source: rtems/c/src/exec/score/cpu/sh/rtems/score/cpu.h @ d6ea098

4.104.114.84.95
Last change on this file since d6ea098 was d6ea098, checked in by Joel Sherrill <joel.sherrill@…>, on 01/03/01 at 16:37:08

2001-01-03 Joel Sherrill <joel@…>

  • rtems/score/cpu.h: Added _CPU_Initialize_vectors().
  • Property mode set to 100644
File size: 28.3 KB
Line 
1/*
2 *  This include file contains information pertaining to the Hitachi SH
3 *  processor.
4 *
5 *  Authors: Ralf Corsepius (corsepiu@faw.uni-ulm.de) and
6 *           Bernd Becker (becker@faw.uni-ulm.de)
7 *
8 *  COPYRIGHT (c) 1997-1998, FAW Ulm, Germany
9 *
10 *  This program is distributed in the hope that it will be useful,
11 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
12 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
13 *
14 *
15 *  COPYRIGHT (c) 1998.
16 *  On-Line Applications Research Corporation (OAR).
17 *  Copyright assigned to U.S. Government, 1994.
18 *
19 *  The license and distribution terms for this file may be
20 *  found in the file LICENSE in this distribution or at
21 *  http://www.OARcorp.com/rtems/license.html.
22 *
23 *  $Id$
24 */
25
26#ifndef _SH_CPU_h
27#define _SH_CPU_h
28
29#ifdef __cplusplus
30extern "C" {
31#endif
32
33#include <rtems/score/sh.h>              /* pick up machine definitions */
34#ifndef ASM
35#include <rtems/score/shtypes.h>
36#endif
37
38/* conditional compilation parameters */
39
40/*
41 *  Should the calls to _Thread_Enable_dispatch be inlined?
42 *
43 *  If TRUE, then they are inlined.
44 *  If FALSE, then a subroutine call is made.
45 *
46 *  Basically this is an example of the classic trade-off of size
47 *  versus speed.  Inlining the call (TRUE) typically increases the
48 *  size of RTEMS while speeding up the enabling of dispatching.
49 *  [NOTE: In general, the _Thread_Dispatch_disable_level will
50 *  only be 0 or 1 unless you are in an interrupt handler and that
51 *  interrupt handler invokes the executive.]  When not inlined
52 *  something calls _Thread_Enable_dispatch which in turns calls
53 *  _Thread_Dispatch.  If the enable dispatch is inlined, then
54 *  one subroutine call is avoided entirely.]
55 */
56
57#define CPU_INLINE_ENABLE_DISPATCH       FALSE
58
59/*
60 *  Should the body of the search loops in _Thread_queue_Enqueue_priority
61 *  be unrolled one time?  In unrolled each iteration of the loop examines
62 *  two "nodes" on the chain being searched.  Otherwise, only one node
63 *  is examined per iteration.
64 *
65 *  If TRUE, then the loops are unrolled.
66 *  If FALSE, then the loops are not unrolled.
67 *
68 *  The primary factor in making this decision is the cost of disabling
69 *  and enabling interrupts (_ISR_Flash) versus the cost of rest of the
70 *  body of the loop.  On some CPUs, the flash is more expensive than
71 *  one iteration of the loop body.  In this case, it might be desirable
72 *  to unroll the loop.  It is important to note that on some CPUs, this
73 *  code is the longest interrupt disable period in RTEMS.  So it is
74 *  necessary to strike a balance when setting this parameter.
75 */
76
77#define CPU_UNROLL_ENQUEUE_PRIORITY      TRUE
78
79/*
80 *  Does RTEMS manage a dedicated interrupt stack in software?
81 *
82 *  If TRUE, then a stack is allocated in _ISR_Handler_initialization.
83 *  If FALSE, nothing is done.
84 *
85 *  If the CPU supports a dedicated interrupt stack in hardware,
86 *  then it is generally the responsibility of the BSP to allocate it
87 *  and set it up.
88 *
89 *  If the CPU does not support a dedicated interrupt stack, then
90 *  the porter has two options: (1) execute interrupts on the
91 *  stack of the interrupted task, and (2) have RTEMS manage a dedicated
92 *  interrupt stack.
