source: rtems/c/src/exec/score/cpu/powerpc/cpu.h @ ecc3fe3

4.104.114.84.95
Last change on this file since ecc3fe3 was ecc3fe3, checked in by Joel Sherrill <joel.sherrill@…>, on 09/23/98 at 16:41:00

IDLE task stack size now specified as a field in the CPU Table for all
ports.

  • Property mode set to 100644
File size: 36.7 KB
Line 
1/*  cpu.h
2 *
3 *  This include file contains information pertaining to the PowerPC
4 *  processor.
5 *
6 *  Author:     Andrew Bray <andy@i-cubed.co.uk>
7 *
8 *  COPYRIGHT (c) 1995 by i-cubed ltd.
9 *
10 *  To anyone who acknowledges that this file is provided "AS IS"
11 *  without any express or implied warranty:
12 *      permission to use, copy, modify, and distribute this file
13 *      for any purpose is hereby granted without fee, provided that
14 *      the above copyright notice and this notice appears in all
15 *      copies, and that the name of i-cubed limited not be used in
16 *      advertising or publicity pertaining to distribution of the
17 *      software without specific, written prior permission.
18 *      i-cubed limited makes no representations about the suitability
19 *      of this software for any purpose.
20 *
21 *  Derived from c/src/exec/cpu/no_cpu/cpu.h:
22 *
23 *  COPYRIGHT (c) 1989-1997.
24 *  On-Line Applications Research Corporation (OAR).
25 *  Copyright assigned to U.S. Government, 1994.
26 *
27 *  The license and distribution terms for this file may in
28 *  the file LICENSE in this distribution or at
29 *  http://www.OARcorp.com/rtems/license.html.
30 *
31 *  $Id$
32 */
33
34#ifndef __CPU_h
35#define __CPU_h
36
37#ifdef __cplusplus
38extern "C" {
39#endif
40
41#include <rtems/score/ppc.h>               /* pick up machine definitions */
42#ifndef ASM
43struct CPU_Interrupt_frame;
44
45#include <rtems/score/ppctypes.h>
46#endif
47
48/* conditional compilation parameters */
49
50/*
51 *  Should the calls to _Thread_Enable_dispatch be inlined?
52 *
53 *  If TRUE, then they are inlined.
54 *  If FALSE, then a subroutine call is made.
55 *
56 *  Basically this is an example of the classic trade-off of size
57 *  versus speed.  Inlining the call (TRUE) typically increases the
58 *  size of RTEMS while speeding up the enabling of dispatching.
59 *  [NOTE: In general, the _Thread_Dispatch_disable_level will
60 *  only be 0 or 1 unless you are in an interrupt handler and that
61 *  interrupt handler invokes the executive.]  When not inlined
62 *  something calls _Thread_Enable_dispatch which in turns calls
63 *  _Thread_Dispatch.  If the enable dispatch is inlined, then
64 *  one subroutine call is avoided entirely.]
65 */
66
67#define CPU_INLINE_ENABLE_DISPATCH       FALSE
68
69/*
70 *  Should the body of the search loops in _Thread_queue_Enqueue_priority
71 *  be unrolled one time?  In unrolled each iteration of the loop examines
72 *  two "nodes" on the chain being searched.  Otherwise, only one node
73 *  is examined per iteration.
74 *
75 *  If TRUE, then the loops are unrolled.
76 *  If FALSE, then the loops are not unrolled.
77 *
78 *  The primary factor in making this decision is the cost of disabling
79 *  and enabling interrupts (_ISR_Flash) versus the cost of rest of the
80 *  body of the loop.  On some CPUs, the flash is more expensive than
81 *  one iteration of the loop body.  In this case, it might be desirable
82 *  to unroll the loop.  It is important to note that on some CPUs, this
83 *  code is the longest interrupt disable period in RTEMS.  So it is
84 *  necessary to strike a balance when setting this parameter.
85 */
86
87#define CPU_UNROLL_ENQUEUE_PRIORITY      FALSE
88
89/*
90 *  Does RTEMS manage a dedicated interrupt stack in software?
91 *
92 *  If TRUE, then a stack is allocated in _Interrupt_Manager_initialization.
93 *  If FALSE, nothing is done.
94 *
95 *  If the CPU supports a dedicated interrupt stack in hardware,
96 *  then it is generally the responsibility of the BSP to allocate it
97 *  and set it up.
98 *
99 *  If the CPU does not support a dedicated interrupt stack, then
100 *  the porter has two options: (1) execute interrupts on the
101 *  stack of the interrupted task, and (2) have RTEMS manage a dedicated
102 *  interrupt stack.
103 *
104 *  If this is TRUE, CPU_ALLOCATE_INTERRUPT_STACK should also be TRUE.
105 *
106 *  Only one of CPU_HAS_SOFTWARE_INTERRUPT_STACK and
107 *  CPU_HAS_HARDWARE_INTERRUPT_STACK should be set to TRUE.  It is
108 *  possible that both are FALSE for a particular CPU.  Although it
109 *  is unclear what that would imply about the interrupt processing
110 *  procedure on that CPU.
111 */
112
113#define CPU_HAS_SOFTWARE_INTERRUPT_STACK FALSE
114
115/*
116 *  Does this CPU have hardware support for a dedicated interrupt stack?
117 *
118 *  If TRUE, then it must be installed during initialization.
119 *  If FALSE, then no installation is performed.
120 *
121 *  If this is TRUE, CPU_ALLOCATE_INTERRUPT_STACK should also be TRUE.
