, it is probably not enough for
343 *  a debugger such as gdb.  But that is another problem.
344 */
345
346#ifndef ASM
347
348typedef struct {
349    unsigned32 gpr1;    /* Stack pointer for all */
350    unsigned32 gpr2;    /* TOC in PowerOpen, reserved SVR4, section ptr EABI + */
351    unsigned32 gpr13;   /* First non volatile PowerOpen, section ptr SVR4/EABI */
352    unsigned32 gpr14;   /* Non volatile for all */
353    unsigned32 gpr15;   /* Non volatile for all */
354    unsigned32 gpr16;   /* Non volatile for all */
355    unsigned32 gpr17;   /* Non volatile for all */
356    unsigned32 gpr18;   /* Non volatile for all */
357    unsigned32 gpr19;   /* Non volatile for all */
358    unsigned32 gpr20;   /* Non volatile for all */
359    unsigned32 gpr21;   /* Non volatile for all */
360    unsigned32 gpr22;   /* Non volatile for all */
361    unsigned32 gpr23;   /* Non volatile for all */
362    unsigned32 gpr24;   /* Non volatile for all */
363    unsigned32 gpr25;   /* Non volatile for all */
364    unsigned32 gpr26;   /* Non volatile for all */
365    unsigned32 gpr27;   /* Non volatile for all */
366    unsigned32 gpr28;   /* Non volatile for all */
367    unsigned32 gpr29;   /* Non volatile for all */
368    unsigned32 gpr30;   /* Non volatile for all */
369    unsigned32 gpr31;   /* Non volatile for all */
370    unsigned32 cr;      /* PART of the CR is non volatile for all */
371    unsigned32 pc;      /* Program counter/Link register */
372    unsigned32 msr;     /* Initial interrupt level */
373} Context_Control;
374
375typedef struct {
376    /* The ABIs (PowerOpen/SVR4/EABI) only require saving f14-f31 over
377     * procedure calls.  However, this would mean that the interrupt
378     * frame had to hold f0-f13, and the fpscr.  And as the majority
379     * of tasks will not have an FP context, we will save the whole
380     * context here.
381     */
382#if (PPC_HAS_DOUBLE == 1)
383    double      f[32];
384    double      fpscr;
385#else
386    float       f[32];
387    float       fpscr;
388#endif
389} Context_Control_fp;
390
391typedef struct CPU_Interrupt_frame {
392    unsigned32 stacklink;       /* Ensure this is a real frame (also reg1 save) */
393    unsigned32 calleeLr;        /* link register used by callees: SVR4/EABI */
394  /* This is what is left out of the primary contexts */
395    unsigned32 gpr0;
396    unsigned32 gpr2;            /* play safe */
397    unsigned32 gpr3;
398    unsigned32 gpr4;
399    unsigned32 gpr5;
400    unsigned32 gpr6;
401    unsigned32 gpr7;
402    unsigned32 gpr8;
403    unsigned32 gpr9;
404    unsigned32 gpr10;
405    unsigned32 gpr11;
406    unsigned32 gpr12;
407    unsigned32 gpr13;   /* Play safe */
408    unsigned32 gpr28;   /* For internal use by the IRQ handler */
409    unsigned32 gpr29;   /* For internal use by the IRQ handler */
410    unsigned32 gpr30;   /* For internal use by the IRQ handler */
411    unsigned32 gpr31;   /* For internal use by the IRQ handler */
412    unsigned32 cr;      /* Bits of this are volatile, so no-one may save */
413    unsigned32 ctr;
414    unsigned32 xer;
415    unsigned32 lr;
416    unsigned32 pc;
417    unsigned32 msr;
418    unsigned32 pad[3];
419} CPU_Interrupt_frame;
420 
421/*
422 *  The following table contains the information required to configure
423 *  the PowerPC processor specific parameters.
