source: rtems/c/src/exec/score/cpu/unix/cpu.h @ 84ff7c23

4.104.114.84.95
Last change on this file since 84ff7c23 was e2d79559, checked in by Joel Sherrill <joel.sherrill@…>, on 04/09/97 at 14:05:50

Added ka9q tcpip stack and network driver for the gen68360. This effort
was done based on the 3.6.0 release and had to be autoconf'ed locally.
It is turned on is the bsp enables it and it is not explicitly disabled
via the configure option --disable-tcpip. As many warnings as possible
were removed locally after the code was merged. Only the gen68360
and mvme136 bsps were compiled this way.

The ka9q port and network driver were submitted by Eric Norum
(eric@…).

The network demo programs are not included in the tree at this point.

  • Property mode set to 100644
File size: 31.4 KB
Line 
1/*  cpu.h
2 *
3 *  This include file contains information pertaining to the HP
4 *  PA-RISC processor (Level 1.1).
5 *
6 *  COPYRIGHT (c) 1994 by Division Incorporated
7 *
8 *  To anyone who acknowledges that this file is provided "AS IS"
9 *  without any express or implied warranty:
10 *      permission to use, copy, modify, and distribute this file
11 *      for any purpose is hereby granted without fee, provided that
12 *      the above copyright notice and this notice appears in all
13 *      copies, and that the name of Division Incorporated not be
14 *      used in advertising or publicity pertaining to distribution
15 *      of the software without specific, written prior permission.
16 *      Division Incorporated makes no representations about the
17 *      suitability of this software for any purpose.
18 *
19 *  $Id$
20 */
21
22#ifndef __CPU_h
23#define __CPU_h
24
25#ifdef __cplusplus
26extern "C" {
27#endif
28
29#include <rtems/score/unix.h>              /* pick up machine definitions */
30#ifndef ASM
31#include <rtems/score/unixtypes.h>
32#endif
33
34#include <rtems/score/unixsize.h>
35
36#if defined(solaris2)
37#undef  _POSIX_C_SOURCE
38#define _POSIX_C_SOURCE 3
39#undef  __STRICT_ANSI__
40#define __STRICT_ANSI__
41#endif
42
43#if defined(linux)
44#define MALLOC_0_RETURNS_NULL
45#endif
46
47/* conditional compilation parameters */
48
49/*
50 *  Should the calls to _Thread_Enable_dispatch be inlined?
51 *
52 *  If TRUE, then they are inlined.
53 *  If FALSE, then a subroutine call is made.
54 *
55 *  Basically this is an example of the classic trade-off of size
56 *  versus speed.  Inlining the call (TRUE) typically increases the
57 *  size of RTEMS while speeding up the enabling of dispatching.
58 *  [NOTE: In general, the _Thread_Dispatch_disable_level will
59 *  only be 0 or 1 unless you are in an interrupt handler and that
60 *  interrupt handler invokes the executive.]  When not inlined
61 *  something calls _Thread_Enable_dispatch which in turns calls
62 *  _Thread_Dispatch.  If the enable dispatch is inlined, then
63 *  one subroutine call is avoided entirely.]
64 */
65
66#define CPU_INLINE_ENABLE_DISPATCH       FALSE
67
68/*
69 *  Should the body of the search loops in _Thread_queue_Enqueue_priority
70 *  be unrolled one time?  In unrolled each iteration of the loop examines
71 *  two "nodes" on the chain being searched.  Otherwise, only one node
72 *  is examined per iteration.
73 *
74 *  If TRUE, then the loops are unrolled.
75 *  If FALSE, then the loops are not unrolled.
76 *
77 *  The primary factor in making this decision is the cost of disabling
78 *  and enabling interrupts (_ISR_Flash) versus the cost of rest of the
79 *  body of the loop.  On some CPUs, the flash is more expensive than
80 *  one iteration of the loop body.  In this case, it might be desirable
81 *  to unroll the loop.  It is important to note that on some CPUs, this
82 *  code is the longest interrupt disable period in RTEMS.  So it is
83 *  necessary to strike a balance when setting this parameter.
84 */
85
86#define CPU_UNROLL_ENQUEUE_PRIORITY      TRUE
87
88/*
89 *  Does RTEMS manage a dedicated interrupt stack in software?
90 *
91 *  If TRUE, then a stack is allocated in _Interrupt_Manager_initialization.
92 *  If FALSE, nothing is done.
93 *
94 *  If the CPU supports a dedicated interrupt stack in hardware,
95 *  then it is generally the responsibility of the BSP to allocate it
96 *  and set it up.
97 *
98 *  If the CPU does not support a dedicated interrupt stack, then
99 *  the porter has two options: (1) execute interrupts on the
100 *  stack of the interrupted task, and (2) have RTEMS manage a dedicated
101 *  interrupt stack.
