1 | #define GDB_STUB_ENABLE_THREAD_SUPPORT 1 |
---|
2 | /******************************************************************************* |
---|
3 | |
---|
4 | THIS SOFTWARE IS NOT COPYRIGHTED |
---|
5 | |
---|
6 | The following software is offered for use in the public domain. |
---|
7 | There is no warranty with regard to this software or its performance |
---|
8 | and the user must accept the software "AS IS" with all faults. |
---|
9 | |
---|
10 | THE CONTRIBUTORS DISCLAIM ANY WARRANTIES, EXPRESS OR IMPLIED, WITH |
---|
11 | REGARD TO THIS SOFTWARE INCLUDING BUT NOT LIMITED TO THE WARRANTIES |
---|
12 | OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. |
---|
13 | |
---|
14 | $Id$ |
---|
15 | |
---|
16 | ******************************************************************************** |
---|
17 | * |
---|
18 | * r46kstub.c -- target debugging stub for the IDT R4600 Orion processor |
---|
19 | * |
---|
20 | * This module is based on the stub for the Hitachi SH processor written by |
---|
21 | * Ben Lee and Steve Chamberlain and supplied with gdb 4.16. The latter |
---|
22 | * in turn "is originally based on an m68k software stub written by Glenn |
---|
23 | * Engel at HP, but has changed quite a bit." The changes for the R4600 |
---|
24 | * were written by C. M. Heard at VVNET. They were based in part on the |
---|
25 | * Algorithmics R4000 version of Phil Bunce's PMON program. |
---|
26 | * |
---|
27 | * Remote communication protocol: |
---|
28 | * |
---|
29 | * A debug packet whose contents are <data> |
---|
30 | * is encapsulated for transmission in the form: |
---|
31 | * |
---|
32 | * $ <data> # CSUM1 CSUM2 |
---|
33 | * |
---|
34 | * <data> must be ASCII alphanumeric and cannot include characters |
---|
35 | * '$' or '#'. If <data> starts with two characters followed by |
---|
36 | * ':', then the existing stubs interpret this as a sequence number. |
---|
37 | * |
---|
38 | * CSUM1 and CSUM2 are ascii hex representation of an 8-bit |
---|
39 | * checksum of <data>, the most significant nibble is sent first. |
---|
40 | * the hex digits 0-9,a-f are used. |
---|
41 | * |
---|
42 | * Receiver responds with: |
---|
43 | * |
---|
44 | * + if CSUM is correct |
---|
45 | * - if CSUM is incorrect |
---|
46 | * |
---|
47 | * <data> is as follows. All values are encoded in ascii hex digits. |
---|
48 | * |
---|
49 | * Request Packet |
---|
50 | * |
---|
51 | * read registers g |
---|
52 | * reply XX....X Each byte of register data |
---|
53 | * is described by two hex digits. |
---|
54 | * Registers are in the internal order |
---|
55 | * for GDB, and the bytes in a register |
---|
56 | * are in the same order the machine uses. |
---|
57 | * or ENN for an error. |
---|
58 | * |
---|
59 | * write regs GXX..XX Each byte of register data |
---|
60 | * is described by two hex digits. |
---|
61 | * reply OK for success |
---|
62 | * ENN for an error |
---|
63 | * |
---|
64 | * write reg Pn...=r... Write register n... with value r.... |
---|
65 | * reply OK for success |
---|
66 | * ENN for an error |
---|
67 | * |
---|
68 | * read mem mAA..AA,LLLL AA..AA is address, LLLL is length. |
---|
69 | * reply XX..XX XX..XX is mem contents |
---|
70 | * Can be fewer bytes than requested |
---|
71 | * if able to read only part of the data. |
---|
72 | * or ENN NN is errno |
---|
73 | * |
---|
74 | * write mem MAA..AA,LLLL:XX..XX |
---|
75 | * AA..AA is address, |
---|
76 | * LLLL is number of bytes, |
---|
77 | * XX..XX is data |
---|
78 | * reply OK for success |
---|
79 | * ENN for an error (this includes the case |
---|
80 | * where only part of the data was |
---|
81 | * written). |
---|
82 | * |
---|
83 | * cont cAA..AA AA..AA is address to resume |
---|
84 | * If AA..AA is omitted, |
---|
85 | * resume at same address. |
---|
86 | * |
---|
87 | * step sAA..AA AA..AA is address to resume |
---|
88 | * If AA..AA is omitted, |
---|
89 | * resume at same address. |
---|
90 | * |
---|
91 | * There is no immediate reply to step or cont. |
---|
92 | * The reply comes when the machine stops. |
---|
93 | * It is SAA AA is the "signal number" |
---|
94 | * |
---|
95 | * last signal ? Reply with the reason for stopping. |
---|
96 | * This is the same reply as is generated |
---|
97 | * for step or cont: SAA where AA is the |
---|
98 | * signal number. |
---|
99 | * |
---|
100 | * detach D Host is detaching. Reply OK and |
---|
101 | * end remote debugging session. |
---|
102 | * |
---|
103 | * reserved <other> On other requests, the stub should |
---|
104 | * ignore the request and send an empty |
---|
105 | * response ($#<checksum>). This way |
---|
106 | * we can extend the protocol and GDB |
---|
107 | * can tell whether the stub it is |
---|
108 | * talking to uses the old or the new. |
---|
109 | * |
---|
110 | * Responses can be run-length encoded to save space. A '*' means that |
---|
111 | * the next character is an ASCII encoding giving a repeat count which |
---|
112 | * stands for that many repetitions of the character preceding the '*'. |
---|
113 | * The encoding is n+29, yielding a printable character when n >=3 |
---|
114 | * (which is where rle starts to win). Don't use n > 99 since gdb |
---|
115 | * masks each character is receives with 0x7f in order to strip off |
---|
116 | * the parity bit. |
---|
117 | * |
---|
118 | * As an example, "0* " means the same thing as "0000". |
---|
119 | * |
---|
120 | *******************************************************************************/ |
---|
121 | |
---|
122 | |
---|
123 | #include <string.h> |
---|
124 | #include <signal.h> |
---|
125 | #include "mips_opcode.h" |
---|
126 | /* #include "memlimits.h" */ |
---|
127 | #include <rtems.h> |
---|
128 | #include "gdb_if.h" |
---|
129 | |
---|
130 | extern int printk(const char *fmt, ...); |
---|
131 | |
---|
132 | /* Change it to something meaningful when debugging */ |
---|
133 | #undef ASSERT |
---|
134 | #define ASSERT(x) if(!(x)) printk("ASSERT: stub: %d\n", __LINE__) |
---|
135 | |
---|
136 | /***************/ |
---|
137 | /* Exception Codes */ |
---|
138 | #define EXC_INT 0 /* External interrupt */ |
---|
139 | #define EXC_MOD 1 /* TLB modification exception */ |
---|
140 | #define EXC_TLBL 2 /* TLB miss (Load or Ifetch) */ |
---|
141 | #define EXC_TLBS 3 /* TLB miss (Store) */ |
---|
142 | #define EXC_ADEL 4 /* Address error (Load or Ifetch) */ |
---|
143 | #define EXC_ADES 5 /* Address error (Store) */ |
---|
144 | #define EXC_IBE 6 /* Bus error (Ifetch) */ |
---|
145 | #define EXC_DBE 7 /* Bus error (data load or store) */ |
---|
146 | #define EXC_SYS 8 /* System call */ |
---|
147 | #define EXC_BP 9 /* Break point */ |
---|
148 | #define EXC_RI 10 /* Reserved instruction */ |
---|
149 | #define EXC_CPU 11 /* Coprocessor unusable */ |
