1 | /* |
---|
2 | * This include file contains information pertaining to the Hitachi SH |
---|
3 | * processor. |
---|
4 | * |
---|
5 | * Authors: Ralf Corsepius (corsepiu@faw.uni-ulm.de) and |
---|
6 | * Bernd Becker (becker@faw.uni-ulm.de) |
---|
7 | * |
---|
8 | * COPYRIGHT (c) 1997-1998, FAW Ulm, Germany |
---|
9 | * |
---|
10 | * This program is distributed in the hope that it will be useful, |
---|
11 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
---|
12 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. |
---|
13 | * |
---|
14 | * |
---|
15 | * COPYRIGHT (c) 1998. |
---|
16 | * On-Line Applications Research Corporation (OAR). |
---|
17 | * Copyright assigned to U.S. Government, 1994. |
---|
18 | * |
---|
19 | * The license and distribution terms for this file may be |
---|
20 | * found in the file LICENSE in this distribution or at |
---|
21 | * http://www.OARcorp.com/rtems/license.html. |
---|
22 | * |
---|
23 | * $Id$ |
---|
24 | */ |
---|
25 | |
---|
26 | #ifndef _SH_CPU_h |
---|
27 | #define _SH_CPU_h |
---|
28 | |
---|
29 | #ifdef __cplusplus |
---|
30 | extern "C" { |
---|
31 | #endif |
---|
32 | |
---|
33 | #include <rtems/score/sh.h> /* pick up machine definitions */ |
---|
34 | #ifndef ASM |
---|
35 | #include <rtems/score/shtypes.h> |
---|
36 | #endif |
---|
37 | #if 0 && defined(__SH4__) |
---|
38 | #include <rtems/score/sh4_regs.h> |
---|
39 | #endif |
---|
40 | |
---|
41 | /* conditional compilation parameters */ |
---|
42 | |
---|
43 | /* |
---|
44 | * Should the calls to _Thread_Enable_dispatch be inlined? |
---|
45 | * |
---|
46 | * If TRUE, then they are inlined. |
---|
47 | * If FALSE, then a subroutine call is made. |
---|
48 | * |
---|
49 | * Basically this is an example of the classic trade-off of size |
---|
50 | * versus speed. Inlining the call (TRUE) typically increases the |
---|
51 | * size of RTEMS while speeding up the enabling of dispatching. |
---|
52 | * [NOTE: In general, the _Thread_Dispatch_disable_level will |
---|
53 | * only be 0 or 1 unless you are in an interrupt handler and that |
---|
54 | * interrupt handler invokes the executive.] When not inlined |
---|
55 | * something calls _Thread_Enable_dispatch which in turns calls |
---|
56 | * _Thread_Dispatch. If the enable dispatch is inlined, then |
---|
57 | * one subroutine call is avoided entirely.] |
---|
58 | */ |
---|
59 | |
---|
60 | #define CPU_INLINE_ENABLE_DISPATCH FALSE |
---|
61 | |
---|
62 | /* |
---|
63 | * Should the body of the search loops in _Thread_queue_Enqueue_priority |
---|
64 | * be unrolled one time? In unrolled each iteration of the loop examines |
---|
65 | * two "nodes" on the chain being searched. Otherwise, only one node |
---|
66 | * is examined per iteration. |
---|
67 | * |
---|
68 | * If TRUE, then the loops are unrolled. |
---|
69 | * If FALSE, then the loops are not unrolled. |
---|
70 | * |
---|
71 | * The primary factor in making this decision is the cost of disabling |
---|
72 | * and enabling interrupts (_ISR_Flash) versus the cost of rest of the |
---|
73 | * body of the loop. On some CPUs, the flash is more expensive than |
---|
74 | * one iteration of the loop body. In this case, it might be desirable |
---|
75 | * to unroll the loop. It is important to note that on some CPUs, this |
---|
76 | * code is the longest interrupt disable period in RTEMS. So it is |
---|
77 | * necessary to strike a balance when setting this parameter. |
---|
78 | */ |
---|
79 | |
---|
80 | #define CPU_UNROLL_ENQUEUE_PRIORITY TRUE |
---|
81 | |
---|
82 | /* |
---|
83 | * Does RTEMS manage a dedicated interrupt stack in software? |
---|
84 | * |
---|
85 | * If TRUE, then a stack is allocated in _ISR_Handler_initialization. |
---|
86 | * If FALSE, nothing is done. |
---|
87 | * |
---|
88 | * If the CPU supports a dedicated interrupt stack in hardware, |
---|
89 | * then it is generally the responsibility of the BSP to allocate it |
---|
90 | * and set it up. |
---|
91 | * |
---|
92 | * If the CPU does not support a dedicated interrupt stack, then |
---|
93 | * the porter has two options: (1) execute interrupts on the |
---|
94 | * stack of the interrupted task, and (2) have RTEMS manage a dedicated |
---|
95 | * interrupt stack. |
---|
96 | * |
---|
97 | * If this is TRUE, CPU_ALLOCATE_INTERRUPT_STACK should also be TRUE. |
---|
98 | * |
---|
99 | * Only one of CPU_HAS_SOFTWARE_INTERRUPT_STACK and |
---|
100 | * CPU_HAS_HARDWARE_INTERRUPT_STACK should be set to TRUE. It is |
---|
101 | * possible that both are FALSE for a particular CPU. Although it |
---|
102 | * is unclear what that would imply about the interrupt processing |
---|
103 | * procedure on that CPU. |
---|
104 | */ |
---|
105 | |
---|
106 | #define CPU_HAS_SOFTWARE_INTERRUPT_STACK TRUE |
---|
107 | #define CPU_HAS_HARDWARE_INTERRUPT_STACK FALSE |
---|
108 | |
---|
109 | /* |
---|
110 | * We define the interrupt stack in the linker script |
---|
111 | */ |
---|
112 | #define CPU_ALLOCATE_INTERRUPT_STACK FALSE |
---|
113 | |
---|
114 | /* |
---|