102 *
103 *  If this is TRUE, CPU_ALLOCATE_INTERRUPT_STACK should also be TRUE.
104 *
105 *  Only one of CPU_HAS_SOFTWARE_INTERRUPT_STACK and
106 *  CPU_HAS_HARDWARE_INTERRUPT_STACK should be set to TRUE.  It is
107 *  possible that both are FALSE for a particular CPU.  Although it
108 *  is unclear what that would imply about the interrupt processing
109 *  procedure on that CPU.
110 */
111
112#define CPU_HAS_SOFTWARE_INTERRUPT_STACK FALSE
113
114/*
115 *  Does this CPU have hardware support for a dedicated interrupt stack?
116 *
117 *  If TRUE, then it must be installed during initialization.
118 *  If FALSE, then no installation is performed.
119 *
120 *  If this is TRUE, CPU_ALLOCATE_INTERRUPT_STACK should also be TRUE.
121 *
122 *  Only one of CPU_HAS_SOFTWARE_INTERRUPT_STACK and
123 *  CPU_HAS_HARDWARE_INTERRUPT_STACK should be set to TRUE.  It is
124 *  possible that both are FALSE for a particular CPU.  Although it
125 *  is unclear what that would imply about the interrupt processing
126 *  procedure on that CPU.
127 */
128
129#define CPU_HAS_HARDWARE_INTERRUPT_STACK TRUE
130
131/*
132 *  Does RTEMS allocate a dedicated interrupt stack in the Interrupt Manager?
133 *
134 *  If TRUE, then the memory is allocated during initialization.
135 *  If FALSE, then the memory is allocated during initialization.
136 *
137 *  This should be TRUE if CPU_HAS_SOFTWARE_INTERRUPT_STACK is TRUE
138 *  or CPU_INSTALL_HARDWARE_INTERRUPT_STACK is TRUE.
139 */
140
141#define CPU_ALLOCATE_INTERRUPT_STACK FALSE
142
143/*
144 *  Does the CPU have hardware floating point?
145 *
146 *  If TRUE, then the RTEMS_FLOATING_POINT task attribute is supported.
147 *  If FALSE, then the RTEMS_FLOATING_POINT task attribute is ignored.
148 *
149 *  If there is a FP coprocessor such as the i387 or mc68881, then
150 *  the answer is TRUE.
151 *
152 *  The macro name "NO_CPU_HAS_FPU" should be made CPU specific.
153 *  It indicates whether or not this CPU model has FP support.  For
154 *  example, it would be possible to have an i386_nofp CPU model
155 *  which set this to false to indicate that you have an i386 without
156 *  an i387 and wish to leave floating point support out of RTEMS.
157 */
158
159#define CPU_HARDWARE_FP     TRUE
160
161/*
162 *  Are all tasks RTEMS_FLOATING_POINT tasks implicitly?
163 *
164 *  If TRUE, then the RTEMS_FLOATING_POINT task attribute is assumed.
165 *  If FALSE, then the RTEMS_FLOATING_POINT task attribute is followed.
166 *
167 *  So far, the only CPU in which this option has been used is the
168 *  HP PA-RISC.  The HP C compiler and gcc both implicitly use the
169 *  floating point registers to perform integer multiplies.  If
170 *  a function which you would not think utilize the FP unit DOES,
171 *  then one can not easily predict which tasks will use the FP hardware.
172 *  In this case, this option should be TRUE.
173 *
174 *  If CPU_HARDWARE_FP is FALSE, then this should be FALSE as well.
175 */
176
177#define CPU_ALL_TASKS_ARE_FP     FALSE
178
179/*
180 *  Should the IDLE task have a floating point context?
181 *
182 *  If TRUE, then the IDLE task is created as a RTEMS_FLOATING_POINT task
183 *  and it has a floating point context which is switched in and out.
184 *  If FALSE, then the IDLE task does not have a floating point context.
185 *
186 *  Setting this to TRUE negatively impacts the time required to preempt
187 *  the IDLE task from an interrupt because the floating point context
188 *  must be saved as part of the preemption.
189 */
190
191#define CPU_IDLE_TASK_IS_FP      FALSE
192
193/*
194 *  Should the saving of the floating point registers be deferred
195 *  until a context switch is made to another different floating point
196 *  task?
197 *
198 *  If TRUE, then the floating point context will not be stored until
199 *  necessary.  It will remain in the floating point registers and not
200 *  disturned until another floating point task is switched to.
201 *
202 *  If FALSE, then the floating point context is saved when a floating
203 *  point task is switched out and restored when the next floating point
204 *  task is restored.  The state of the floating point registers between
205 *  those two operations is not specified.
206 *
207 *  If the floating point context does NOT have to be saved as part of
208 *  interrupt dispatching, then it should be safe to set this to TRUE.
209 *
210 *  Setting this flag to TRUE results in using a different algorithm
211 *  for deciding when to save and restore the floating point context.
