/* * Rosimildo da Silva: rdasilva@connecttel.com */ #include #include #include #include "i386kbd.h" #include #include #include #define SIZE(x) (sizeof(x)/sizeof((x)[0])) #ifndef KBD_DEFMODE #define KBD_DEFMODE ((1 << VC_REPEAT) | (1 << VC_META)) #endif #ifndef KBD_DEFLEDS /* * Some laptops take the 789uiojklm,. keys as number pad when NumLock * is on. This seems a good reason to start with NumLock off. */ #define KBD_DEFLEDS 0 #endif #ifndef KBD_DEFLOCK #define KBD_DEFLOCK 0 #endif static int set_bit(int nr, unsigned long * addr) { int mask; int retval; rtems_interrupt_level level; addr += nr >> 5; mask = 1 << (nr & 0x1f); rtems_interrupt_disable(level); retval = (mask & *addr) != 0; *addr |= mask; rtems_interrupt_enable(level); return retval; } static int clear_bit(int nr, unsigned long * addr) { int mask; int retval; rtems_interrupt_level level; addr += nr >> 5; mask = 1 << (nr & 0x1f); rtems_interrupt_disable(level); retval = (mask & *addr) != 0; *addr &= ~mask; rtems_interrupt_enable(level); return retval; } static int test_bit(int nr, unsigned long * addr) { int mask; addr += nr >> 5; mask = 1 << (nr & 0x1f); return ((mask & *addr) != 0); } #define test_and_set_bit(x,y) set_bit(x,y) #define test_and_clear_bit(x,y) clear_bit(x,y) /* * global state includes the following, and various static variables * in this module: prev_scancode, shift_state, diacr, npadch, dead_key_next. * (last_console is now a global variable) */ #define BITS_PER_LONG (sizeof(long)*CHAR_BIT) /* shift state counters.. */ static unsigned char k_down[NR_SHIFT] = {0, }; /* keyboard key bitmap */ static unsigned long key_down[256/BITS_PER_LONG] = { 0, }; static int dead_key_next = 0; /* * In order to retrieve the shift_state (for the mouse server), either * the variable must be global, or a new procedure must be created to * return the value. I chose the former way. */ int shift_state = 0; static int npadch = -1; /* -1 or number assembled on pad */ static unsigned char diacr = 0; static char rep = 0; /* flag telling character repeat */ /* default console for RTEMS */ static int fg_console = 0; struct kbd_struct kbd_table[MAX_NR_CONSOLES]; static struct kbd_struct * kbd = kbd_table; void compute_shiftstate(void); typedef void (*k_hand)(unsigned char value, char up_flag); typedef void (k_handfn)(unsigned char value, char up_flag); static k_handfn do_self, do_fn, do_spec, do_pad, do_dead, do_cons, do_cur, do_shift, do_meta, do_ascii, do_lock, do_lowercase, do_slock, do_dead2, do_ignore; static k_hand key_handler[16] = { do_self, do_fn, do_spec, do_pad, do_dead, do_cons, do_cur, do_shift, do_meta, do_ascii, do_lock, do_lowercase, do_slock, do_dead2, do_ignore, do_ignore }; /* Key types processed even in raw modes */ #define TYPES_ALLOWED_IN_RAW_MODE ((1 << KT_SPEC) | (1 << KT_SHIFT)) typedef void (*void_fnp)(void); typedef void (void_fn)(void); static void show_mem(void) { } static void show_state(void) { } static void_fn do_null, enter, show_ptregs, send_intr, lastcons, caps_toggle, num, hold, scroll_forw, scroll_back, caps_on, compose, SAK, decr_console, incr_console, spawn_console, bare_num; static void_fnp spec_fn_table[] = { do_null, enter, show_ptregs, show_mem, show_state, send_intr, lastcons, caps_toggle, num, hold, scroll_forw, scroll_back, bsp_reset, caps_on, compose, SAK, decr_console, incr_console, spawn_console, bare_num }; #define SPECIALS_ALLOWED_IN_RAW_MODE (1 << KVAL(K_SAK)) /* maximum values each key_handler can handle */ const int max_vals[] = { 255, SIZE(func_table) - 1, SIZE(spec_fn_table) - 1, NR_PAD - 1, NR_DEAD - 1, 255, 3, NR_SHIFT - 1, 255, NR_ASCII - 1, NR_LOCK - 1, 255, NR_LOCK - 1, 255 }; const int NR_TYPES = SIZE(max_vals); /* N.B. drivers/macintosh/mac_keyb.c needs to call put_queue */ static void put_queue(int); static unsigned char handle_diacr(unsigned char); #ifdef CONFIG_MAGIC_SYSRQ static int sysrq_pressed; #endif /* * Many other routines do put_queue, but I think either * they produce ASCII, or they produce some user-assigned * string, and in both cases we might assume that it is * in utf-8 already. */ static void to_utf8(ushort c) { if (c < 0x80) put_queue(c); /* 0******* */ else if (c < 0x800) { put_queue(0xc0 | (c >> 6)); /* 110***** 10****** */ put_queue(0x80 | (c & 0x3f)); } else { put_queue(0xe0 | (c >> 12)); /* 1110**** 10****** 10****** */ put_queue(0x80 | ((c >> 6) & 0x3f)); put_queue(0x80 | (c & 0x3f)); } /* UTF-8 is defined for words of up to 31 bits, but we need only 16 bits here */ } /* * Translation of escaped scancodes to keycodes. * This is now user-settable (for machines were it makes sense). */ int setkeycode(unsigned int scancode, unsigned int keycode) { return kbd_setkeycode(scancode, keycode); } int getkeycode(unsigned int scancode) { return kbd_getkeycode(scancode); } void handle_scancode(unsigned char scancode, int down) { unsigned char keycode; char up_flag = down ? 0 : 0200; char raw_mode; mark_bh(CONSOLE_BH); #if 0 tty = ttytab? ttytab[fg_console]: NULL; if (tty && (!tty->driver_data)) { /* * We touch the tty structure via the the ttytab array * without knowing whether or not tty is open, which * is inherently dangerous. We currently rely on that * fact that console_open sets tty->driver_data when * it opens it, and clears it when it closes it. */ tty = NULL; } #endif kbd = kbd_table + fg_console; if ((raw_mode = (kbd->kbdmode == VC_RAW))) { put_queue(scancode | up_flag); /* we do not return yet, because we want to maintain the key_down array, so that we have the correct values when finishing RAW mode or when changing VT's */ } /* * Convert scancode to keycode */ if (!kbd_translate(scancode, &keycode, raw_mode)) return; /* * At this point the variable `keycode' contains the keycode. * Note: the keycode must not be 0 (++Geert: on m68k 0 is valid). * We keep track of the up/down status of the key, and * return the keycode if in MEDIUMRAW mode. */ if (up_flag) { rep = 0; if(!test_and_clear_bit(keycode, key_down)) up_flag = kbd_unexpected_up(keycode); } else rep = test_and_set_bit(keycode, key_down); #ifdef CONFIG_MAGIC_SYSRQ /* Handle the SysRq Hack */ if (keycode == SYSRQ_KEY) { sysrq_pressed = !up_flag; return; } else if (sysrq_pressed) { if (!up_flag && sysrq_enabled) handle_sysrq(kbd_sysrq_xlate[keycode], kbd_pt_regs, kbd, tty); return; } #endif if (kbd->kbdmode == VC_MEDIUMRAW) { /* soon keycodes will require more than one byte */ put_queue(keycode + up_flag); raw_mode = 1; /* Most key classes will be ignored */ } /* * Small change in philosophy: earlier we defined repetition by * rep = keycode == prev_keycode; * prev_keycode = keycode; * but now by the fact that the depressed key was down already. * Does this ever make a difference? Yes. */ /* * Repeat a key only if the input buffers are empty or the * characters get echoed locally. This makes key repeat usable * with slow applications and under heavy loads. */ if (!rep || vc_kbd_mode(kbd,VC_REPEAT) ) { /* || (vc_kbd_mode(kbd,VC_REPEAT) && tty && (L_ECHO(tty) || (tty->driver.chars_in_buffer(tty) == 0)))) { */ u_short keysym; u_char type; /* the XOR below used to be an OR */ int shift_final = shift_state ^ kbd->lockstate ^ kbd->slockstate; ushort *key_map = key_maps[shift_final]; if (key_map != NULL) { keysym = key_map[keycode]; type = KTYP(keysym); if (type >= 0xf0) { type -= 0xf0; if (raw_mode && ! (TYPES_ALLOWED_IN_RAW_MODE & (1 << type))) return; if (type == KT_LETTER) { type = KT_LATIN; if (vc_kbd_led(kbd, VC_CAPSLOCK)) { key_map = key_maps[shift_final ^ (1<slockstate = 0; } else { /* maybe only if (kbd->kbdmode == VC_UNICODE) ? */ if (!up_flag && !raw_mode) to_utf8(keysym); } } else { /* maybe beep? */ /* we have at least to update shift_state */ #if 1 /* how? two almost equivalent choices follow */ compute_shiftstate(); #else keysym = U(plain_map[keycode]); type = KTYP(keysym); if (type == KT_SHIFT) (*key_handler[type])(keysym & 0xff, up_flag); #endif } } } static void ( *driver_input_handler_kbd )( void *, unsigned short, unsigned long ) = 0; /* */ void kbd_set_driver_handler( void ( *handler )( void *, unsigned short, unsigned long ) ) { driver_input_handler_kbd = handler; } static void put_queue(int ch) { if ( driver_input_handler_kbd ) { driver_input_handler_kbd( ( void *)kbd, (unsigned short)ch, 0 ); } else { add_to_queue( ch ); } } static void puts_queue(char *cp) { while (*cp) { put_queue( *cp ); cp++; } } static void applkey(int key, char mode) { static char buf[] = { 0x1b, 'O', 0x00, 0x00 }; buf[1] = (mode ? 'O' : '['); buf[2] = key; puts_queue(buf); } static void enter(void) { if (diacr) { put_queue(diacr); diacr = 0; } put_queue(13); if (vc_kbd_mode(kbd,VC_CRLF)) put_queue(10); } static void caps_toggle(void) { if (rep) return; chg_vc_kbd_led(kbd, VC_CAPSLOCK); } static void caps_on(void) { if (rep) return; set_vc_kbd_led(kbd, VC_CAPSLOCK); } static void show_ptregs(void) { } static void hold(void) { if (rep ) return; chg_vc_kbd_led(kbd, VC_SCROLLOCK ); } static void num(void) { if (vc_kbd_mode(kbd,VC_APPLIC)) applkey('P', 1); else bare_num(); } /* * Bind this to Shift-NumLock if you work in application keypad mode * but want to be able to change the NumLock flag. * Bind this to NumLock if you prefer that the NumLock key always * changes the NumLock flag. */ static void bare_num(void) { if (!rep) chg_vc_kbd_led(kbd,VC_NUMLOCK); } static void lastcons(void) { } static void decr_console(void) { } static void incr_console(void) { } static void send_intr(void) { } static void scroll_forw(void) { } static void scroll_back(void) { } static void compose(void) { dead_key_next = 1; } int spawnpid, spawnsig; static void spawn_console(void) { } static void SAK(void) { } static void do_ignore(unsigned char value, char up_flag) { } static void do_null() { compute_shiftstate(); } static void do_spec(unsigned char value, char up_flag) { if (up_flag) return; if (value >= SIZE(spec_fn_table)) return; if ((kbd->kbdmode == VC_RAW || kbd->kbdmode == VC_MEDIUMRAW) && !