source: rtems/c/src/exec/score/cpu/unix/cpu.h @ 254b4450

4.104.114.84.95
Last change on this file since 254b4450 was 254b4450, checked in by Joel Sherrill <joel.sherrill@…>, on 04/01/97 at 23:07:52

This set of changes is the build of what was required to convert to
GNU autoconf. This is the first large step in allowing an RTEMS
user to perform a one-tree build (per crossgcc FAQ) including RTEMS
in the build process. With this change RTEMS is configured in
built in the same style as the GNU tools, yet retains the basic
structure of its traditional Makefiles (ala Tony Bennett).
Jiri Gaisler (jgais@…) deserves (and received)
a big thank you for doing this.

There are still issues to be resolved but as of this commit, all target
which can be built on a linux host have been using a modified version
of the source Jiri submitted. This source was merged and most targets
built in the tree before this commit.

There are some issues which remain to be resolved but they are primarily
related to host OS dependencies, script issues, the use of gawk
for hack_specs, and the dependence on gcc snapshots. These will
be resolved.

  • Property mode set to 100644
File size: 30.8 KB
Line 
1/*  cpu.h
2 *
3 *  This include file contains information pertaining to the HP
4 *  PA-RISC processor (Level 1.1).
5 *
6 *  COPYRIGHT (c) 1994 by Division Incorporated
7 *
8 *  To anyone who acknowledges that this file is provided "AS IS"
9 *  without any express or implied warranty:
10 *      permission to use, copy, modify, and distribute this file
11 *      for any purpose is hereby granted without fee, provided that
12 *      the above copyright notice and this notice appears in all
13 *      copies, and that the name of Division Incorporated not be
14 *      used in advertising or publicity pertaining to distribution
15 *      of the software without specific, written prior permission.
16 *      Division Incorporated makes no representations about the
17 *      suitability of this software for any purpose.
18 *
19 *  $Id$
20 */
21
22#ifndef __CPU_h
23#define __CPU_h
24
25#ifdef __cplusplus
26extern "C" {
27#endif
28
29#include <rtems/score/unix.h>              /* pick up machine definitions */
30#ifndef ASM
31#include <rtems/score/unixtypes.h>
32#endif
33
34#include <rtems/score/unixsize.h>
35
36#if defined(solaris2)
37#undef  _POSIX_C_SOURCE
38#define _POSIX_C_SOURCE 3
39#undef  __STRICT_ANSI__
40#define __STRICT_ANSI__
41#endif
42
43#if defined(linux)
44#define MALLOC_0_RETURNS_NULL
45#endif
46
47/* conditional compilation parameters */
48
49/*
50 *  Should the calls to _Thread_Enable_dispatch be inlined?
51 *
52 *  If TRUE, then they are inlined.
53 *  If FALSE, then a subroutine call is made.
54 *
55 *  Basically this is an example of the classic trade-off of size
56 *  versus speed.  Inlining the call (TRUE) typically increases the
57 *  size of RTEMS while speeding up the enabling of dispatching.
58 *  [NOTE: In general, the _Thread_Dispatch_disable_level will
59 *  only be 0 or 1 unless you are in an interrupt handler and that
60 *  interrupt handler invokes the executive.]  When not inlined
61 *  something calls _Thread_Enable_dispatch which in turns calls
62 *  _Thread_Dispatch.  If the enable dispatch is inlined, then
63 *  one subroutine call is avoided entirely.]
64 */
65
66#define CPU_INLINE_ENABLE_DISPATCH       FALSE
67
68/*
69 *  Should the body of the search loops in _Thread_queue_Enqueue_priority
70 *  be unrolled one time?  In unrolled each iteration of the loop examines
71 *  two "nodes" on the chain being searched.  Otherwise, only one node
72 *  is examined per iteration.
73 *
74 *  If TRUE, then the loops are unrolled.
75 *  If FALSE, then the loops are not unrolled.
76 *
77 *  The primary factor in making this decision is the cost of disabling
78 *  and enabling interrupts (_ISR_Flash) versus the cost of rest of the
79 *  body of the loop.  On some CPUs, the flash is more expensive than
80 *  one iteration of the loop body.  In this case, it might be desirable
81 *  to unroll the loop.  It is important to note that on some CPUs, this
82 *  code is the longest interrupt disable period in RTEMS.  So it is
83 *  necessary to strike a balance when setting this parameter.
84 */
85
86#define CPU_UNROLL_ENQUEUE_PRIORITY      TRUE
87
88/*
89 *  Does RTEMS manage a dedicated interrupt stack in software?
90 *
91 *  If TRUE, then a stack is allocated in _Interrupt_Manager_initialization.
92 *  If FALSE, nothing is done.
93 *
94 *  If the CPU supports a dedicated interrupt stack in hardware,
95 *  then it is generally the responsibility of the BSP to allocate it
96 *  and set it up.
