/* * This is the gdb i386 remote debug stub from gdb 4.XX. */ /**************************************************************************** THIS SOFTWARE IS NOT COPYRIGHTED HP offers the following for use in the public domain. HP makes no warranty with regard to the software or it's performance and the user accepts the software "AS IS" with all faults. HP DISCLAIMS ANY WARRANTIES, EXPRESS OR IMPLIED, WITH REGARD TO THIS SOFTWARE INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. ****************************************************************************/ /**************************************************************************** * Header: remcom.c,v 1.34 91/03/09 12:29:49 glenne Exp $ * * Module name: remcom.c $ * Revision: 1.34 $ * Date: 91/03/09 12:29:49 $ * Contributor: Lake Stevens Instrument Division$ * * Description: low level support for gdb debugger. $ * * Considerations: only works on target hardware $ * * Written by: Glenn Engel $ * ModuleState: Experimental $ * * NOTES: See Below $ * * Modified for 386 by Jim Kingdon, Cygnus Support. * Modified for RTEMS by Aleksey Romanov, Quality Quorum, Inc. * * To enable debugger support, two things need to happen. One, a * call to set_debug_traps() is necessary in order to allow any breakpoints * or error conditions to be properly intercepted and reported to gdb. * Two, a breakpoint needs to be generated to begin communication. This * is most easily accomplished by a call to breakpoint(). Breakpoint() * simulates a breakpoint by executing a trap #1. * * The external function exceptionHandler() is * used to attach a specific handler to a specific 386 vector number. * It should use the same privilege level it runs at. It should * install it as an interrupt gate so that interrupts are masked * while the handler runs. * Also, need to assign exceptionHook and oldExceptionHook. * * Because gdb will sometimes write to the stack area to execute function * calls, this program cannot rely on using the supervisor stack so it * uses it's own stack area reserved in the int array remcomStack. * ************* * * The following gdb commands are supported: * * command function Return value * * g return the value of the CPU registers hex data or ENN * G set the value of the CPU registers OK or ENN * * mAA..AA,LLLL Read LLLL bytes at address AA..AA hex data or ENN * MAA..AA,LLLL: Write LLLL bytes at address AA.AA OK or ENN * * c Resume at current address SNN ( signal NN) * cAA..AA Continue at address AA..AA SNN * * s Step one instruction SNN * sAA..AA Step one instruction from AA..AA SNN * * k kill * * ? What was the last sigval ? SNN (signal NN) * * All commands and responses are sent with a packet which includes a * checksum. A packet consists of * * $#. * * where * :: * :: < two hex digits computed as modulo 256 sum of > * * When a packet is received, it is first acknowledged with either '+' or '-'. * '+' indicates a successful transfer. '-' indicates a failed transfer. * * Example: * * Host: Reply: * $m0,10#2a +$00010203040506070809101112131415#42 * ****************************************************************************/ #include #include #include #include /* * Number of debug registers. */ #define NUM_DEBUG_REGISTERS 4 /* * Prototypes we need to avoid warnings but not going into public space. */ void bsp_reset(void); void breakpoint (void); void