---|
150 | #define EXC_OVF 12 /* Arithmetic overflow */ |
---|
151 | #define EXC_TRAP 13 /* Trap exception */ |
---|
152 | #define EXC_FPE 15 /* Floating Point Exception */ |
---|
153 | |
---|
154 | /* FPU Control/Status register fields */ |
---|
155 | #define CSR_FS 0x01000000 /* Set to flush denormals to zero */ |
---|
156 | #define CSR_C 0x00800000 /* Condition bit (set by FP compare) */ |
---|
157 | |
---|
158 | #define CSR_CMASK (0x3f<<12) |
---|
159 | #define CSR_CE 0x00020000 |
---|
160 | #define CSR_CV 0x00010000 |
---|
161 | #define CSR_CZ 0x00008000 |
---|
162 | #define CSR_CO 0x00004000 |
---|
163 | #define CSR_CU 0x00002000 |
---|
164 | #define CSR_CI 0x00001000 |
---|
165 | |
---|
166 | #define CSR_EMASK (0x1f<<7) |
---|
167 | #define CSR_EV 0x00000800 |
---|
168 | #define CSR_EZ 0x00000400 |
---|
169 | #define CSR_EO 0x00000200 |
---|
170 | #define CSR_EU 0x00000100 |
---|
171 | #define CSR_EI 0x00000080 |
---|
172 | |
---|
173 | #define CSR_FMASK (0x1f<<2) |
---|
174 | #define CSR_FV 0x00000040 |
---|
175 | #define CSR_FZ 0x00000020 |
---|
176 | #define CSR_FO 0x00000010 |
---|
177 | #define CSR_FU 0x00000008 |
---|
178 | #define CSR_FI 0x00000004 |
---|
179 | |
---|
180 | #define CSR_RMODE_MASK (0x3<<0) |
---|
181 | #define CSR_RM 0x00000003 |
---|
182 | #define CSR_RP 0x00000002 |
---|
183 | #define CSR_RZ 0x00000001 |
---|
184 | #define CSR_RN 0x00000000 |
---|
185 | |
---|
186 | /***************/ |
---|
187 | |
---|
188 | /* |
---|
189 | * Saved register information. Must be prepared by the exception |
---|
190 | * preprocessor before handle_exception is invoked. |
---|
191 | */ |
---|
192 | #if (__mips == 3) |
---|
193 | typedef long long mips_register_t; |
---|
194 | #define R_SZ 8 |
---|
195 | #elif (__mips == 1) |
---|
196 | typedef unsigned int mips_register_t; |
---|
197 | #define R_SZ 4 |
---|
198 | #else |
---|
199 | #error "unknown MIPS ISA" |
---|
200 | #endif |
---|
201 | static mips_register_t *registers; |
---|
202 | |
---|
203 | #if defined(GDB_STUB_ENABLE_THREAD_SUPPORT) |
---|
204 | static char do_threads; /* != 0 means we are supporting threads */ |
---|
205 | #endif |
---|
206 | |
---|
207 | /* |
---|
208 | * The following external functions provide character input and output. |
---|
209 | */ |
---|
210 | extern char getDebugChar (void); |
---|
211 | extern void putDebugChar (char); |
---|
212 | |
---|
213 | |
---|
214 | |
---|
215 | /* |
---|
216 | * The following definitions are used for the gdb stub memory map |
---|
217 | */ |
---|
218 | struct memseg |
---|
219 | { |
---|
220 | unsigned begin, end, opts; |
---|
221 | }; |
---|
222 | |
---|
223 | static int is_readable(unsigned,unsigned); |
---|
224 | static int is_writeable(unsigned,unsigned); |
---|
225 | static int is_steppable(unsigned); |
---|
226 | |
---|
227 | |
---|
228 | |
---|
229 | |
---|
230 | |
---|
231 | |
---|
232 | /* |
---|
233 | * BUFMAX defines the maximum number of characters in the inbound & outbound |
---|
234 | * packet buffers. At least 4+(sizeof registers)*2 bytes will be needed for |
---|
235 | * register packets. Memory dump packets can profitably use even more. |
---|
236 | */ |
---|
237 | #define BUFMAX 1500 |
---|
238 | |
---|
239 | static char inBuffer[BUFMAX]; |
---|
240 | static char outBuffer[BUFMAX]; |
---|
241 | |
---|
242 | /* Structure to keep info on a z-breaks */ |
---|
243 | #define BREAKNUM 32 |
---|
244 | |
---|
245 | struct z0break |
---|
246 | { |
---|
247 | /* List support */ |
---|
248 | struct z0break *next; |
---|
249 | struct z0break *prev; |
---|
250 | |
---|
251 | /* Location, preserved data */ |
---|
252 | unsigned *address; |
---|
253 | unsigned instr; |
---|
254 | }; |
---|
255 | |
---|
256 | static struct z0break z0break_arr[BREAKNUM]; |
---|
257 | static struct z0break *z0break_avail = NULL; |
---|
258 | static struct z0break *z0break_list = NULL; |
---|
259 | |
---|
260 | |
---|
261 | /* |
---|
262 | * Convert an int to hex. |
---|
263 | */ |
---|
264 | const char gdb_hexchars[] = "0123456789abcdef"; |
---|
265 | |
---|
266 | #define highhex(x) gdb_hexchars [(x >> 4) & 0xf] |
---|
267 | #define lowhex(x) gdb_hexchars [x & 0xf] |
---|
268 | |
---|
269 | |
---|
270 | /* |
---|
271 | * Convert length bytes of data starting at addr into hex, placing the |
---|
272 | * result in buf. Return a pointer to the last (null) char in buf. |
---|
273 | */ |
---|
274 | static char * |
---|
275 | mem2hex (void *_addr, int length, char *buf) |
---|
276 | { |
---|
277 | unsigned int addr = (unsigned int) _addr; |
---|
278 | |
---|
279 | if (((addr & 0x7) == 0) && ((length & 0x7) == 0)) /* dword aligned */ |
---|
280 | { |
---|
281 | long long *source = (long long *) (addr); |
---|
282 | long long *limit = (long long *) (addr + length); |
---|
283 | |
---|
284 | while (source < limit) |
---|
285 | { |
---|
286 | int i; |
---|
287 | long long k = *source++; |
---|
288 | |
---|
289 | for (i = 15; i >= 0; i--) |
---|
290 | *buf++ = gdb_hexchars [(k >> (i*4)) & 0xf]; |
---|
291 | } |
---|
292 | } |
---|
293 | else if (((addr & 0x3) == 0) && ((length & 0x3) == 0)) /* word aligned */ |
---|
294 | { |
---|
295 | int *source = (int *) (addr); |
---|
296 | int *limit = (int *) (addr + length); |
---|
297 | |
---|
298 | while (source < limit) |
---|
299 | { |
---|
300 | int i; |
---|
301 | int k = *source++; |
---|
302 | |
---|
303 | for (i = 7; i >= 0; i--) |
---|
304 | *buf++ = gdb_hexchars [(k >> (i*4)) & 0xf]; |
---|
305 | } |
---|
306 | } |
---|
307 | else if (((addr & 0x1) == 0) && ((length & 0x1) == 0)) /* halfword aligned */ |
---|
308 | { |
---|
309 | short *source = (short *) (addr); |
---|
310 | short *limit = (short *) (addr + length); |
---|
311 | |
---|
312 | while (source < limit) |
---|
313 | { |
---|
314 | int i; |
---|
315 | short k = *source++; |
---|
316 | |
---|
317 | for (i = 3; i >= 0; i--) |
---|
318 | *buf++ = gdb_hexchars [(k >> (i*4)) & 0xf]; |
---|
319 | } |
---|
320 | } |
---|
321 | else /* byte aligned */ |
---|
322 | { |
---|
323 | char *source = (char *) (addr); |
---|
324 | char *limit = (char *) (addr + length); |
---|
325 | |
---|
326 | while (source < limit) |
---|
327 | { |
---|
328 | int i; |
---|
329 | char k = *source++; |
---|
330 | |
---|
331 | for (i = 1; i >= 0; i--) |
---|
332 | *buf++ = gdb_hexchars [(k >> (i*4)) & 0xf]; |
---|
333 | } |
---|
334 | } |
---|
335 | |
---|
336 | *buf = '\0'; |
---|
337 | return (buf); |
---|
338 | } |
---|
339 | |
---|
340 | |
---|
341 | /* |
---|
342 | * Convert a hex character to an int. |
---|
343 | */ |
---|
344 | static int |
---|
345 | hex (char ch) |
---|
346 | { |
---|
347 | if ((ch >= 'a') && (ch <= 'f')) |
---|
348 | return (ch - 'a' + 10); |
---|
349 | if ((ch >= '0') && (ch <= '9')) |
---|
350 | return (ch - '0'); |