97 *
98 *  If the CPU does not support a dedicated interrupt stack, then
99 *  the porter has two options: (1) execute interrupts on the
100 *  stack of the interrupted task, and (2) have RTEMS manage a dedicated
101 *  interrupt stack.
102 *
103 *  If this is TRUE, CPU_ALLOCATE_INTERRUPT_STACK should also be TRUE.
104 *
105 *  Only one of CPU_HAS_SOFTWARE_INTERRUPT_STACK and
106 *  CPU_HAS_HARDWARE_INTERRUPT_STACK should be set to TRUE.  It is
107 *  possible that both are FALSE for a particular CPU.  Although it
108 *  is unclear what that would imply about the interrupt processing
109 *  procedure on that CPU.
110 */
111
112#define CPU_HAS_SOFTWARE_INTERRUPT_STACK FALSE
113
114/*
115 *  Does this CPU have hardware support for a dedicated interrupt stack?
116 *
117 *  If TRUE, then it must be installed during initialization.
118 *  If FALSE, then no installation is performed.
119 *
120 *  If this is TRUE, CPU_ALLOCATE_INTERRUPT_STACK should also be TRUE.
121 *
122 *  Only one of CPU_HAS_SOFTWARE_INTERRUPT_STACK and
123 *  CPU_HAS_HARDWARE_INTERRUPT_STACK should be set to TRUE.  It is
124 *  possible that both are FALSE for a particular CPU.  Although it
125 *  is unclear what that would imply about the interrupt processing
126 *  procedure on that CPU.
127 */
128
129#define CPU_HAS_HARDWARE_INTERRUPT_STACK TRUE
130
131/*
132 *  Does RTEMS allocate a dedicated interrupt stack in the Interrupt Manager?
133 *
134 *  If TRUE, then the memory is allocated during initialization.
135 *  If FALSE, then the memory is allocated during initialization.
136 *
137 *  This should be TRUE if CPU_HAS_SOFTWARE_INTERRUPT_STACK is TRUE
138 *  or CPU_INSTALL_HARDWARE_INTERRUPT_STACK is TRUE.
139 */
140
141#define CPU_ALLOCATE_INTERRUPT_STACK FALSE
142
143/*
144 *  Does the CPU have hardware floating point?
145 *
146 *  If TRUE, then the RTEMS_FLOATING_POINT task attribute is supported.
147 *  If FALSE, then the RTEMS_FLOATING_POINT task attribute is ignored.
148 *
149 *  If there is a FP coprocessor such as the i387 or mc68881, then
150 *  the answer is TRUE.
151 *
152 *  The macro name "NO_CPU_HAS_FPU" should be made CPU specific.
153 *  It indicates whether or not this CPU model has FP support.  For
154 *  example, it would be possible to have an i386_nofp CPU model
155 *  which set this to false to indicate that you have an i386 without
156 *  an i387 and wish to leave floating point support out of RTEMS.
157 */
158
159#define CPU_HARDWARE_FP     TRUE
160
161/*
162 *  Are all tasks RTEMS_FLOATING_POINT tasks implicitly?
163 *
164 *  If TRUE, then the RTEMS_FLOATING_POINT task attribute is assumed.
165 *  If FALSE, then the RTEMS_FLOATING_POINT task attribute is followed.
166 *
167 *  So far, the only CPU in which this option has been used is the
168 *  HP PA-RISC.  The HP C compiler and gcc both implicitly use the
169 *  floating point registers to perform integer multiplies.  If
170 *  a function which you would not think utilize the FP unit DOES,
171 *  then one can not easily predict which tasks will use the FP hardware.
172 *  In this case, this option should be TRUE.
173 *
174 *  If CPU_HARDWARE_FP is FALSE, then this should be FALSE as well.
175 */
176
177#define CPU_ALL_TASKS_ARE_FP     FALSE
178
179/*
180 *  Should the IDLE task have a floating point context?
181 *
182 *  If TRUE, then the IDLE task is created as a RTEMS_FLOATING_POINT task
183 *  and it has a floating point context which is switched in and out.
184 *  If FALSE, then the IDLE task does not have a floating point context.
185 *
186 *  Setting this to TRUE negatively impacts the time required to preempt
187 *  the IDLE task from an interrupt because the floating point context
188 *  must be saved as part of the preemption.
189 */
190
191#define CPU_IDLE_TASK_IS_FP      FALSE
192
193/*
194 *  Should the saving of the floating point registers be deferred
195 *  until a context switch is made to another different floating point
196 *  task?
197 *
198 *  If TRUE, then the floating point context will not be stored until
199 *  necessary.  It will remain in the floating point registers and not
200 *  disturned until another floating point task is switched to.