212 *  The deferred FP switch algorithm minimizes the number of times
213 *  the FP context is saved and restored.  The FP context is not saved
214 *  until a context switch is made to another, different FP task.
215 *  Thus in a system with only one FP task, the FP context will never
216 *  be saved or restored.
217 */
218
219#define CPU_USE_DEFERRED_FP_SWITCH       TRUE
220
221/*
222 *  Does this port provide a CPU dependent IDLE task implementation?
223 *
224 *  If TRUE, then the routine _CPU_Thread_Idle_body
225 *  must be provided and is the default IDLE thread body instead of
226 *  _CPU_Thread_Idle_body.
227 *
228 *  If FALSE, then use the generic IDLE thread body if the BSP does
229 *  not provide one.
230 *
231 *  This is intended to allow for supporting processors which have
232 *  a low power or idle mode.  When the IDLE thread is executed, then
233 *  the CPU can be powered down.
234 *
235 *  The order of precedence for selecting the IDLE thread body is:
236 *
237 *    1.  BSP provided
238 *    2.  CPU dependent (if provided)
239 *    3.  generic (if no BSP and no CPU dependent)
240 */
241
242#define CPU_PROVIDES_IDLE_THREAD_BODY    TRUE
243
244/*
245 *  Does the stack grow up (toward higher addresses) or down
246 *  (toward lower addresses)?
247 *
248 *  If TRUE, then the grows upward.
249 *  If FALSE, then the grows toward smaller addresses.
250 */
251
252#if defined(hppa1_1)
253#define CPU_STACK_GROWS_UP               TRUE
254#elif defined(sparc) || defined(i386) || defined(__i386__)
255#define CPU_STACK_GROWS_UP               FALSE
256#else
257#error "unknown CPU!!"
258#endif
259
260
261/*
262 *  The following is the variable attribute used to force alignment
263 *  of critical RTEMS structures.  On some processors it may make
264 *  sense to have these aligned on tighter boundaries than
265 *  the minimum requirements of the compiler in order to have as
266 *  much of the critical data area as possible in a cache line.
267 *
268 *  The placement of this macro in the declaration of the variables
269 *  is based on the syntactically requirements of the GNU C
270 *  "__attribute__" extension.  For example with GNU C, use
271 *  the following to force a structures to a 32 byte boundary.
272 *
273 *      __attribute__ ((aligned (32)))
274 *
275 *  NOTE:  Currently only the Priority Bit Map table uses this feature.
276 *         To benefit from using this, the data must be heavily
277 *         used so it will stay in the cache and used frequently enough
278 *         in the executive to justify turning this on.
279 */
280
281#ifdef __GNUC__
282#define CPU_STRUCTURE_ALIGNMENT          __attribute__ ((aligned (32)))
283#else
284#define CPU_STRUCTURE_ALIGNMENT
285#endif
286
287/*
288 *  Define what is required to specify how the network to host conversion
289 *  routines are handled.
290 */
291
292#if defined(hppa1_1) || defined(sparc)
293#define CPU_CPU_HAS_OWN_HOST_TO_NETWORK_ROUTINES FALSE
294#define CPU_BIG_ENDIAN                           TRUE
295#define CPU_LITTLE_ENDIAN                        FALSE
296#elif defined(i386) || defined(__i386__)
297#define CPU_CPU_HAS_OWN_HOST_TO_NETWORK_ROUTINES FALSE
298#define CPU_BIG_ENDIAN                           FALSE
299#define CPU_LITTLE_ENDIAN                        TRUE
300#else
301#error "Unknown CPU!!!"
302#endif
303
304/*
305 *  The following defines the number of bits actually used in the
306 *  interrupt field of the task mode.  How those bits map to the
307 *  CPU interrupt levels is defined by the routine _CPU_ISR_Set_level().
308 */
309
310#define CPU_MODES_INTERRUPT_MASK   0x00000001
311
312#define CPU_NAME "UNIX"
313
314/*
315 *  Processor defined structures
316 *
317 *  Examples structures include the descriptor tables from the i386
318 *  and the processor control structure on the i960ca.