115 | * Does the RTEMS invoke the user's ISR with the vector number and |
---|
116 | * a pointer to the saved interrupt frame (1) or just the vector |
---|
117 | * number (0)? |
---|
118 | */ |
---|
119 | |
---|
120 | #define CPU_ISR_PASSES_FRAME_POINTER 0 |
---|
121 | |
---|
122 | /* |
---|
123 | * Does the CPU have hardware floating point? |
---|
124 | * |
---|
125 | * If TRUE, then the RTEMS_FLOATING_POINT task attribute is supported. |
---|
126 | * If FALSE, then the RTEMS_FLOATING_POINT task attribute is ignored. |
---|
127 | * |
---|
128 | * We currently support sh1 only, which has no FPU, other SHes have an FPU |
---|
129 | * |
---|
130 | * The macro name "NO_CPU_HAS_FPU" should be made CPU specific. |
---|
131 | * It indicates whether or not this CPU model has FP support. For |
---|
132 | * example, it would be possible to have an i386_nofp CPU model |
---|
133 | * which set this to false to indicate that you have an i386 without |
---|
134 | * an i387 and wish to leave floating point support out of RTEMS. |
---|
135 | */ |
---|
136 | |
---|
137 | #if SH_HAS_FPU |
---|
138 | /* FIXME: What about CPU_SOFTWARE_FP ? */ |
---|
139 | #define CPU_HARDWARE_FP TRUE |
---|
140 | #else |
---|
141 | #define CPU_SOFTWARE_FP FALSE |
---|
142 | #define CPU_HARDWARE_FP FALSE |
---|
143 | #endif |
---|
144 | |
---|
145 | /* |
---|
146 | * Are all tasks RTEMS_FLOATING_POINT tasks implicitly? |
---|
147 | * |
---|
148 | * If TRUE, then the RTEMS_FLOATING_POINT task attribute is assumed. |
---|
149 | * If FALSE, then the RTEMS_FLOATING_POINT task attribute is followed. |
---|
150 | * |
---|
151 | * So far, the only CPU in which this option has been used is the |
---|
152 | * HP PA-RISC. The HP C compiler and gcc both implicitly use the |
---|
153 | * floating point registers to perform integer multiplies. If |
---|
154 | * a function which you would not think utilize the FP unit DOES, |
---|
155 | * then one can not easily predict which tasks will use the FP hardware. |
---|
156 | * In this case, this option should be TRUE. |
---|
157 | * |
---|
158 | * If CPU_HARDWARE_FP is FALSE, then this should be FALSE as well. |
---|
159 | */ |
---|
160 | |
---|
161 | #if SH_HAS_FPU |
---|
162 | #define CPU_ALL_TASKS_ARE_FP TRUE |
---|
163 | #else |
---|
164 | #define CPU_ALL_TASKS_ARE_FP FALSE |
---|
165 | #endif |
---|
166 | |
---|
167 | /* |
---|
168 | * Should the IDLE task have a floating point context? |
---|
169 | * |
---|
170 | * If TRUE, then the IDLE task is created as a RTEMS_FLOATING_POINT task |
---|
171 | * and it has a floating point context which is switched in and out. |
---|
172 | * If FALSE, then the IDLE task does not have a floating point context. |
---|
173 | * |
---|
174 | * Setting this to TRUE negatively impacts the time required to preempt |
---|
175 | * the IDLE task from an interrupt because the floating point context |
---|
176 | * must be saved as part of the preemption. |
---|
177 | */ |
---|
178 | |
---|
179 | #if SH_HAS_FPU |
---|
180 | #define CPU_IDLE_TASK_IS_FP TRUE |
---|
181 | #else |
---|
182 | #define CPU_IDLE_TASK_IS_FP FALSE |
---|
183 | #endif |
---|
184 | |
---|
185 | /* |
---|
186 | * Should the saving of the floating point registers be deferred |
---|
187 | * until a context switch is made to another different floating point |
---|
188 | * task? |
---|
189 | * |
---|
190 | * If TRUE, then the floating point context will not be stored until |
---|
191 | * necessary. It will remain in the floating point registers and not |
---|
192 | * disturned until another floating point task is switched to. |
---|
193 | * |
---|
194 | * If FALSE, then the floating point context is saved when a floating |
---|
195 | * point task is switched out and restored when the next floating point |
---|
196 | * task is restored. The state of the floating point registers between |
---|
197 | * those two operations is not specified. |
---|
198 | * |
---|
199 | * If the floating point context does NOT have to be saved as part of |
---|
200 | * interrupt dispatching, then it should be safe to set this to TRUE. |
---|
201 | * |
---|
202 | * Setting this flag to TRUE results in using a different algorithm |
---|
203 | * for deciding when to save and restore the floating point context. |
---|
204 | * The deferred FP switch algorithm minimizes the number of times |
---|
205 | * the FP context is saved and restored. The FP context is not saved |
---|
206 | * until a context switch is made to another, different FP task. |
---|
207 | * Thus in a system with only one FP task, the FP context will never |
---|
208 | * be saved or restored. |
---|
209 | */ |
---|
210 | |
---|
211 | #if SH_HAS_FPU |
---|
212 | #define CPU_USE_DEFERRED_FP_SWITCH FALSE |
---|
213 | #else |
---|
214 | /* FIXME: Is this needed? |
---|
215 | * Only here for backward compatibility with previous versions |
---|
216 | */ |
---|
217 | #define CPU_USE_DEFERRED_FP_SWITCH TRUE |
---|
218 | #endif |
---|
219 | |
---|
220 | /* |
---|
221 | * Does this port provide a CPU dependent IDLE task implementation? |