set_debug_traps(void); void set_mem_err(void); void _returnFromException(void); void exceptionHandler (int, void (*handler) (void)); /************************************************************************ * * external low-level support routines */ extern int putDebugChar (int ch); /* write a single character */ extern int getDebugChar (void); /* read and return a single char */ /************************************************************************/ /* BUFMAX defines the maximum number of characters in inbound/outbound buffers */ /* at least NUMREGBYTES*2 are needed for register packets */ #define BUFMAX 400 static bool initialized = false; /* boolean flag. != 0 means we've been initialized */ extern int remote_debug; /* debug > 0 prints ill-formed commands in valid packets & checksum errors */ extern void waitabit (void); static const char hexchars[] = "0123456789abcdef"; /* Number of registers. */ #define NUMREGS 16 /* Number of bytes per register. */ #define REGBYTES 4 /* Number of bytes of registers. */ #define NUMREGBYTES (NUMREGS * REGBYTES) enum regnames { EAX, ECX, EDX, EBX, ESP, EBP, ESI, EDI, PC /* also known as eip */ , PS /* also known as eflags */ , CS, SS, DS, ES, FS, GS }; /* * these should not be static cuz they can be used outside this module */ int i386_gdb_registers[NUMREGS]; #define STACKSIZE 10000 int i386_gdb_remcomStack[STACKSIZE / sizeof (int)]; int *i386_gdb_stackPtr = &i386_gdb_remcomStack[STACKSIZE / sizeof (int) - 1]; static int gdb_connected; /*************************** ASSEMBLY CODE MACROS *************************/ /* */ extern void return_to_prog (void); /* Restore the program's registers (including the stack pointer, which means we get the right stack and don't have to worry about popping our return address and any stack frames and so on) and return. */ __asm__ (".text"); __asm__ (".globl return_to_prog"); __asm__ ("return_to_prog:"); __asm__ (" movw i386_gdb_registers+44, %ss"); __asm__ (" movl i386_gdb_registers+16, %esp"); __asm__ (" movl i386_gdb_registers+4, %ecx"); __asm__ (" movl i386_gdb_registers+8, %edx"); __asm__ (" movl i386_gdb_registers+12, %ebx"); __asm__ (" movl i386_gdb_registers+20, %ebp"); __asm__ (" movl i386_gdb_registers+24, %esi"); __asm__ (" movl i386_gdb_registers+28, %edi"); __asm__ (" movw i386_gdb_registers+48, %ds"); __asm__ (" movw i386_gdb_registers+52, %es"); __asm__ (" movw i386_gdb_registers+56, %fs"); __asm__ (" movw i386_gdb_registers+60, %gs"); __asm__ (" movl i386_gdb_registers+36, %eax"); __asm__ (" pushl %eax"); /* saved eflags */ __asm__ (" movl i386_gdb_registers+40, %eax"); __asm__ (" pushl %eax"); /* saved cs */ __asm__ (" movl i386_gdb_registers+32, %eax"); __asm__ (" pushl %eax"); /* saved eip */ __asm__ (" movl i386_gdb_registers, %eax"); /* use iret to restore pc and flags together so that trace flag works right. */ __asm__ (" iret"); #define BREAKPOINT() __asm__ (" int $3"); /* Put the error code here just in case the user cares. */ int gdb_i386errcode; /* Likewise, the vector number here (since GDB only gets the signal number through the usual means, and that's not very specific). */ int gdb_i386vector = -1; /* GDB stores segment registers in 32-bit words (that's just the way m-i386v.h is written). So zero the appropriate areas in registers. */ #define SAVE_REGISTERS1() \ __asm__ ("movl %eax, i386_gdb_registers"); \ __asm__ ("movl %ecx, i386_gdb_registers+4"); \ __asm__ ("movl %edx, i386_gdb_registers+8"); \ __asm__ ("movl %ebx, i386_gdb_registers+12"); \ __asm__ ("movl %ebp, i386_gdb_registers+20"); \ __asm__ ("movl %esi, i386_gdb_registers+24"); \ __asm__ ("movl %edi, i386_gdb_registers+28"); \ __asm__ ("movw $0, %ax"); \ __asm__ ("movw %ds, i386_gdb_registers+48"); \ __asm__ ("movw %ax, i386_gdb_registers+50"); \ __asm__ ("movw %es, i386_gdb_registers+52"); \ __asm__ ("movw %ax, i386_gdb_registers+54"); \ __asm__ ("movw %fs, i386_gdb_registers+56"); \ __asm__ ("movw %ax, i386_gdb_registers+58"); \ __asm__ ("movw %gs, i386_gdb_registers+60"); \ __asm__ ("movw %ax, i386_gdb_registers+62"); #define SAVE_ERRCODE() \ __asm__ ("popl %ebx"); \ __asm__ ("movl %ebx, gdb_i386errcode"); #define SAVE_REGISTERS2() \ __asm__ ("popl %ebx"); /* old eip */ \ __asm__ ("movl %ebx, i386_gdb_registers+32"); \ __asm__ ("popl %ebx"); /* old cs */ \ __asm__ ("movl %ebx, i386_gdb_registers+40"); \ __asm__ ("movw %ax, i386_gdb_registers+42"); \ __asm__ ("popl %ebx"); /* old eflags */ \ __asm__ ("movl %ebx, i386_gdb_registers+36"); \ /* Now that we've done the pops, we can save the stack pointer."); */ \ __asm__ ("movw %ss, i386_gdb_registers+44"); \ __asm__ ("movw %ax, i386_gdb_registers+46"); \ __asm__ ("movl %esp, i386_gdb_registers+16"); /* See if mem_fault_routine is set, if so just IRET to that address. */ #define CHECK_FAULT() \ __asm__ ("cmpl $0, mem_fault_routine"); \ __asm__ ("jne mem_fault"); __asm__ (".text"); __asm__ ("mem_fault:"); /* OK to clobber temp registers; we're just going to end up in set_mem_err. */ /* Pop error code from the stack and save it. */ __asm__ (" popl %eax"); __asm__ (" movl %eax, gdb_i386errcode"); __asm__ (" popl %eax"); /* eip */ /* We don't want to return there, we want to return to the function pointed to by mem_fault_routine instead. */ __asm__ (" movl mem_fault_routine, %eax"); __asm__ (" popl %ecx"); /* cs (low 16 bits; junk in hi 16 bits). */ __asm__ (" popl %edx"); /* eflags */ /* Remove this stack frame; when we do the iret, we will be going to the start of a function, so we want the stack to look just like it would after a "call" instruction. */ __asm__ (" leave"); /* Push the stuff that iret wants. */ __asm__ (" pushl %edx"); /* eflags */ __asm__ (" pushl %ecx"); /* cs */ __asm__ (" pushl %eax"); /* eip */ /* Zero mem_fault_routine. */ __asm__ (" movl $0, %eax"); __asm__ (" movl %eax, mem_fault_routine"); __asm__ ("iret"); #define CALL_HOOK() __asm__ ("call _remcomHandler"); /* This function is called when a i386 exception occurs. It saves * all the cpu regs in the registers array, munges the stack a bit, * and invokes an exception handler (remcom_handler). * * stack on entry: stack on exit: * old eflags vector number * old cs (zero-filled to 32 bits) * old eip * */ extern void _catchException3 (void); __asm__ (".text"); __asm__ (".globl _catchException3"); __asm__ ("_catchException3:"); SAVE_REGISTERS1 (); SAVE_REGISTERS2 (); __asm__ ("pushl $3"); CALL_HOOK (); /* Same thing for exception 1. */ extern void _catchException1 (void); __asm__ (".text"); __asm__ (".globl _catchException1"); __asm__ ("_catchException1:"); SAVE_REGISTERS1 (); SAVE_REGISTERS2 (); __asm__ ("pushl $1"); CALL_HOOK (); /* Same thing for exception 0. */ extern void _catchException0 (void); __asm__ (".text"); __asm__ (".globl _catchException0"); __asm__ ("_catchException0:"); SAVE_REGISTERS1 (); SAVE_REGISTERS2 (); __asm__ ("pushl $0"); CALL_HOOK (); /* Same thing for exception 4. */ extern void _catchException4 (void); __asm__ (".text"); __asm__ (".globl _catchException4"); __asm__ ("_catchException4:"); SAVE_REGISTERS1 (); SAVE_REGISTERS2 (); __asm__ ("pushl $4"); CALL_HOOK (); /* Same thing for exception 5. */ extern void _catchException5 (void); __asm__ (".text"); __asm__ (".globl _catchException5"); __asm__ ("_catchException5:"); SAVE_REGISTERS1 (); SAVE_REGISTERS2 (); __asm__ ("pushl $5"); CALL_HOOK (); /* Same thing for exception 6. */ extern void _catchException6 (void); __asm__ (".text"); __asm__ (".globl _catchException6"); __asm__ ("_catchException6:"); SAVE_REGISTERS1 (); SAVE_REGISTERS2 (); __asm__ ("pushl $6"); CALL_HOOK (); /* Same thing for exception 7. */ extern void _catchException7 (void); __asm__ (".text"); __asm__ (".globl _catchException7"); __asm__ ("_catchException7:"); SAVE_REGISTERS1 (); SAVE_REGISTERS2 (); __asm__ ("pushl $7"); CALL_HOOK (); /* Same thing for exception 8. */ extern void _catchException8 (void); __asm__ (".text"); __asm__ (".globl _catchException8"); __asm__ ("_catchException8:"); SAVE_REGISTERS1 (); SAVE_ERRCODE (); SAVE_REGISTERS2 (); __asm__ ("pushl $8"); CALL_HOOK (); /* Same thing for exception 9. */ extern void _catchException9 (void); __asm__ (".text"); __asm__ (".globl _catchException9"); __asm__ ("_catchException9:"); SAVE_REGISTERS1 (); SAVE_REGISTERS2 (); __asm__ ("pushl $9"); CALL_HOOK (); /* Same thing for exception 10. */ extern void _catchException10 (void); __asm__ (".text"); __asm__ (".globl _catchException10"); __asm__ ("_catchException10:"); SAVE_REGISTERS1 (); SAVE_ERRCODE (); SAVE_REGISTERS2 (); __asm__ ("pushl $10"); CALL_HOOK (); /* Same thing for exception 12. */ extern void _catchException12 (void); __asm__ (".text"); __asm__ (".globl _catchException12"); __asm__ ("_catchException12:"); SAVE_REGISTERS1 (); SAVE_ERRCODE (); SAVE_REGISTERS2 (); __asm__ ("pushl $12"); CALL_HOOK (); /* Same thing for exception 16. */ extern void _catchException16 (void); __asm__ (".text"); __asm__ (".globl _catchException16"); __asm__ ("_catchException16:"); SAVE_REGISTERS1 (); SAVE_REGISTERS2 (); __asm__ ("pushl $16"); CALL_HOOK (); /* For 13, 11, and 14 we have to deal with the CHECK_FAULT stuff. */ /* Same thing for exception 13. */ extern void _catchException13 (void); __asm__ (".text"); __asm__ (".globl _catchException13"); __asm__ ("_catchException13:"); CHECK_FAULT (); SAVE_REGISTERS1 (); SAVE_ERRCODE (); SAVE_REGISTERS2 (); __asm__ ("pushl $13"); CALL_HOOK (); /* Same thing for exception 11. */ extern void _catchException11 (void); __asm__ (".text"); __asm__ (".globl _catchException11"); __asm__ ("_catchException11:"); CHECK_FAULT (); SAVE_REGISTERS1 (); SAVE_ERRCODE (); SAVE_REGISTERS2 (); __asm__ ("pushl $11"); CALL_HOOK (); /* Same thing for exception 14. */ extern void _catchException14 (void); __asm__ (".text"); __asm__ (".globl _catchException14"); __asm__ ("_catchException14:"); CHECK_FAULT (); SAVE_REGISTERS1 (); SAVE_ERRCODE (); SAVE_REGISTERS2 (); __asm__ ("pushl $14"); CALL_HOOK (); /* * remcomHandler is a front end for handle_exception. It moves the * stack pointer into an area reserved for debugger use. */ extern void remcomHandler (void); __asm__ ("_remcomHandler:"); __asm__ (" popl %eax"); /* pop off return address */ __asm__ (" popl %eax"); /* get the exception number */ __asm__ (" movl i386_gdb_stackPtr, %esp"); /* move to remcom stack area */ __asm__ (" pushl %eax"); /* push exception onto stack */ __asm__ (" call handle_exception"); /* this never returns */ void _returnFromException (void) { return_to_prog (); } static int hex (char ch) { if ((ch >= 'a') && (ch <= 'f')) return (ch - 'a' + 10); if ((ch >= '0') && (ch <= '9')) return (ch - '0'); if ((ch >= 'A') && (ch <= 'F')) return (ch - 'A' + 10); return (-1); } /* scan for the sequence $# */ static void getpacket (char *buffer) { unsigned char checksum; unsigned char xmitcsum; int i; int count; char ch; do { /* wait around for the start character, ignore all other characters */ while ((ch = (getDebugChar () & 0x7f)) != '$'); checksum = 0; xmitcsum = -1; count = 0; /* now, read until a # or end of buffer is found */ while (count < BUFMAX) { ch = getDebugChar () & 0x7f; if (ch == '#') break; checksum = checksum + ch; buffer[count] = ch; count = count + 1; } buffer[count] = 0; if (ch == '#') { xmitcsum = hex (getDebugChar () & 0x7f) << 4; xmitcsum += hex (getDebugChar () & 0x7f); if ((remote_debug) && (checksum != xmitcsum)) { printk ("bad checksum. My count = 0x%x, sent=0x%x. buf=%s\n", checksum, xmitcsum, buffer); } if (remote_debug) { printk("GETP: $%s...%s\n", buffer, checksum == xmitcsum ? "Ack" : "Nack"); } if (checksum != xmitcsum) putDebugChar ('-'); /* failed checksum */ else { putDebugChar ('+'); /* successful transfer */ /* if a sequence char is present, reply the sequence ID */ if (buffer[2] == ':') { putDebugChar (buffer[0]); putDebugChar (buffer[1]); /* remove sequence chars from buffer */ count = strlen (buffer); for (i = 3; i <= count; i++) buffer[i - 3] = buffer[i]; } } } } while (checksum != xmitcsum); } /* send the packet in buffer. */ static void putpacket (char *buffer) { /* $#. */ while (true) { unsigned char checksum; int count; char ch; if (remote_debug) printk("PUTP: $%s", buffer); putDebugChar ('$'); checksum = 0; count = 0; while ((ch = buffer[count])) { if (!putDebugChar (ch)) return; checksum += ch; count += 1; } putDebugChar ('#'); putDebugChar (hexchars[checksum >> 4]); putDebugChar (hexchars[checksum % 16]); if (remote_debug) printk("#%c%c...", hexchars[checksum >> 4], hexchars[checksum % 16]); ch = getDebugChar () & 0x7f; if (ch == '+') { if (remote_debug) printk("Ack\n"); break; } if (remote_debug) printk("Nack(%c)\n", ch); } } char remcomInBuffer[BUFMAX]; char remcomOutBuffer[BUFMAX]; static short error; static void debug_error ( char *format, char *parm ) { if (remote_debug) printk (format, parm); } /* Address of a routine to RTE to if we get a memory fault. */ static void (*volatile mem_fault_routine) (void) = NULL; /* Indicate to caller of mem2hex or hex2mem that there has been an error. */ static volatile int mem_err = 0; void set_mem_err (void) { mem_err = 1; } /* These are separate functions so that they are so short and sweet that the compiler won't save any registers (if there is a fault to mem_fault, they won't get restored, so there better not be any saved). */ static int get_char (char *addr) { return *addr; } static void set_char (char *addr, int val) { *addr = val; } /* convert the memory pointed to by mem into hex, placing