319 */
320
321/* may need to put some structures here.  */
322
323#if defined(hppa1_1)
324/*
325 * Word indices within a jmp_buf structure
326 */
327
328#ifdef RTEMS_NEWLIB_SETJMP
329#define RP_OFF       6
330#define SP_OFF       2
331#define R3_OFF      10
332#define R4_OFF      11
333#define R5_OFF      12
334#define R6_OFF      13
335#define R7_OFF      14
336#define R8_OFF      15
337#define R9_OFF      16
338#define R10_OFF     17
339#define R11_OFF     18
340#define R12_OFF     19
341#define R13_OFF     20
342#define R14_OFF     21
343#define R15_OFF     22
344#define R16_OFF     23
345#define R17_OFF     24
346#define R18_OFF     25
347#define DP_OFF      26
348#endif
349
350#ifdef RTEMS_UNIXLIB_SETJMP
351#define RP_OFF       0
352#define SP_OFF       1
353#define R3_OFF       4
354#define R4_OFF       5
355#define R5_OFF       6
356#define R6_OFF       7
357#define R7_OFF       8
358#define R8_OFF       9
359#define R9_OFF      10
360#define R10_OFF     11
361#define R11_OFF     12
362#define R12_OFF     13
363#define R13_OFF     14
364#define R14_OFF     15
365#define R15_OFF     16
366#define R16_OFF     17
367#define R17_OFF     18
368#define R18_OFF     19
369#define DP_OFF      20
370#endif
371#endif
372
373#if defined(i386) || defined(__i386__)
374 
375#ifdef RTEMS_NEWLIB
376#error "Newlib not installed"
377#endif
378 
379/*
380 *  For Linux 1.1
381 */
382 
383#ifdef RTEMS_UNIXLIB
384#define EBX_OFF    0
385#define ESI_OFF    1
386#define EDI_OFF    2
387#define EBP_OFF    3
388#define ESP_OFF    4
389#define RET_OFF    5
390#endif
391 
392#endif
393 
394#if defined(sparc)
395
396/*
397 *  Word indices within a jmp_buf structure
398 */
399 
400#ifdef RTEMS_NEWLIB
401#define ADDR_ADJ_OFFSET -8
402#define SP_OFF    0
403#define RP_OFF    1
404#define FP_OFF    2
405#endif
406
407#ifdef RTEMS_UNIXLIB
408#define ADDR_ADJ_OFFSET 0
409#define G0_OFF    0
410#define SP_OFF    1
411#define RP_OFF    2   
412#define FP_OFF    3
413#define I7_OFF    4
414#endif
415
416#endif
417
418/*
419 * Contexts
420 *
421 *  Generally there are 2 types of context to save.
422 *     1. Interrupt registers to save
423 *     2. Task level registers to save
424 *
425 *  This means we have the following 3 context items:
426 *     1. task level context stuff::  Context_Control
427 *     2. floating point task stuff:: Context_Control_fp
428 *     3. special interrupt level context :: Context_Control_interrupt
429 *
430 *  On some processors, it is cost-effective to save only the callee
431 *  preserved registers during a task context switch.  This means
432 *  that the ISR code needs to save those registers which do not
433 *  persist across function calls.  It is not mandatory to make this
434 *  distinctions between the caller/callee saves registers for the
435 *  purpose of minimizing context saved during task switch and on interrupts.
436 *  If the cost of saving extra registers is minimal, simplicity is the
437 *  choice.  Save the same context on interrupt entry as for tasks in
438 *  this case.
439 *
440 *  Additionally, if gdb is to be made aware of RTEMS tasks for this CPU, then
441 *  care should be used in designing the context area.
442 *
443 *  On some CPUs with hardware floating point support, the Context_Control_fp
444 *  structure will not be used or it simply consist of an array of a
445 *  fixed number of bytes.   This is done when the floating point context
446 *  is dumped by a "FP save context" type instruction and the format
447 *  is not really defined by the CPU.  In this case, there is no need
448 *  to figure out the exact format -- only the size.  Of course, although
449 *  this is enough information for RTEMS, it is probably not enough for
450 *  a debugger such as gdb.  But that is another problem.
451 */
452
453/*
454 *  This is really just the area for the following fields.
455 *
456 *    jmp_buf    regs;
457 *    unsigned32 isr_level;
458 *
459 *  Doing it this way avoids conflicts between the native stuff and the
460 *  RTEMS stuff.
461 *
462 *  NOTE:
463 *      hpux9 setjmp is optimized for the case where the setjmp buffer
464 *      is 8 byte aligned.  In a RISC world, this seems likely to enable
465 *      8 byte copies, especially for the float registers.
466 *      So we always align them on 8 byte boundaries.
467 */
468
469#ifdef __GNUC__
470#define CONTEXT_STRUCTURE_ALIGNMENT          __attribute__ ((aligned (8)))
471#else
472#define CONTEXT_STRUCTURE_ALIGNMENT
473#endif
474
475typedef struct {
476  char      Area[ CPU_CONTEXT_SIZE_IN_BYTES ] CONTEXT_STRUCTURE_ALIGNMENT;
477} Context_Control;
478
479typedef struct {
480} Context_Control_fp;
481
482typedef struct {
483} CPU_Interrupt_frame;
484
485
486/*
487 *  The following table contains the information required to configure
488 *  the UNIX Simulator specific parameters.