122 *
123 *  Only one of CPU_HAS_SOFTWARE_INTERRUPT_STACK and
124 *  CPU_HAS_HARDWARE_INTERRUPT_STACK should be set to TRUE.  It is
125 *  possible that both are FALSE for a particular CPU.  Although it
126 *  is unclear what that would imply about the interrupt processing
127 *  procedure on that CPU.
128 */
129
130/*
131 *  ACB: This is a lie, but it gets us a handle on a call to set up
132 *  a variable derived from the top of the interrupt stack.
133 */
134
135#define CPU_HAS_HARDWARE_INTERRUPT_STACK TRUE
136
137/*
138 *  Does RTEMS allocate a dedicated interrupt stack in the Interrupt Manager?
139 *
140 *  If TRUE, then the memory is allocated during initialization.
141 *  If FALSE, then the memory is allocated during initialization.
142 *
143 *  This should be TRUE is CPU_HAS_SOFTWARE_INTERRUPT_STACK is TRUE
144 *  or CPU_INSTALL_HARDWARE_INTERRUPT_STACK is TRUE.
145 */
146
147#define CPU_ALLOCATE_INTERRUPT_STACK TRUE
148
149/*
150 *  Does the RTEMS invoke the user's ISR with the vector number and
151 *  a pointer to the saved interrupt frame (1) or just the vector
152 *  number (0)?
153 */
154
155#define CPU_ISR_PASSES_FRAME_POINTER 1
156
157/*
158 *  Does the CPU have hardware floating point?
159 *
160 *  If TRUE, then the RTEMS_FLOATING_POINT task attribute is supported.
161 *  If FALSE, then the RTEMS_FLOATING_POINT task attribute is ignored.
162 *
163 *  If there is a FP coprocessor such as the i387 or mc68881, then
164 *  the answer is TRUE.
165 *
166 *  The macro name "PPC_HAS_FPU" should be made CPU specific.
167 *  It indicates whether or not this CPU model has FP support.  For
168 *  example, it would be possible to have an i386_nofp CPU model
169 *  which set this to false to indicate that you have an i386 without
170 *  an i387 and wish to leave floating point support out of RTEMS.
171 */
172
173#if ( PPC_HAS_FPU == 1 )
174#define CPU_HARDWARE_FP     TRUE
175#else
176#define CPU_HARDWARE_FP     FALSE
177#endif
178
179/*
180 *  Are all tasks RTEMS_FLOATING_POINT tasks implicitly?
181 *
182 *  If TRUE, then the RTEMS_FLOATING_POINT task attribute is assumed.
183 *  If FALSE, then the RTEMS_FLOATING_POINT task attribute is followed.
184 *
185 *  So far, the only CPU in which this option has been used is the
186 *  HP PA-RISC.  The HP C compiler and gcc both implicitly use the
187 *  floating point registers to perform integer multiplies.  If
188 *  a function which you would not think utilize the FP unit DOES,
189 *  then one can not easily predict which tasks will use the FP hardware.
190 *  In this case, this option should be TRUE.
191 *
192 *  If CPU_HARDWARE_FP is FALSE, then this should be FALSE as well.
193 */
194
195#define CPU_ALL_TASKS_ARE_FP     FALSE
196
197/*
198 *  Should the IDLE task have a floating point context?
199 *
200 *  If TRUE, then the IDLE task is created as a RTEMS_FLOATING_POINT task
201 *  and it has a floating point context which is switched in and out.
202 *  If FALSE, then the IDLE task does not have a floating point context.
203 *
204 *  Setting this to TRUE negatively impacts the time required to preempt
205 *  the IDLE task from an interrupt because the floating point context
206 *  must be saved as part of the preemption.
207 */
208
209#define CPU_IDLE_TASK_IS_FP      FALSE
210
211/*
212 *  Should the saving of the floating point registers be deferred
213 *  until a context switch is made to another different floating point
214 *  task?
215 *
216 *  If TRUE, then the floating point context will not be stored until
217 *  necessary.  It will remain in the floating point registers and not
218 *  disturned until another floating point task is switched to.
219 *
220 *  If FALSE, then the floating point context is saved when a floating
221 *  point task is switched out and restored when the next floating point
222 *  task is restored.  The state of the floating point registers between
223 *  those two operations is not specified.
224 *
225 *  If the floating point context does NOT have to be saved as part of
226 *  interrupt dispatching, then it should be safe to set this to TRUE.
227 *
228 *  Setting this flag to TRUE results in using a different algorithm
229 *  for deciding when to save and restore the floating point context.
230 *  The deferred FP switch algorithm minimizes the number of times
231 *  the FP context is saved and restored.  The FP context is not saved
232 *  until a context switch is made to another, different FP task.
233 *  Thus in a system with only one FP task, the FP context will never
234 *  be saved or restored.
235 */
236/*
237 *  ACB Note:  This could make debugging tricky..
238 */
239
240#define CPU_USE_DEFERRED_FP_SWITCH       TRUE
241
242/*
243 *  Does this port provide a CPU dependent IDLE task implementation?
244 *
245 *  If TRUE, then the routine _CPU_Thread_Idle_body
246 *  must be provided and is the default IDLE thread body instead of
247 *  _CPU_Thread_Idle_body.
248 *
249 *  If FALSE, then use the generic IDLE thread body if the BSP does
250 *  not provide one.
251 *
252 *  This is intended to allow for supporting processors which have
253 *  a low power or idle mode.  When the IDLE thread is executed, then
254 *  the CPU can be powered down.
255 *
256 *  The order of precedence for selecting the IDLE thread body is:
257 *
258 *    1.  BSP provided
259 *    2.  CPU dependent (if provided)
260 *    3.  generic (if no BSP and no CPU dependent)
261 */
262
263#define CPU_PROVIDES_IDLE_THREAD_BODY    FALSE
264
265/*
266 *  Does the stack grow up (toward higher addresses) or down
267 *  (toward lower addresses)?