93 *
94 *  If this is TRUE, CPU_ALLOCATE_INTERRUPT_STACK should also be TRUE.
95 *
96 *  Only one of CPU_HAS_SOFTWARE_INTERRUPT_STACK and
97 *  CPU_HAS_HARDWARE_INTERRUPT_STACK should be set to TRUE.  It is
98 *  possible that both are FALSE for a particular CPU.  Although it
99 *  is unclear what that would imply about the interrupt processing
100 *  procedure on that CPU.
101 */
102
103#define CPU_HAS_SOFTWARE_INTERRUPT_STACK TRUE
104#define CPU_HAS_HARDWARE_INTERRUPT_STACK FALSE
105
106/*
107 * We define the interrupt stack in the linker script
108 */
109#define CPU_ALLOCATE_INTERRUPT_STACK FALSE
110
111/*
112 *  Does the RTEMS invoke the user's ISR with the vector number and
113 *  a pointer to the saved interrupt frame (1) or just the vector
114 *  number (0)?
115 */
116
117#define CPU_ISR_PASSES_FRAME_POINTER 0
118
119/*
120 *  Does the CPU have hardware floating point?
121 *
122 *  If TRUE, then the RTEMS_FLOATING_POINT task attribute is supported.
123 *  If FALSE, then the RTEMS_FLOATING_POINT task attribute is ignored.
124 *
125 *  We currently support sh1 only, which has no FPU, other SHes have an FPU
126 *
127 *  The macro name "NO_CPU_HAS_FPU" should be made CPU specific.
128 *  It indicates whether or not this CPU model has FP support.  For
129 *  example, it would be possible to have an i386_nofp CPU model
130 *  which set this to false to indicate that you have an i386 without
131 *  an i387 and wish to leave floating point support out of RTEMS.
132 */
133
134#define CPU_HARDWARE_FP     FALSE
135#define CPU_SOFTWARE_FP     FALSE
136
137/*
138 *  Are all tasks RTEMS_FLOATING_POINT tasks implicitly?
139 *
140 *  If TRUE, then the RTEMS_FLOATING_POINT task attribute is assumed.
141 *  If FALSE, then the RTEMS_FLOATING_POINT task attribute is followed.
142 *
143 *  So far, the only CPU in which this option has been used is the
144 *  HP PA-RISC.  The HP C compiler and gcc both implicitly use the
145 *  floating point registers to perform integer multiplies.  If
146 *  a function which you would not think utilize the FP unit DOES,
147 *  then one can not easily predict which tasks will use the FP hardware.
148 *  In this case, this option should be TRUE.
149 *
150 *  If CPU_HARDWARE_FP is FALSE, then this should be FALSE as well.
151 */
152
153#define CPU_ALL_TASKS_ARE_FP     FALSE
154
155/*
156 *  Should the IDLE task have a floating point context?
157 *
158 *  If TRUE, then the IDLE task is created as a RTEMS_FLOATING_POINT task
159 *  and it has a floating point context which is switched in and out.
160 *  If FALSE, then the IDLE task does not have a floating point context.
161 *
162 *  Setting this to TRUE negatively impacts the time required to preempt
163 *  the IDLE task from an interrupt because the floating point context
164 *  must be saved as part of the preemption.
165 */
166
167#define CPU_IDLE_TASK_IS_FP      FALSE
168
169/*
170 *  Should the saving of the floating point registers be deferred
171 *  until a context switch is made to another different floating point
172 *  task?
173 *
174 *  If TRUE, then the floating point context will not be stored until
175 *  necessary.  It will remain in the floating point registers and not
176 *  disturned until another floating point task is switched to.
177 *
178 *  If FALSE, then the floating point context is saved when a floating
179 *  point task is switched out and restored when the next floating point
180 *  task is restored.  The state of the floating point registers between
181 *  those two operations is not specified.
182 *
183 *  If the floating point context does NOT have to be saved as part of
184 *  interrupt dispatching, then it should be safe to set this to TRUE.
185 *
186 *  Setting this flag to TRUE results in using a different algorithm
187 *  for deciding when to save and restore the floating point context.
188 *  The deferred FP switch algorithm minimizes the number of times
189 *  the FP context is saved and restored.  The FP context is not saved
190 *  until a context switch is made to another, different FP task.