---|
222 | * |
---|
223 | * If TRUE, then the routine _CPU_Thread_Idle_body |
---|
224 | * must be provided and is the default IDLE thread body instead of |
---|
225 | * _CPU_Thread_Idle_body. |
---|
226 | * |
---|
227 | * If FALSE, then use the generic IDLE thread body if the BSP does |
---|
228 | * not provide one. |
---|
229 | * |
---|
230 | * This is intended to allow for supporting processors which have |
---|
231 | * a low power or idle mode. When the IDLE thread is executed, then |
---|
232 | * the CPU can be powered down. |
---|
233 | * |
---|
234 | * The order of precedence for selecting the IDLE thread body is: |
---|
235 | * |
---|
236 | * 1. BSP provided |
---|
237 | * 2. CPU dependent (if provided) |
---|
238 | * 3. generic (if no BSP and no CPU dependent) |
---|
239 | */ |
---|
240 | |
---|
241 | #define CPU_PROVIDES_IDLE_THREAD_BODY TRUE |
---|
242 | |
---|
243 | /* |
---|
244 | * Does the stack grow up (toward higher addresses) or down |
---|
245 | * (toward lower addresses)? |
---|
246 | * |
---|
247 | * If TRUE, then the grows upward. |
---|
248 | * If FALSE, then the grows toward smaller addresses. |
---|
249 | */ |
---|
250 | |
---|
251 | #define CPU_STACK_GROWS_UP FALSE |
---|
252 | |
---|
253 | /* |
---|
254 | * The following is the variable attribute used to force alignment |
---|
255 | * of critical RTEMS structures. On some processors it may make |
---|
256 | * sense to have these aligned on tighter boundaries than |
---|
257 | * the minimum requirements of the compiler in order to have as |
---|
258 | * much of the critical data area as possible in a cache line. |
---|
259 | * |
---|
260 | * The placement of this macro in the declaration of the variables |
---|
261 | * is based on the syntactically requirements of the GNU C |
---|
262 | * "__attribute__" extension. For example with GNU C, use |
---|
263 | * the following to force a structures to a 32 byte boundary. |
---|
264 | * |
---|
265 | * __attribute__ ((aligned (32))) |
---|
266 | * |
---|
267 | * NOTE: Currently only the Priority Bit Map table uses this feature. |
---|
268 | * To benefit from using this, the data must be heavily |
---|
269 | * used so it will stay in the cache and used frequently enough |
---|
270 | * in the executive to justify turning this on. |
---|
271 | */ |
---|
272 | |
---|
273 | #define CPU_STRUCTURE_ALIGNMENT __attribute__ ((aligned(16))) |
---|
274 | |
---|
275 | /* |
---|
276 | * Define what is required to specify how the network to host conversion |
---|
277 | * routines are handled. |
---|
278 | * |
---|
279 | * NOTE: SHes can be big or little endian, the default is big endian |
---|
280 | */ |
---|
281 | |
---|
282 | #define CPU_HAS_OWN_HOST_TO_NETWORK_ROUTINES FALSE |
---|
283 | |
---|
284 | /* __LITTLE_ENDIAN__ is defined if -ml is given to gcc */ |
---|
285 | #if defined(__LITTLE_ENDIAN__) |
---|
286 | #define CPU_BIG_ENDIAN FALSE |
---|
287 | #define CPU_LITTLE_ENDIAN TRUE |
---|
288 | #else |
---|
289 | #define CPU_BIG_ENDIAN TRUE |
---|
290 | #define CPU_LITTLE_ENDIAN FALSE |
---|
291 | #endif |
---|
292 | |
---|
293 | /* |
---|
294 | * The following defines the number of bits actually used in the |
---|
295 | * interrupt field of the task mode. How those bits map to the |
---|
296 | * CPU interrupt levels is defined by the routine _CPU_ISR_Set_level(). |
---|
297 | */ |
---|
298 | |
---|
299 | #define CPU_MODES_INTERRUPT_MASK 0x0000000f |
---|
300 | |
---|
301 | /* |
---|
302 | * Processor defined structures |
---|
303 | * |
---|
304 | * Examples structures include the descriptor tables from the i386 |
---|
305 | * and the processor control structure on the i960ca. |
---|
306 | */ |
---|
307 | |
---|
308 | /* may need to put some structures here. */ |
---|
309 | |
---|
310 | /* |
---|
311 | * Contexts |
---|
312 | * |
---|
313 | * Generally there are 2 types of context to save. |
---|
314 | * 1. Interrupt registers to save |
---|
315 | * 2. Task level registers to save |
---|
316 | * |
---|
317 | * This means we have the following 3 context items: |
---|
318 | * 1. task level context stuff:: Context_Control |
---|
319 | * 2. floating point task stuff:: Context_Control_fp |
---|
320 | * 3. special interrupt level context :: Context_Control_interrupt |
---|
321 | * |
---|
322 | * On some processors, it is cost-effective to save only the callee |
---|
323 | * preserved registers during a task context switch. This means |
---|
324 | * that the ISR code needs to save those registers which do not |
---|
325 | * persist across function calls. It is not mandatory to make this |
---|
326 | * distinctions between the caller/callee saves registers for the |
---|
327 | * purpose of minimizing context saved during task switch and on interrupts. |
---|
328 | * If the cost of saving extra registers is minimal, simplicity is the |
---|
329 | * choice. Save the same context on interrupt entry as for tasks in |
---|
330 | * this case. |
---|
331 | * |
---|
332 | * Additionally, if gdb is to be made aware of RTEMS tasks for this CPU, then |