489 */
490
491typedef struct {
492  void       (*pretasking_hook)( void );
493  void       (*predriver_hook)( void );
494  void       (*postdriver_hook)( void );
495  void       (*idle_task)( void );
496  boolean      do_zero_of_workspace;
497  unsigned32   interrupt_stack_size;
498  unsigned32   extra_mpci_receive_server_stack;
499  void *     (*stack_allocate_hook)( unsigned32 );
500  void       (*stack_free_hook)( void* );
501  /* end of required fields */
502}   rtems_cpu_table;
503
504/*
505 *  This variable is optional.  It is used on CPUs on which it is difficult
506 *  to generate an "uninitialized" FP context.  It is filled in by
507 *  _CPU_Initialize and copied into the task's FP context area during
508 *  _CPU_Context_Initialize.
509 */
510
511SCORE_EXTERN Context_Control_fp  _CPU_Null_fp_context;
512
513/*
514 *  On some CPUs, RTEMS supports a software managed interrupt stack.
515 *  This stack is allocated by the Interrupt Manager and the switch
516 *  is performed in _ISR_Handler.  These variables contain pointers
517 *  to the lowest and highest addresses in the chunk of memory allocated
518 *  for the interrupt stack.  Since it is unknown whether the stack
519 *  grows up or down (in general), this give the CPU dependent
520 *  code the option of picking the version it wants to use.
521 *
522 *  NOTE: These two variables are required if the macro
523 *        CPU_HAS_SOFTWARE_INTERRUPT_STACK is defined as TRUE.
524 */
525
526SCORE_EXTERN void               *_CPU_Interrupt_stack_low;
527SCORE_EXTERN void               *_CPU_Interrupt_stack_high;
528
529/*
530 *  With some compilation systems, it is difficult if not impossible to
531 *  call a high-level language routine from assembly language.  This
532 *  is especially true of commercial Ada compilers and name mangling
533 *  C++ ones.  This variable can be optionally defined by the CPU porter
534 *  and contains the address of the routine _Thread_Dispatch.  This
535 *  can make it easier to invoke that routine at the end of the interrupt
536 *  sequence (if a dispatch is necessary).
537 */
538
539SCORE_EXTERN void           (*_CPU_Thread_dispatch_pointer)();
540
541/*
542 *  Nothing prevents the porter from declaring more CPU specific variables.
543 */
544
545/* XXX: if needed, put more variables here */
546
547/*
548 *  The size of the floating point context area.  On some CPUs this
549 *  will not be a "sizeof" because the format of the floating point
550 *  area is not defined -- only the size is.  This is usually on
551 *  CPUs with a "floating point save context" instruction.
552 */
553
554#define CPU_CONTEXT_FP_SIZE sizeof( Context_Control_fp )
555
556/*
557 * The size of a frame on the stack
558 */
559
560#if defined(hppa1_1)
561#define CPU_FRAME_SIZE  (32 * 4)
562#elif defined(sparc)
563#define CPU_FRAME_SIZE  (112)   /* based on disassembled test code */
564#elif defined(i386) || defined(__i386__)
565#define CPU_FRAME_SIZE  (24)  /* return address, sp, and bp pushed plus fudge */
566#else
567#error "Unknown CPU!!!"
568#endif
569
570/*
571 *  Amount of extra stack (above minimum stack size) required by
572 *  MPCI receive server thread.  Remember that in a multiprocessor
573 *  system this thread must exist and be able to process all directives.
574 */
575
576#define CPU_MPCI_RECEIVE_SERVER_EXTRA_STACK 0
577
578/*
579 *  This defines the number of entries in the ISR_Vector_table managed
580 *  by RTEMS.
581 */
582
583#define CPU_INTERRUPT_NUMBER_OF_VECTORS      64
584#define CPU_INTERRUPT_MAXIMUM_VECTOR_NUMBER  (CPU_INTERRUPT_NUMBER_OF_VECTORS - 1)
585
586/*
587 *  Should be large enough to run all RTEMS tests.  This insures
588 *  that a "reasonable" small application should not have any problems.
589 */
590
591#define CPU_STACK_MINIMUM_SIZE          (16 * 1024)
592
593/*
594 *  CPU's worst alignment requirement for data types on a byte boundary.  This
595 *  alignment does not take into account the requirements for the stack.
596 */
597
598#define CPU_ALIGNMENT              8
599
600/*
601 *  This number corresponds to the byte alignment requirement for the
602 *  heap handler.  This alignment requirement may be stricter than that
603 *  for the data types alignment specified by CPU_ALIGNMENT.  It is
604 *  common for the heap to follow the same alignment requirement as
605 *  CPU_ALIGNMENT.  If the CPU_ALIGNMENT is strict enough for the heap,
606 *  then this should be set to CPU_ALIGNMENT.
607 *
608 *  NOTE:  This does not have to be a power of 2.  It does have to
609 *         be greater or equal to than CPU_ALIGNMENT.