result in buf */ /* return a pointer to the last char put in buf (null) */ /* If MAY_FAULT is non-zero, then we should set mem_err in response to a fault; if zero treat a fault like any other fault in the stub. */ static char * mem2hex (char *mem, char *buf, int count, int may_fault) { int i; unsigned char ch; if (may_fault) mem_fault_routine = set_mem_err; for (i = 0; i < count; i++) { ch = get_char (mem++); if (may_fault && mem_err) return (buf); *buf++ = hexchars[ch >> 4]; *buf++ = hexchars[ch % 16]; } *buf = 0; if (may_fault) mem_fault_routine = NULL; return (buf); } /* convert the hex array pointed to by buf into binary to be placed in mem */ /* return a pointer to the character AFTER the last byte written */ static char * hex2mem (char *buf, char *mem, int count, int may_fault) { int i; unsigned char ch; if (may_fault) mem_fault_routine = set_mem_err; for (i = 0; i < count; i++) { ch = hex (*buf++) << 4; ch = ch + hex (*buf++); set_char (mem++, ch); if (may_fault && mem_err) return (mem); } if (may_fault) mem_fault_routine = NULL; return (mem); } /* this function takes the 386 exception vector and attempts to translate this number into a unix compatible signal value */ static int computeSignal (int exceptionVector) { int sigval; switch (exceptionVector) { case 0: sigval = 8; break; /* divide by zero */ case 1: sigval = 5; break; /* debug exception */ case 3: sigval = 5; break; /* breakpoint */ case 4: sigval = 16; break; /* into instruction (overflow) */ case 5: sigval = 16; break; /* bound instruction */ case 6: sigval = 4; break; /* Invalid opcode */ case 7: sigval = 8; break; /* coprocessor not available */ case 8: sigval = 7; break; /* double fault */ case 9: sigval = 11; break; /* coprocessor segment overrun */ case 10: sigval = 11; break; /* Invalid TSS */ case 11: sigval = 11; break; /* Segment not present */ case 12: sigval = 11; break; /* stack exception */ case 13: sigval = 11; break; /* general protection */ case 14: sigval = 11; break; /* page fault */ case 16: sigval = 7; break; /* coprocessor error */ default: sigval = 7; /* "software generated" */ } return (sigval); } /**********************************************/ /* WHILE WE FIND NICE HEX CHARS, BUILD AN INT */ /* RETURN NUMBER OF CHARS PROCESSED */ /**********************************************/ static int hexToInt (char **ptr, int *intValue) { int numChars = 0; int hexValue; *intValue = 0; while (**ptr) { hexValue = hex (**ptr); if (hexValue >= 0) { *intValue = (*intValue << 4) | hexValue; numChars++; } else break; (*ptr)++; } return (numChars); } /* * Get/Set the DR registers. */ static uint32_t getDR7(void) { uint32_t value = 0; asm volatile (" movl %%dr7, %0;" : "=r" (value) : : ); return value; } static void setDR7(uint32_t value) { asm volatile (" movl %0, %%dr7;" : : "r" (value) : ); } static uint32_t getDR(int reg) { uint32_t value = 0; switch (reg) { case 0: asm volatile (" movl %%dr0, %0;" : "=r" (value) : : ); break; case 1: asm volatile (" movl %%dr1, %0;" : "=r" (value) : : ); break; case 2: asm volatile (" movl %%dr2, %0;" : "=r" (value) : : ); break; case 3: asm volatile (" movl %%dr3, %0;" : "=r" (value) : : ); break; default: break; } return value; } static void setDR(int reg, uint32_t addr) { switch (reg) { case 0: asm volatile (" movl %0, %%dr0;" : : "r" (addr) : ); break; case 1: asm volatile (" movl %0, %%dr1;" : : "r" (addr) : ); break; case 2: asm volatile (" movl %0, %%dr2;" : : "r" (addr) : ); break; case 3: asm volatile (" movl %0, %%dr3;" : : "r" (addr) : ); break; default: break; } } /* * This function does all command procesing for interfacing to gdb. * * NOTE: This method is called from assembly code so must be marked * as used. */ static void handle_exception (int exceptionVector) __attribute__((used)); static void handle_exception (int exceptionVector) { int sigval; int addr, length, reg; char *ptr; gdb_i386vector = exceptionVector; if (remote_debug) printk ("GDB: EXECPTION: vector=%d, sr=0x%x, pc=0x%x\n", exceptionVector, i386_gdb_registers[PS], i386_gdb_registers[PC]); /* Reply to host that an exception has occurred. Always return the PC, SP, and FP, since gdb always wants them. */ ptr = remcomOutBuffer; *ptr++ = 'T'; sigval = computeSignal (exceptionVector); *ptr++ = hexchars[sigval >> 4]; *ptr++ = hexchars[sigval % 16]; *ptr++ = hexchars[ESP]; *ptr++ = ':'; mem2hex ((char *) &i386_gdb_registers[ESP], ptr, REGBYTES, 0); ptr += REGBYTES * 2; *ptr++ = ';'; *ptr++ = hexchars[EBP]; *ptr++ = ':'; mem2hex ((char *) &i386_gdb_registers[EBP], ptr, REGBYTES, 0); ptr += REGBYTES * 2; *ptr++ = ';'; *ptr++ = hexchars[PC]; *ptr++ = ':'; mem2hex ((char *) &i386_gdb_registers[PC], ptr, REGBYTES, 0); ptr += REGBYTES * 2; *ptr++ = ';'; *ptr = '\0'; if (gdb_connected) putpacket (remcomOutBuffer); while (1 == 1) { error = 0; remcomOutBuffer[0] = 0; getpacket (remcomInBuffer); gdb_connected = 1; switch (remcomInBuffer[0]) { case '?': remcomOutBuffer[0] = 'S'; remcomOutBuffer[1] = hexchars[sigval >> 4]; remcomOutBuffer[2] = hexchars[sigval % 16]; remcomOutBuffer[3] = 0; break; case 'd': /* remove */ remote_debug = !(remote_debug); /* toggle debug flag */ break; case 'g': /* return the value of the CPU registers */ mem2hex ((char *) i386_gdb_registers, remcomOutBuffer, NUMREGBYTES, 0); break; case 'G': /* set the value of the CPU registers - return OK */ hex2mem (&remcomInBuffer[1], (char *) i386_gdb_registers, NUMREGBYTES, 0); strcpy (remcomOutBuffer, "OK"); break; case 'P': /* Set specific register */ ptr = &remcomInBuffer[1]; if (hexToInt (&ptr, ®) && *ptr++ == '=') { hex2mem (ptr, (char *) &i386_gdb_registers[reg], REGBYTES, 0); strcpy (remcomOutBuffer, "OK"); } else { strcpy (remcomOutBuffer, "E01"); debug_error ("malformed register set command; %s", remcomInBuffer); } break; /* mAA..AA,LLLL Read LLLL bytes at address AA..AA */ case 'm': /* TRY TO READ %x,%x. IF SUCCEED, SET PTR = 0 */ ptr = &remcomInBuffer[1]; if (hexToInt (&ptr, &addr)) if (*(ptr++) == ',') if (hexToInt (&ptr, &length)) { ptr = 0; mem_err = 0; mem2hex ((char *) addr, remcomOutBuffer, length, 1); if (mem_err) { strcpy (remcomOutBuffer, "E03"); debug_error ("memory fault", 0); } } if (ptr) { strcpy (remcomOutBuffer, "E01"); debug_error ("malformed read memory command: %s", remcomInBuffer); } break; /* MAA..AA,LLLL: Write LLLL bytes at address AA.AA return OK */ case 'M': /* TRY TO READ '%x,%x:'. IF SUCCEED, SET PTR = 0 */ ptr = &remcomInBuffer[1]; if (hexToInt (&ptr, &addr)) if (*(ptr++) == ',') if (hexToInt (&ptr, &length)) if (*(ptr++) == ':') { mem_err = 0; hex2mem (ptr, (char *) addr, length, 1); if (mem_err) { strcpy (remcomOutBuffer, "E03"); debug_error ("memory fault", 0); } else { strcpy (remcomOutBuffer, "OK"); } ptr = 0; } if (ptr) { strcpy (remcomOutBuffer, "E02"); debug_error ("malformed write memory command: %s", remcomInBuffer); } break; /* cAA..AA Continue at address AA..AA(optional) */ /* sAA..AA Step one instruction from AA..AA(optional) */ case 'c': case 's': /* try to read optional parameter, pc unchanged if no parm */ ptr = &remcomInBuffer[1]; if (hexToInt (&ptr, &addr)) i386_gdb_registers[PC] = addr; /* clear the trace bit */ i386_gdb_registers[PS] &= 0xfffffeff; /* set the trace bit if we're stepping */ if (remcomInBuffer[0] == 's') i386_gdb_registers[PS] |= 0x100; _returnFromException (); /* this is a jump */ break; case 'Z': case 'z': /* * Z1 = execute (00b) * Z2 = write (01b) * Z3 = read (??, need to use 11b)) * Z4 = read/write (11b) */ ptr = &remcomInBuffer[1]; reg = *(ptr++); if (reg == '0') break; printk("hbreak\n"); switch ((char) reg) { case '1': reg = 0; break; case '2': reg = 1; case '3': case '4': default: reg = 3; break; } if (*(ptr++) == ',') { bool insert = remcomInBuffer[0] == 'Z'; if (hexToInt (&ptr, &addr)) { if (*(ptr++) == ',') { uint32_t dr7; int i; hexToInt(&ptr, &length); dr7 = getDR7(); for (i = 0; i < NUM_DEBUG_REGISTERS; ++i) { if ((dr7 & (2 << (i * 2))) == 0) { if (insert) { setDR(i, addr); dr7 |= ((length - 1) << ((i * 2) + 18)) | (reg << ((i * 2) + 16)) | (2 << (i * 2)); setDR7(dr7); printk("set DR%i to %08x\n", i, addr); break; } } else if (!insert) { uint32_t dra = getDR(i); if (dra == addr) { dr7 &= ~(2 << (i * 2)); setDR7(dr7); printk("clear DR%i\n", i); break; } } } if (insert && (i == NUM_DEBUG_REGISTERS)) { ptr = 0; } } else { ptr = 0; } } else { ptr = 0; } } else { ptr = 0; } if (ptr) strcpy (remcomOutBuffer, "OK"); else strcpy (remcomOutBuffer, "E1"); break; /* Detach. */ case 'D': putpacket (remcomOutBuffer); i386_gdb_registers[PS] &= 0xfffffeff; _returnFromException (); /* this is a jump */ break; /* kill the program */ case 'k': /* do nothing */ bsp_reset(); continue; default: break; } /* switch */ /* reply to the request */ putpacket (remcomOutBuffer); } } /* this function is used to set up exception handlers for tracing and breakpoints */ void set_debug_traps (void) { i386_gdb_stackPtr = &i386_gdb_remcomStack[STACKSIZE / sizeof (int) - 1]; exceptionHandler (0, _catchException0); exceptionHandler (1, _catchException1); exceptionHandler (3, _catchException3); exceptionHandler (4, _catchException4); exceptionHandler (5, _catchException5); exceptionHandler (6, _catchException6); exceptionHandler (7, _catchException7); exceptionHandler (8, _catchException8); exceptionHandler (9, _catchException9); exceptionHandler (10, _catchException10); exceptionHandler (11, _catchException11); exceptionHandler (12, _catchException12); exceptionHandler (13, _catchException13); exceptionHandler (14, _catchException14); exceptionHandler (16, _catchException16); /* In case GDB is started before us, ack any packets (presumably "$?#xx") sitting there. */ putDebugChar ('+'); initialized = true; } /* This function will generate a breakpoint exception. It is used at the beginning of a program to sync up with a debugger and can be used otherwise as a quick means to stop program execution and "break" into the debugger. */ void breakpoint (void) { if (initialized) { BREAKPOINT (); } waitabit (); } int waitlimit = 1000000; void waitabit (void) { int i; for (i = 0; i < waitlimit; i++); }