---|
333 | * care should be used in designing the context area. |
---|
334 | * |
---|
335 | * On some CPUs with hardware floating point support, the Context_Control_fp |
---|
336 | * structure will not be used or it simply consist of an array of a |
---|
337 | * fixed number of bytes. This is done when the floating point context |
---|
338 | * is dumped by a "FP save context" type instruction and the format |
---|
339 | * is not really defined by the CPU. In this case, there is no need |
---|
340 | * to figure out the exact format -- only the size. Of course, although |
---|
341 | * this is enough information for RTEMS, it is probably not enough for |
---|
342 | * a debugger such as gdb. But that is another problem. |
---|
343 | */ |
---|
344 | |
---|
345 | typedef struct { |
---|
346 | unsigned32 *r15; /* stack pointer */ |
---|
347 | |
---|
348 | unsigned32 macl; |
---|
349 | unsigned32 mach; |
---|
350 | unsigned32 *pr; |
---|
351 | |
---|
352 | unsigned32 *r14; /* frame pointer/call saved */ |
---|
353 | |
---|
354 | unsigned32 r13; /* call saved */ |
---|
355 | unsigned32 r12; /* call saved */ |
---|
356 | unsigned32 r11; /* call saved */ |
---|
357 | unsigned32 r10; /* call saved */ |
---|
358 | unsigned32 r9; /* call saved */ |
---|
359 | unsigned32 r8; /* call saved */ |
---|
360 | |
---|
361 | unsigned32 *r7; /* arg in */ |
---|
362 | unsigned32 *r6; /* arg in */ |
---|
363 | |
---|
364 | #if 0 |
---|
365 | unsigned32 *r5; /* arg in */ |
---|
366 | unsigned32 *r4; /* arg in */ |
---|
367 | #endif |
---|
368 | |
---|
369 | unsigned32 *r3; /* scratch */ |
---|
370 | unsigned32 *r2; /* scratch */ |
---|
371 | unsigned32 *r1; /* scratch */ |
---|
372 | |
---|
373 | unsigned32 *r0; /* arg return */ |
---|
374 | |
---|
375 | unsigned32 gbr; |
---|
376 | unsigned32 sr; |
---|
377 | |
---|
378 | } Context_Control; |
---|
379 | |
---|
380 | typedef struct { |
---|
381 | #if SH_HAS_FPU |
---|
382 | #ifdef SH4_USE_X_REGISTERS |
---|
383 | union { |
---|
384 | float f[16]; |
---|
385 | double d[8]; |
---|
386 | } x; |
---|
387 | #endif |
---|
388 | union { |
---|
389 | float f[16]; |
---|
390 | double d[8]; |
---|
391 | } r; |
---|
392 | float fpul; /* fp communication register */ |
---|
393 | unsigned32 fpscr; /* fp control register */ |
---|
394 | #endif /* SH_HAS_FPU */ |
---|
395 | } Context_Control_fp; |
---|
396 | |
---|
397 | typedef struct { |
---|
398 | } CPU_Interrupt_frame; |
---|
399 | |
---|
400 | |
---|
401 | /* |
---|
402 | * The following table contains the information required to configure |
---|
403 | * the SH processor specific parameters. |
---|
404 | */ |
---|
405 | |
---|
406 | typedef struct { |
---|
407 | void (*pretasking_hook)( void ); |
---|
408 | void (*predriver_hook)( void ); |
---|
409 | void (*postdriver_hook)( void ); |
---|
410 | void (*idle_task)( void ); |
---|
411 | boolean do_zero_of_workspace; |
---|
412 | unsigned32 idle_task_stack_size; |
---|
413 | unsigned32 interrupt_stack_size; |
---|
414 | unsigned32 extra_mpci_receive_server_stack; |
---|
415 | void * (*stack_allocate_hook)( unsigned32 ); |
---|
416 | void (*stack_free_hook)( void* ); |
---|
417 | /* end of fields required on all CPUs */ |
---|
418 | unsigned32 clicks_per_second ; /* cpu frequency in Hz */ |
---|
419 | } rtems_cpu_table; |
---|
420 | |
---|
421 | /* |
---|
422 | * Macros to access required entires in the CPU Table are in |
---|
423 | * the file rtems/system.h. |
---|
424 | */ |
---|
425 | |
---|
426 | /* |
---|
427 | * Macros to access SH specific additions to the CPU Table |
---|
428 | */ |
---|
429 | |
---|
430 | #define rtems_cpu_configuration_get_clicks_per_second() \ |
---|
431 | (_CPU_Table.clicks_per_second) |
---|
432 | |
---|
433 | /* |
---|
434 | * This variable is optional. It is used on CPUs on which it is difficult |
---|
435 | * to generate an "uninitialized" FP context. It is filled in by |
---|
436 | * _CPU_Initialize and copied into the task's FP context area during |
---|
437 | * _CPU_Context_Initialize. |
---|
438 | */ |
---|
439 | |
---|
440 | #if SH_HAS_FPU |
---|
441 | SCORE_EXTERN Context_Control_fp _CPU_Null_fp_context; |
---|
442 | #endif |
---|
443 | |
---|
444 | /* |
---|
445 | * On some CPUs, RTEMS supports a software managed interrupt stack. |
---|
446 | * This stack is allocated by the Interrupt Manager and the switch |
---|
447 | * is performed in _ISR_Handler. These variables contain pointers |
---|
448 | * to the lowest and highest addresses in the chunk of memory allocated |
---|
449 | * for the interrupt stack. Since it is unknown whether the stack |
---|
450 | * grows up or down (in general), this give the CPU dependent |
---|
451 | * code the option of picking the version it wants to use. |
---|
452 | * |
---|
453 | * NOTE: These two variables are required if the macro |
---|
454 | * CPU_HAS_SOFTWARE_INTERRUPT_STACK is defined as TRUE. |
---|
455 | */ |
---|
456 | |
---|
457 | SCORE_EXTERN void *_CPU_Interrupt_stack_low; |
---|
458 | SCORE_EXTERN void *_CPU_Interrupt_stack_high; |
---|