201 *
202 *  If FALSE, then the floating point context is saved when a floating
203 *  point task is switched out and restored when the next floating point
204 *  task is restored.  The state of the floating point registers between
205 *  those two operations is not specified.
206 *
207 *  If the floating point context does NOT have to be saved as part of
208 *  interrupt dispatching, then it should be safe to set this to TRUE.
209 *
210 *  Setting this flag to TRUE results in using a different algorithm
211 *  for deciding when to save and restore the floating point context.
212 *  The deferred FP switch algorithm minimizes the number of times
213 *  the FP context is saved and restored.  The FP context is not saved
214 *  until a context switch is made to another, different FP task.
215 *  Thus in a system with only one FP task, the FP context will never
216 *  be saved or restored.
217 */
218
219#define CPU_USE_DEFERRED_FP_SWITCH       TRUE
220
221/*
222 *  Does this port provide a CPU dependent IDLE task implementation?
223 *
224 *  If TRUE, then the routine _CPU_Thread_Idle_body
225 *  must be provided and is the default IDLE thread body instead of
226 *  _CPU_Thread_Idle_body.
227 *
228 *  If FALSE, then use the generic IDLE thread body if the BSP does
229 *  not provide one.
230 *
231 *  This is intended to allow for supporting processors which have
232 *  a low power or idle mode.  When the IDLE thread is executed, then
233 *  the CPU can be powered down.
234 *
235 *  The order of precedence for selecting the IDLE thread body is:
236 *
237 *    1.  BSP provided
238 *    2.  CPU dependent (if provided)
239 *    3.  generic (if no BSP and no CPU dependent)
240 */
241
242#define CPU_PROVIDES_IDLE_THREAD_BODY    TRUE
243
244/*
245 *  Does the stack grow up (toward higher addresses) or down
246 *  (toward lower addresses)?
247 *
248 *  If TRUE, then the grows upward.
249 *  If FALSE, then the grows toward smaller addresses.
250 */
251
252#if defined(hppa1_1)
253#define CPU_STACK_GROWS_UP               TRUE
254#elif defined(sparc) || defined(i386) || defined(__i386__)
255#define CPU_STACK_GROWS_UP               FALSE
256#else
257#error "unknown CPU!!"
258#endif
259
260
261/*
262 *  The following is the variable attribute used to force alignment
263 *  of critical RTEMS structures.  On some processors it may make
264 *  sense to have these aligned on tighter boundaries than
265 *  the minimum requirements of the compiler in order to have as
266 *  much of the critical data area as possible in a cache line.
267 *
268 *  The placement of this macro in the declaration of the variables
269 *  is based on the syntactically requirements of the GNU C
270 *  "__attribute__" extension.  For example with GNU C, use
271 *  the following to force a structures to a 32 byte boundary.
272 *
273 *      __attribute__ ((aligned (32)))
274 *
275 *  NOTE:  Currently only the Priority Bit Map table uses this feature.
276 *         To benefit from using this, the data must be heavily
277 *         used so it will stay in the cache and used frequently enough
278 *         in the executive to justify turning this on.
279 */
280
281#ifdef __GNUC__
282#define CPU_STRUCTURE_ALIGNMENT          __attribute__ ((aligned (32)))
283#else
284#define CPU_STRUCTURE_ALIGNMENT
285#endif
286
287/*
288 *  The following defines the number of bits actually used in the
289 *  interrupt field of the task mode.  How those bits map to the
290 *  CPU interrupt levels is defined by the routine _CPU_ISR_Set_level().
291 */
292
293#define CPU_MODES_INTERRUPT_MASK   0x00000001
294
295#define CPU_NAME "UNIX"
296
297/*
298 *  Processor defined structures
299 *
300 *  Examples structures include the descriptor tables from the i386
301 *  and the processor control structure on the i960ca.