424 */
425
426typedef struct {
427  void       (*pretasking_hook)( void );
428  void       (*predriver_hook)( void );
429  void       (*postdriver_hook)( void );
430  void       (*idle_task)( void );
431  boolean      do_zero_of_workspace;
432  unsigned32   idle_task_stack_size;
433  unsigned32   interrupt_stack_size;
434  unsigned32   extra_mpci_receive_server_stack;
435  void *     (*stack_allocate_hook)( unsigned32 );
436  void       (*stack_free_hook)( void* );
437  /* end of fields required on all CPUs */
438
439  unsigned32   clicks_per_usec;        /* Timer clicks per microsecond */
440  boolean      exceptions_in_RAM;     /* TRUE if in RAM */
441
442#if (defined(ppc403) || defined(mpc860) || defined(mpc821))
443  unsigned32   serial_per_sec;         /* Serial clocks per second */
444  boolean      serial_external_clock;
445  boolean      serial_xon_xoff;
446  boolean      serial_cts_rts;
447  unsigned32   serial_rate;
448  unsigned32   timer_average_overhead; /* Average overhead of timer in ticks */
449  unsigned32   timer_least_valid;      /* Least valid number from timer      */
450  boolean      timer_internal_clock;   /* TRUE, when timer runs with CPU clk */
451#endif
452
453#if (defined(mpc860) || defined(mpc821))
454  unsigned32   clock_speed;            /* Speed of CPU in Hz */
455#endif
456}   rtems_cpu_table;
457
458/*
459 *  Macros to access required entires in the CPU Table are in
460 *  the file rtems/system.h.
461 */
462
463/*
464 *  Macros to access PowerPC MPC750 specific additions to the CPU Table
465 */
466
467#define rtems_cpu_configuration_get_clicks_per_usec() \
468   (_CPU_Table.clicks_per_usec)
469
470#define rtems_cpu_configuration_get_exceptions_in_ram() \
471   (_CPU_Table.exceptions_in_RAM)
472
473/*
474 *  This variable is optional.  It is used on CPUs on which it is difficult
475 *  to generate an "uninitialized" FP context.  It is filled in by
476 *  _CPU_Initialize and copied into the task's FP context area during
477 *  _CPU_Context_Initialize.
478 */
479
480/* EXTERN Context_Control_fp  _CPU_Null_fp_context; */
481
482/*
483 *  On some CPUs, RTEMS supports a software managed interrupt stack.
484 *  This stack is allocated by the Interrupt Manager and the switch
485 *  is performed in _ISR_Handler.  These variables contain pointers
486 *  to the lowest and highest addresses in the chunk of memory allocated
487 *  for the interrupt stack.  Since it is unknown whether the stack
488 *  grows up or down (in general), this give the CPU dependent
489 *  code the option of picking the version it wants to use.
490 *
491 *  NOTE: These two variables are required if the macro
492 *        CPU_HAS_SOFTWARE_INTERRUPT_STACK is defined as TRUE.
493 */
494
495SCORE_EXTERN void               *_CPU_Interrupt_stack_low;
496SCORE_EXTERN void               *_CPU_Interrupt_stack_high;
497
498#endif /* ndef ASM */
499
500/*
501 *  This defines the number of levels and the mask used to pick those
502 *  bits out of a thread mode.
503 */
504
505#define CPU_MODES_INTERRUPT_LEVEL  0x00000001 /* interrupt level in mode */
506#define CPU_MODES_INTERRUPT_MASK   0x00000001 /* interrupt level in mode */
507
508/*
509 *  With some compilation systems, it is difficult if not impossible to
510 *  call a high-level language routine from assembly language.  This
511 *  is especially true of commercial Ada compilers and name mangling
512 *  C++ ones.  This variable can be optionally defined by the CPU porter
513 *  and contains the address of the routine _Thread_Dispatch.  This
514 *  can make it easier to invoke that routine at the end of the interrupt
515 *  sequence (if a dispatch is necessary).