---|
351 | if ((ch >= 'A') && (ch <= 'F')) |
---|
352 | return (ch - 'A' + 10); |
---|
353 | return (-1); |
---|
354 | } |
---|
355 | |
---|
356 | |
---|
357 | /* |
---|
358 | * Convert a string from hex to int until a non-hex digit |
---|
359 | * is found. Return the number of characters processed. |
---|
360 | */ |
---|
361 | static int |
---|
362 | hexToInt (char **ptr, int *intValue) |
---|
363 | { |
---|
364 | int numChars = 0; |
---|
365 | int hexValue; |
---|
366 | |
---|
367 | *intValue = 0; |
---|
368 | |
---|
369 | while (**ptr) |
---|
370 | { |
---|
371 | hexValue = hex (**ptr); |
---|
372 | if (hexValue >= 0) |
---|
373 | { |
---|
374 | *intValue = (*intValue << 4) | hexValue; |
---|
375 | numChars++; |
---|
376 | } |
---|
377 | else |
---|
378 | break; |
---|
379 | |
---|
380 | (*ptr)++; |
---|
381 | } |
---|
382 | |
---|
383 | return (numChars); |
---|
384 | } |
---|
385 | |
---|
386 | |
---|
387 | /* |
---|
388 | * Convert a string from hex to long long until a non-hex |
---|
389 | * digit is found. Return the number of characters processed. |
---|
390 | */ |
---|
391 | static int |
---|
392 | hexToLongLong (char **ptr, long long *intValue) |
---|
393 | { |
---|
394 | int numChars = 0; |
---|
395 | int hexValue; |
---|
396 | |
---|
397 | *intValue = 0; |
---|
398 | |
---|
399 | while (**ptr) |
---|
400 | { |
---|
401 | hexValue = hex (**ptr); |
---|
402 | if (hexValue >= 0) |
---|
403 | { |
---|
404 | *intValue = (*intValue << 4) | hexValue; |
---|
405 | numChars++; |
---|
406 | } |
---|
407 | else |
---|
408 | break; |
---|
409 | |
---|
410 | (*ptr)++; |
---|
411 | } |
---|
412 | |
---|
413 | return (numChars); |
---|
414 | } |
---|
415 | |
---|
416 | |
---|
417 | /* |
---|
418 | * Convert the hex array buf into binary, placing the result at the |
---|
419 | * specified address. If the conversion fails at any point (i.e., |
---|
420 | * if fewer bytes are written than indicated by the size parameter) |
---|
421 | * then return 0; otherwise return 1. |
---|
422 | */ |
---|
423 | static int |
---|
424 | hex2mem (char *buf, void *_addr, int length) |
---|
425 | { |
---|
426 | unsigned int addr = (unsigned int) _addr; |
---|
427 | if (((addr & 0x7) == 0) && ((length & 0x7) == 0)) /* dword aligned */ |
---|
428 | { |
---|
429 | long long *target = (long long *) (addr); |
---|
430 | long long *limit = (long long *) (addr + length); |
---|
431 | |
---|
432 | while (target < limit) |
---|
433 | { |
---|
434 | int i, j; |
---|
435 | long long k = 0; |
---|
436 | |
---|
437 | for (i = 0; i < 16; i++) |
---|
438 | if ((j = hex(*buf++)) < 0) |
---|
439 | return 0; |
---|
440 | else |
---|
441 | k = (k << 4) + j; |
---|
442 | *target++ = k; |
---|
443 | } |
---|
444 | } |
---|
445 | else if (((addr & 0x3) == 0) && ((length & 0x3) == 0)) /* word aligned */ |
---|
446 | { |
---|
447 | int *target = (int *) (addr); |
---|
448 | int *limit = (int *) (addr + length); |
---|
449 | |
---|
450 | while (target < limit) |
---|
451 | { |
---|
452 | int i, j; |
---|
453 | int k = 0; |
---|
454 | |
---|
455 | for (i = 0; i < 8; i++) |
---|
456 | if ((j = hex(*buf++)) < 0) |
---|
457 | return 0; |
---|
458 | else |
---|
459 | k = (k << 4) + j; |
---|
460 | *target++ = k; |
---|
461 | } |
---|
462 | } |
---|
463 | else if (((addr & 0x1) == 0) && ((length & 0x1) == 0)) /* halfword aligned */ |
---|
464 | { |
---|
465 | short *target = (short *) (addr); |
---|
466 | short *limit = (short *) (addr + length); |
---|
467 | |
---|
468 | while (target < limit) |
---|
469 | { |
---|
470 | int i, j; |
---|
471 | short k = 0; |
---|
472 | |
---|
473 | for (i = 0; i < 4; i++) |
---|
474 | if ((j = hex(*buf++)) < 0) |
---|
475 | return 0; |
---|
476 | else |
---|
477 | k = (k << 4) + j; |
---|
478 | *target++ = k; |
---|
479 | } |
---|
480 | } |
---|
481 | else /* byte aligned */ |
---|
482 | { |
---|
483 | char *target = (char *) (addr); |
---|
484 | char *limit = (char *) (addr + length); |
---|
485 | |
---|
486 | while (target < limit) |
---|
487 | { |
---|
488 | int i, j; |
---|
489 | char k = 0; |
---|
490 | |
---|
491 | for (i = 0; i < 2; i++) |
---|
492 | if ((j = hex(*buf++)) < 0) |
---|
493 | return 0; |
---|
494 | else |
---|
495 | k = (k << 4) + j; |
---|
496 | *target++ = k; |
---|
497 | } |
---|
498 | } |
---|
499 | |
---|
500 | return 1; |
---|
501 | } |
---|
502 | |
---|
503 | |
---|
504 | /* Convert the binary stream in BUF to memory. |
---|
505 | |
---|
506 | Gdb will escape $, #, and the escape char (0x7d). |
---|
507 | COUNT is the total number of bytes to write into |
---|
508 | memory. */ |
---|
509 | static unsigned char * |
---|
510 | bin2mem ( |
---|
511 | unsigned char *buf, |
---|
512 | unsigned char *mem, |
---|
513 | int count |
---|
514 | ) |
---|
515 | { |
---|
516 | int i; |
---|
517 | |
---|
518 | for (i = 0; i < count; i++) { |
---|
519 | /* Check for any escaped characters. Be paranoid and |
---|
520 | only unescape chars that should be escaped. */ |
---|
521 | if (*buf == 0x7d) { |
---|
522 | switch (*(buf+1)) { |
---|
523 | case 0x3: /* # */ |
---|
524 | case 0x4: /* $ */ |
---|
525 | case 0x5d: /* escape char */ |
---|
526 | buf++; |
---|
527 | *buf |= 0x20; |
---|
528 | break; |
---|
529 | default: |
---|
530 | /* nothing */ |
---|
531 | break; |
---|
532 | } |
---|
533 | } |
---|
534 | |
---|
535 | *mem++ = *buf++; |
---|
536 | } |
---|
537 | |
---|
538 | return mem; |
---|
539 | } |
---|
540 | |
---|
541 | |
---|
542 | |
---|
543 | /* |
---|
544 | * Scan the input stream for a sequence for the form $<data>#<checksum>. |
---|
545 | */ |
---|
546 | static void |
---|
547 | getpacket (char *buffer) |
---|
548 | { |
---|
549 | unsigned char checksum; |
---|
550 | unsigned char xmitcsum; |
---|
551 | int i; |
---|
552 | int count; |
---|
553 | char ch; |
---|
554 | do |
---|
555 | { |
---|
556 | /* wait around for the start character, ignore all other characters */ |
---|
557 | while ((ch = getDebugChar ()) != '$'); |
---|
558 | checksum = 0; |
---|
559 | xmitcsum = -1; |
---|
560 | |
---|
561 | count = 0; |
---|
562 | |
---|
563 | /* now, read until a # or end of buffer is found */ |
---|
564 | while ( (count < BUFMAX-1) && ((ch = getDebugChar ()) != '#') ) |
---|
565 | checksum += (buffer[count++] = ch); |
---|
566 | |
---|
567 | /* make sure that the buffer is null-terminated */ |
---|
568 | buffer[count] = '\0'; |
---|
569 | |
---|
570 | if (ch == '#') |
---|
571 | { |
---|
572 | xmitcsum = hex (getDebugChar ()) << 4; |
---|
573 | xmitcsum += hex (getDebugChar ()); |
---|
574 | if (checksum != xmitcsum) |
---|
575 | putDebugChar ('-'); /* failed checksum */ |
---|
576 | else |
---|
577 | { |
---|
578 | putDebugChar ('+'); /* successful transfer */ |
---|
579 | /* if a sequence char is present, reply the sequence ID */ |