191 *  Thus in a system with only one FP task, the FP context will never
192 *  be saved or restored.
193 */
194
195#define CPU_USE_DEFERRED_FP_SWITCH       TRUE
196
197/*
198 *  Does this port provide a CPU dependent IDLE task implementation?
199 *
200 *  If TRUE, then the routine _CPU_Thread_Idle_body
201 *  must be provided and is the default IDLE thread body instead of
202 *  _CPU_Thread_Idle_body.
203 *
204 *  If FALSE, then use the generic IDLE thread body if the BSP does
205 *  not provide one.
206 *
207 *  This is intended to allow for supporting processors which have
208 *  a low power or idle mode.  When the IDLE thread is executed, then
209 *  the CPU can be powered down.
210 *
211 *  The order of precedence for selecting the IDLE thread body is:
212 *
213 *    1.  BSP provided
214 *    2.  CPU dependent (if provided)
215 *    3.  generic (if no BSP and no CPU dependent)
216 */
217
218#define CPU_PROVIDES_IDLE_THREAD_BODY    TRUE
219
220/*
221 *  Does the stack grow up (toward higher addresses) or down
222 *  (toward lower addresses)?
223 *
224 *  If TRUE, then the grows upward.
225 *  If FALSE, then the grows toward smaller addresses.
226 */
227
228#define CPU_STACK_GROWS_UP               FALSE
229
230/*
231 *  The following is the variable attribute used to force alignment
232 *  of critical RTEMS structures.  On some processors it may make
233 *  sense to have these aligned on tighter boundaries than
234 *  the minimum requirements of the compiler in order to have as
235 *  much of the critical data area as possible in a cache line.
236 *
237 *  The placement of this macro in the declaration of the variables
238 *  is based on the syntactically requirements of the GNU C
239 *  "__attribute__" extension.  For example with GNU C, use
240 *  the following to force a structures to a 32 byte boundary.
241 *
242 *      __attribute__ ((aligned (32)))
243 *
244 *  NOTE:  Currently only the Priority Bit Map table uses this feature.
245 *         To benefit from using this, the data must be heavily
246 *         used so it will stay in the cache and used frequently enough
247 *         in the executive to justify turning this on.
248 */
249
250#define CPU_STRUCTURE_ALIGNMENT __attribute__ ((aligned(16)))
251
252/*
253 *  Define what is required to specify how the network to host conversion
254 *  routines are handled.
255 *
256 *  NOTE: SHes can be big or little endian, the default is big endian
257 */
258
259#define CPU_HAS_OWN_HOST_TO_NETWORK_ROUTINES     FALSE
260
261/* __LITTLE_ENDIAN__ is defined if -ml is given to gcc */
262#if defined(__LITTLE_ENDIAN__)
263#define CPU_BIG_ENDIAN                           FALSE
264#define CPU_LITTLE_ENDIAN                        TRUE
265#else
266#define CPU_BIG_ENDIAN                           TRUE
267#define CPU_LITTLE_ENDIAN                        FALSE
268#endif
269 
270/*
271 *  The following defines the number of bits actually used in the
272 *  interrupt field of the task mode.  How those bits map to the
273 *  CPU interrupt levels is defined by the routine _CPU_ISR_Set_level().
274 */
275
276#define CPU_MODES_INTERRUPT_MASK   0x0000000f
277
278/*
279 *  Processor defined structures
280 *
281 *  Examples structures include the descriptor tables from the i386
282 *  and the processor control structure on the i960ca.
283 */
284
285/* may need to put some structures here.  */
286
287/*
288 * Contexts
289 *
290 *  Generally there are 2 types of context to save.
291 *     1. Interrupt registers to save
292 *     2. Task level registers to save
293 *
294 *  This means we have the following 3 context items:
295 *     1. task level context stuff::  Context_Control
296 *     2. floating point task stuff:: Context_Control_fp
297 *     3. special interrupt level context :: Context_Control_interrupt
298 *
299 *  On some processors, it is cost-effective to save only the callee
300 *  preserved registers during a task context switch.  This means
301 *  that the ISR code needs to save those registers which do not
302 *  persist across function calls.  It is not mandatory to make this
303 *  distinctions between the caller/callee saves registers for the
304 *  purpose of minimizing context saved during task switch and on interrupts.