516 */
517
518/* EXTERN void           (*_CPU_Thread_dispatch_pointer)(); */
519
520/*
521 *  Nothing prevents the porter from declaring more CPU specific variables.
522 */
523
524#ifndef ASM
525 
526SCORE_EXTERN struct {
527  unsigned32 *Disable_level;
528  void *Stack;
529  volatile boolean *Switch_necessary;
530  boolean *Signal;
531
532} _CPU_IRQ_info CPU_STRUCTURE_ALIGNMENT;
533
534#endif /* ndef ASM */
535
536/*
537 *  The size of the floating point context area.  On some CPUs this
538 *  will not be a "sizeof" because the format of the floating point
539 *  area is not defined -- only the size is.  This is usually on
540 *  CPUs with a "floating point save context" instruction.
541 */
542
543#define CPU_CONTEXT_FP_SIZE sizeof( Context_Control_fp )
544
545/*
546 * (Optional) # of bytes for libmisc/stackchk to check
547 * If not specifed, then it defaults to something reasonable
548 * for most architectures.
549 */
550
551#define CPU_STACK_CHECK_SIZE    (128)
552
553/*
554 *  Amount of extra stack (above minimum stack size) required by
555 *  MPCI receive server thread.  Remember that in a multiprocessor
556 *  system this thread must exist and be able to process all directives.
557 */
558
559#define CPU_MPCI_RECEIVE_SERVER_EXTRA_STACK 0
560
561/*
562 *  This defines the number of entries in the ISR_Vector_table managed
563 *  by RTEMS.
564 */
565
566#define CPU_INTERRUPT_NUMBER_OF_VECTORS     (PPC_INTERRUPT_MAX)
567#define CPU_INTERRUPT_MAXIMUM_VECTOR_NUMBER (PPC_INTERRUPT_MAX - 1)
568
569/*
570 *  Should be large enough to run all RTEMS tests.  This insures
571 *  that a "reasonable" small application should not have any problems.
572 */
573
574#define CPU_STACK_MINIMUM_SIZE          (1024*8)
575
576/*
577 *  CPU's worst alignment requirement for data types on a byte boundary.  This
578 *  alignment does not take into account the requirements for the stack.
579 */
580
581#define CPU_ALIGNMENT              (PPC_ALIGNMENT)
582
583/*
584 *  This number corresponds to the byte alignment requirement for the
585 *  heap handler.  This alignment requirement may be stricter than that
586 *  for the data types alignment specified by CPU_ALIGNMENT.  It is
587 *  common for the heap to follow the same alignment requirement as
588 *  CPU_ALIGNMENT.  If the CPU_ALIGNMENT is strict enough for the heap,
589 *  then this should be set to CPU_ALIGNMENT.
590 *
591 *  NOTE:  This does not have to be a power of 2.  It does have to
592 *         be greater or equal to than CPU_ALIGNMENT.
593 */
594
595#define CPU_HEAP_ALIGNMENT         (PPC_ALIGNMENT)
596
597/*
598 *  This number corresponds to the byte alignment requirement for memory
599 *  buffers allocated by the partition manager.  This alignment requirement
600 *  may be stricter than that for the data types alignment specified by
601 *  CPU_ALIGNMENT.  It is common for the partition to follow the same
602 *  alignment requirement as CPU_ALIGNMENT.  If the CPU_ALIGNMENT is strict
603 *  enough for the partition, then this should be set to CPU_ALIGNMENT.
604 *
605 *  NOTE:  This does not have to be a power of 2.  It does have to
606 *         be greater or equal to than CPU_ALIGNMENT.
607 */
608
609#define CPU_PARTITION_ALIGNMENT    (PPC_ALIGNMENT)
610
611/*
612 *  This number corresponds to the byte alignment requirement for the
613 *  stack.  This alignment requirement may be stricter than that for the
614 *  data types alignment specified by CPU_ALIGNMENT.  If the CPU_ALIGNMENT
615 *  is strict enough for the stack, then this should be set to 0.