610 */
611
612#define CPU_HEAP_ALIGNMENT         CPU_ALIGNMENT
613
614/*
615 *  This number corresponds to the byte alignment requirement for memory
616 *  buffers allocated by the partition manager.  This alignment requirement
617 *  may be stricter than that for the data types alignment specified by
618 *  CPU_ALIGNMENT.  It is common for the partition to follow the same
619 *  alignment requirement as CPU_ALIGNMENT.  If the CPU_ALIGNMENT is strict
620 *  enough for the partition, then this should be set to CPU_ALIGNMENT.
621 *
622 *  NOTE:  This does not have to be a power of 2.  It does have to
623 *         be greater or equal to than CPU_ALIGNMENT.
624 */
625
626#define CPU_PARTITION_ALIGNMENT    CPU_ALIGNMENT
627
628/*
629 *  This number corresponds to the byte alignment requirement for the
630 *  stack.  This alignment requirement may be stricter than that for the
631 *  data types alignment specified by CPU_ALIGNMENT.  If the CPU_ALIGNMENT
632 *  is strict enough for the stack, then this should be set to 0.
633 *
634 *  NOTE:  This must be a power of 2 either 0 or greater than CPU_ALIGNMENT.
635 */
636
637#define CPU_STACK_ALIGNMENT        64
638
639/* ISR handler macros */
640
641/*
642 *  Disable all interrupts for an RTEMS critical section.  The previous
643 *  level is returned in _level.
644 */
645
646extern unsigned32 _CPU_ISR_Disable_support(void);
647
648#define _CPU_ISR_Disable( _level ) \
649    do { \
650      (_level) = _CPU_ISR_Disable_support(); \
651    } while ( 0 )
652
653/*
654 *  Enable interrupts to the previous level (returned by _CPU_ISR_Disable).
655 *  This indicates the end of an RTEMS critical section.  The parameter
656 *  _level is not modified.
657 */
658
659void _CPU_ISR_Enable(unsigned32 level);
660
661/*
662 *  This temporarily restores the interrupt to _level before immediately
663 *  disabling them again.  This is used to divide long RTEMS critical
664 *  sections into two or more parts.  The parameter _level is not
665 * modified.
666 */
667
668#define _CPU_ISR_Flash( _level ) \
669  do { \
670      register _ignored = 0; \
671      _CPU_ISR_Enable( (_level) ); \
672      _CPU_ISR_Disable( _ignored ); \
673  } while ( 0 )
674
675/*
676 *  Map interrupt level in task mode onto the hardware that the CPU
677 *  actually provides.  Currently, interrupt levels which do not
678 *  map onto the CPU in a generic fashion are undefined.  Someday,
679 *  it would be nice if these were "mapped" by the application
680 *  via a callout.  For example, m68k has 8 levels 0 - 7, levels
681 *  8 - 255 would be available for bsp/application specific meaning.
682 *  This could be used to manage a programmable interrupt controller
683 *  via the rtems_task_mode directive.
684 */
685
686#define _CPU_ISR_Set_level( new_level ) \
687  { \
688    if ( new_level == 0 ) _CPU_ISR_Enable( 0 ); \
689    else                  _CPU_ISR_Enable( 1 ); \
690  }
691
692unsigned32 _CPU_ISR_Get_level( void );
693
694/* end of ISR handler macros */
695
696/* Context handler macros */
697
698/*
699 *  This routine is responsible for somehow restarting the currently
700 *  executing task.  If you are lucky, then all that is necessary
701 *  is restoring the context.  Otherwise, there will need to be
702 *  a special assembly routine which does something special in this
703 *  case.  Context_Restore should work most of the time.  It will
704 *  not work if restarting self conflicts with the stack frame
705 *  assumptions of restoring a context.
706 */
707
708#define _CPU_Context_Restart_self( _the_context ) \
709   _CPU_Context_restore( (_the_context) );
710
711/*
712 *  The purpose of this macro is to allow the initial pointer into
713 *  a floating point context area (used to save the floating point
714 *  context) to be at an arbitrary place in the floating point
715 *  context area.
716 *
717 *  This is necessary because some FP units are designed to have
718 *  their context saved as a stack which grows into lower addresses.
719 *  Other FP units can be saved by simply moving registers into offsets
720 *  from the base of the context area.  Finally some FP units provide
721 *  a "dump context" instruction which could fill in from high to low
722 *  or low to high based on the whim of the CPU designers.
723 */
724
725#define _CPU_Context_Fp_start( _base, _offset ) \
726   ( (void *) _Addresses_Add_offset( (_base), (_offset) ) )
727
728/*
729 *  This routine initializes the FP context area passed to it to.
730 *  There are a few standard ways in which to initialize the
731 *  floating point context.  The code included for this macro assumes
732 *  that this is a CPU in which a "initial" FP context was saved into
733 *  _CPU_Null_fp_context and it simply copies it to the destination
734 *  context passed to it.
735 *
736 *  Other models include (1) not doing anything, and (2) putting
737 *  a "null FP status word" in the correct place in the FP context.