302 */
303
304/* may need to put some structures here.  */
305
306#if defined(hppa1_1)
307/*
308 * Word indices within a jmp_buf structure
309 */
310
311#ifdef RTEMS_NEWLIB_SETJMP
312#define RP_OFF       6
313#define SP_OFF       2
314#define R3_OFF      10
315#define R4_OFF      11
316#define R5_OFF      12
317#define R6_OFF      13
318#define R7_OFF      14
319#define R8_OFF      15
320#define R9_OFF      16
321#define R10_OFF     17
322#define R11_OFF     18
323#define R12_OFF     19
324#define R13_OFF     20
325#define R14_OFF     21
326#define R15_OFF     22
327#define R16_OFF     23
328#define R17_OFF     24
329#define R18_OFF     25
330#define DP_OFF      26
331#endif
332
333#ifdef RTEMS_UNIXLIB_SETJMP
334#define RP_OFF       0
335#define SP_OFF       1
336#define R3_OFF       4
337#define R4_OFF       5
338#define R5_OFF       6
339#define R6_OFF       7
340#define R7_OFF       8
341#define R8_OFF       9
342#define R9_OFF      10
343#define R10_OFF     11
344#define R11_OFF     12
345#define R12_OFF     13
346#define R13_OFF     14
347#define R14_OFF     15
348#define R15_OFF     16
349#define R16_OFF     17
350#define R17_OFF     18
351#define R18_OFF     19
352#define DP_OFF      20
353#endif
354#endif
355
356#if defined(i386) || defined(__i386__)
357 
358#ifdef RTEMS_NEWLIB
359#error "Newlib not installed"
360#endif
361 
362/*
363 *  For Linux 1.1
364 */
365 
366#ifdef RTEMS_UNIXLIB
367#define EBX_OFF    0
368#define ESI_OFF    1
369#define EDI_OFF    2
370#define EBP_OFF    3
371#define ESP_OFF    4
372#define RET_OFF    5
373#endif
374 
375#endif
376 
377#if defined(sparc)
378
379/*
380 *  Word indices within a jmp_buf structure
381 */
382 
383#ifdef RTEMS_NEWLIB
384#define ADDR_ADJ_OFFSET -8
385#define SP_OFF    0
386#define RP_OFF    1
387#define FP_OFF    2
388#endif
389
390#ifdef RTEMS_UNIXLIB
391#define ADDR_ADJ_OFFSET 0
392#define G0_OFF    0
393#define SP_OFF    1
394#define RP_OFF    2   
395#define FP_OFF    3
396#define I7_OFF    4
397#endif
398
399#endif
400
401/*
402 * Contexts
403 *
404 *  Generally there are 2 types of context to save.
405 *     1. Interrupt registers to save
406 *     2. Task level registers to save
407 *
408 *  This means we have the following 3 context items:
409 *     1. task level context stuff::  Context_Control
410 *     2. floating point task stuff:: Context_Control_fp
411 *     3. special interrupt level context :: Context_Control_interrupt
412 *
413 *  On some processors, it is cost-effective to save only the callee
414 *  preserved registers during a task context switch.  This means
415 *  that the ISR code needs to save those registers which do not
416 *  persist across function calls.  It is not mandatory to make this
417 *  distinctions between the caller/callee saves registers for the
418 *  purpose of minimizing context saved during task switch and on interrupts.
419 *  If the cost of saving extra registers is minimal, simplicity is the
420 *  choice.  Save the same context on interrupt entry as for tasks in
421 *  this case.
422 *
423 *  Additionally, if gdb is to be made aware of RTEMS tasks for this CPU, then
424 *  care should be used in designing the context area.
425 *
426 *  On some CPUs with hardware floating point support, the Context_Control_fp
427 *  structure will not be used or it simply consist of an array of a
428 *  fixed number of bytes.   This is done when the floating point context
429 *  is dumped by a "FP save context" type instruction and the format
430 *  is not really defined by the CPU.  In this case, there is no need
431 *  to figure out the exact format -- only the size.  Of course, although
432 *  this is enough information for RTEMS, it is probably not enough for
433 *  a debugger such as gdb.  But that is another problem.
434 */
435
436/*
437 *  This is really just the area for the following fields.
438 *
439 *    jmp_buf    regs;
440 *    unsigned32 isr_level;
441 *
442 *  Doing it this way avoids conflicts between the native stuff and the
443 *  RTEMS stuff.
444 *
445 *  NOTE:
446 *      hpux9 setjmp is optimized for the case where the setjmp buffer
447 *      is 8 byte aligned.  In a RISC world, this seems likely to enable
448 *      8 byte copies, especially for the float registers.
449 *      So we always align them on 8 byte boundaries.
450 */
451
452#ifdef __GNUC__
453#define CONTEXT_STRUCTURE_ALIGNMENT          __attribute__ ((aligned (8)))
454#else
455#define CONTEXT_STRUCTURE_ALIGNMENT
456#endif
457
458typedef struct {
459  char      Area[ CPU_CONTEXT_SIZE_IN_BYTES ] CONTEXT_STRUCTURE_ALIGNMENT;
460} Context_Control;
461
462typedef struct {
463} Context_Control_fp;
464
465typedef struct {
466} CPU_Interrupt_frame;
467
468
469/*
470 *  The following table contains the information required to configure
471 *  the UNIX Simulator specific parameters.
472 */
473
474typedef struct {
475  void       (*pretasking_hook)( void );
476  void       (*predriver_hook)( void );
477  void       (*postdriver_hook)( void );
478  void       (*idle_task)( void );
479  boolean      do_zero_of_workspace;
480  unsigned32   interrupt_stack_size;
481  unsigned32   extra_mpci_receive_server_stack;
482  void *     (*stack_allocate_hook)( unsigned32 );
483  void       (*stack_free_hook)( void* );
484  /* end of required fields */
485}   rtems_cpu_table;
486
487/*
488 *  This variable is optional.  It is used on CPUs on which it is difficult
489 *  to generate an "uninitialized" FP context.  It is filled in by
490 *  _CPU_Initialize and copied into the task's FP context area during
491 *  _CPU_Context_Initialize.