(SPECIALS_ALLOWED_IN_RAW_MODE & (1 << value))) return; spec_fn_table[value](); } static void do_lowercase(unsigned char value, char up_flag) { } static void do_self(unsigned char value, char up_flag) { if (up_flag) return; /* no action, if this is a key release */ if (diacr) value = handle_diacr(value); if (dead_key_next) { dead_key_next = 0; diacr = value; return; } put_queue(value); } #define A_GRAVE '`' #define A_ACUTE '\'' #define A_CFLEX '^' #define A_TILDE '~' #define A_DIAER '"' #define A_CEDIL ',' static unsigned char ret_diacr[NR_DEAD] = {A_GRAVE, A_ACUTE, A_CFLEX, A_TILDE, A_DIAER, A_CEDIL }; /* Obsolete - for backwards compatibility only */ static void do_dead(unsigned char value, char up_flag) { value = ret_diacr[value]; printk( " do_dead( %X ) ", value ); do_dead2(value,up_flag); } /* * Handle dead key. Note that we now may have several * dead keys modifying the same character. Very useful * for Vietnamese. */ static void do_dead2(unsigned char value, char up_flag) { if (up_flag) return; diacr = (diacr ? handle_diacr(value) : value); } /* * We have a combining character DIACR here, followed by the character CH. * If the combination occurs in the table, return the corresponding value. * Otherwise, if CH is a space or equals DIACR, return DIACR. * Otherwise, conclude that DIACR was not combining after all, * queue it and return CH. */ unsigned char handle_diacr(unsigned char ch) { int d = diacr; int i; diacr = 0; for (i = 0; i < accent_table_size; i++) { if (accent_table[i].diacr == d && accent_table[i].base == ch) return accent_table[i].result; } if (ch == ' ' || ch == d) return d; put_queue(d); return ch; } static void do_cons(unsigned char value, char up_flag) { if (up_flag) return; } static void do_fn(unsigned char value, char up_flag) { if (up_flag) return; if (value < SIZE(func_table)) { if (func_table[value]) puts_queue(func_table[value]); } else printk( "do_fn called with value=%d\n", value); } static void do_pad(unsigned char value, char up_flag) { static const char *pad_chars = "0123456789+-*/\015,.?()"; static const char *app_map = "pqrstuvwxylSRQMnnmPQ"; if (up_flag) return; /* no action, if this is a key release */ /* kludge... shift forces cursor/number keys */ if (vc_kbd_mode(kbd,VC_APPLIC) && !k_down[KG_SHIFT]) { applkey(app_map[value], 1); return; } if (!vc_kbd_led(kbd,VC_NUMLOCK)) switch (value) { case KVAL(K_PCOMMA): case KVAL(K_PDOT): do_fn(KVAL(K_REMOVE), 0); return; case KVAL(K_P0): do_fn(KVAL(K_INSERT), 0); return; case KVAL(K_P1): do_fn(KVAL(K_SELECT), 0); return; case KVAL(K_P2): do_cur(KVAL(K_DOWN), 0); return; case KVAL(K_P3): do_fn(KVAL(K_PGDN), 0); return; case KVAL(K_P4): do_cur(KVAL(K_LEFT), 0); return; case KVAL(K_P6): do_cur(KVAL(K_RIGHT), 0); return; case KVAL(K_P7): do_fn(KVAL(K_FIND), 0); return; case KVAL(K_P8): do_cur(KVAL(K_UP), 0); return; case KVAL(K_P9): do_fn(KVAL(K_PGUP), 0); return; case KVAL(K_P5): applkey('G', vc_kbd_mode(kbd, VC_APPLIC)); return; } put_queue(pad_chars[value]); if (value == KVAL(K_PENTER) && vc_kbd_mode(kbd, VC_CRLF)) put_queue(10); } static void do_cur(unsigned char value, char up_flag) { static const char *cur_chars = "BDCA"; if (up_flag) return; applkey(cur_chars[value], vc_kbd_mode(kbd,VC_CKMODE)); } static void do_shift(unsigned char value, char up_flag) { int old_state = shift_state; if (rep) return; /* Mimic typewriter: a CapsShift key acts like Shift but undoes CapsLock */ if (value == KVAL(K_CAPSSHIFT)) { value = KVAL(K_SHIFT); if (!up_flag) clr_vc_kbd_led(kbd, VC_CAPSLOCK); } if (up_flag) { /* handle the case that two shift or control keys are depressed simultaneously */ if (k_down[value]) k_down[value]--; } else k_down[value]++; if (k_down[value]) shift_state |= (1 << value); else shift_state &= ~ (1 << value); /* kludge */ if (up_flag && shift_state != old_state && npadch != -1) { if (kbd->kbdmode == VC_UNICODE) to_utf8(npadch & 0xffff); else put_queue(npadch & 0xff); npadch = -1; } } /* called after returning from RAW mode or when changing consoles - recompute k_down[] and shift_state from key_down[] */ /* maybe called when keymap is undefined, so that shiftkey release is seen */ void compute_shiftstate(void) { int i, j, k, sym, val; shift_state = 0; for(i=0; i < SIZE(k_down); i++) k_down[i] = 0; for(i=0; i < SIZE(key_down); i++) if(key_down[i]) { /* skip this word if not a single bit on */ k = i*BITS_PER_LONG; for(j=0; jledmode = LED_SHOW_IOCTL; } else ; kbd->ledmode = LED_SHOW_FLAGS; set_leds(); } static struct ledptr { unsigned int *addr; unsigned int mask; unsigned char valid:1; } ledptrs[3]; void register_leds( int console, unsigned int led, unsigned int *addr, unsigned int mask ) { struct kbd_struct *kbd = kbd_table + console; if (led < 3) { ledptrs[led].addr = addr; ledptrs[led].mask = mask; ledptrs[led].valid = 1; kbd->ledmode = LED_SHOW_MEM; } else kbd->ledmode = LED_SHOW_FLAGS; } static inline unsigned char getleds(void) { struct kbd_struct *kbd = kbd_table + fg_console; unsigned char leds; if (kbd->ledmode == LED_SHOW_IOCTL) return ledioctl; leds = kbd->ledflagstate; if (kbd->ledmode == LED_SHOW_MEM) { if (ledptrs[0].valid) { if (*ledptrs[0].addr & ledptrs[0].mask) leds |= 1; else leds &= ~1; } if (ledptrs[1].valid) { if (*ledptrs[1].addr & ledptrs[1].mask) leds |= 2; else leds &= ~2; } if (ledptrs[2].valid) { if (*ledptrs[2].addr & ledptrs[2].mask) leds |= 4; else leds &= ~4; } } return leds; } /* * This routine is the bottom half of the keyboard interrupt * routine, and runs with all interrupts enabled. It does * console changing, led setting and copy_to_cooked, which can * take a reasonably long time. * * Aside from timing (which isn't really that important for * keyboard interrupts as they happen often), using the software * interrupt routines for this thing allows us to easily mask * this when we don't want any of the above to happen. Not yet * used, but this allows for easy and efficient race-condition * prevention later on. */ static void kbd_bh(void) { unsigned char leds = getleds(); if (leds != ledstate) { ledstate = leds; kbd_leds(leds); } } void set_leds(void) { kbd_bh(); } int kbd_init(void) { int i; struct kbd_struct kbd0; kbd0.ledflagstate = kbd0.default_ledflagstate = KBD_DEFLEDS; kbd0.ledmode = LED_SHOW_MEM; kbd0.lockstate = KBD_DEFLOCK; kbd0.slockstate = 0; kbd0.modeflags = KBD_DEFMODE; kbd0.kbdmode = VC_XLATE; for (i = 0 ; i < MAX_NR_CONSOLES ; i++) kbd_table[i] = kbd0; kbd_init_hw(); mark_bh(KEYBOARD_BH); return 0; }