268 *
269 *  If TRUE, then the grows upward.
270 *  If FALSE, then the grows toward smaller addresses.
271 */
272
273#define CPU_STACK_GROWS_UP               FALSE
274
275/*
276 *  The following is the variable attribute used to force alignment
277 *  of critical RTEMS structures.  On some processors it may make
278 *  sense to have these aligned on tighter boundaries than
279 *  the minimum requirements of the compiler in order to have as
280 *  much of the critical data area as possible in a cache line.
281 *
282 *  The placement of this macro in the declaration of the variables
283 *  is based on the syntactically requirements of the GNU C
284 *  "__attribute__" extension.  For example with GNU C, use
285 *  the following to force a structures to a 32 byte boundary.
286 *
287 *      __attribute__ ((aligned (32)))
288 *
289 *  NOTE:  Currently only the Priority Bit Map table uses this feature.
290 *         To benefit from using this, the data must be heavily
291 *         used so it will stay in the cache and used frequently enough
292 *         in the executive to justify turning this on.
293 */
294
295#define CPU_STRUCTURE_ALIGNMENT \
296  __attribute__ ((aligned (PPC_CACHE_ALIGNMENT)))
297
298/*
299 *  Define what is required to specify how the network to host conversion
300 *  routines are handled.
301 */
302
303#define CPU_CPU_HAS_OWN_HOST_TO_NETWORK_ROUTINES FALSE
304#define CPU_BIG_ENDIAN                           TRUE
305#define CPU_LITTLE_ENDIAN                        FALSE
306
307/*
308 *  The following defines the number of bits actually used in the
309 *  interrupt field of the task mode.  How those bits map to the
310 *  CPU interrupt levels is defined by the routine _CPU_ISR_Set_level().
311 *
312 *  The interrupt level is bit mapped for the PowerPC family. The
313 *  bits are set to 0 to indicate that a particular exception source
314 *  enabled and 1 if it is disabled.  This keeps with RTEMS convention
315 *  that interrupt level 0 means all sources are enabled.
316 *
317 *  The bits are assigned to correspond to enable bits in the MSR.
318 */
319
320#define PPC_INTERRUPT_LEVEL_ME   0x01
321#define PPC_INTERRUPT_LEVEL_EE   0x02
322#define PPC_INTERRUPT_LEVEL_CE   0x04
323
324/* XXX should these be maskable? */
325#if 0
326#define PPC_INTERRUPT_LEVEL_DE   0x08
327#define PPC_INTERRUPT_LEVEL_BE   0x10
328#define PPC_INTERRUPT_LEVEL_SE   0x20
329#endif
330
331#define CPU_MODES_INTERRUPT_MASK   0x00000007
332
333/*
334 *  Processor defined structures
335 *
336 *  Examples structures include the descriptor tables from the i386
337 *  and the processor control structure on the i960ca.
338 */
339
340/* may need to put some structures here.  */
341
342/*
343 * Contexts
344 *
345 *  Generally there are 2 types of context to save.
346 *     1. Interrupt registers to save
347 *     2. Task level registers to save
348 *
349 *  This means we have the following 3 context items:
350 *     1. task level context stuff::  Context_Control
351 *     2. floating point task stuff:: Context_Control_fp
352 *     3. special interrupt level context :: Context_Control_interrupt
353 *
354 *  On some processors, it is cost-effective to save only the callee
355 *  preserved registers during a task context switch.  This means
356 *  that the ISR code needs to save those registers which do not
357 *  persist across function calls.  It is not mandatory to make this
358 *  distinctions between the caller/callee saves registers for the
359 *  purpose of minimizing context saved during task switch and on interrupts.
360 *  If the cost of saving extra registers is minimal, simplicity is the
361 *  choice.  Save the same context on interrupt entry as for tasks in
362 *  this case.
363 *
364 *  Additionally, if gdb is to be made aware of RTEMS tasks for this CPU, then
365 *  care should be used in designing the context area.
366 *
367 *  On some CPUs with hardware floating point support, the Context_Control_fp
368 *  structure will not be used or it simply consist of an array of a
369 *  fixed number of bytes.   This is done when the floating point context
370 *  is dumped by a "FP save context" type instruction and the format
371 *  is not really defined by the CPU.  In this case, there is no need
372 *  to figure out the exact format -- only the size.  Of course, although
373 *  this is enough information for RTEMS, it is probably not enough for
374 *  a debugger such as gdb.  But that is another problem.
375 */
376
377typedef struct {
378    unsigned32 gpr1;    /* Stack pointer for all */
379    unsigned32 gpr2;    /* TOC in PowerOpen, reserved SVR4, section ptr EABI + */
380    unsigned32 gpr13;   /* First non volatile PowerOpen, section ptr SVR4/EABI */
381    unsigned32 gpr14;   /* Non volatile for all */
382    unsigned32 gpr15;   /* Non volatile for all */
383    unsigned32 gpr16;   /* Non volatile for all */
384    unsigned32 gpr17;   /* Non volatile for all */
385    unsigned32 gpr18;   /* Non volatile for all */
386    unsigned32 gpr19;   /* Non volatile for all */
387    unsigned32 gpr20;   /* Non volatile for all */
388    unsigned32 gpr21;   /* Non volatile for all */
389    unsigned32 gpr22;   /* Non volatile for all */
390    unsigned32 gpr23;   /* Non volatile for all */
391    unsigned32 gpr24;   /* Non volatile for all */
392    unsigned32 gpr25;   /* Non volatile for all */
393    unsigned32 gpr26;   /* Non volatile for all */
394    unsigned32 gpr27;   /* Non volatile for all */
395    unsigned32 gpr28;   /* Non volatile for all */
396    unsigned32 gpr29;   /* Non volatile for all */
397    unsigned32 gpr30;   /* Non volatile for all */
398    unsigned32 gpr31;   /* Non volatile for all */
399    unsigned32 cr;      /* PART of the CR is non volatile for all */
400    unsigned32 pc;      /* Program counter/Link register */
401    unsigned32 msr;     /* Initial interrupt level */
402} Context_Control;
403
404typedef struct {
405    /* The ABIs (PowerOpen/SVR4/EABI) only require saving f14-f31 over
406     * procedure calls.  However, this would mean that the interrupt
407     * frame had to hold f0-f13, and the fpscr.  And as the majority
408     * of tasks will not have an FP context, we will save the whole
409     * context here.