305 *  If the cost of saving extra registers is minimal, simplicity is the
306 *  choice.  Save the same context on interrupt entry as for tasks in
307 *  this case.
308 *
309 *  Additionally, if gdb is to be made aware of RTEMS tasks for this CPU, then
310 *  care should be used in designing the context area.
311 *
312 *  On some CPUs with hardware floating point support, the Context_Control_fp
313 *  structure will not be used or it simply consist of an array of a
314 *  fixed number of bytes.   This is done when the floating point context
315 *  is dumped by a "FP save context" type instruction and the format
316 *  is not really defined by the CPU.  In this case, there is no need
317 *  to figure out the exact format -- only the size.  Of course, although
318 *  this is enough information for RTEMS, it is probably not enough for
319 *  a debugger such as gdb.  But that is another problem.
320 */
321
322typedef struct {
323  unsigned32 *r15;      /* stack pointer */
324
325  unsigned32 macl;
326  unsigned32 mach;
327  unsigned32 *pr;
328
329  unsigned32 *r14;      /* frame pointer/call saved */
330
331  unsigned32 r13;       /* call saved */
332  unsigned32 r12;       /* call saved */
333  unsigned32 r11;       /* call saved */
334  unsigned32 r10;       /* call saved */
335  unsigned32 r9;        /* call saved */
336  unsigned32 r8;        /* call saved */
337
338  unsigned32 *r7;       /* arg in */
339  unsigned32 *r6;       /* arg in */
340
341#if 0
342  unsigned32 *r5;       /* arg in */
343  unsigned32 *r4;       /* arg in */
344#endif
345
346  unsigned32 *r3;       /* scratch */
347  unsigned32 *r2;       /* scratch */
348  unsigned32 *r1;       /* scratch */
349
350  unsigned32 *r0;       /* arg return */
351
352  unsigned32 gbr;
353  unsigned32 sr;
354
355} Context_Control;
356
357typedef struct {
358} Context_Control_fp;
359
360typedef struct {
361} CPU_Interrupt_frame;
362
363
364/*
365 *  The following table contains the information required to configure
366 *  the SH processor specific parameters.
367 */
368
369typedef struct {
370  void       (*pretasking_hook)( void );
371  void       (*predriver_hook)( void );
372  void       (*postdriver_hook)( void );
373  void       (*idle_task)( void );
374  boolean      do_zero_of_workspace;
375  unsigned32   idle_task_stack_size;
376  unsigned32   interrupt_stack_size;
377  unsigned32   extra_mpci_receive_server_stack;
378  void *     (*stack_allocate_hook)( unsigned32 );
379  void       (*stack_free_hook)( void* );
380  /* end of fields required on all CPUs */
381  unsigned32    clicks_per_second ; /* cpu frequency in Hz */
382}   rtems_cpu_table;
383
384/*
385 *  Macros to access required entires in the CPU Table are in
386 *  the file rtems/system.h.
387 */
388
389/*
390 *  Macros to access SH specific additions to the CPU Table
391 */
392
393#define rtems_cpu_configuration_get_clicks_per_second() \
394  (_CPU_Table.clicks_per_second)
395   
396/*
397 *  This variable is optional.  It is used on CPUs on which it is difficult
398 *  to generate an "uninitialized" FP context.  It is filled in by
399 *  _CPU_Initialize and copied into the task's FP context area during
400 *  _CPU_Context_Initialize.
401 */
402
403/*
404SCORE_EXTERN Context_Control_fp  _CPU_Null_fp_context;
405*/
406
407/*
408 *  On some CPUs, RTEMS supports a software managed interrupt stack.
409 *  This stack is allocated by the Interrupt Manager and the switch
410 *  is performed in _ISR_Handler.  These variables contain pointers
411 *  to the lowest and highest addresses in the chunk of memory allocated
412 *  for the interrupt stack.  Since it is unknown whether the stack
413 *  grows up or down (in general), this give the CPU dependent
414 *  code the option of picking the version it wants to use.
415 *
416 *  NOTE: These two variables are required if the macro
417 *        CPU_HAS_SOFTWARE_INTERRUPT_STACK is defined as TRUE.