459 | |
---|
460 | /* |
---|
461 | * With some compilation systems, it is difficult if not impossible to |
---|
462 | * call a high-level language routine from assembly language. This |
---|
463 | * is especially true of commercial Ada compilers and name mangling |
---|
464 | * C++ ones. This variable can be optionally defined by the CPU porter |
---|
465 | * and contains the address of the routine _Thread_Dispatch. This |
---|
466 | * can make it easier to invoke that routine at the end of the interrupt |
---|
467 | * sequence (if a dispatch is necessary). |
---|
468 | */ |
---|
469 | |
---|
470 | SCORE_EXTERN void (*_CPU_Thread_dispatch_pointer)(); |
---|
471 | |
---|
472 | /* |
---|
473 | * Nothing prevents the porter from declaring more CPU specific variables. |
---|
474 | */ |
---|
475 | |
---|
476 | /* XXX: if needed, put more variables here */ |
---|
477 | SCORE_EXTERN void CPU_delay( unsigned32 microseconds ); |
---|
478 | |
---|
479 | /* |
---|
480 | * The size of the floating point context area. On some CPUs this |
---|
481 | * will not be a "sizeof" because the format of the floating point |
---|
482 | * area is not defined -- only the size is. This is usually on |
---|
483 | * CPUs with a "floating point save context" instruction. |
---|
484 | */ |
---|
485 | |
---|
486 | #define CPU_CONTEXT_FP_SIZE sizeof( Context_Control_fp ) |
---|
487 | |
---|
488 | /* |
---|
489 | * Amount of extra stack (above minimum stack size) required by |
---|
490 | * MPCI receive server thread. Remember that in a multiprocessor |
---|
491 | * system this thread must exist and be able to process all directives. |
---|
492 | */ |
---|
493 | |
---|
494 | #define CPU_MPCI_RECEIVE_SERVER_EXTRA_STACK 0 |
---|
495 | |
---|
496 | /* |
---|
497 | * This defines the number of entries in the ISR_Vector_table managed |
---|
498 | * by RTEMS. |
---|
499 | */ |
---|
500 | |
---|
501 | #define CPU_INTERRUPT_NUMBER_OF_VECTORS 256 |
---|
502 | #define CPU_INTERRUPT_MAXIMUM_VECTOR_NUMBER (CPU_INTERRUPT_NUMBER_OF_VECTORS - 1) |
---|
503 | |
---|
504 | /* |
---|
505 | * Should be large enough to run all RTEMS tests. This insures |
---|
506 | * that a "reasonable" small application should not have any problems. |
---|
507 | * |
---|
508 | * We have been able to run the sptests with this value, but have not |
---|
509 | * been able to run the tmtest suite. |
---|
510 | */ |
---|
511 | |
---|
512 | #define CPU_STACK_MINIMUM_SIZE 4096 |
---|
513 | |
---|
514 | /* |
---|
515 | * CPU's worst alignment requirement for data types on a byte boundary. This |
---|
516 | * alignment does not take into account the requirements for the stack. |
---|
517 | */ |
---|
518 | #if defined(__SH4__) |
---|
519 | /* FIXME: sh3 and SH3E? */ |
---|
520 | #define CPU_ALIGNMENT 8 |
---|
521 | #else |
---|
522 | #define CPU_ALIGNMENT 4 |
---|
523 | #endif |
---|
524 | |
---|
525 | /* |
---|
526 | * This number corresponds to the byte alignment requirement for the |
---|
527 | * heap handler. This alignment requirement may be stricter than that |
---|
528 | * for the data types alignment specified by CPU_ALIGNMENT. It is |
---|
529 | * common for the heap to follow the same alignment requirement as |
---|
530 | * CPU_ALIGNMENT. If the CPU_ALIGNMENT is strict enough for the heap, |
---|
531 | * then this should be set to CPU_ALIGNMENT. |
---|
532 | * |
---|
533 | * NOTE: This does not have to be a power of 2. It does have to |
---|
534 | * be greater or equal to than CPU_ALIGNMENT. |
---|
535 | */ |
---|
536 | |
---|
537 | #define CPU_HEAP_ALIGNMENT CPU_ALIGNMENT |
---|
538 | |
---|
539 | /* |
---|
540 | * This number corresponds to the byte alignment requirement for memory |
---|
541 | * buffers allocated by the partition manager. This alignment requirement |
---|
542 | * may be stricter than that for the data types alignment specified by |
---|
543 | * CPU_ALIGNMENT. It is common for the partition to follow the same |
---|
544 | * alignment requirement as CPU_ALIGNMENT. If the CPU_ALIGNMENT is strict |
---|
545 | * enough for the partition, then this should be set to CPU_ALIGNMENT. |
---|
546 | * |
---|
547 | * NOTE: This does not have to be a power of 2. It does have to |
---|
548 | * be greater or equal to than CPU_ALIGNMENT. |
---|
549 | */ |
---|
550 | |
---|
551 | #define CPU_PARTITION_ALIGNMENT CPU_ALIGNMENT |
---|
552 | |
---|
553 | /* |
---|
554 | * This number corresponds to the byte alignment requirement for the |
---|
555 | * stack. This alignment requirement may be stricter than that for the |
---|
556 | * data types alignment specified by CPU_ALIGNMENT. If the CPU_ALIGNMENT |
---|
557 | * is strict enough for the stack, then this should be set to 0. |
---|
558 | * |
---|
559 | * NOTE: This must be a power of 2 either 0 or greater than CPU_ALIGNMENT. |
---|
560 | */ |
---|
561 | |
---|
562 | #define CPU_STACK_ALIGNMENT CPU_ALIGNMENT |
---|
563 | |
---|
564 | /* |
---|
565 | * ISR handler macros |
---|
566 | */ |
---|
567 | |
---|
568 | /* |
---|