---|
580 | if (buffer[2] == ':') |
---|
581 | { |
---|
582 | putDebugChar (buffer[0]); |
---|
583 | putDebugChar (buffer[1]); |
---|
584 | /* remove sequence chars from buffer */ |
---|
585 | for (i = 3; i <= count; i++) |
---|
586 | buffer[i - 3] = buffer[i]; |
---|
587 | } |
---|
588 | } |
---|
589 | } |
---|
590 | } |
---|
591 | while (checksum != xmitcsum); |
---|
592 | } |
---|
593 | |
---|
594 | |
---|
595 | /* |
---|
596 | * Send the packet in buffer and wait for a positive acknowledgement. |
---|
597 | */ |
---|
598 | static void |
---|
599 | putpacket (char *buffer) |
---|
600 | { |
---|
601 | int checksum; |
---|
602 | |
---|
603 | /* $<packet info>#<checksum> */ |
---|
604 | do |
---|
605 | { |
---|
606 | char *src = buffer; |
---|
607 | putDebugChar ('$'); |
---|
608 | checksum = 0; |
---|
609 | |
---|
610 | while (*src != '\0') |
---|
611 | { |
---|
612 | int runlen = 0; |
---|
613 | |
---|
614 | /* Do run length encoding */ |
---|
615 | while ((src[runlen] == src[0]) && (runlen < 99)) |
---|
616 | runlen++; |
---|
617 | if (runlen > 3) |
---|
618 | { |
---|
619 | int encode; |
---|
620 | /* Got a useful amount */ |
---|
621 | putDebugChar (*src); |
---|
622 | checksum += *src; |
---|
623 | putDebugChar ('*'); |
---|
624 | checksum += '*'; |
---|
625 | checksum += (encode = (runlen - 4) + ' '); |
---|
626 | putDebugChar (encode); |
---|
627 | src += runlen; |
---|
628 | } |
---|
629 | else |
---|
630 | { |
---|
631 | putDebugChar (*src); |
---|
632 | checksum += *src; |
---|
633 | src++; |
---|
634 | } |
---|
635 | } |
---|
636 | |
---|
637 | putDebugChar ('#'); |
---|
638 | putDebugChar (highhex (checksum)); |
---|
639 | putDebugChar (lowhex (checksum)); |
---|
640 | } |
---|
641 | while (getDebugChar () != '+'); |
---|
642 | } |
---|
643 | |
---|
644 | |
---|
645 | |
---|
646 | |
---|
647 | |
---|
648 | |
---|
649 | |
---|
650 | /* |
---|
651 | * Saved instruction data for single step support |
---|
652 | */ |
---|
653 | static struct |
---|
654 | { |
---|
655 | unsigned *targetAddr; |
---|
656 | unsigned savedInstr; |
---|
657 | } |
---|
658 | instrBuffer; |
---|
659 | |
---|
660 | |
---|
661 | /* |
---|
662 | * If a step breakpoint was planted restore the saved instruction. |
---|
663 | */ |
---|
664 | static void |
---|
665 | undoSStep (void) |
---|
666 | { |
---|
667 | if (instrBuffer.targetAddr != NULL) |
---|
668 | { |
---|
669 | *instrBuffer.targetAddr = instrBuffer.savedInstr; |
---|
670 | instrBuffer.targetAddr = NULL; |
---|
671 | } |
---|
672 | instrBuffer.savedInstr = NOP_INSTR; |
---|
673 | } |
---|
674 | |
---|
675 | |
---|
676 | /* |
---|
677 | * If a single step is requested put a temporary breakpoint at the instruction |
---|
678 | * which logically follows the next one to be executed. If the next instruction |
---|
679 | * is a branch instruction then skip the instruction in the delay slot. NOTE: |
---|
680 | * ERET instructions are NOT handled, as it is impossible to single-step through |
---|
681 | * the exit code in an exception handler. In addition, no attempt is made to |
---|
682 | * do anything about BC0T and BC0F, since a condition bit for coprocessor 0 |
---|
683 | * is not defined on the R4600. Finally, BC2T and BC2F are ignored since there |
---|
684 | * is no coprocessor 2 on a 4600. |
---|
685 | */ |
---|
686 | static void |
---|
687 | doSStep (void) |
---|
688 | { |
---|
689 | struct z0break *z0; |
---|
690 | InstFmt inst; |
---|
691 | |
---|
692 | instrBuffer.targetAddr = (unsigned *)(registers[PC]+4); /* set default */ |
---|
693 | |
---|
694 | inst.word = *(unsigned *)registers[PC]; /* read the next instruction */ |
---|
695 | |
---|
696 | switch (inst.RType.op) { /* override default if branch */ |
---|
697 | case OP_SPECIAL: |
---|
698 | switch (inst.RType.func) { |
---|
699 | case OP_JR: |
---|
700 | case OP_JALR: |
---|
701 | instrBuffer.targetAddr = |
---|
702 | (unsigned *)registers[inst.RType.rs]; |
---|
703 | break; |
---|
704 | }; |
---|
705 | break; |
---|
706 | |
---|
707 | case OP_REGIMM: |
---|
708 | switch (inst.IType.rt) { |
---|
709 | case OP_BLTZ: |
---|
710 | case OP_BLTZL: |
---|
711 | case OP_BLTZAL: |
---|
712 | case OP_BLTZALL: |
---|
713 | if (registers[inst.IType.rs] < 0 ) |
---|
714 | instrBuffer.targetAddr = |
---|
715 | (unsigned *)(((signed short)inst.IType.imm<<2) |
---|
716 | + (registers[PC]+4)); |
---|
717 | else |
---|
718 | instrBuffer.targetAddr = (unsigned*)(registers[PC]+8); |
---|
719 | break; |
---|
720 | case OP_BGEZ: |
---|
721 | case OP_BGEZL: |
---|
722 | case OP_BGEZAL: |
---|
723 | case OP_BGEZALL: |
---|
724 | if (registers[inst.IType.rs] >= 0 ) |
---|
725 | instrBuffer.targetAddr = |
---|
726 | (unsigned *)(((signed short)inst.IType.imm<<2) |
---|
727 | + (registers[PC]+4)); |
---|
728 | else |
---|
729 | instrBuffer.targetAddr = (unsigned*)(registers[PC]+8); |
---|
730 | break; |
---|
731 | }; |
---|
732 | break; |
---|
733 | |
---|
734 | case OP_J: |
---|
735 | case OP_JAL: |
---|
736 | instrBuffer.targetAddr = |
---|
737 | (unsigned *)((inst.JType.target<<2) + ((registers[PC]+4)&0xf0000000)); |
---|
738 | break; |
---|
739 | |
---|
740 | case OP_BEQ: |
---|
741 | case OP_BEQL: |
---|
742 | if (registers[inst.IType.rs] == registers[inst.IType.rt]) |
---|
743 | instrBuffer.targetAddr = |
---|
744 | (unsigned *)(((signed short)inst.IType.imm<<2) + (registers[PC]+4)); |
---|
745 | else |
---|
746 | instrBuffer.targetAddr = (unsigned*)(registers[PC]+8); |
---|
747 | break; |
---|
748 | case OP_BNE: |
---|
749 | case OP_BNEL: |
---|
750 | if (registers[inst.IType.rs] != registers[inst.IType.rt]) |
---|
751 | instrBuffer.targetAddr = |
---|
752 | (unsigned *)(((signed short)inst.IType.imm<<2) + (registers[PC]+4)); |
---|
753 | else |
---|
754 | instrBuffer.targetAddr = (unsigned*)(registers[PC]+8); |
---|
755 | break; |
---|
756 | case OP_BLEZ: |
---|
757 | case OP_BLEZL: |
---|
758 | if (registers[inst.IType.rs] <= 0) |
---|
759 | instrBuffer.targetAddr = |
---|
760 | (unsigned *)(((signed short)inst.IType.imm<<2) + (registers[PC]+4)); |
---|
761 | else |
---|
762 | instrBuffer.targetAddr = (unsigned*)(registers[PC]+8); |
---|
763 | break; |
---|
764 | case OP_BGTZ: |
---|
765 | case OP_BGTZL: |
---|
766 | if (registers[inst.IType.rs] > 0) |
---|
767 | instrBuffer.targetAddr = |
---|
768 | (unsigned *)(((signed short)inst.IType.imm<<2) + (registers[PC]+4)); |
---|
769 | else |
---|
770 | instrBuffer.targetAddr = (unsigned*)(registers[PC]+8); |
---|
771 | break; |
---|
772 | |
---|
773 | case OP_COP1: |
---|
774 | if (inst.RType.rs == OP_BC) |
---|
775 | switch (inst.RType.rt) { |
---|
776 | case COPz_BCF: |
---|
777 | case COPz_BCFL: |
---|
778 | if (registers[FCSR] & CSR_C) |
---|
779 | instrBuffer.targetAddr = (unsigned*)(registers[PC]+8); |