418 */
419
420SCORE_EXTERN void               *_CPU_Interrupt_stack_low;
421SCORE_EXTERN void               *_CPU_Interrupt_stack_high;
422
423/*
424 *  With some compilation systems, it is difficult if not impossible to
425 *  call a high-level language routine from assembly language.  This
426 *  is especially true of commercial Ada compilers and name mangling
427 *  C++ ones.  This variable can be optionally defined by the CPU porter
428 *  and contains the address of the routine _Thread_Dispatch.  This
429 *  can make it easier to invoke that routine at the end of the interrupt
430 *  sequence (if a dispatch is necessary).
431 */
432
433SCORE_EXTERN void           (*_CPU_Thread_dispatch_pointer)();
434
435/*
436 *  Nothing prevents the porter from declaring more CPU specific variables.
437 */
438
439/* XXX: if needed, put more variables here */
440SCORE_EXTERN void CPU_delay( unsigned32 microseconds );
441
442/*
443 *  The size of the floating point context area.  On some CPUs this
444 *  will not be a "sizeof" because the format of the floating point
445 *  area is not defined -- only the size is.  This is usually on
446 *  CPUs with a "floating point save context" instruction.
447 */
448
449#define CPU_CONTEXT_FP_SIZE sizeof( Context_Control_fp )
450
451/*
452 *  Amount of extra stack (above minimum stack size) required by
453 *  MPCI receive server thread.  Remember that in a multiprocessor
454 *  system this thread must exist and be able to process all directives.
455 */
456
457#define CPU_MPCI_RECEIVE_SERVER_EXTRA_STACK 0
458
459/*
460 *  This defines the number of entries in the ISR_Vector_table managed
461 *  by RTEMS.
462 */
463
464#define CPU_INTERRUPT_NUMBER_OF_VECTORS      256
465#define CPU_INTERRUPT_MAXIMUM_VECTOR_NUMBER  (CPU_INTERRUPT_NUMBER_OF_VECTORS - 1)
466
467/*
468 *  Should be large enough to run all RTEMS tests.  This insures
469 *  that a "reasonable" small application should not have any problems.
470 *
471 *  We have been able to run the sptests with this value, but have not
472 *  been able to run the tmtest suite.
473 */
474
475#define CPU_STACK_MINIMUM_SIZE          4096
476
477/*
478 *  CPU's worst alignment requirement for data types on a byte boundary.  This
479 *  alignment does not take into account the requirements for the stack.
480 */
481
482#define CPU_ALIGNMENT              4
483
484/*
485 *  This number corresponds to the byte alignment requirement for the
486 *  heap handler.  This alignment requirement may be stricter than that
487 *  for the data types alignment specified by CPU_ALIGNMENT.  It is
488 *  common for the heap to follow the same alignment requirement as
489 *  CPU_ALIGNMENT.  If the CPU_ALIGNMENT is strict enough for the heap,
490 *  then this should be set to CPU_ALIGNMENT.
491 *
492 *  NOTE:  This does not have to be a power of 2.  It does have to
493 *         be greater or equal to than CPU_ALIGNMENT.
494 */
495
496#define CPU_HEAP_ALIGNMENT         CPU_ALIGNMENT
497
498/*
499 *  This number corresponds to the byte alignment requirement for memory
500 *  buffers allocated by the partition manager.  This alignment requirement
501 *  may be stricter than that for the data types alignment specified by
502 *  CPU_ALIGNMENT.  It is common for the partition to follow the same
503 *  alignment requirement as CPU_ALIGNMENT.  If the CPU_ALIGNMENT is strict
504 *  enough for the partition, then this should be set to CPU_ALIGNMENT.
505 *
506 *  NOTE:  This does not have to be a power of 2.  It does have to
507 *         be greater or equal to than CPU_ALIGNMENT.
508 */
509
510#define CPU_PARTITION_ALIGNMENT    CPU_ALIGNMENT
511
512/*
513 *  This number corresponds to the byte alignment requirement for the
514 *  stack.  This alignment requirement may be stricter than that for the
515 *  data types alignment specified by CPU_ALIGNMENT.  If the CPU_ALIGNMENT
516 *  is strict enough for the stack, then this should be set to 0.
517 *
518 *  NOTE:  This must be a power of 2 either 0 or greater than CPU_ALIGNMENT.