410     */
411#if (PPC_HAS_DOUBLE == 1)
412    double      f[32];
413    double      fpscr;
414#else
415    float       f[32];
416    float       fpscr;
417#endif
418} Context_Control_fp;
419
420typedef struct CPU_Interrupt_frame {
421    unsigned32 stacklink;       /* Ensure this is a real frame (also reg1 save) */
422#if (PPC_ABI == PPC_ABI_POWEROPEN || PPC_ABI == PPC_ABI_GCC27)
423    unsigned32 dummy[13];       /* Used by callees: PowerOpen ABI */
424#else
425    unsigned32 dummy[1];        /* Used by callees: SVR4/EABI */
426#endif
427    /* This is what is left out of the primary contexts */
428    unsigned32 gpr0;
429    unsigned32 gpr2;            /* play safe */
430    unsigned32 gpr3;
431    unsigned32 gpr4;
432    unsigned32 gpr5;
433    unsigned32 gpr6;
434    unsigned32 gpr7;
435    unsigned32 gpr8;
436    unsigned32 gpr9;
437    unsigned32 gpr10;
438    unsigned32 gpr11;
439    unsigned32 gpr12;
440    unsigned32 gpr13;   /* Play safe */
441    unsigned32 gpr28;   /* For internal use by the IRQ handler */
442    unsigned32 gpr29;   /* For internal use by the IRQ handler */
443    unsigned32 gpr30;   /* For internal use by the IRQ handler */
444    unsigned32 gpr31;   /* For internal use by the IRQ handler */
445    unsigned32 cr;      /* Bits of this are volatile, so no-one may save */
446    unsigned32 ctr;
447    unsigned32 xer;
448    unsigned32 lr;
449    unsigned32 pc;
450    unsigned32 msr;
451    unsigned32 pad[3];
452} CPU_Interrupt_frame;
453
454
455/*
456 *  The following table contains the information required to configure
457 *  the PowerPC processor specific parameters.
458 */
459
460typedef struct {
461  void       (*pretasking_hook)( void );
462  void       (*predriver_hook)( void );
463  void       (*postdriver_hook)( void );
464  void       (*idle_task)( void );
465  boolean      do_zero_of_workspace;
466  unsigned32   idle_task_stack_size;
467  unsigned32   interrupt_stack_size;
468  unsigned32   extra_mpci_receive_server_stack;
469  void *     (*stack_allocate_hook)( unsigned32 );
470  void       (*stack_free_hook)( void* );
471  /* end of fields required on all CPUs */
472
473  unsigned32   clicks_per_usec;        /* Timer clicks per microsecond */
474  void       (*spurious_handler)(unsigned32 vector, CPU_Interrupt_frame *);
475  boolean      exceptions_in_RAM;     /* TRUE if in RAM */
476
477#if defined(ppc403)
478  unsigned32   serial_per_sec;         /* Serial clocks per second */
479  boolean      serial_external_clock;
480  boolean      serial_xon_xoff;
481  boolean      serial_cts_rts;
482  unsigned32   serial_rate;
483  unsigned32   timer_average_overhead; /* Average overhead of timer in ticks */
484  unsigned32   timer_least_valid;      /* Least valid number from timer */
485#endif
486}   rtems_cpu_table;
487
488/*
489 *  The following type defines an entry in the PPC's trap table.
490 *
491 *  NOTE: The instructions chosen are RTEMS dependent although one is
492 *        obligated to use two of the four instructions to perform a
493 *        long jump.  The other instructions load one register with the
494 *        trap type (a.k.a. vector) and another with the psr.
495 */
496 
497typedef struct {
498  unsigned32   stwu_r1;                       /* stwu  %r1, -(??+IP_END)(%1)*/
499  unsigned32   stw_r0;                        /* stw   %r0, IP_0(%r1)       */
500  unsigned32   li_r0_IRQ;                     /* li    %r0, _IRQ            */
501  unsigned32   b_Handler;                     /* b     PROC (_ISR_Handler)  */
502} CPU_Trap_table_entry;
503
504/*
505 *  This variable is optional.  It is used on CPUs on which it is difficult
506 *  to generate an "uninitialized" FP context.  It is filled in by
507 *  _CPU_Initialize and copied into the task's FP context area during
508 *  _CPU_Context_Initialize.
509 */
510
511/* EXTERN Context_Control_fp  _CPU_Null_fp_context; */
512
513/*
514 *  On some CPUs, RTEMS supports a software managed interrupt stack.
515 *  This stack is allocated by the Interrupt Manager and the switch
516 *  is performed in _ISR_Handler.  These variables contain pointers
517 *  to the lowest and highest addresses in the chunk of memory allocated
518 *  for the interrupt stack.  Since it is unknown whether the stack
519 *  grows up or down (in general), this give the CPU dependent
520 *  code the option of picking the version it wants to use.