569 | * Support routine to initialize the RTEMS vector table after it is allocated. |
---|
570 | * |
---|
571 | * SH Specific Information: NONE |
---|
572 | */ |
---|
573 | |
---|
574 | #define _CPU_Initialize_vectors() |
---|
575 | |
---|
576 | /* |
---|
577 | * Disable all interrupts for an RTEMS critical section. The previous |
---|
578 | * level is returned in _level. |
---|
579 | */ |
---|
580 | |
---|
581 | #define _CPU_ISR_Disable( _level) \ |
---|
582 | sh_disable_interrupts( _level ) |
---|
583 | |
---|
584 | /* |
---|
585 | * Enable interrupts to the previous level (returned by _CPU_ISR_Disable). |
---|
586 | * This indicates the end of an RTEMS critical section. The parameter |
---|
587 | * _level is not modified. |
---|
588 | */ |
---|
589 | |
---|
590 | #define _CPU_ISR_Enable( _level) \ |
---|
591 | sh_enable_interrupts( _level) |
---|
592 | |
---|
593 | /* |
---|
594 | * This temporarily restores the interrupt to _level before immediately |
---|
595 | * disabling them again. This is used to divide long RTEMS critical |
---|
596 | * sections into two or more parts. The parameter _level is not |
---|
597 | * modified. |
---|
598 | */ |
---|
599 | |
---|
600 | #define _CPU_ISR_Flash( _level) \ |
---|
601 | sh_flash_interrupts( _level) |
---|
602 | |
---|
603 | /* |
---|
604 | * Map interrupt level in task mode onto the hardware that the CPU |
---|
605 | * actually provides. Currently, interrupt levels which do not |
---|
606 | * map onto the CPU in a generic fashion are undefined. Someday, |
---|
607 | * it would be nice if these were "mapped" by the application |
---|
608 | * via a callout. For example, m68k has 8 levels 0 - 7, levels |
---|
609 | * 8 - 255 would be available for bsp/application specific meaning. |
---|
610 | * This could be used to manage a programmable interrupt controller |
---|
611 | * via the rtems_task_mode directive. |
---|
612 | */ |
---|
613 | |
---|
614 | #define _CPU_ISR_Set_level( _newlevel) \ |
---|
615 | sh_set_interrupt_level(_newlevel) |
---|
616 | |
---|
617 | unsigned32 _CPU_ISR_Get_level( void ); |
---|
618 | |
---|
619 | /* end of ISR handler macros */ |
---|
620 | |
---|
621 | /* Context handler macros */ |
---|
622 | |
---|
623 | /* |
---|
624 | * Initialize the context to a state suitable for starting a |
---|
625 | * task after a context restore operation. Generally, this |
---|
626 | * involves: |
---|
627 | * |
---|
628 | * - setting a starting address |
---|
629 | * - preparing the stack |
---|
630 | * - preparing the stack and frame pointers |
---|
631 | * - setting the proper interrupt level in the context |
---|
632 | * - initializing the floating point context |
---|
633 | * |
---|
634 | * This routine generally does not set any unnecessary register |
---|
635 | * in the context. The state of the "general data" registers is |
---|
636 | * undefined at task start time. |
---|
637 | * |
---|
638 | * NOTE: This is_fp parameter is TRUE if the thread is to be a floating |
---|
639 | * point thread. This is typically only used on CPUs where the |
---|
640 | * FPU may be easily disabled by software such as on the SPARC |
---|
641 | * where the PSR contains an enable FPU bit. |
---|
642 | */ |
---|
643 | |
---|
644 | /* |
---|
645 | * FIXME: defined as a function for debugging - should be a macro |
---|
646 | */ |
---|
647 | SCORE_EXTERN void _CPU_Context_Initialize( |
---|
648 | Context_Control *_the_context, |
---|
649 | void *_stack_base, |
---|
650 | unsigned32 _size, |
---|
651 | unsigned32 _isr, |
---|
652 | void (*_entry_point)(void), |
---|
653 | int _is_fp ); |
---|
654 | |
---|
655 | /* |
---|
656 | * This routine is responsible for somehow restarting the currently |
---|
657 | * executing task. If you are lucky, then all that is necessary |
---|
658 | * is restoring the context. Otherwise, there will need to be |
---|
659 | * a special assembly routine which does something special in this |
---|
660 | * case. Context_Restore should work most of the time. It will |
---|
661 | * not work if restarting self conflicts with the stack frame |
---|
662 | * assumptions of restoring a context. |
---|
663 | */ |
---|
664 | |
---|
665 | #define _CPU_Context_Restart_self( _the_context ) \ |
---|
666 | _CPU_Context_restore( (_the_context) ); |
---|
667 | |
---|
668 | /* |
---|
669 | * The purpose of this macro is to allow the initial pointer into |
---|
670 | * a floating point context area (used to save the floating point |
---|
671 | * context) to be at an arbitrary place in the floating point |
---|
672 | * context area. |
---|
673 | * |
---|
674 | * This is necessary because some FP units are designed to have |
---|
675 | * their context saved as a stack which grows into lower addresses. |
---|
676 | * Other FP units can be saved by simply moving registers into offsets |
---|
677 | * from the base of the context area. Finally some FP units provide |
---|
678 | * a "dump context" instruction which could fill in from high to low |
---|
679 | * or low to high based on the whim of the CPU designers. |
---|
680 | */ |
---|
681 | |
---|