519 */
520
521#define CPU_STACK_ALIGNMENT        CPU_ALIGNMENT
522
523/*
524 *  ISR handler macros
525 */
526
527/*
528 *  Support routine to initialize the RTEMS vector table after it is allocated.
529 *
530 *  SH Specific Information: NONE
531 */
532 
533#define _CPU_Initialize_vectors()
534 
535/*
536 *  Disable all interrupts for an RTEMS critical section.  The previous
537 *  level is returned in _level.
538 */
539
540#define _CPU_ISR_Disable( _level) \
541  sh_disable_interrupts( _level )
542
543/*
544 *  Enable interrupts to the previous level (returned by _CPU_ISR_Disable).
545 *  This indicates the end of an RTEMS critical section.  The parameter
546 *  _level is not modified.
547 */
548
549#define _CPU_ISR_Enable( _level) \
550   sh_enable_interrupts( _level)
551
552/*
553 *  This temporarily restores the interrupt to _level before immediately
554 *  disabling them again.  This is used to divide long RTEMS critical
555 *  sections into two or more parts.  The parameter _level is not
556 * modified.
557 */
558
559#define _CPU_ISR_Flash( _level) \
560  sh_flash_interrupts( _level)
561
562/*
563 *  Map interrupt level in task mode onto the hardware that the CPU
564 *  actually provides.  Currently, interrupt levels which do not
565 *  map onto the CPU in a generic fashion are undefined.  Someday,
566 *  it would be nice if these were "mapped" by the application
567 *  via a callout.  For example, m68k has 8 levels 0 - 7, levels
568 *  8 - 255 would be available for bsp/application specific meaning.
569 *  This could be used to manage a programmable interrupt controller
570 *  via the rtems_task_mode directive.
571 */
572
573#define _CPU_ISR_Set_level( _newlevel) \
574  sh_set_interrupt_level(_newlevel)
575
576unsigned32 _CPU_ISR_Get_level( void );
577
578/* end of ISR handler macros */
579
580/* Context handler macros */
581
582/*
583 *  Initialize the context to a state suitable for starting a
584 *  task after a context restore operation.  Generally, this
585 *  involves:
586 *
587 *     - setting a starting address
588 *     - preparing the stack
589 *     - preparing the stack and frame pointers
590 *     - setting the proper interrupt level in the context
591 *     - initializing the floating point context
592 *
593 *  This routine generally does not set any unnecessary register
594 *  in the context.  The state of the "general data" registers is
595 *  undefined at task start time.
596 *
597 *  NOTE: This is_fp parameter is TRUE if the thread is to be a floating
598 *        point thread.  This is typically only used on CPUs where the
599 *        FPU may be easily disabled by software such as on the SPARC
600 *        where the PSR contains an enable FPU bit.
601 */
602
603/*
604 * FIXME: defined as a function for debugging - should be a macro
605 */
606SCORE_EXTERN void _CPU_Context_Initialize(
607  Context_Control       *_the_context,
608  void                  *_stack_base,
609  unsigned32            _size,
610  unsigned32            _isr,
611  void    (*_entry_point)(void),
612  int                   _is_fp );
613
614/*
615 *  This routine is responsible for somehow restarting the currently
616 *  executing task.  If you are lucky, then all that is necessary
617 *  is restoring the context.  Otherwise, there will need to be
618 *  a special assembly routine which does something special in this
619 *  case.  Context_Restore should work most of the time.  It will
620 *  not work if restarting self conflicts with the stack frame
621 *  assumptions of restoring a context.
622 */
623
624#define _CPU_Context_Restart_self( _the_context ) \
625   _CPU_Context_restore( (_the_context) );
626
627/*
628 *  The purpose of this macro is to allow the initial pointer into
629 *  a floating point context area (used to save the floating point
630 *  context) to be at an arbitrary place in the floating point
631 *  context area.
632 *
633 *  This is necessary because some FP units are designed to have
634 *  their context saved as a stack which grows into lower addresses.
635 *  Other FP units can be saved by simply moving registers into offsets
636 *  from the base of the context area.  Finally some FP units provide
637 *  a "dump context" instruction which could fill in from high to low
638 *  or low to high based on the whim of the CPU designers.