616 *
617 *  NOTE:  This must be a power of 2 either 0 or greater than CPU_ALIGNMENT.
618 */
619
620#define CPU_STACK_ALIGNMENT        (PPC_STACK_ALIGNMENT)
621
622/*
623 * Needed for Interrupt stack
624 */
625#define CPU_MINIMUM_STACK_FRAME_SIZE 8
626
627
628/*
629 *  ISR handler macros
630 */
631
632#define _CPU_Initialize_vectors()
633
634/*
635 *  Disable all interrupts for an RTEMS critical section.  The previous
636 *  level is returned in _isr_cookie.
637 */
638
639#define loc_string(a,b) a " (" #b ")\n"
640
641#ifndef ASM
642 
643static inline unsigned32 _CPU_ISR_Get_level( void )
644{
645  register unsigned int msr;
646  _CPU_MSR_GET(msr);
647  if (msr & MSR_EE) return 0;
648  else  return 1;
649}
650
651static inline void _CPU_ISR_Set_level( unsigned32 level )
652{
653  register unsigned int msr;
654  _CPU_MSR_GET(msr);
655  if (!(level & CPU_MODES_INTERRUPT_MASK)) {
656    msr |= MSR_EE;
657  }
658  else {
659    msr &= ~MSR_EE;
660  }
661  _CPU_MSR_SET(msr);
662}
663 
664#define _CPU_ISR_install_vector(irq, new, old) {BSP_panic("_CPU_ISR_install_vector called\n");}
665
666/* Context handler macros */
667
668/*
669 *  Initialize the context to a state suitable for starting a
670 *  task after a context restore operation.  Generally, this
671 *  involves:
672 *
673 *     - setting a starting address
674 *     - preparing the stack
675 *     - preparing the stack and frame pointers
676 *     - setting the proper interrupt level in the context
677 *     - initializing the floating point context
678 *
679 *  This routine generally does not set any unnecessary register
680 *  in the context.  The state of the "general data" registers is
681 *  undefined at task start time.
682 *
683 *  NOTE:  Implemented as a subroutine for the SPARC port.
684 */
685
686void _CPU_Context_Initialize(
687  Context_Control  *the_context,
688  unsigned32       *stack_base,
689  unsigned32        size,
690  unsigned32        new_level,
691  void             *entry_point,
692  boolean           is_fp
693);
694
695/*
696 *  This routine is responsible for somehow restarting the currently
697 *  executing task.  If you are lucky, then all that is necessary
698 *  is restoring the context.  Otherwise, there will need to be
699 *  a special assembly routine which does something special in this
700 *  case.  Context_Restore should work most of the time.  It will
701 *  not work if restarting self conflicts with the stack frame
702 *  assumptions of restoring a context.
703 */
704
705#define _CPU_Context_Restart_self( _the_context ) \
706   _CPU_Context_restore( (_the_context) );
707
708/*
709 *  The purpose of this macro is to allow the initial pointer into
710 *  a floating point context area (used to save the floating point
711 *  context) to be at an arbitrary place in the floating point
712 *  context area.
713 *
714 *  This is necessary because some FP units are designed to have
715 *  their context saved as a stack which grows into lower addresses.
716 *  Other FP units can be saved by simply moving registers into offsets
717 *  from the base of the context area.  Finally some FP units provide
718 *  a "dump context" instruction which could fill in from high to low
719 *  or low to high based on the whim of the CPU designers.
720 */
721
722#define _CPU_Context_Fp_start( _base, _offset ) \
723   ( (void *) _Addresses_Add_offset( (_base), (_offset) ) )
724
725/*
726 *  This routine initializes the FP context area passed to it to.
727 *  There are a few standard ways in which to initialize the
728 *  floating point context.  The code included for this macro assumes
729 *  that this is a CPU in which a "initial" FP context was saved into
730 *  _CPU_Null_fp_context and it simply copies it to the destination
731 *  context passed to it.