521 *
522 *  NOTE: These two variables are required if the macro
523 *        CPU_HAS_SOFTWARE_INTERRUPT_STACK is defined as TRUE.
524 */
525
526SCORE_EXTERN void               *_CPU_Interrupt_stack_low;
527SCORE_EXTERN void               *_CPU_Interrupt_stack_high;
528
529/*
530 *  With some compilation systems, it is difficult if not impossible to
531 *  call a high-level language routine from assembly language.  This
532 *  is especially true of commercial Ada compilers and name mangling
533 *  C++ ones.  This variable can be optionally defined by the CPU porter
534 *  and contains the address of the routine _Thread_Dispatch.  This
535 *  can make it easier to invoke that routine at the end of the interrupt
536 *  sequence (if a dispatch is necessary).
537 */
538
539/* EXTERN void           (*_CPU_Thread_dispatch_pointer)(); */
540
541/*
542 *  Nothing prevents the porter from declaring more CPU specific variables.
543 */
544
545
546SCORE_EXTERN struct {
547  unsigned32 *Nest_level;
548  unsigned32 *Disable_level;
549  void *Vector_table;
550  void *Stack;
551#if (PPC_ABI == PPC_ABI_POWEROPEN)
552  unsigned32 Dispatch_r2;
553#else
554  unsigned32 Default_r2;
555#if (PPC_ABI != PPC_ABI_GCC27)
556  unsigned32 Default_r13;
557#endif
558#endif
559  volatile boolean *Switch_necessary;
560  boolean *Signal;
561
562  unsigned32 msr_initial;
563} _CPU_IRQ_info CPU_STRUCTURE_ALIGNMENT;
564
565/*
566 *  The size of the floating point context area.  On some CPUs this
567 *  will not be a "sizeof" because the format of the floating point
568 *  area is not defined -- only the size is.  This is usually on
569 *  CPUs with a "floating point save context" instruction.
570 */
571
572#define CPU_CONTEXT_FP_SIZE sizeof( Context_Control_fp )
573
574/*
575 * (Optional) # of bytes for libmisc/stackchk to check
576 * If not specifed, then it defaults to something reasonable
577 * for most architectures.
578 */
579
580#define CPU_STACK_CHECK_SIZE    (128)
581
582/*
583 *  Amount of extra stack (above minimum stack size) required by
584 *  MPCI receive server thread.  Remember that in a multiprocessor
585 *  system this thread must exist and be able to process all directives.
586 */
587
588#define CPU_MPCI_RECEIVE_SERVER_EXTRA_STACK 0
589
590/*
591 *  This defines the number of entries in the ISR_Vector_table managed
592 *  by RTEMS.
593 */
594
595#define CPU_INTERRUPT_NUMBER_OF_VECTORS     (PPC_INTERRUPT_MAX)
596#define CPU_INTERRUPT_MAXIMUM_VECTOR_NUMBER (PPC_INTERRUPT_MAX - 1)
597
598/*
599 *  Should be large enough to run all RTEMS tests.  This insures
600 *  that a "reasonable" small application should not have any problems.
601 */
602
603#define CPU_STACK_MINIMUM_SIZE          (1024*3)
604
605/*
606 *  CPU's worst alignment requirement for data types on a byte boundary.  This
607 *  alignment does not take into account the requirements for the stack.
608 */
609
610#define CPU_ALIGNMENT              (PPC_ALIGNMENT)
611
612/*
613 *  This number corresponds to the byte alignment requirement for the
614 *  heap handler.  This alignment requirement may be stricter than that
615 *  for the data types alignment specified by CPU_ALIGNMENT.  It is
616 *  common for the heap to follow the same alignment requirement as
617 *  CPU_ALIGNMENT.  If the CPU_ALIGNMENT is strict enough for the heap,
618 *  then this should be set to CPU_ALIGNMENT.
619 *
620 *  NOTE:  This does not have to be a power of 2.  It does have to
621 *         be greater or equal to than CPU_ALIGNMENT.
622 */
623
624#define CPU_HEAP_ALIGNMENT         (PPC_ALIGNMENT)
625
626/*
627 *  This number corresponds to the byte alignment requirement for memory
628 *  buffers allocated by the partition manager.  This alignment requirement
629 *  may be stricter than that for the data types alignment specified by
630 *  CPU_ALIGNMENT.  It is common for the partition to follow the same
631 *  alignment requirement as CPU_ALIGNMENT.  If the CPU_ALIGNMENT is strict
632 *  enough for the partition, then this should be set to CPU_ALIGNMENT.
633 *
634 *  NOTE:  This does not have to be a power of 2.  It does have to
635 *         be greater or equal to than CPU_ALIGNMENT.
636 */
637
638#define CPU_PARTITION_ALIGNMENT    (PPC_ALIGNMENT)
639
640/*
641 *  This number corresponds to the byte alignment requirement for the
642 *  stack.  This alignment requirement may be stricter than that for the
643 *  data types alignment specified by CPU_ALIGNMENT.  If the CPU_ALIGNMENT
644 *  is strict enough for the stack, then this should be set to 0.
645 *
646 *  NOTE:  This must be a power of 2 either 0 or greater than CPU_ALIGNMENT.
647 */
648
649#define CPU_STACK_ALIGNMENT        (PPC_STACK_ALIGNMENT)
650
651/* ISR handler macros */
652
653/*
654 *  Disable all interrupts for an RTEMS critical section.  The previous
655 *  level is returned in _isr_cookie.