492 */
493
494SCORE_EXTERN Context_Control_fp  _CPU_Null_fp_context;
495
496/*
497 *  On some CPUs, RTEMS supports a software managed interrupt stack.
498 *  This stack is allocated by the Interrupt Manager and the switch
499 *  is performed in _ISR_Handler.  These variables contain pointers
500 *  to the lowest and highest addresses in the chunk of memory allocated
501 *  for the interrupt stack.  Since it is unknown whether the stack
502 *  grows up or down (in general), this give the CPU dependent
503 *  code the option of picking the version it wants to use.
504 *
505 *  NOTE: These two variables are required if the macro
506 *        CPU_HAS_SOFTWARE_INTERRUPT_STACK is defined as TRUE.
507 */
508
509SCORE_EXTERN void               *_CPU_Interrupt_stack_low;
510SCORE_EXTERN void               *_CPU_Interrupt_stack_high;
511
512/*
513 *  With some compilation systems, it is difficult if not impossible to
514 *  call a high-level language routine from assembly language.  This
515 *  is especially true of commercial Ada compilers and name mangling
516 *  C++ ones.  This variable can be optionally defined by the CPU porter
517 *  and contains the address of the routine _Thread_Dispatch.  This
518 *  can make it easier to invoke that routine at the end of the interrupt
519 *  sequence (if a dispatch is necessary).
520 */
521
522SCORE_EXTERN void           (*_CPU_Thread_dispatch_pointer)();
523
524/*
525 *  Nothing prevents the porter from declaring more CPU specific variables.
526 */
527
528/* XXX: if needed, put more variables here */
529
530/*
531 *  The size of the floating point context area.  On some CPUs this
532 *  will not be a "sizeof" because the format of the floating point
533 *  area is not defined -- only the size is.  This is usually on
534 *  CPUs with a "floating point save context" instruction.
535 */
536
537#define CPU_CONTEXT_FP_SIZE sizeof( Context_Control_fp )
538
539/*
540 * The size of a frame on the stack
541 */
542
543#if defined(hppa1_1)
544#define CPU_FRAME_SIZE  (32 * 4)
545#elif defined(sparc)
546#define CPU_FRAME_SIZE  (112)   /* based on disassembled test code */
547#elif defined(i386) || defined(__i386__)
548#define CPU_FRAME_SIZE  (24)  /* return address, sp, and bp pushed plus fudge */
549#else
550#error "Unknown CPU!!!"
551#endif
552
553/*
554 *  Amount of extra stack (above minimum stack size) required by
555 *  MPCI receive server thread.  Remember that in a multiprocessor
556 *  system this thread must exist and be able to process all directives.
557 */
558
559#define CPU_MPCI_RECEIVE_SERVER_EXTRA_STACK 0
560
561/*
562 *  This defines the number of entries in the ISR_Vector_table managed
563 *  by RTEMS.
564 */
565
566#define CPU_INTERRUPT_NUMBER_OF_VECTORS      64
567#define CPU_INTERRUPT_MAXIMUM_VECTOR_NUMBER  (CPU_INTERRUPT_NUMBER_OF_VECTORS - 1)
568
569/*
570 *  Should be large enough to run all RTEMS tests.  This insures
571 *  that a "reasonable" small application should not have any problems.
572 */
573
574#define CPU_STACK_MINIMUM_SIZE          (16 * 1024)
575
576/*
577 *  CPU's worst alignment requirement for data types on a byte boundary.  This
578 *  alignment does not take into account the requirements for the stack.
579 */
580
581#define CPU_ALIGNMENT              8
582
583/*
584 *  This number corresponds to the byte alignment requirement for the
585 *  heap handler.  This alignment requirement may be stricter than that
586 *  for the data types alignment specified by CPU_ALIGNMENT.  It is
587 *  common for the heap to follow the same alignment requirement as
588 *  CPU_ALIGNMENT.  If the CPU_ALIGNMENT is strict enough for the heap,
589 *  then this should be set to CPU_ALIGNMENT.
590 *
591 *  NOTE:  This does not have to be a power of 2.  It does have to
592 *         be greater or equal to than CPU_ALIGNMENT.
593 */
594
595#define CPU_HEAP_ALIGNMENT         CPU_ALIGNMENT
596
597/*
598 *  This number corresponds to the byte alignment requirement for memory
599 *  buffers allocated by the partition manager.  This alignment requirement
600 *  may be stricter than that for the data types alignment specified by
601 *  CPU_ALIGNMENT.  It is common for the partition to follow the same
602 *  alignment requirement as CPU_ALIGNMENT.  If the CPU_ALIGNMENT is strict
603 *  enough for the partition, then this should be set to CPU_ALIGNMENT.