738 */
739
740#define _CPU_Context_Initialize_fp( _destination ) \
741  { \
742   *((Context_Control_fp *) *((void **) _destination)) = _CPU_Null_fp_context; \
743  }
744
745#define _CPU_Context_save_fp( _fp_context ) \
746    _CPU_Save_float_context( *(Context_Control_fp **)(_fp_context))
747
748#define _CPU_Context_restore_fp( _fp_context ) \
749    _CPU_Restore_float_context( *(Context_Control_fp **)(_fp_context))
750
751extern void _CPU_Context_Initialize(
752  Context_Control  *_the_context,
753  unsigned32       *_stack_base,
754  unsigned32        _size,
755  unsigned32        _new_level,
756  void             *_entry_point,
757  boolean           _is_fp
758);
759
760/* end of Context handler macros */
761
762/* Fatal Error manager macros */
763
764/*
765 *  This routine copies _error into a known place -- typically a stack
766 *  location or a register, optionally disables interrupts, and
767 *  halts/stops the CPU.
768 */
769
770#define _CPU_Fatal_halt( _error ) \
771    _CPU_Fatal_error( _error )
772
773/* end of Fatal Error manager macros */
774
775/* Bitfield handler macros */
776
777/*
778 *  This routine sets _output to the bit number of the first bit
779 *  set in _value.  _value is of CPU dependent type Priority_Bit_map_control.
780 *  This type may be either 16 or 32 bits wide although only the 16
781 *  least significant bits will be used.
782 *
783 *  There are a number of variables in using a "find first bit" type
784 *  instruction.
785 *
786 *    (1) What happens when run on a value of zero?
787 *    (2) Bits may be numbered from MSB to LSB or vice-versa.
788 *    (3) The numbering may be zero or one based.
789 *    (4) The "find first bit" instruction may search from MSB or LSB.
790 *
791 *  RTEMS guarantees that (1) will never happen so it is not a concern.
792 *  (2),(3), (4) are handled by the macros _CPU_Priority_mask() and
793 *  _CPU_Priority_bits_index().  These three form a set of routines
794 *  which must logically operate together.  Bits in the _value are
795 *  set and cleared based on masks built by _CPU_Priority_mask().
796 *  The basic major and minor values calculated by _Priority_Major()
797 *  and _Priority_Minor() are "massaged" by _CPU_Priority_bits_index()
798 *  to properly range between the values returned by the "find first bit"
799 *  instruction.  This makes it possible for _Priority_Get_highest() to
800 *  calculate the major and directly index into the minor table.
801 *  This mapping is necessary to ensure that 0 (a high priority major/minor)
802 *  is the first bit found.
803 *
804 *  This entire "find first bit" and mapping process depends heavily
805 *  on the manner in which a priority is broken into a major and minor
806 *  components with the major being the 4 MSB of a priority and minor
807 *  the 4 LSB.  Thus (0 << 4) + 0 corresponds to priority 0 -- the highest
808 *  priority.  And (15 << 4) + 14 corresponds to priority 254 -- the next
809 *  to the lowest priority.
810 *
811 *  If your CPU does not have a "find first bit" instruction, then
812 *  there are ways to make do without it.  Here are a handful of ways
813 *  to implement this in software:
814 *
815 *    - a series of 16 bit test instructions
816 *    - a "binary search using if's"
817 *    - _number = 0
818 *      if _value > 0x00ff
819 *        _value >>=8
820 *        _number = 8;
821 *
822 *      if _value > 0x0000f
823 *        _value >=8
824 *        _number += 4
825 *
826 *      _number += bit_set_table[ _value ]
827 *
828 *    where bit_set_table[ 16 ] has values which indicate the first
829 *      bit set
830 */
831
832/*
833 *  The UNIX port uses the generic C algorithm for bitfield scan to avoid
834 *  dependencies on either a native bitscan instruction or an ffs() in the
835 *  C library.
836 */
837 
838#define CPU_USE_GENERIC_BITFIELD_CODE TRUE
839#define CPU_USE_GENERIC_BITFIELD_DATA TRUE
840 
841/* end of Bitfield handler macros */
842 
843/* Priority handler handler macros */
844 
845/*
846 *  The UNIX port uses the generic C algorithm for bitfield scan to avoid
847 *  dependencies on either a native bitscan instruction or an ffs() in the
848 *  C library.
849 */
850 
851/* end of Priority handler macros */
852
853/* functions */
854
855/*
856 *  _CPU_Initialize
857 *
858 *  This routine performs CPU dependent initialization.
859 */
860
861void _CPU_Initialize(
862  rtems_cpu_table  *cpu_table,
863  void      (*thread_dispatch)
864);
865
866/*
867 *  _CPU_ISR_install_raw_handler
868 *
869 *  This routine installs a "raw" interrupt handler directly into the
870 *  processor's vector table.