656 */
657
658#define loc_string(a,b) a " (" #b ")\n"
659
660#define _CPU_MSR_Value( _msr_value ) \
661  do { \
662    _msr_value = 0; \
663    asm volatile ("mfmsr %0" : "=&r" ((_msr_value)) : "0" ((_msr_value))); \
664  } while (0)
665
666#define _CPU_MSR_SET( _msr_value ) \
667{ asm volatile ("mtmsr %0" : "=&r" ((_msr_value)) : "0" ((_msr_value))); }
668
669#if 0
670#define _CPU_ISR_Disable( _isr_cookie ) \
671  { register unsigned int _disable_mask = PPC_MSR_DISABLE_MASK; \
672    _isr_cookie = 0; \
673    asm volatile (
674        "mfmsr %0" : \
675        "=r" ((_isr_cookie)) : \
676        "0" ((_isr_cookie)) \
677    ); \
678    asm volatile (
679        "andc %1,%0,%1" : \
680        "=r" ((_isr_cookie)), "=&r" ((_disable_mask)) : \
681        "0" ((_isr_cookie)), "1" ((_disable_mask)) \
682    ); \
683    asm volatile (
684        "mtmsr %1" : \
685        "=r" ((_disable_mask)) : \
686        "0" ((_disable_mask)) \
687    ); \
688  }
689#endif
690
691#define _CPU_ISR_Disable( _isr_cookie ) \
692  { register unsigned int _disable_mask = PPC_MSR_DISABLE_MASK; \
693    _isr_cookie = 0; \
694    asm volatile ( \
695        "mfmsr %0; andc %1,%0,%1; mtmsr %1" : \
696        "=&r" ((_isr_cookie)), "=&r" ((_disable_mask)) : \
697        "0" ((_isr_cookie)), "1" ((_disable_mask)) \
698        ); \
699  }
700
701
702#define _CPU_Data_Cache_Block_Flush( _address ) \
703  do { register void *__address = (_address); \
704       register unsigned32 _zero = 0; \
705       asm volatile ( "dcbf %0,%1" : \
706                      "=r" (_zero), "=r" (__address) : \
707                      "0" (_zero), "1" (__address) \
708       ); \
709  } while (0)
710
711
712/*
713 *  Enable interrupts to the previous level (returned by _CPU_ISR_Disable).
714 *  This indicates the end of an RTEMS critical section.  The parameter
715 *  _isr_cookie is not modified.
716 */
717
718#define _CPU_ISR_Enable( _isr_cookie )  \
719  { \
720     asm volatile ( "mtmsr %0" : \
721                   "=r" ((_isr_cookie)) : \
722                   "0" ((_isr_cookie))); \
723  }
724
725/*
726 *  This temporarily restores the interrupt to _isr_cookie before immediately
727 *  disabling them again.  This is used to divide long RTEMS critical
728 *  sections into two or more parts.  The parameter _isr_cookie is not
729 *  modified.
730 *
731 *  NOTE:  The version being used is not very optimized but it does
732 *         not trip a problem in gcc where the disable mask does not
733 *         get loaded.  Check this for future (post 10/97 gcc versions.
734 */
735
736#define _CPU_ISR_Flash( _isr_cookie ) \
737  { register unsigned int _disable_mask = PPC_MSR_DISABLE_MASK; \
738    asm volatile ( \
739      "mtmsr %0; andc %1,%0,%1; mtmsr %1" : \
740      "=r" ((_isr_cookie)), "=r" ((_disable_mask)) : \
741      "0" ((_isr_cookie)), "1" ((_disable_mask)) \
742    ); \
743  }
744
745/*
746 *  Map interrupt level in task mode onto the hardware that the CPU
747 *  actually provides.  Currently, interrupt levels which do not
748 *  map onto the CPU in a generic fashion are undefined.  Someday,
749 *  it would be nice if these were "mapped" by the application
750 *  via a callout.  For example, m68k has 8 levels 0 - 7, levels
751 *  8 - 255 would be available for bsp/application specific meaning.
752 *  This could be used to manage a programmable interrupt controller
753 *  via the rtems_task_mode directive.
754 */
755
756unsigned32 _CPU_ISR_Calculate_level(
757  unsigned32 new_level
758);
759
760void _CPU_ISR_Set_level(
761  unsigned32 new_level
762);
763 
764unsigned32 _CPU_ISR_Get_level( void );
765
766void _CPU_ISR_install_raw_handler(
767  unsigned32  vector,
768  proc_ptr    new_handler,
769  proc_ptr   *old_handler
770);
771
772/* end of ISR handler macros */
773
774/*
775 *  Simple spin delay in microsecond units for device drivers.
776 *  This is very dependent on the clock speed of the target.
777 */
778
779#define CPU_Get_timebase_low( _value ) \
780    asm volatile( "mftb  %0" : "=r" (_value) )
781
782#define delay( _microseconds ) \
783  do { \
784    unsigned32 start, ticks, now; \
785    CPU_Get_timebase_low( start ) ; \
786    ticks = (_microseconds) * Cpu_table.clicks_per_usec; \
787    do \
788      CPU_Get_timebase_low( now ) ; \
789    while (now - start < ticks); \
790  } while (0)
791
792#define delay_in_bus_cycles( _cycles ) \
793  do { \
794    unsigned32 start, now; \
795    CPU_Get_timebase_low( start ); \
796    do \
797      CPU_Get_timebase_low( now ); \
798    while (now - start < (_cycles)); \
799  } while (0)
800
801
802
803/* Context handler macros */
804
805/*
806 *  Initialize the context to a state suitable for starting a
807 *  task after a context restore operation.  Generally, this
808 *  involves:
809 *
810 *     - setting a starting address
811 *     - preparing the stack
812 *     - preparing the stack and frame pointers
813 *     - setting the proper interrupt level in the context
814 *     - initializing the floating point context
815 *
816 *  This routine generally does not set any unnecessary register
817 *  in the context.  The state of the "general data" registers is
818 *  undefined at task start time.