604 *
605 *  NOTE:  This does not have to be a power of 2.  It does have to
606 *         be greater or equal to than CPU_ALIGNMENT.
607 */
608
609#define CPU_PARTITION_ALIGNMENT    CPU_ALIGNMENT
610
611/*
612 *  This number corresponds to the byte alignment requirement for the
613 *  stack.  This alignment requirement may be stricter than that for the
614 *  data types alignment specified by CPU_ALIGNMENT.  If the CPU_ALIGNMENT
615 *  is strict enough for the stack, then this should be set to 0.
616 *
617 *  NOTE:  This must be a power of 2 either 0 or greater than CPU_ALIGNMENT.
618 */
619
620#define CPU_STACK_ALIGNMENT        64
621
622/* ISR handler macros */
623
624/*
625 *  Disable all interrupts for an RTEMS critical section.  The previous
626 *  level is returned in _level.
627 */
628
629extern unsigned32 _CPU_ISR_Disable_support(void);
630
631#define _CPU_ISR_Disable( _level ) \
632    do { \
633      (_level) = _CPU_ISR_Disable_support(); \
634    } while ( 0 )
635
636/*
637 *  Enable interrupts to the previous level (returned by _CPU_ISR_Disable).
638 *  This indicates the end of an RTEMS critical section.  The parameter
639 *  _level is not modified.
640 */
641
642void _CPU_ISR_Enable(unsigned32 level);
643
644/*
645 *  This temporarily restores the interrupt to _level before immediately
646 *  disabling them again.  This is used to divide long RTEMS critical
647 *  sections into two or more parts.  The parameter _level is not
648 * modified.
649 */
650
651#define _CPU_ISR_Flash( _level ) \
652  do { \
653      register _ignored = 0; \
654      _CPU_ISR_Enable( (_level) ); \
655      _CPU_ISR_Disable( _ignored ); \
656  } while ( 0 )
657
658/*
659 *  Map interrupt level in task mode onto the hardware that the CPU
660 *  actually provides.  Currently, interrupt levels which do not
661 *  map onto the CPU in a generic fashion are undefined.  Someday,
662 *  it would be nice if these were "mapped" by the application
663 *  via a callout.  For example, m68k has 8 levels 0 - 7, levels
664 *  8 - 255 would be available for bsp/application specific meaning.
665 *  This could be used to manage a programmable interrupt controller
666 *  via the rtems_task_mode directive.
667 */
668
669#define _CPU_ISR_Set_level( new_level ) \
670  { \
671    if ( new_level == 0 ) _CPU_ISR_Enable( 0 ); \
672    else                  _CPU_ISR_Enable( 1 ); \
673  }
674
675unsigned32 _CPU_ISR_Get_level( void );
676
677/* end of ISR handler macros */
678
679/* Context handler macros */
680
681/*
682 *  This routine is responsible for somehow restarting the currently
683 *  executing task.  If you are lucky, then all that is necessary
684 *  is restoring the context.  Otherwise, there will need to be
685 *  a special assembly routine which does something special in this
686 *  case.  Context_Restore should work most of the time.  It will
687 *  not work if restarting self conflicts with the stack frame
688 *  assumptions of restoring a context.
689 */
690
691#define _CPU_Context_Restart_self( _the_context ) \
692   _CPU_Context_restore( (_the_context) );
693
694/*
695 *  The purpose of this macro is to allow the initial pointer into
696 *  a floating point context area (used to save the floating point
697 *  context) to be at an arbitrary place in the floating point
698 *  context area.
699 *
700 *  This is necessary because some FP units are designed to have
701 *  their context saved as a stack which grows into lower addresses.
702 *  Other FP units can be saved by simply moving registers into offsets
703 *  from the base of the context area.  Finally some FP units provide
704 *  a "dump context" instruction which could fill in from high to low
705 *  or low to high based on the whim of the CPU designers.
706 */
707
708#define _CPU_Context_Fp_start( _base, _offset ) \
709   ( (void *) _Addresses_Add_offset( (_base), (_offset) ) )
710
711/*
712 *  This routine initializes the FP context area passed to it to.
713 *  There are a few standard ways in which to initialize the
714 *  floating point context.  The code included for this macro assumes
715 *  that this is a CPU in which a "initial" FP context was saved into
716 *  _CPU_Null_fp_context and it simply copies it to the destination
717 *  context passed to it.
718 *
719 *  Other models include (1) not doing anything, and (2) putting
720 *  a "null FP status word" in the correct place in the FP context.