---|
780 | else |
---|
781 | instrBuffer.targetAddr = |
---|
782 | (unsigned *)(((signed short)inst.IType.imm<<2) |
---|
783 | + (registers[PC]+4)); |
---|
784 | break; |
---|
785 | case COPz_BCT: |
---|
786 | case COPz_BCTL: |
---|
787 | if (registers[FCSR] & CSR_C) |
---|
788 | instrBuffer.targetAddr = |
---|
789 | (unsigned *)(((signed short)inst.IType.imm<<2) |
---|
790 | + (registers[PC]+4)); |
---|
791 | else |
---|
792 | instrBuffer.targetAddr = (unsigned*)(registers[PC]+8); |
---|
793 | break; |
---|
794 | }; |
---|
795 | break; |
---|
796 | } |
---|
797 | |
---|
798 | |
---|
799 | if( is_steppable((unsigned)instrBuffer.targetAddr) && *(instrBuffer.targetAddr) != BREAK_INSTR ) |
---|
800 | { |
---|
801 | instrBuffer.savedInstr = *instrBuffer.targetAddr; |
---|
802 | *instrBuffer.targetAddr = BREAK_INSTR; |
---|
803 | } |
---|
804 | else |
---|
805 | { |
---|
806 | instrBuffer.targetAddr = NULL; |
---|
807 | instrBuffer.savedInstr = NOP_INSTR; |
---|
808 | } |
---|
809 | return; |
---|
810 | } |
---|
811 | |
---|
812 | |
---|
813 | |
---|
814 | |
---|
815 | |
---|
816 | |
---|
817 | /* |
---|
818 | * Translate the R4600 exception code into a Unix-compatible signal. |
---|
819 | */ |
---|
820 | static int |
---|
821 | computeSignal (void) |
---|
822 | { |
---|
823 | int exceptionCode = (registers[CAUSE] & CAUSE_EXCMASK) >> CAUSE_EXCSHIFT; |
---|
824 | |
---|
825 | switch (exceptionCode) |
---|
826 | { |
---|
827 | case EXC_INT: |
---|
828 | /* External interrupt */ |
---|
829 | return SIGINT; |
---|
830 | |
---|
831 | case EXC_RI: |
---|
832 | /* Reserved instruction */ |
---|
833 | case EXC_CPU: |
---|
834 | /* Coprocessor unusable */ |
---|
835 | return SIGILL; |
---|
836 | |
---|
837 | case EXC_BP: |
---|
838 | /* Break point */ |
---|
839 | return SIGTRAP; |
---|
840 | |
---|
841 | case EXC_OVF: |
---|
842 | /* Arithmetic overflow */ |
---|
843 | case EXC_TRAP: |
---|
844 | /* Trap exception */ |
---|
845 | case EXC_FPE: |
---|
846 | /* Floating Point Exception */ |
---|
847 | return SIGFPE; |
---|
848 | |
---|
849 | case EXC_IBE: |
---|
850 | /* Bus error (Ifetch) */ |
---|
851 | case EXC_DBE: |
---|
852 | /* Bus error (data load or store) */ |
---|
853 | return SIGBUS; |
---|
854 | |
---|
855 | case EXC_MOD: |
---|
856 | /* TLB modification exception */ |
---|
857 | case EXC_TLBL: |
---|
858 | /* TLB miss (Load or Ifetch) */ |
---|
859 | case EXC_TLBS: |
---|
860 | /* TLB miss (Store) */ |
---|
861 | case EXC_ADEL: |
---|
862 | /* Address error (Load or Ifetch) */ |
---|
863 | case EXC_ADES: |
---|
864 | /* Address error (Store) */ |
---|
865 | return SIGSEGV; |
---|
866 | |
---|
867 | case EXC_SYS: |
---|
868 | /* System call */ |
---|
869 | return SIGSYS; |
---|
870 | |
---|
871 | default: |
---|
872 | return SIGTERM; |
---|
873 | } |
---|
874 | } |
---|
875 | |
---|
876 | /* |
---|
877 | * This support function prepares and sends the message containing the |
---|
878 | * basic information about this exception. |
---|
879 | */ |
---|
880 | |
---|
881 | void gdb_stub_report_exception_info( |
---|
882 | rtems_vector_number vector, |
---|
883 | CPU_Interrupt_frame *frame, |
---|
884 | int thread |
---|
885 | ) |
---|
886 | { |
---|
887 | char *optr; |
---|
888 | int sigval; |
---|
889 | |
---|
890 | optr = outBuffer; |
---|
891 | *optr++ = 'T'; |
---|
892 | sigval = computeSignal (); |
---|
893 | *optr++ = highhex (sigval); |
---|
894 | *optr++ = lowhex (sigval); |
---|
895 | |
---|
896 | *optr++ = highhex(SP); /*gdb_hexchars[SP]; */ |
---|
897 | *optr++ = lowhex(SP); |
---|
898 | *optr++ = ':'; |
---|
899 | optr = mem2hstr(optr, (unsigned char *)&frame->sp, R_SZ ); |
---|
900 | *optr++ = ';'; |
---|
901 | |
---|
902 | *optr++ = highhex(PC); /*gdb_hexchars[PC]; */ |
---|
903 | *optr++ = lowhex(PC); |
---|
904 | *optr++ = ':'; |
---|
905 | optr = mem2hstr(optr, (unsigned char *)&frame->epc, R_SZ ); |
---|
906 | *optr++ = ';'; |
---|
907 | |
---|
908 | #if defined(GDB_STUB_ENABLE_THREAD_SUPPORT) |
---|
909 | if (do_threads) |
---|
910 | { |
---|
911 | *optr++ = 't'; |
---|
912 | *optr++ = 'h'; |
---|
913 | *optr++ = 'r'; |
---|
914 | *optr++ = 'e'; |
---|
915 | *optr++ = 'a'; |
---|
916 | *optr++ = 'd'; |
---|
917 | *optr++ = ':'; |
---|
918 | optr = thread2vhstr(optr, thread); |
---|
919 | *optr++ = ';'; |
---|
920 | } |
---|
921 | #endif |
---|
922 | *optr++ = '\0'; |
---|
923 | } |
---|
924 | |
---|
925 | |
---|
926 | |
---|
927 | |
---|
928 | /* |
---|
929 | * Scratch frame used to retrieve contexts for different threads, so as |
---|
930 | * not to disrupt our current context on the stack |
---|
931 | */ |
---|
932 | CPU_Interrupt_frame current_thread_registers; |
---|
933 | |
---|
934 | |
---|
935 | |
---|
936 | /* |
---|
937 | * This function handles all exceptions. It only does two things: |
---|
938 | * it figures out why it was activated and tells gdb, and then it |
---|
939 | * reacts to gdb's requests. |
---|
940 | */ |
---|
941 | |
---|
942 | |
---|
943 | void handle_exception (rtems_vector_number vector, CPU_Interrupt_frame *frame) |
---|
944 | { |
---|
945 | int host_has_detached = 0; |
---|
946 | int regno, addr, length; |
---|
947 | char *ptr; |
---|
948 | int current_thread; /* current generic thread */ |
---|
949 | int thread; /* stopped thread: context exception happened in */ |
---|
950 | |
---|
951 | long long regval; |
---|
952 | void *regptr; |
---|
953 | int binary; |
---|
954 | |
---|
955 | |
---|
956 | registers = (mips_register_t *)frame; |
---|
957 | |
---|
958 | thread = 0; |
---|
959 | #if defined(GDB_STUB_ENABLE_THREAD_SUPPORT) |
---|
960 | if (do_threads) { |
---|
961 | thread = rtems_gdb_stub_get_current_thread(); |
---|
962 | } |
---|
963 | #endif |
---|
964 | current_thread = thread; |
---|
965 | |
---|
966 | |
---|
967 | { |
---|
968 | /* reapply all breakpoints regardless of how we came in */ |
---|
969 | struct z0break *z0, *zother; |
---|
970 | |
---|
971 | for (zother=z0break_list; zother!=NULL; zother=zother->next) |
---|
972 | { |
---|
973 | if( zother->instr == 0xffffffff ) |
---|
974 | { |
---|
975 | /* grab the instruction */ |
---|
976 | zother->instr = *(zother->address); |
---|
977 | /* and insert the breakpoint */ |
---|
978 | *(zother->address) = BREAK_INSTR; |
---|
979 | } |
---|
980 | } |
---|
981 | |
---|
982 | |
---|
983 | |
---|
984 | /* see if we're coming from a breakpoint */ |
---|
985 | if( *((unsigned *)frame->epc) == BREAK_INSTR ) |
---|
986 | { |
---|
987 | /* see if its one of our zbreaks */ |
---|
988 | for (z0=z0break_list; z0!=NULL; z0=z0->next) |
---|
989 | { |
---|
990 | if( (unsigned)z0->address == frame->epc) |
---|
991 | break; |
---|
992 | } |
---|
993 | if( z0 ) |
---|
994 | { |
---|
995 | /* restore the original instruction */ |