732 *
733 *  Other models include (1) not doing anything, and (2) putting
734 *  a "null FP status word" in the correct place in the FP context.
735 */
736
737#define _CPU_Context_Initialize_fp( _destination ) \
738  { \
739   ((Context_Control_fp *) *((void **) _destination))->fpscr = PPC_INIT_FPSCR; \
740  }
741
742/* end of Context handler macros */
743
744/* Fatal Error manager macros */
745
746/*
747 *  This routine copies _error into a known place -- typically a stack
748 *  location or a register, optionally disables interrupts, and
749 *  halts/stops the CPU.
750 */
751
752#define _CPU_Fatal_halt( _error ) \
753  _BSP_Fatal_error(_error)
754
755/* end of Fatal Error manager macros */
756
757/* Bitfield handler macros */
758
759/*
760 *  This routine sets _output to the bit number of the first bit
761 *  set in _value.  _value is of CPU dependent type Priority_Bit_map_control.
762 *  This type may be either 16 or 32 bits wide although only the 16
763 *  least significant bits will be used.
764 *
765 *  There are a number of variables in using a "find first bit" type
766 *  instruction.
767 *
768 *    (1) What happens when run on a value of zero?
769 *    (2) Bits may be numbered from MSB to LSB or vice-versa.
770 *    (3) The numbering may be zero or one based.
771 *    (4) The "find first bit" instruction may search from MSB or LSB.
772 *
773 *  RTEMS guarantees that (1) will never happen so it is not a concern.
774 *  (2),(3), (4) are handled by the macros _CPU_Priority_mask() and
775 *  _CPU_Priority_Bits_index().  These three form a set of routines
776 *  which must logically operate together.  Bits in the _value are
777 *  set and cleared based on masks built by _CPU_Priority_mask().
778 *  The basic major and minor values calculated by _Priority_Major()
779 *  and _Priority_Minor() are "massaged" by _CPU_Priority_Bits_index()
780 *  to properly range between the values returned by the "find first bit"
781 *  instruction.  This makes it possible for _Priority_Get_highest() to
782 *  calculate the major and directly index into the minor table.
783 *  This mapping is necessary to ensure that 0 (a high priority major/minor)
784 *  is the first bit found.
785 *
786 *  This entire "find first bit" and mapping process depends heavily
787 *  on the manner in which a priority is broken into a major and minor
788 *  components with the major being the 4 MSB of a priority and minor
789 *  the 4 LSB.  Thus (0 << 4) + 0 corresponds to priority 0 -- the highest
790 *  priority.  And (15 << 4) + 14 corresponds to priority 254 -- the next
791 *  to the lowest priority.
792 *
793 *  If your CPU does not have a "find first bit" instruction, then
794 *  there are ways to make do without it.  Here are a handful of ways
795 *  to implement this in software:
796 *
797 *    - a series of 16 bit test instructions
798 *    - a "binary search using if's"
799 *    - _number = 0
800 *      if _value > 0x00ff
801 *        _value >>=8
802 *        _number = 8;
803 *
804 *      if _value > 0x0000f
805 *        _value >=8
806 *        _number += 4
807 *
808 *      _number += bit_set_table[ _value ]
809 *
810 *    where bit_set_table[ 16 ] has values which indicate the first
811 *      bit set
812 */
813
814#define _CPU_Bitfield_Find_first_bit( _value, _output ) \
815  { \
816    asm volatile ("cntlzw %0, %1" : "=r" ((_output)), "=r" ((_value)) : \
817                  "1" ((_value))); \
818  }
819
820/* end of Bitfield handler macros */
821
822/*
823 *  This routine builds the mask which corresponds to the bit fields
824 *  as searched by _CPU_Bitfield_Find_first_bit().  See the discussion
825 *  for that routine.