871 */
872 
873void _CPU_ISR_install_raw_handler(
874  unsigned32  vector,
875  proc_ptr    new_handler,
876  proc_ptr   *old_handler
877);
878
879/*
880 *  _CPU_ISR_install_vector
881 *
882 *  This routine installs an interrupt vector.
883 */
884
885void _CPU_ISR_install_vector(
886  unsigned32  vector,
887  proc_ptr    new_handler,
888  proc_ptr   *old_handler
889);
890
891/*
892 *  _CPU_Install_interrupt_stack
893 *
894 *  This routine installs the hardware interrupt stack pointer.
895 *
896 *  NOTE:  It need only be provided if CPU_HAS_HARDWARE_INTERRUPT_STACK
897 *         is TRUE.
898 */
899
900void _CPU_Install_interrupt_stack( void );
901
902/*
903 *  _CPU_Thread_Idle_body
904 *
905 *  This routine is the CPU dependent IDLE thread body.
906 *
907 *  NOTE:  It need only be provided if CPU_PROVIDES_IDLE_THREAD_BODY
908 *         is TRUE.
909 */
910
911void _CPU_Thread_Idle_body( void );
912
913/*
914 *  _CPU_Context_switch
915 *
916 *  This routine switches from the run context to the heir context.
917 */
918
919void _CPU_Context_switch(
920  Context_Control  *run,
921  Context_Control  *heir
922);
923
924/*
925 *  _CPU_Context_restore
926 *
927 *  This routine is generallu used only to restart self in an
928 *  efficient manner.  It may simply be a label in _CPU_Context_switch.
929 *
930 *  NOTE: May be unnecessary to reload some registers.
931 */
932
933void _CPU_Context_restore(
934  Context_Control *new_context
935);
936
937/*
938 *  _CPU_Save_float_context
939 *
940 *  This routine saves the floating point context passed to it.
941 */
942
943void _CPU_Save_float_context(
944  Context_Control_fp *fp_context_ptr
945);
946
947/*
948 *  _CPU_Restore_float_context
949 *
950 *  This routine restores the floating point context passed to it.
951 */
952
953void _CPU_Restore_float_context(
954  Context_Control_fp *fp_context_ptr
955);
956
957
958void _CPU_ISR_Set_signal_level(
959  unsigned32 level
960);
961
962void _CPU_Fatal_error(
963  unsigned32 _error
964);
965
966/*  The following routine swaps the endian format of an unsigned int.
967 *  It must be static because it is referenced indirectly.
968 *
969 *  This version will work on any processor, but if there is a better
970 *  way for your CPU PLEASE use it.  The most common way to do this is to:
971 *
972 *     swap least significant two bytes with 16-bit rotate
973 *     swap upper and lower 16-bits
974 *     swap most significant two bytes with 16-bit rotate
975 *
976 *  Some CPUs have special instructions which swap a 32-bit quantity in
977 *  a single instruction (e.g. i486).  It is probably best to avoid
978 *  an "endian swapping control bit" in the CPU.  One good reason is
979 *  that interrupts would probably have to be disabled to insure that
980 *  an interrupt does not try to access the same "chunk" with the wrong
981 *  endian.  Another good reason is that on some CPUs, the endian bit
982 *  endianness for ALL fetches -- both code and data -- so the code
983 *  will be fetched incorrectly.
984 */
985 
986static inline unsigned int CPU_swap_u32(
987  unsigned int value
988)
989{
990  unsigned32 byte1, byte2, byte3, byte4, swapped;
991 
992  byte4 = (value >> 24) & 0xff;
993  byte3 = (value >> 16) & 0xff;
994  byte2 = (value >> 8)  & 0xff;
995  byte1 =  value        & 0xff;
996 
997  swapped = (byte1 << 24) | (byte2 << 16) | (byte3 << 8) | byte4;
998  return( swapped );
999}
1000
1001/*
1002 *  Special Purpose Routines to hide the use of UNIX system calls.
1003 */
1004
1005int _CPU_Get_clock_vector( void );
1006
1007void _CPU_Start_clock(
1008  int microseconds
1009);
1010
1011void _CPU_Stop_clock( void );
1012
1013void _CPU_SHM_Init(
1014  unsigned32   maximum_nodes,
1015  boolean      is_master_node,
1016  void       **shm_address,
1017  unsigned32  *shm_length
1018);
1019
1020int _CPU_Get_pid( void );
1021 
1022int _CPU_SHM_Get_vector( void );
1023 
1024void _CPU_SHM_Send_interrupt(
1025  int pid,
1026  int vector
1027);
1028 
1029void _CPU_SHM_Lock(
1030  int semaphore
1031);
1032
1033void _CPU_SHM_Unlock(
1034  int semaphore
1035);
1036
1037#ifdef __cplusplus
1038}
1039#endif
1040
1041#endif
Note: See TracBrowser for help on using the repository browser.