682 | #define _CPU_Context_Fp_start( _base, _offset ) \ |
---|
683 | ( (void *) _Addresses_Add_offset( (_base), (_offset) ) ) |
---|
684 | |
---|
685 | /* |
---|
686 | * This routine initializes the FP context area passed to it to. |
---|
687 | * There are a few standard ways in which to initialize the |
---|
688 | * floating point context. The code included for this macro assumes |
---|
689 | * that this is a CPU in which a "initial" FP context was saved into |
---|
690 | * _CPU_Null_fp_context and it simply copies it to the destination |
---|
691 | * context passed to it. |
---|
692 | * |
---|
693 | * Other models include (1) not doing anything, and (2) putting |
---|
694 | * a "null FP status word" in the correct place in the FP context. |
---|
695 | * SH1, SH2, SH3 have no FPU, but the SH3e and SH4 have. |
---|
696 | */ |
---|
697 | |
---|
698 | #if SH_HAS_FPU |
---|
699 | #define _CPU_Context_Initialize_fp( _destination ) \ |
---|
700 | do { \ |
---|
701 | *((Context_Control_fp *) *((void **) _destination)) = _CPU_Null_fp_context;\ |
---|
702 | } while(0) |
---|
703 | #else |
---|
704 | #define _CPU_Context_Initialize_fp( _destination ) \ |
---|
705 | { } |
---|
706 | #endif |
---|
707 | |
---|
708 | /* end of Context handler macros */ |
---|
709 | |
---|
710 | /* Fatal Error manager macros */ |
---|
711 | |
---|
712 | /* |
---|
713 | * FIXME: Trap32 ??? |
---|
714 | * |
---|
715 | * This routine copies _error into a known place -- typically a stack |
---|
716 | * location or a register, optionally disables interrupts, and |
---|
717 | * invokes a Trap32 Instruction which returns to the breakpoint |
---|
718 | * routine of cmon. |
---|
719 | */ |
---|
720 | |
---|
721 | #ifdef BSP_FATAL_HALT |
---|
722 | /* we manage the fatal error in the board support package */ |
---|
723 | void bsp_fatal_halt( unsigned32 _error); |
---|
724 | #define _CPU_Fatal_halt( _error ) bsp_fatal_halt( _error) |
---|
725 | #else |
---|
726 | #define _CPU_Fatal_halt( _error)\ |
---|
727 | { \ |
---|
728 | asm volatile("mov.l %0,r0"::"m" (_error)); \ |
---|
729 | asm volatile("mov #1, r4"); \ |
---|
730 | asm volatile("trapa #34"); \ |
---|
731 | } |
---|
732 | #endif |
---|
733 | |
---|
734 | /* end of Fatal Error manager macros */ |
---|
735 | |
---|
736 | /* Bitfield handler macros */ |
---|
737 | |
---|
738 | /* |
---|
739 | * This routine sets _output to the bit number of the first bit |
---|
740 | * set in _value. _value is of CPU dependent type Priority_Bit_map_control. |
---|
741 | * This type may be either 16 or 32 bits wide although only the 16 |
---|
742 | * least significant bits will be used. |
---|
743 | * |
---|
744 | * There are a number of variables in using a "find first bit" type |
---|
745 | * instruction. |
---|
746 | * |
---|
747 | * (1) What happens when run on a value of zero? |
---|
748 | * (2) Bits may be numbered from MSB to LSB or vice-versa. |
---|
749 | * (3) The numbering may be zero or one based. |
---|
750 | * (4) The "find first bit" instruction may search from MSB or LSB. |
---|
751 | * |
---|
752 | * RTEMS guarantees that (1) will never happen so it is not a concern. |
---|
753 | * (2),(3), (4) are handled by the macros _CPU_Priority_mask() and |
---|
754 | * _CPU_Priority_bits_index(). These three form a set of routines |
---|
755 | * which must logically operate together. Bits in the _value are |
---|
756 | * set and cleared based on masks built by _CPU_Priority_mask(). |
---|
757 | * The basic major and minor values calculated by _Priority_Major() |
---|
758 | * and _Priority_Minor() are "massaged" by _CPU_Priority_bits_index() |
---|
759 | * to properly range between the values returned by the "find first bit" |
---|
760 | * instruction. This makes it possible for _Priority_Get_highest() to |
---|
761 | * calculate the major and directly index into the minor table. |
---|
762 | * This mapping is necessary to ensure that 0 (a high priority major/minor) |
---|
763 | * is the first bit found. |
---|
764 | * |
---|
765 | * This entire "find first bit" and mapping process depends heavily |
---|
766 | * on the manner in which a priority is broken into a major and minor |
---|
767 | * components with the major being the 4 MSB of a priority and minor |
---|
768 | * the 4 LSB. Thus (0 << 4) + 0 corresponds to priority 0 -- the highest |
---|
769 | * priority. And (15 << 4) + 14 corresponds to priority 254 -- the next |
---|
770 | * to the lowest priority. |
---|
771 | * |
---|
772 | * If your CPU does not have a "find first bit" instruction, then |
---|
773 | * there are ways to make do without it. Here are a handful of ways |
---|
774 | * to implement this in software: |
---|
775 | * |
---|
776 | * - a series of 16 bit test instructions |
---|
777 | * - a "binary search using if's" |
---|
778 | * - _number = 0 |
---|
779 | * if _value > 0x00ff |
---|
780 | * _value >>=8 |
---|
781 | * _number = 8; |
---|
782 | * |
---|
783 | * if _value > 0x0000f |
---|
784 | * _value >=8 |
---|
785 | * _number += 4 |
---|
786 | * |
---|