---|
996 | *(z0->address) = z0->instr; |
---|
997 | /* flag the breakpoint */ |
---|
998 | z0->instr = 0xffffffff; |
---|
999 | |
---|
1000 | /* |
---|
1001 | now when we return, we'll execute the original code in |
---|
1002 | the original state. This leaves our breakpoint inactive |
---|
1003 | since the break instruction isn't there, but we'll reapply |
---|
1004 | it the next time we come in via step or breakpoint |
---|
1005 | */ |
---|
1006 | } |
---|
1007 | else |
---|
1008 | { |
---|
1009 | /* not a zbreak, see if its our trusty stepping code */ |
---|
1010 | |
---|
1011 | /* |
---|
1012 | * Restore the saved instruction at |
---|
1013 | * the single-step target address. |
---|
1014 | */ |
---|
1015 | undoSStep(); |
---|
1016 | } |
---|
1017 | } |
---|
1018 | } |
---|
1019 | |
---|
1020 | |
---|
1021 | |
---|
1022 | |
---|
1023 | |
---|
1024 | /* reply to host that an exception has occurred with some basic info */ |
---|
1025 | gdb_stub_report_exception_info(vector, frame, thread); |
---|
1026 | putpacket (outBuffer); |
---|
1027 | |
---|
1028 | |
---|
1029 | |
---|
1030 | while (!(host_has_detached)) { |
---|
1031 | outBuffer[0] = '\0'; |
---|
1032 | getpacket (inBuffer); |
---|
1033 | binary = 0; |
---|
1034 | |
---|
1035 | switch (inBuffer[0]) { |
---|
1036 | case '?': |
---|
1037 | gdb_stub_report_exception_info(vector, frame, thread); |
---|
1038 | break; |
---|
1039 | |
---|
1040 | case 'd': /* toggle debug flag */ |
---|
1041 | /* can print ill-formed commands in valid packets & checksum errors */ |
---|
1042 | break; |
---|
1043 | |
---|
1044 | case 'D': |
---|
1045 | /* remote system is detaching - return OK and exit from debugger */ |
---|
1046 | strcpy (outBuffer, "OK"); |
---|
1047 | host_has_detached = 1; |
---|
1048 | break; |
---|
1049 | |
---|
1050 | case 'g': /* return the values of the CPU registers */ |
---|
1051 | regptr = registers; |
---|
1052 | #if defined(GDB_STUB_ENABLE_THREAD_SUPPORT) |
---|
1053 | if (do_threads && current_thread != thread ) |
---|
1054 | regptr = ¤t_thread_registers; |
---|
1055 | #endif |
---|
1056 | mem2hex (regptr, NUM_REGS * (sizeof registers), outBuffer); |
---|
1057 | break; |
---|
1058 | |
---|
1059 | |
---|
1060 | case 'G': /* set the values of the CPU registers - return OK */ |
---|
1061 | regptr = registers; |
---|
1062 | #if defined(GDB_STUB_ENABLE_THREAD_SUPPORT) |
---|
1063 | if (do_threads && current_thread != thread ) |
---|
1064 | regptr = ¤t_thread_registers; |
---|
1065 | #endif |
---|
1066 | if (hex2mem (&inBuffer[1], regptr, NUM_REGS * (sizeof registers))) |
---|
1067 | strcpy (outBuffer, "OK"); |
---|
1068 | else |
---|
1069 | strcpy (outBuffer, "E00"); /* E00 = bad "set register" command */ |
---|
1070 | break; |
---|
1071 | |
---|
1072 | |
---|
1073 | case 'P': |
---|
1074 | /* Pn...=r... Write register n... with value r... - return OK */ |
---|
1075 | ptr = &inBuffer[1]; |
---|
1076 | if (hexToInt(&ptr, ®no) && |
---|
1077 | *ptr++ == '=' && |
---|
1078 | hexToLongLong(&ptr, ®val)) |
---|
1079 | { |
---|
1080 | registers[regno] = regval; |
---|
1081 | strcpy (outBuffer, "OK"); |
---|
1082 | } |
---|
1083 | else |
---|
1084 | strcpy (outBuffer, "E00"); /* E00 = bad "set register" command */ |
---|
1085 | break; |
---|
1086 | |
---|
1087 | |
---|
1088 | case 'm': |
---|
1089 | /* mAA..AA,LLLL Read LLLL bytes at address AA..AA */ |
---|
1090 | ptr = &inBuffer[1]; |
---|
1091 | if (hexToInt (&ptr, &addr) |
---|
1092 | && *ptr++ == ',' |
---|
1093 | && hexToInt (&ptr, &length) |
---|
1094 | && is_readable (addr, length) |
---|
1095 | && (length < (BUFMAX - 4)/2)) |
---|
1096 | mem2hex ((void *)addr, length, outBuffer); |
---|
1097 | else |
---|
1098 | strcpy (outBuffer, "E01"); /* E01 = bad 'm' command */ |
---|
1099 | break; |
---|
1100 | |
---|
1101 | |
---|
1102 | case 'X': /* XAA..AA,LLLL:<binary data>#cs */ |
---|
1103 | binary = 1; |
---|
1104 | case 'M': |
---|
1105 | /* MAA..AA,LLLL: Write LLLL bytes at address AA..AA - return OK */ |
---|
1106 | ptr = &inBuffer[1]; |
---|
1107 | if (hexToInt (&ptr, &addr) |
---|
1108 | && *ptr++ == ',' |
---|
1109 | && hexToInt (&ptr, &length) |
---|
1110 | && *ptr++ == ':' |
---|
1111 | && is_writeable (addr, length) ) { |
---|
1112 | if ( binary ) |
---|
1113 | hex2mem (ptr, (void *)addr, length); |
---|
1114 | else |
---|
1115 | bin2mem (ptr, (void *)addr, length); |
---|
1116 | strcpy (outBuffer, "OK"); |
---|
1117 | } |
---|
1118 | else |
---|
1119 | strcpy (outBuffer, "E02"); /* E02 = bad 'M' command */ |
---|
1120 | break; |
---|
1121 | |
---|
1122 | |
---|
1123 | |
---|
1124 | case 'c': |
---|
1125 | /* cAA..AA Continue at address AA..AA(optional) */ |
---|
1126 | case 's': |
---|
1127 | /* sAA..AA Step one instruction from AA..AA(optional) */ |
---|
1128 | { |
---|
1129 | /* try to read optional parameter, pc unchanged if no parm */ |
---|
1130 | ptr = &inBuffer[1]; |
---|
1131 | if (hexToInt (&ptr, &addr)) |
---|
1132 | registers[PC] = addr; |
---|
1133 | |
---|
1134 | if (inBuffer[0] == 's') |
---|
1135 | doSStep (); |
---|
1136 | } |
---|
1137 | goto stubexit; |
---|
1138 | |
---|
1139 | |
---|
1140 | |
---|
1141 | |
---|
1142 | |
---|
1143 | case 'k': /* remove all zbreaks if any */ |
---|
1144 | dumpzbreaks: |
---|
1145 | { |
---|
1146 | { |
---|
1147 | /* Unlink the entire list */ |
---|
1148 | struct z0break *z0, *znxt; |
---|
1149 | |
---|
1150 | while( (z0= z0break_list) ) |
---|
1151 | { |
---|
1152 | |
---|
1153 | /* put back the instruction */ |
---|
1154 | if( z0->instr != 0xffffffff ) |
---|
1155 | *(z0->address) = z0->instr; |
---|
1156 | |
---|
1157 | /* pop off the top entry */ |
---|
1158 | znxt = z0->next; |
---|
1159 | if( znxt ) znxt->prev = NULL; |
---|
1160 | z0break_list = znxt; |
---|
1161 | |
---|
1162 | /* and put it on the free list */ |
---|
1163 | z0->prev = NULL; |
---|
1164 | z0->next = z0break_avail; |
---|
1165 | z0break_avail = z0; |
---|
1166 | } |
---|
1167 | } |
---|
1168 | |
---|
1169 | strcpy(outBuffer, "OK"); |
---|
1170 | } |
---|
1171 | break; |
---|
1172 | |
---|
1173 | |
---|
1174 | |
---|
1175 | |
---|
1176 | |
---|
1177 | case 'q': /* queries */ |
---|
1178 | #if defined(GDB_STUB_ENABLE_THREAD_SUPPORT) |
---|
1179 | rtems_gdb_process_query( inBuffer, outBuffer, do_threads, thread ); |
---|
1180 | #endif |
---|
1181 | break; |
---|
1182 | |
---|
1183 | #if defined(GDB_STUB_ENABLE_THREAD_SUPPORT) |
---|
1184 | case 'T': |
---|
1185 | { |
---|
1186 | int testThread; |
---|
1187 | |
---|
1188 | if( vhstr2thread(&inBuffer[1], &testThread) == NULL ) |
---|
1189 | { |
---|
1190 | strcpy(outBuffer, "E01"); |
---|
1191 | break; |
---|
1192 | } |
---|
1193 | |
---|
1194 | if( rtems_gdb_index_to_stub_id(testThread) == NULL ) |
---|
1195 | { |
---|
1196 | strcpy(outBuffer, "E02"); |