721 */
722
723#define _CPU_Context_Initialize_fp( _destination ) \
724  { \
725   *((Context_Control_fp *) *((void **) _destination)) = _CPU_Null_fp_context; \
726  }
727
728#define _CPU_Context_save_fp( _fp_context ) \
729    _CPU_Save_float_context( *(Context_Control_fp **)(_fp_context))
730
731#define _CPU_Context_restore_fp( _fp_context ) \
732    _CPU_Restore_float_context( *(Context_Control_fp **)(_fp_context))
733
734extern void _CPU_Context_Initialize(
735  Context_Control  *_the_context,
736  unsigned32       *_stack_base,
737  unsigned32        _size,
738  unsigned32        _new_level,
739  void             *_entry_point,
740  boolean           _is_fp
741);
742
743/* end of Context handler macros */
744
745/* Fatal Error manager macros */
746
747/*
748 *  This routine copies _error into a known place -- typically a stack
749 *  location or a register, optionally disables interrupts, and
750 *  halts/stops the CPU.
751 */
752
753#define _CPU_Fatal_halt( _error ) \
754    _CPU_Fatal_error( _error )
755
756/* end of Fatal Error manager macros */
757
758/* Bitfield handler macros */
759
760/*
761 *  This routine sets _output to the bit number of the first bit
762 *  set in _value.  _value is of CPU dependent type Priority_Bit_map_control.
763 *  This type may be either 16 or 32 bits wide although only the 16
764 *  least significant bits will be used.
765 *
766 *  There are a number of variables in using a "find first bit" type
767 *  instruction.
768 *
769 *    (1) What happens when run on a value of zero?
770 *    (2) Bits may be numbered from MSB to LSB or vice-versa.
771 *    (3) The numbering may be zero or one based.
772 *    (4) The "find first bit" instruction may search from MSB or LSB.
773 *
774 *  RTEMS guarantees that (1) will never happen so it is not a concern.
775 *  (2),(3), (4) are handled by the macros _CPU_Priority_mask() and
776 *  _CPU_Priority_bits_index().  These three form a set of routines
777 *  which must logically operate together.  Bits in the _value are
778 *  set and cleared based on masks built by _CPU_Priority_mask().
779 *  The basic major and minor values calculated by _Priority_Major()
780 *  and _Priority_Minor() are "massaged" by _CPU_Priority_bits_index()
781 *  to properly range between the values returned by the "find first bit"
782 *  instruction.  This makes it possible for _Priority_Get_highest() to
783 *  calculate the major and directly index into the minor table.
784 *  This mapping is necessary to ensure that 0 (a high priority major/minor)
785 *  is the first bit found.
786 *
787 *  This entire "find first bit" and mapping process depends heavily
788 *  on the manner in which a priority is broken into a major and minor
789 *  components with the major being the 4 MSB of a priority and minor
790 *  the 4 LSB.  Thus (0 << 4) + 0 corresponds to priority 0 -- the highest
791 *  priority.  And (15 << 4) + 14 corresponds to priority 254 -- the next
792 *  to the lowest priority.
793 *
794 *  If your CPU does not have a "find first bit" instruction, then
795 *  there are ways to make do without it.  Here are a handful of ways
796 *  to implement this in software:
797 *
798 *    - a series of 16 bit test instructions
799 *    - a "binary search using if's"
800 *    - _number = 0
801 *      if _value > 0x00ff
802 *        _value >>=8
803 *        _number = 8;
804 *
805 *      if _value > 0x0000f
806 *        _value >=8
807 *        _number += 4
808 *
809 *      _number += bit_set_table[ _value ]
810 *
811 *    where bit_set_table[ 16 ] has values which indicate the first
812 *      bit set
813 */
814
815/*
816 *  The UNIX port uses the generic C algorithm for bitfield scan to avoid
817 *  dependencies on either a native bitscan instruction or an ffs() in the
818 *  C library.
819 */
820 
821#define CPU_USE_GENERIC_BITFIELD_CODE TRUE
822#define CPU_USE_GENERIC_BITFIELD_DATA TRUE
823 
824/* end of Bitfield handler macros */
825 
826/* Priority handler handler macros */
827 
828/*
829 *  The UNIX port uses the generic C algorithm for bitfield scan to avoid
830 *  dependencies on either a native bitscan instruction or an ffs() in the
831 *  C library.
832 */
833 
834/* end of Priority handler macros */
835
836/* functions */
837
838/*
839 *  _CPU_Initialize
840 *
841 *  This routine performs CPU dependent initialization.
842 */
843
844void _CPU_Initialize(
845  rtems_cpu_table  *cpu_table,
846  void      (*thread_dispatch)
847);
848
849/*
850 *  _CPU_ISR_install_raw_handler
851 *
852 *  This routine installs a "raw" interrupt handler directly into the
853 *  processor's vector table.