826 */
827
828#define _CPU_Priority_Mask( _bit_number ) \
829  ( 0x80000000 >> (_bit_number) )
830
831/*
832 *  This routine translates the bit numbers returned by
833 *  _CPU_Bitfield_Find_first_bit() into something suitable for use as
834 *  a major or minor component of a priority.  See the discussion
835 *  for that routine.
836 */
837
838#define _CPU_Priority_bits_index( _priority ) \
839  (_priority)
840
841/* end of Priority handler macros */
842
843/* variables */
844
845extern const unsigned32 _CPU_msrs[4];
846
847/* functions */
848
849/*
850 *  _CPU_Initialize
851 *
852 *  This routine performs CPU dependent initialization.
853 */
854
855void _CPU_Initialize(
856  rtems_cpu_table  *cpu_table,
857  void            (*thread_dispatch)
858);
859
860
861/*
862 *  _CPU_Install_interrupt_stack
863 *
864 *  This routine installs the hardware interrupt stack pointer.
865 *
866 *  NOTE:  It need only be provided if CPU_HAS_HARDWARE_INTERRUPT_STACK
867 *         is TRUE.
868 */
869
870void _CPU_Install_interrupt_stack( void );
871
872/*
873 *  _CPU_Context_switch
874 *
875 *  This routine switches from the run context to the heir context.
876 */
877
878void _CPU_Context_switch(
879  Context_Control  *run,
880  Context_Control  *heir
881);
882
883/*
884 *  _CPU_Context_restore
885 *
886 *  This routine is generallu used only to restart self in an
887 *  efficient manner.  It may simply be a label in _CPU_Context_switch.
888 *
889 *  NOTE: May be unnecessary to reload some registers.
890 */
891
892void _CPU_Context_restore(
893  Context_Control *new_context
894);
895
896/*
897 *  _CPU_Context_save_fp
898 *
899 *  This routine saves the floating point context passed to it.
900 */
901
902void _CPU_Context_save_fp(
903  void **fp_context_ptr
904);
905
906/*
907 *  _CPU_Context_restore_fp
908 *
909 *  This routine restores the floating point context passed to it.
910 */
911
912void _CPU_Context_restore_fp(
913  void **fp_context_ptr
914);
915
916void _CPU_Fatal_error(
917  unsigned32 _error
918);
919
920/*  The following routine swaps the endian format of an unsigned int.
921 *  It must be static because it is referenced indirectly.
922 *
923 *  This version will work on any processor, but if there is a better
924 *  way for your CPU PLEASE use it.  The most common way to do this is to:
925 *
926 *     swap least significant two bytes with 16-bit rotate
927 *     swap upper and lower 16-bits
928 *     swap most significant two bytes with 16-bit rotate
929 *
930 *  Some CPUs have special instructions which swap a 32-bit quantity in
931 *  a single instruction (e.g. i486).  It is probably best to avoid
932 *  an "endian swapping control bit" in the CPU.  One good reason is
933 *  that interrupts would probably have to be disabled to insure that
934 *  an interrupt does not try to access the same "chunk" with the wrong
935 *  endian.  Another good reason is that on some CPUs, the endian bit
936 *  endianness for ALL fetches -- both code and data -- so the code
937 *  will be fetched incorrectly.
938 */
939 
940static inline unsigned int CPU_swap_u32(
941  unsigned int value
942)
943{
944  unsigned32 swapped;
945 
946  asm volatile("rlwimi %0,%1,8,24,31;"
947               "rlwimi %0,%1,24,16,23;"
948               "rlwimi %0,%1,8,8,15;"
949               "rlwimi %0,%1,24,0,7;" :
950               "=&r" ((swapped)) : "r" ((value)));
951
952  return( swapped );
953}
954
955#define CPU_swap_u16( value ) \
956  (((value&0xff) << 8) | ((value >> 8)&0xff))
957
958#endif /* ndef ASM */
959
960#ifdef __cplusplus
961}
962#endif
963
964#endif
Note: See TracBrowser for help on using the repository browser.