---|
1197 | } |
---|
1198 | else |
---|
1199 | { |
---|
1200 | strcpy(outBuffer, "OK"); |
---|
1201 | } |
---|
1202 | } |
---|
1203 | break; |
---|
1204 | #endif |
---|
1205 | |
---|
1206 | case 'H': /* set new thread */ |
---|
1207 | #if defined(GDB_STUB_ENABLE_THREAD_SUPPORT) |
---|
1208 | if (inBuffer[1] != 'g') { |
---|
1209 | break; |
---|
1210 | } |
---|
1211 | |
---|
1212 | if (!do_threads) { |
---|
1213 | break; |
---|
1214 | } |
---|
1215 | |
---|
1216 | { |
---|
1217 | int tmp, ret; |
---|
1218 | |
---|
1219 | /* Set new generic thread */ |
---|
1220 | if (vhstr2thread(&inBuffer[2], &tmp) == NULL) { |
---|
1221 | strcpy(outBuffer, "E01"); |
---|
1222 | break; |
---|
1223 | } |
---|
1224 | |
---|
1225 | /* 0 means `thread' */ |
---|
1226 | if (tmp == 0) { |
---|
1227 | tmp = thread; |
---|
1228 | } |
---|
1229 | |
---|
1230 | if (tmp == current_thread) { |
---|
1231 | /* No changes */ |
---|
1232 | strcpy(outBuffer, "OK"); |
---|
1233 | break; |
---|
1234 | } |
---|
1235 | |
---|
1236 | /* Save current thread registers if necessary */ |
---|
1237 | if (current_thread != thread) { |
---|
1238 | ret = rtems_gdb_stub_set_thread_regs( |
---|
1239 | current_thread, (unsigned int *) ¤t_thread_registers); |
---|
1240 | ASSERT(ret); |
---|
1241 | } |
---|
1242 | |
---|
1243 | /* Read new registers if necessary */ |
---|
1244 | if (tmp != thread) { |
---|
1245 | ret = rtems_gdb_stub_get_thread_regs( |
---|
1246 | tmp, (unsigned int *) ¤t_thread_registers); |
---|
1247 | |
---|
1248 | if (!ret) { |
---|
1249 | /* Thread does not exist */ |
---|
1250 | strcpy(outBuffer, "E02"); |
---|
1251 | break; |
---|
1252 | } |
---|
1253 | } |
---|
1254 | |
---|
1255 | current_thread = tmp; |
---|
1256 | strcpy(outBuffer, "OK"); |
---|
1257 | } |
---|
1258 | #endif |
---|
1259 | break; |
---|
1260 | |
---|
1261 | |
---|
1262 | |
---|
1263 | |
---|
1264 | case 'Z': /* Add breakpoint */ |
---|
1265 | { |
---|
1266 | int ret, type, len; |
---|
1267 | unsigned *address; |
---|
1268 | struct z0break *z0; |
---|
1269 | |
---|
1270 | ret = parse_zbreak(inBuffer, &type, &address, &len); |
---|
1271 | if (!ret) { |
---|
1272 | strcpy(outBuffer, "E01"); |
---|
1273 | break; |
---|
1274 | } |
---|
1275 | |
---|
1276 | if (type != 0) { |
---|
1277 | /* We support only software break points so far */ |
---|
1278 | strcpy(outBuffer, "E02"); |
---|
1279 | break; |
---|
1280 | } |
---|
1281 | |
---|
1282 | if (len != R_SZ) { /* was 1 */ |
---|
1283 | strcpy(outBuffer, "E03"); |
---|
1284 | break; |
---|
1285 | } |
---|
1286 | |
---|
1287 | /* Let us check whether this break point already set */ |
---|
1288 | for (z0=z0break_list; z0!=NULL; z0=z0->next) { |
---|
1289 | if (z0->address == address) { |
---|
1290 | break; |
---|
1291 | } |
---|
1292 | } |
---|
1293 | |
---|
1294 | if (z0 != NULL) { |
---|
1295 | /* we already have a breakpoint for this address */ |
---|
1296 | strcpy(outBuffer, "E04"); |
---|
1297 | break; |
---|
1298 | } |
---|
1299 | |
---|
1300 | /* Let us allocate new break point */ |
---|
1301 | if (z0break_avail == NULL) { |
---|
1302 | strcpy(outBuffer, "E05"); |
---|
1303 | break; |
---|
1304 | } |
---|
1305 | |
---|
1306 | |
---|
1307 | /* Get entry */ |
---|
1308 | z0 = z0break_avail; |
---|
1309 | z0break_avail = z0break_avail->next; |
---|
1310 | |
---|
1311 | /* Let us copy memory from address add stuff the break point in */ |
---|
1312 | /* |
---|
1313 | *if (mem2hstr(z0->buf, address, 1) == NULL || |
---|
1314 | !hstr2mem(address, "cc" , 1)) { |
---|
1315 | |
---|
1316 | * Memory error * |
---|
1317 | z0->next = z0break_avail; |
---|
1318 | z0break_avail = z0; |
---|
1319 | strcpy(outBuffer, "E05"); |
---|
1320 | break; |
---|
1321 | }*/ |
---|
1322 | |
---|
1323 | /* Fill it */ |
---|
1324 | z0->address = address; |
---|
1325 | |
---|
1326 | if( z0->address == frame->epc ) |
---|
1327 | { |
---|
1328 | /* re-asserting the breakpoint that put us in here, so |
---|
1329 | we'll add the breakpoint but leave the code in place |
---|
1330 | since we'll be returning to it when the user continues */ |
---|
1331 | z0->instr = 0xffffffff; |
---|
1332 | } |
---|
1333 | else |
---|
1334 | { |
---|
1335 | /* grab the instruction */ |
---|
1336 | z0->instr = *(z0->address); |
---|
1337 | /* and insert the break */ |
---|
1338 | *(z0->address) = BREAK_INSTR; |
---|
1339 | } |
---|
1340 | |
---|
1341 | /* Add to the list */ |
---|
1342 | { |
---|
1343 | struct z0break *znxt = z0break_list; |
---|
1344 | |
---|
1345 | z0->prev = NULL; |
---|
1346 | z0->next = znxt; |
---|
1347 | |
---|
1348 | if( znxt ) znxt->prev = z0; |
---|
1349 | z0break_list = z0; |
---|
1350 | } |
---|
1351 | |
---|
1352 | strcpy(outBuffer, "OK"); |
---|
1353 | } |
---|
1354 | break; |
---|
1355 | |
---|
1356 | |
---|
1357 | case 'z': /* remove breakpoint */ |
---|
1358 | if (inBuffer[1] == 'z') |
---|
1359 | { |
---|
1360 | goto dumpzbreaks; |
---|
1361 | |
---|
1362 | |
---|
1363 | /* |
---|
1364 | * zz packet - remove all breaks * |
---|
1365 | z0last = NULL; |
---|
1366 | |
---|
1367 | for (z0=z0break_list; z0!=NULL; z0=z0->next) |
---|
1368 | { |
---|
1369 | if(!hstr2mem(z0->address, z0->buf, R_SZ)) |
---|
1370 | { |
---|
1371 | ret = 0; |
---|
1372 | } |
---|
1373 | z0last = z0; |
---|
1374 | } |
---|
1375 | |
---|
1376 | * Free entries if any * |
---|
1377 | if (z0last != NULL) { |
---|
1378 | z0last->next = z0break_avail; |
---|
1379 | z0break_avail = z0break_list; |
---|
1380 | z0break_list = NULL; |
---|
1381 | } |
---|
1382 | |
---|
1383 | if (ret) { |
---|
1384 | strcpy(outBuffer, "OK"); |
---|
1385 | } else { |
---|
1386 | strcpy(outBuffer, "E04"); |
---|
1387 | } |
---|
1388 | break; |
---|
1389 | */ |
---|
1390 | } |
---|
1391 | else |
---|
1392 | { |
---|
1393 | int ret, type, len; |
---|
1394 | unsigned *address; |
---|
1395 | struct z0break *z0; |
---|
1396 | |
---|
1397 | ret = parse_zbreak(inBuffer, &type, &address, &len); |
---|
1398 | if (!ret) { |
---|
1399 | strcpy(outBuffer, "E01"); |
---|
1400 | break; |
---|
1401 | } |
---|
1402 | |
---|
1403 | if (type != 0) { |
---|
1404 | /* We support only software break points so far */ |
---|
1405 | break; |
---|
1406 | } |
---|
1407 | |
---|
1408 | if (len != R_SZ) { |
---|
1409 | strcpy(outBuffer, "E02"); |
---|
1410 | break; |
---|
1411 | } |
---|
1412 | |
---|
1413 | /* Let us check whether this break point set */ |
---|
1414 | for (z0=z0break_list; z0!=NULL; z0=z0->next) { |
---|
1415 | if (z0->address == address) { |
---|
1416 | break; |
---|
1417 | } |
---|
1418 | } |
---|
1419 | |
---|
1420 | if (z0 == NULL) { |
---|
1421 | /* Unknown breakpoint */ |
---|
1422 | strcpy(outBuffer, "E03"); |
---|
1423 | break; |
---|
1424 | } |
---|
1425 | |
---|
1426 | /* |
---|
1427 | if (!hstr2mem(z0->address, z0->buf, R_SZ)) { |