854 */
855 
856void _CPU_ISR_install_raw_handler(
857  unsigned32  vector,
858  proc_ptr    new_handler,
859  proc_ptr   *old_handler
860);
861
862/*
863 *  _CPU_ISR_install_vector
864 *
865 *  This routine installs an interrupt vector.
866 */
867
868void _CPU_ISR_install_vector(
869  unsigned32  vector,
870  proc_ptr    new_handler,
871  proc_ptr   *old_handler
872);
873
874/*
875 *  _CPU_Install_interrupt_stack
876 *
877 *  This routine installs the hardware interrupt stack pointer.
878 *
879 *  NOTE:  It need only be provided if CPU_HAS_HARDWARE_INTERRUPT_STACK
880 *         is TRUE.
881 */
882
883void _CPU_Install_interrupt_stack( void );
884
885/*
886 *  _CPU_Thread_Idle_body
887 *
888 *  This routine is the CPU dependent IDLE thread body.
889 *
890 *  NOTE:  It need only be provided if CPU_PROVIDES_IDLE_THREAD_BODY
891 *         is TRUE.
892 */
893
894void _CPU_Thread_Idle_body( void );
895
896/*
897 *  _CPU_Context_switch
898 *
899 *  This routine switches from the run context to the heir context.
900 */
901
902void _CPU_Context_switch(
903  Context_Control  *run,
904  Context_Control  *heir
905);
906
907/*
908 *  _CPU_Context_restore
909 *
910 *  This routine is generallu used only to restart self in an
911 *  efficient manner.  It may simply be a label in _CPU_Context_switch.
912 *
913 *  NOTE: May be unnecessary to reload some registers.
914 */
915
916void _CPU_Context_restore(
917  Context_Control *new_context
918);
919
920/*
921 *  _CPU_Save_float_context
922 *
923 *  This routine saves the floating point context passed to it.
924 */
925
926void _CPU_Save_float_context(
927  Context_Control_fp *fp_context_ptr
928);
929
930/*
931 *  _CPU_Restore_float_context
932 *
933 *  This routine restores the floating point context passed to it.
934 */
935
936void _CPU_Restore_float_context(
937  Context_Control_fp *fp_context_ptr
938);
939
940
941void _CPU_ISR_Set_signal_level(
942  unsigned32 level
943);
944
945void _CPU_Fatal_error(
946  unsigned32 _error
947);
948
949/*  The following routine swaps the endian format of an unsigned int.
950 *  It must be static because it is referenced indirectly.
951 *
952 *  This version will work on any processor, but if there is a better
953 *  way for your CPU PLEASE use it.  The most common way to do this is to:
954 *
955 *     swap least significant two bytes with 16-bit rotate
956 *     swap upper and lower 16-bits
957 *     swap most significant two bytes with 16-bit rotate
958 *
959 *  Some CPUs have special instructions which swap a 32-bit quantity in
960 *  a single instruction (e.g. i486).  It is probably best to avoid
961 *  an "endian swapping control bit" in the CPU.  One good reason is
962 *  that interrupts would probably have to be disabled to insure that
963 *  an interrupt does not try to access the same "chunk" with the wrong
964 *  endian.  Another good reason is that on some CPUs, the endian bit
965 *  endianness for ALL fetches -- both code and data -- so the code
966 *  will be fetched incorrectly.
967 */
968 
969static inline unsigned int CPU_swap_u32(
970  unsigned int value
971)
972{
973  unsigned32 byte1, byte2, byte3, byte4, swapped;
974 
975  byte4 = (value >> 24) & 0xff;
976  byte3 = (value >> 16) & 0xff;
977  byte2 = (value >> 8)  & 0xff;
978  byte1 =  value        & 0xff;
979 
980  swapped = (byte1 << 24) | (byte2 << 16) | (byte3 << 8) | byte4;
981  return( swapped );
982}
983
984/*
985 *  Special Purpose Routines to hide the use of UNIX system calls.
986 */
987
988int _CPU_Get_clock_vector( void );
989
990void _CPU_Start_clock(
991  int microseconds
992);
993
994void _CPU_Stop_clock( void );
995
996void _CPU_SHM_Init(
997  unsigned32   maximum_nodes,
998  boolean      is_master_node,
999  void       **shm_address,
1000  unsigned32  *shm_length
1001);
1002
1003int _CPU_Get_pid( void );
1004 
1005int _CPU_SHM_Get_vector( void );
1006 
1007void _CPU_SHM_Send_interrupt(
1008  int pid,
1009  int vector
1010);
1011 
1012void _CPU_SHM_Lock(
1013  int semaphore
1014);
1015
1016void _CPU_SHM_Unlock(
1017  int semaphore
1018);
1019
1020#ifdef __cplusplus
1021}
1022#endif
1023
1024#endif
Note: See TracBrowser for help on using the repository browser.