639 */
640
641#define _CPU_Context_Fp_start( _base, _offset ) \
642   ( (void *) _Addresses_Add_offset( (_base), (_offset) ) )
643
644/*
645 *  This routine initializes the FP context area passed to it to.
646 *  There are a few standard ways in which to initialize the
647 *  floating point context.  The code included for this macro assumes
648 *  that this is a CPU in which a "initial" FP context was saved into
649 *  _CPU_Null_fp_context and it simply copies it to the destination
650 *  context passed to it.
651 *
652 *  Other models include (1) not doing anything, and (2) putting
653 *  a "null FP status word" in the correct place in the FP context.
654 *  SH1, SH2, SH3 have no FPU, but the SH3e and SH4 have.
655 */
656
657#define _CPU_Context_Initialize_fp( _destination ) \
658  {  }
659
660/* end of Context handler macros */
661
662/* Fatal Error manager macros */
663
664/*
665 * FIXME: Trap32 ???
666 *
667 *  This routine copies _error into a known place -- typically a stack
668 *  location or a register, optionally disables interrupts, and
669 *  invokes a Trap32 Instruction which returns to the breakpoint
670 *  routine of cmon.
671 */
672
673#ifdef BSP_FATAL_HALT
674  /* we manage the fatal error in the board support package */
675  void bsp_fatal_halt( unsigned32 _error);
676#define _CPU_Fatal_halt( _error ) bsp_fatal_halt( _error)
677#else
678#define _CPU_Fatal_halt( _error)\
679{ \
680  asm volatile("mov.l %0,r0"::"m" (_error)); \
681  asm volatile("trapa #34"); \
682}
683#endif
684
685/* end of Fatal Error manager macros */
686
687/* Bitfield handler macros */
688
689/*
690 *  This routine sets _output to the bit number of the first bit
691 *  set in _value.  _value is of CPU dependent type Priority_Bit_map_control.
692 *  This type may be either 16 or 32 bits wide although only the 16
693 *  least significant bits will be used.
694 *
695 *  There are a number of variables in using a "find first bit" type
696 *  instruction.
697 *
698 *    (1) What happens when run on a value of zero?
699 *    (2) Bits may be numbered from MSB to LSB or vice-versa.
700 *    (3) The numbering may be zero or one based.
701 *    (4) The "find first bit" instruction may search from MSB or LSB.
702 *
703 *  RTEMS guarantees that (1) will never happen so it is not a concern.
704 *  (2),(3), (4) are handled by the macros _CPU_Priority_mask() and
705 *  _CPU_Priority_bits_index().  These three form a set of routines
706 *  which must logically operate together.  Bits in the _value are
707 *  set and cleared based on masks built by _CPU_Priority_mask().
708 *  The basic major and minor values calculated by _Priority_Major()
709 *  and _Priority_Minor() are "massaged" by _CPU_Priority_bits_index()
710 *  to properly range between the values returned by the "find first bit"
711 *  instruction.  This makes it possible for _Priority_Get_highest() to
712 *  calculate the major and directly index into the minor table.
713 *  This mapping is necessary to ensure that 0 (a high priority major/minor)
714 *  is the first bit found.
715 *
716 *  This entire "find first bit" and mapping process depends heavily
717 *  on the manner in which a priority is broken into a major and minor
718 *  components with the major being the 4 MSB of a priority and minor
719 *  the 4 LSB.  Thus (0 << 4) + 0 corresponds to priority 0 -- the highest
720 *  priority.  And (15 << 4) + 14 corresponds to priority 254 -- the next
721 *  to the lowest priority.