819 *
820 *  NOTE:  Implemented as a subroutine for the SPARC port.
821 */
822
823void _CPU_Context_Initialize(
824  Context_Control  *the_context,
825  unsigned32       *stack_base,
826  unsigned32        size,
827  unsigned32        new_level,
828  void             *entry_point,
829  boolean           is_fp
830);
831
832/*
833 *  This routine is responsible for somehow restarting the currently
834 *  executing task.  If you are lucky, then all that is necessary
835 *  is restoring the context.  Otherwise, there will need to be
836 *  a special assembly routine which does something special in this
837 *  case.  Context_Restore should work most of the time.  It will
838 *  not work if restarting self conflicts with the stack frame
839 *  assumptions of restoring a context.
840 */
841
842#define _CPU_Context_Restart_self( _the_context ) \
843   _CPU_Context_restore( (_the_context) );
844
845/*
846 *  The purpose of this macro is to allow the initial pointer into
847 *  a floating point context area (used to save the floating point
848 *  context) to be at an arbitrary place in the floating point
849 *  context area.
850 *
851 *  This is necessary because some FP units are designed to have
852 *  their context saved as a stack which grows into lower addresses.
853 *  Other FP units can be saved by simply moving registers into offsets
854 *  from the base of the context area.  Finally some FP units provide
855 *  a "dump context" instruction which could fill in from high to low
856 *  or low to high based on the whim of the CPU designers.
857 */
858
859#define _CPU_Context_Fp_start( _base, _offset ) \
860   ( (void *) _Addresses_Add_offset( (_base), (_offset) ) )
861
862/*
863 *  This routine initializes the FP context area passed to it to.
864 *  There are a few standard ways in which to initialize the
865 *  floating point context.  The code included for this macro assumes
866 *  that this is a CPU in which a "initial" FP context was saved into
867 *  _CPU_Null_fp_context and it simply copies it to the destination
868 *  context passed to it.
869 *
870 *  Other models include (1) not doing anything, and (2) putting
871 *  a "null FP status word" in the correct place in the FP context.
872 */
873
874#define _CPU_Context_Initialize_fp( _destination ) \
875  { \
876   ((Context_Control_fp *) *((void **) _destination))->fpscr = PPC_INIT_FPSCR; \
877  }
878
879/* end of Context handler macros */
880
881/* Fatal Error manager macros */
882
883/*
884 *  This routine copies _error into a known place -- typically a stack
885 *  location or a register, optionally disables interrupts, and
886 *  halts/stops the CPU.
887 */
888
889#define _CPU_Fatal_halt( _error ) \
890  _CPU_Fatal_error(_error)
891
892/* end of Fatal Error manager macros */
893
894/* Bitfield handler macros */
895
896/*
897 *  This routine sets _output to the bit number of the first bit
898 *  set in _value.  _value is of CPU dependent type Priority_Bit_map_control.
899 *  This type may be either 16 or 32 bits wide although only the 16
900 *  least significant bits will be used.
901 *
902 *  There are a number of variables in using a "find first bit" type
903 *  instruction.
904 *
905 *    (1) What happens when run on a value of zero?
906 *    (2) Bits may be numbered from MSB to LSB or vice-versa.
907 *    (3) The numbering may be zero or one based.
908 *    (4) The "find first bit" instruction may search from MSB or LSB.
909 *
910 *  RTEMS guarantees that (1) will never happen so it is not a concern.
911 *  (2),(3), (4) are handled by the macros _CPU_Priority_mask() and
912 *  _CPU_Priority_Bits_index().  These three form a set of routines
913 *  which must logically operate together.  Bits in the _value are
914 *  set and cleared based on masks built by _CPU_Priority_mask().
915 *  The basic major and minor values calculated by _Priority_Major()
916 *  and _Priority_Minor() are "massaged" by _CPU_Priority_Bits_index()
917 *  to properly range between the values returned by the "find first bit"
918 *  instruction.  This makes it possible for _Priority_Get_highest() to
919 *  calculate the major and directly index into the minor table.
920 *  This mapping is necessary to ensure that 0 (a high priority major/minor)
921 *  is the first bit found.
922 *
923 *  This entire "find first bit" and mapping process depends heavily
924 *  on the manner in which a priority is broken into a major and minor
925 *  components with the major being the 4 MSB of a priority and minor
926 *  the 4 LSB.  Thus (0 << 4) + 0 corresponds to priority 0 -- the highest
927 *  priority.  And (15 << 4) + 14 corresponds to priority 254 -- the next
928 *  to the lowest priority.
929 *
930 *  If your CPU does not have a "find first bit" instruction, then
931 *  there are ways to make do without it.  Here are a handful of ways
932 *  to implement this in software:
933 *
934 *    - a series of 16 bit test instructions
935 *    - a "binary search using if's"
936 *    - _number = 0
937 *      if _value > 0x00ff
938 *        _value >>=8
939 *        _number = 8;
940 *
941 *      if _value > 0x0000f
942 *        _value >=8
943 *        _number += 4
944 *
945 *      _number += bit_set_table[ _value ]
946 *
947 *    where bit_set_table[ 16 ] has values which indicate the first
948 *      bit set
949 */
950
951#define _CPU_Bitfield_Find_first_bit( _value, _output ) \
952  { \
953    asm volatile ("cntlzw %0, %1" : "=r" ((_output)), "=r" ((_value)) : \
954                  "1" ((_value))); \
955  }
956
957/* end of Bitfield handler macros */
958
959/*
960 *  This routine builds the mask which corresponds to the bit fields
961 *  as searched by _CPU_Bitfield_Find_first_bit().  See the discussion
962 *  for that routine.