---|
1428 | strcpy(outBuffer, "E04"); |
---|
1429 | break; |
---|
1430 | }*/ |
---|
1431 | |
---|
1432 | if( z0->instr != 0xffffffff ) |
---|
1433 | { |
---|
1434 | /* put the old instruction back */ |
---|
1435 | *(z0->address) = z0->instr; |
---|
1436 | } |
---|
1437 | |
---|
1438 | /* Unlink entry */ |
---|
1439 | { |
---|
1440 | struct z0break *zprv = z0->prev, *znxt = z0->next; |
---|
1441 | |
---|
1442 | if( zprv ) zprv->next = znxt; |
---|
1443 | if( znxt ) znxt->prev = zprv; |
---|
1444 | |
---|
1445 | if( !zprv ) z0break_list = znxt; |
---|
1446 | |
---|
1447 | znxt = z0break_avail; |
---|
1448 | |
---|
1449 | z0break_avail = z0; |
---|
1450 | z0->prev = NULL; |
---|
1451 | z0->next = znxt; |
---|
1452 | } |
---|
1453 | |
---|
1454 | strcpy(outBuffer, "OK"); |
---|
1455 | } |
---|
1456 | break; |
---|
1457 | |
---|
1458 | |
---|
1459 | default: /* do nothing */ |
---|
1460 | break; |
---|
1461 | } |
---|
1462 | |
---|
1463 | /* reply to the request */ |
---|
1464 | putpacket (outBuffer); |
---|
1465 | } |
---|
1466 | |
---|
1467 | stubexit: |
---|
1468 | |
---|
1469 | /* |
---|
1470 | * The original code did this in the assembly wrapper. We should consider |
---|
1471 | * doing it here before we return. |
---|
1472 | * |
---|
1473 | * On exit from the exception handler invalidate each line in the I-cache |
---|
1474 | * and write back each dirty line in the D-cache. This needs to be done |
---|
1475 | * before the target program is resumed in order to ensure that software |
---|
1476 | * breakpoints and downloaded code will actually take effect. This |
---|
1477 | * is because modifications to code in ram will affect the D-cache, |
---|
1478 | * but not necessarily the I-cache. |
---|
1479 | */ |
---|
1480 | |
---|
1481 | { |
---|
1482 | extern void clear_cache(); |
---|
1483 | clear_cache(); |
---|
1484 | } |
---|
1485 | |
---|
1486 | return; |
---|
1487 | } |
---|
1488 | |
---|
1489 | |
---|
1490 | |
---|
1491 | |
---|
1492 | |
---|
1493 | |
---|
1494 | |
---|
1495 | |
---|
1496 | |
---|
1497 | |
---|
1498 | static int numsegs; |
---|
1499 | static struct memseg memsegments[NUM_MEMSEGS]; |
---|
1500 | |
---|
1501 | int gdbstub_add_memsegment( unsigned base, unsigned end, int opts ) |
---|
1502 | { |
---|
1503 | if( numsegs == NUM_MEMSEGS ) return -1; |
---|
1504 | |
---|
1505 | memsegments[numsegs].begin = base; |
---|
1506 | memsegments[numsegs].end = end; |
---|
1507 | memsegments[numsegs].opts = opts; |
---|
1508 | |
---|
1509 | ++numsegs; |
---|
1510 | return RTEMS_SUCCESSFUL; |
---|
1511 | } |
---|
1512 | |
---|
1513 | |
---|
1514 | |
---|
1515 | |
---|
1516 | static int is_readable(unsigned ptr, unsigned len) |
---|
1517 | { |
---|
1518 | struct memseg *ms; |
---|
1519 | int i; |
---|
1520 | |
---|
1521 | if( (ptr & 0x3) ) return -1; |
---|
1522 | |
---|
1523 | for(i=0; i<numsegs; i++) |
---|
1524 | { |
---|
1525 | ms= &memsegments[i]; |
---|
1526 | |
---|
1527 | if( ms->begin <= ptr && ptr+len <= ms->end && (ms->opts & MEMOPT_READABLE) ) |
---|
1528 | return -1; |
---|
1529 | } |
---|
1530 | return 0; |
---|
1531 | } |
---|
1532 | |
---|
1533 | |
---|
1534 | static int is_writeable(unsigned ptr, unsigned len) |
---|
1535 | { |
---|
1536 | struct memseg *ms; |
---|
1537 | int i; |
---|
1538 | |
---|
1539 | if( (ptr & 0x3) ) return -1; |
---|
1540 | |
---|
1541 | for(i=0; i<numsegs; i++) |
---|
1542 | { |
---|
1543 | ms= &memsegments[i]; |
---|
1544 | |
---|
1545 | if( ms->begin <= ptr && ptr+len <= ms->end && (ms->opts & MEMOPT_WRITEABLE) ) |
---|
1546 | return -1; |
---|
1547 | } |
---|
1548 | return 0; |
---|
1549 | } |
---|
1550 | |
---|
1551 | |
---|
1552 | static int is_steppable(unsigned ptr) |
---|
1553 | { |
---|
1554 | struct memseg *ms; |
---|
1555 | int i; |
---|
1556 | |
---|
1557 | if( (ptr & 0x3) ) return -1; |
---|
1558 | |
---|
1559 | for(i=0; i<numsegs; i++) |
---|
1560 | { |
---|
1561 | ms= &memsegments[i]; |
---|
1562 | |
---|
1563 | if( ms->begin <= ptr && ptr <= ms->end && (ms->opts & MEMOPT_WRITEABLE) ) |
---|
1564 | return -1; |
---|
1565 | } |
---|
1566 | return 0; |
---|
1567 | } |
---|
1568 | |
---|
1569 | |
---|
1570 | |
---|
1571 | |
---|
1572 | |
---|
1573 | |
---|
1574 | |
---|
1575 | |
---|
1576 | |
---|
1577 | |
---|
1578 | |
---|
1579 | |
---|
1580 | |
---|
1581 | |
---|
1582 | static char initialized = 0; /* 0 means we are not initialized */ |
---|
1583 | |
---|
1584 | void mips_gdb_stub_install(int enableThreads) |
---|
1585 | { |
---|
1586 | /* |
---|
1587 | These are the RTEMS-defined vectors for all the MIPS exceptions |
---|
1588 | */ |
---|
1589 | int exceptionVector[]= { MIPS_EXCEPTION_MOD, \ |
---|
1590 | MIPS_EXCEPTION_TLBL, \ |
---|
1591 | MIPS_EXCEPTION_TLBS, \ |
---|
1592 | MIPS_EXCEPTION_ADEL, \ |
---|
1593 | MIPS_EXCEPTION_ADES, \ |
---|
1594 | MIPS_EXCEPTION_IBE, \ |
---|
1595 | MIPS_EXCEPTION_DBE, \ |
---|
1596 | MIPS_EXCEPTION_SYSCALL, \ |
---|
1597 | MIPS_EXCEPTION_BREAK, \ |
---|
1598 | MIPS_EXCEPTION_RI, \ |
---|
1599 | MIPS_EXCEPTION_CPU, \ |
---|
1600 | MIPS_EXCEPTION_OVERFLOW, \ |
---|
1601 | MIPS_EXCEPTION_TRAP, \ |
---|
1602 | MIPS_EXCEPTION_VCEI, \ |
---|
1603 | MIPS_EXCEPTION_FPE, \ |
---|
1604 | MIPS_EXCEPTION_C2E, \ |
---|
1605 | MIPS_EXCEPTION_WATCH, \ |
---|
1606 | MIPS_EXCEPTION_VCED, \ |
---|
1607 | -1 }; |
---|
1608 | int i; |
---|
1609 | rtems_isr_entry old; |
---|
1610 | |
---|
1611 | if (initialized) |
---|
1612 | { |
---|
1613 | ASSERT(0); |
---|
1614 | return; |
---|
1615 | } |
---|
1616 | |
---|
1617 | memset( memsegments,0,sizeof(struct memseg)*NUM_MEMSEGS ); |
---|
1618 | numsegs = 0; |
---|
1619 | |
---|
1620 | #if defined(GDB_STUB_ENABLE_THREAD_SUPPORT) |
---|
1621 | if( enableThreads ) |
---|
1622 | do_threads = 1; |
---|
1623 | else |
---|
1624 | do_threads = 0; |
---|
1625 | #endif |
---|
1626 | |
---|
1627 | { |
---|
1628 | struct z0break *z0; |
---|
1629 | |
---|
1630 | z0break_avail = NULL; |
---|
1631 | z0break_list = NULL; |
---|
1632 | |
---|
1633 | /* z0breaks list init, now we'll do it so it makes sense... */ |
---|
1634 | for (i=0; i<BREAKNUM; i++) |
---|
1635 | { |
---|
1636 | memset( (z0= &z0break_arr[i]), 0, sizeof(struct z0break)); |
---|
1637 | |
---|
1638 | z0->next = z0break_avail; |
---|
1639 | z0break_avail = z0; |
---|
1640 | } |
---|
1641 | } |
---|
1642 | |
---|
1643 | for(i=0; exceptionVector[i] > -1; i++) |
---|
1644 | { |
---|
1645 | rtems_interrupt_catch( (rtems_isr_entry) handle_exception, exceptionVector[i], &old ); |
---|
1646 | } |
---|
1647 | |
---|
1648 | initialized = 1; |
---|
1649 | |
---|
1650 | /* get the attention of gdb */ |
---|
1651 | /* mips_break(1); disabled so user code can choose to invoke it or not */ |
---|
1652 | } |
---|
1653 | |
---|
1654 | |
---|
1655 | |
---|