722 *
723 *  If your CPU does not have a "find first bit" instruction, then
724 *  there are ways to make do without it.  Here are a handful of ways
725 *  to implement this in software:
726 *
727 *    - a series of 16 bit test instructions
728 *    - a "binary search using if's"
729 *    - _number = 0
730 *      if _value > 0x00ff
731 *        _value >>=8
732 *        _number = 8;
733 *
734 *      if _value > 0x0000f
735 *        _value >=8
736 *        _number += 4
737 *
738 *      _number += bit_set_table[ _value ]
739 *
740 *    where bit_set_table[ 16 ] has values which indicate the first
741 *      bit set
742 */
743
744#define CPU_USE_GENERIC_BITFIELD_CODE TRUE
745#define CPU_USE_GENERIC_BITFIELD_DATA TRUE
746
747#if (CPU_USE_GENERIC_BITFIELD_CODE == FALSE)
748
749extern unsigned8 _bit_set_table[];
750
751#define _CPU_Bitfield_Find_first_bit( _value, _output ) \
752  { \
753      _output = 0;\
754      if(_value > 0x00ff) \
755      { _value >>= 8; _output = 8; } \
756      if(_value > 0x000f) \
757        { _output += 4; _value >>= 4; } \
758      _output += _bit_set_table[ _value]; }
759
760#endif
761
762/* end of Bitfield handler macros */
763
764/*
765 *  This routine builds the mask which corresponds to the bit fields
766 *  as searched by _CPU_Bitfield_Find_first_bit().  See the discussion
767 *  for that routine.
768 */
769
770#if (CPU_USE_GENERIC_BITFIELD_CODE == FALSE)
771
772#define _CPU_Priority_Mask( _bit_number ) \
773  ( 1 << (_bit_number) )
774
775#endif
776
777/*
778 *  This routine translates the bit numbers returned by
779 *  _CPU_Bitfield_Find_first_bit() into something suitable for use as
780 *  a major or minor component of a priority.  See the discussion
781 *  for that routine.
782 */
783
784#if (CPU_USE_GENERIC_BITFIELD_CODE == FALSE)
785
786#define _CPU_Priority_bits_index( _priority ) \
787  (_priority)
788
789#endif
790
791/* end of Priority handler macros */
792
793/* functions */
794
795/*
796 *  _CPU_Initialize
797 *
798 *  This routine performs CPU dependent initialization.
799 */
800
801void _CPU_Initialize(
802  rtems_cpu_table  *cpu_table,
803  void      (*thread_dispatch)
804);
805
806/*
807 *  _CPU_ISR_install_raw_handler
808 *
809 *  This routine installs a "raw" interrupt handler directly into the
810 *  processor's vector table.
811 */
812 
813void _CPU_ISR_install_raw_handler(
814  unsigned32  vector,
815  proc_ptr    new_handler,
816  proc_ptr   *old_handler
817);
818
819/*
820 *  _CPU_ISR_install_vector
821 *
822 *  This routine installs an interrupt vector.
823 */
824
825void _CPU_ISR_install_vector(
826  unsigned32  vector,
827  proc_ptr    new_handler,
828  proc_ptr   *old_handler
829);
830
831/*
832 *  _CPU_Install_interrupt_stack
833 *
834 *  This routine installs the hardware interrupt stack pointer.
835 *
836 *  NOTE:  It needs only be provided if CPU_HAS_HARDWARE_INTERRUPT_STACK
837 *         is TRUE.
838 */
839
840void _CPU_Install_interrupt_stack( void );
841
842/*
843 *  _CPU_Thread_Idle_body
844 *
845 *  This routine is the CPU dependent IDLE thread body.
846 *
847 *  NOTE:  It need only be provided if CPU_PROVIDES_IDLE_THREAD_BODY
848 *         is TRUE.
849 */
850
851void _CPU_Thread_Idle_body( void );
852
853/*
854 *  _CPU_Context_switch
855 *
856 *  This routine switches from the run context to the heir context.
857 */
858
859void _CPU_Context_switch(
860  Context_Control  *run,
861  Context_Control  *heir
862);
863
864/*
865 *  _CPU_Context_restore
866 *
867 *  This routine is generally used only to restart self in an
868 *  efficient manner.  It may simply be a label in _CPU_Context_switch.
869 */
870
871void _CPU_Context_restore(
872  Context_Control *new_context
873);
874
875/*
876 *  _CPU_Context_save_fp
877 *
878 *  This routine saves the floating point context passed to it.
879 */
880
881void _CPU_Context_save_fp(
882  void **fp_context_ptr
883);
884
885/*
886 *  _CPU_Context_restore_fp
887 *
888 *  This routine restores the floating point context passed to it.
889 */
890
891void _CPU_Context_restore_fp(
892  void **fp_context_ptr
893);
894
895
896#ifdef __cplusplus
897}
898#endif
899
900#endif
Note: See TracBrowser for help on using the repository browser.