787 | * _number += bit_set_table[ _value ] |
---|
788 | * |
---|
789 | * where bit_set_table[ 16 ] has values which indicate the first |
---|
790 | * bit set |
---|
791 | */ |
---|
792 | |
---|
793 | #define CPU_USE_GENERIC_BITFIELD_CODE TRUE |
---|
794 | #define CPU_USE_GENERIC_BITFIELD_DATA TRUE |
---|
795 | |
---|
796 | #if (CPU_USE_GENERIC_BITFIELD_CODE == FALSE) |
---|
797 | |
---|
798 | extern unsigned8 _bit_set_table[]; |
---|
799 | |
---|
800 | #define _CPU_Bitfield_Find_first_bit( _value, _output ) \ |
---|
801 | { \ |
---|
802 | _output = 0;\ |
---|
803 | if(_value > 0x00ff) \ |
---|
804 | { _value >>= 8; _output = 8; } \ |
---|
805 | if(_value > 0x000f) \ |
---|
806 | { _output += 4; _value >>= 4; } \ |
---|
807 | _output += _bit_set_table[ _value]; } |
---|
808 | |
---|
809 | #endif |
---|
810 | |
---|
811 | /* end of Bitfield handler macros */ |
---|
812 | |
---|
813 | /* |
---|
814 | * This routine builds the mask which corresponds to the bit fields |
---|
815 | * as searched by _CPU_Bitfield_Find_first_bit(). See the discussion |
---|
816 | * for that routine. |
---|
817 | */ |
---|
818 | |
---|
819 | #if (CPU_USE_GENERIC_BITFIELD_CODE == FALSE) |
---|
820 | |
---|
821 | #define _CPU_Priority_Mask( _bit_number ) \ |
---|
822 | ( 1 << (_bit_number) ) |
---|
823 | |
---|
824 | #endif |
---|
825 | |
---|
826 | /* |
---|
827 | * This routine translates the bit numbers returned by |
---|
828 | * _CPU_Bitfield_Find_first_bit() into something suitable for use as |
---|
829 | * a major or minor component of a priority. See the discussion |
---|
830 | * for that routine. |
---|
831 | */ |
---|
832 | |
---|
833 | #if (CPU_USE_GENERIC_BITFIELD_CODE == FALSE) |
---|
834 | |
---|
835 | #define _CPU_Priority_bits_index( _priority ) \ |
---|
836 | (_priority) |
---|
837 | |
---|
838 | #endif |
---|
839 | |
---|
840 | /* end of Priority handler macros */ |
---|
841 | |
---|
842 | /* functions */ |
---|
843 | |
---|
844 | /* |
---|
845 | * _CPU_Initialize |
---|
846 | * |
---|
847 | * This routine performs CPU dependent initialization. |
---|
848 | */ |
---|
849 | |
---|
850 | void _CPU_Initialize( |
---|
851 | rtems_cpu_table *cpu_table, |
---|
852 | void (*thread_dispatch) |
---|
853 | ); |
---|
854 | |
---|
855 | /* |
---|
856 | * _CPU_ISR_install_raw_handler |
---|
857 | * |
---|
858 | * This routine installs a "raw" interrupt handler directly into the |
---|
859 | * processor's vector table. |
---|
860 | */ |
---|
861 | |
---|
862 | void _CPU_ISR_install_raw_handler( |
---|
863 | unsigned32 vector, |
---|
864 | proc_ptr new_handler, |
---|
865 | proc_ptr *old_handler |
---|
866 | ); |
---|
867 | |
---|
868 | /* |
---|
869 | * _CPU_ISR_install_vector |
---|
870 | * |
---|
871 | * This routine installs an interrupt vector. |
---|
872 | */ |
---|
873 | |
---|
874 | void _CPU_ISR_install_vector( |
---|
875 | unsigned32 vector, |
---|
876 | proc_ptr new_handler, |
---|
877 | proc_ptr *old_handler |
---|
878 | ); |
---|
879 | |
---|
880 | /* |
---|
881 | * _CPU_Install_interrupt_stack |
---|
882 | * |
---|
883 | * This routine installs the hardware interrupt stack pointer. |
---|
884 | * |
---|
885 | * NOTE: It needs only be provided if CPU_HAS_HARDWARE_INTERRUPT_STACK |
---|
886 | * is TRUE. |
---|
887 | */ |
---|
888 | |
---|
889 | void _CPU_Install_interrupt_stack( void ); |
---|
890 | |
---|
891 | /* |
---|
892 | * _CPU_Thread_Idle_body |
---|
893 | * |
---|
894 | * This routine is the CPU dependent IDLE thread body. |
---|
895 | * |
---|
896 | * NOTE: It need only be provided if CPU_PROVIDES_IDLE_THREAD_BODY |
---|
897 | * is TRUE. |
---|
898 | */ |
---|
899 | |
---|
900 | void _CPU_Thread_Idle_body( void ); |
---|
901 | |
---|
902 | /* |
---|
903 | * _CPU_Context_switch |
---|
904 | * |
---|
905 | * This routine switches from the run context to the heir context. |
---|
906 | */ |
---|
907 | |
---|
908 | void _CPU_Context_switch( |
---|
909 | Context_Control *run, |
---|
910 | Context_Control *heir |
---|
911 | ); |
---|
912 | |
---|
913 | /* |
---|
914 | * _CPU_Context_restore |
---|
915 | * |
---|
916 | * This routine is generally used only to restart self in an |
---|
917 | * efficient manner. It may simply be a label in _CPU_Context_switch. |
---|
918 | */ |
---|
919 | |
---|
920 | void _CPU_Context_restore( |
---|
921 | Context_Control *new_context |
---|
922 | ); |
---|
923 | |
---|
924 | /* |
---|
925 | * _CPU_Context_save_fp |
---|
926 | * |
---|
927 | * This routine saves the floating point context passed to it. |
---|
928 | */ |
---|
929 | |
---|
930 | void _CPU_Context_save_fp( |
---|
931 | void **fp_context_ptr |
---|
932 | ); |
---|
933 | |
---|
934 | /* |
---|
935 | * _CPU_Context_restore_fp |
---|
936 | * |
---|
937 | * This routine restores the floating point context passed to it. |
---|
938 | */ |
---|
939 | |
---|
940 | void _CPU_Context_restore_fp( |
---|
941 | void **fp_context_ptr |
---|
942 | ); |
---|
943 | |
---|
944 | |
---|
945 | #ifdef __cplusplus |
---|
946 | } |
---|
947 | #endif |
---|
948 | |
---|
949 | #endif |
---|