963 */
964
965#define _CPU_Priority_Mask( _bit_number ) \
966  ( 0x80000000 >> (_bit_number) )
967
968/*
969 *  This routine translates the bit numbers returned by
970 *  _CPU_Bitfield_Find_first_bit() into something suitable for use as
971 *  a major or minor component of a priority.  See the discussion
972 *  for that routine.
973 */
974
975#define _CPU_Priority_bits_index( _priority ) \
976  (_priority)
977
978/* end of Priority handler macros */
979
980/* variables */
981
982extern const unsigned32 _CPU_msrs[4];
983
984/* functions */
985
986/*
987 *  _CPU_Initialize
988 *
989 *  This routine performs CPU dependent initialization.
990 */
991
992void _CPU_Initialize(
993  rtems_cpu_table  *cpu_table,
994  void            (*thread_dispatch)
995);
996
997/*
998 *  _CPU_ISR_install_vector
999 *
1000 *  This routine installs an interrupt vector.
1001 */
1002
1003void _CPU_ISR_install_vector(
1004  unsigned32  vector,
1005  proc_ptr    new_handler,
1006  proc_ptr   *old_handler
1007);
1008
1009/*
1010 *  _CPU_Install_interrupt_stack
1011 *
1012 *  This routine installs the hardware interrupt stack pointer.
1013 *
1014 *  NOTE:  It need only be provided if CPU_HAS_HARDWARE_INTERRUPT_STACK
1015 *         is TRUE.
1016 */
1017
1018void _CPU_Install_interrupt_stack( void );
1019
1020/*
1021 *  _CPU_Context_switch
1022 *
1023 *  This routine switches from the run context to the heir context.
1024 */
1025
1026void _CPU_Context_switch(
1027  Context_Control  *run,
1028  Context_Control  *heir
1029);
1030
1031/*
1032 *  _CPU_Context_restore
1033 *
1034 *  This routine is generallu used only to restart self in an
1035 *  efficient manner.  It may simply be a label in _CPU_Context_switch.
1036 *
1037 *  NOTE: May be unnecessary to reload some registers.
1038 */
1039
1040void _CPU_Context_restore(
1041  Context_Control *new_context
1042);
1043
1044/*
1045 *  _CPU_Context_save_fp
1046 *
1047 *  This routine saves the floating point context passed to it.
1048 */
1049
1050void _CPU_Context_save_fp(
1051  void **fp_context_ptr
1052);
1053
1054/*
1055 *  _CPU_Context_restore_fp
1056 *
1057 *  This routine restores the floating point context passed to it.
1058 */
1059
1060void _CPU_Context_restore_fp(
1061  void **fp_context_ptr
1062);
1063
1064void _CPU_Fatal_error(
1065  unsigned32 _error
1066);
1067
1068/*  The following routine swaps the endian format of an unsigned int.
1069 *  It must be static because it is referenced indirectly.
1070 *
1071 *  This version will work on any processor, but if there is a better
1072 *  way for your CPU PLEASE use it.  The most common way to do this is to:
1073 *
1074 *     swap least significant two bytes with 16-bit rotate
1075 *     swap upper and lower 16-bits
1076 *     swap most significant two bytes with 16-bit rotate
1077 *
1078 *  Some CPUs have special instructions which swap a 32-bit quantity in
1079 *  a single instruction (e.g. i486).  It is probably best to avoid
1080 *  an "endian swapping control bit" in the CPU.  One good reason is
1081 *  that interrupts would probably have to be disabled to insure that
1082 *  an interrupt does not try to access the same "chunk" with the wrong
1083 *  endian.  Another good reason is that on some CPUs, the endian bit
1084 *  endianness for ALL fetches -- both code and data -- so the code
1085 *  will be fetched incorrectly.
1086 */
1087 
1088static inline unsigned int CPU_swap_u32(
1089  unsigned int value
1090)
1091{
1092  unsigned32 swapped;
1093 
1094  asm volatile("rlwimi %0,%1,8,24,31;"
1095               "rlwimi %0,%1,24,16,23;"
1096               "rlwimi %0,%1,8,8,15;"
1097               "rlwimi %0,%1,24,0,7;" :
1098               "=&r" ((swapped)) : "r" ((value)));
1099
1100  return( swapped );
1101}
1102
1103#define CPU_swap_u16( value ) \
1104  (((value&0xff) << 8) | ((value >> 8)&0xff))
1105
1106/*
1107 *  Routines to access the decrementer register
1108 */
1109
1110#define PPC_Set_decrementer( _clicks ) \
1111  do { \
1112    asm volatile( "mtdec %0" : "=r" ((_clicks)) : "r" ((_clicks)) ); \
1113  } while (0)
1114
1115/*
1116 *  Routines to access the time base register
1117 */
1118
1119static inline unsigned64 PPC_Get_timebase_register( void )
1120{
1121  unsigned32 tbr_low;
1122  unsigned32 tbr_high;
1123  unsigned32 tbr_high_old;
1124  unsigned64 tbr;
1125
1126  do {
1127    asm volatile( "mftbu %0" : "=r" (tbr_high_old));
1128    asm volatile( "mftb  %0" : "=r" (tbr_low));
1129    asm volatile( "mftbu %0" : "=r" (tbr_high));
1130  } while ( tbr_high_old != tbr_high );
1131
1132  tbr = tbr_high;
1133  tbr <<= 32;
1134  tbr |= tbr_low;
1135  return tbr;
1136}
1137
1138#ifdef __cplusplus
1139}
1140#endif
1141
1142#endif
Note: See TracBrowser for help on using the repository browser.