source: rtems/c/src/exec/score/cpu/no_cpu/rtems/score/cpu.h @ 08311cc3

4.104.114.84.95
Last change on this file since 08311cc3 was 08311cc3, checked in by Joel Sherrill <joel.sherrill@…>, on 11/17/99 at 17:51:34

Updated copyright notice.

  • Property mode set to 100644
File size: 28.3 KB
Line 
1/*  cpu.h
2 *
3 *  This include file contains information pertaining to the XXX
4 *  processor.
5 *
6 *  COPYRIGHT (c) 1989-1999.
7 *  On-Line Applications Research Corporation (OAR).
8 *
9 *  The license and distribution terms for this file may be
10 *  found in the file LICENSE in this distribution or at
11 *  http://www.OARcorp.com/rtems/license.html.
12 *
13 *  $Id$
14 */
15
16#ifndef __CPU_h
17#define __CPU_h
18
19#ifdef __cplusplus
20extern "C" {
21#endif
22
23#include <rtems/score/no_cpu.h>            /* pick up machine definitions */
24#ifndef ASM
25#include <rtems/score/no_cputypes.h>
26#endif
27
28/* conditional compilation parameters */
29
30/*
31 *  Should the calls to _Thread_Enable_dispatch be inlined?
32 *
33 *  If TRUE, then they are inlined.
34 *  If FALSE, then a subroutine call is made.
35 *
36 *  Basically this is an example of the classic trade-off of size
37 *  versus speed.  Inlining the call (TRUE) typically increases the
38 *  size of RTEMS while speeding up the enabling of dispatching.
39 *  [NOTE: In general, the _Thread_Dispatch_disable_level will
40 *  only be 0 or 1 unless you are in an interrupt handler and that
41 *  interrupt handler invokes the executive.]  When not inlined
42 *  something calls _Thread_Enable_dispatch which in turns calls
43 *  _Thread_Dispatch.  If the enable dispatch is inlined, then
44 *  one subroutine call is avoided entirely.]
45 */
46
47#define CPU_INLINE_ENABLE_DISPATCH       FALSE
48
49/*
50 *  Should the body of the search loops in _Thread_queue_Enqueue_priority
51 *  be unrolled one time?  In unrolled each iteration of the loop examines
52 *  two "nodes" on the chain being searched.  Otherwise, only one node
53 *  is examined per iteration.
54 *
55 *  If TRUE, then the loops are unrolled.
56 *  If FALSE, then the loops are not unrolled.
57 *
58 *  The primary factor in making this decision is the cost of disabling
59 *  and enabling interrupts (_ISR_Flash) versus the cost of rest of the
60 *  body of the loop.  On some CPUs, the flash is more expensive than
61 *  one iteration of the loop body.  In this case, it might be desirable
62 *  to unroll the loop.  It is important to note that on some CPUs, this
63 *  code is the longest interrupt disable period in RTEMS.  So it is
64 *  necessary to strike a balance when setting this parameter.
65 */
66
67#define CPU_UNROLL_ENQUEUE_PRIORITY      TRUE
68
69/*
70 *  Does RTEMS manage a dedicated interrupt stack in software?
71 *
72 *  If TRUE, then a stack is allocated in _Interrupt_Manager_initialization.
73 *  If FALSE, nothing is done.
74 *
75 *  If the CPU supports a dedicated interrupt stack in hardware,
76 *  then it is generally the responsibility of the BSP to allocate it
77 *  and set it up.
78 *
79 *  If the CPU does not support a dedicated interrupt stack, then
80 *  the porter has two options: (1) execute interrupts on the
81 *  stack of the interrupted task, and (2) have RTEMS manage a dedicated
82 *  interrupt stack.
83 *
84 *  If this is TRUE, CPU_ALLOCATE_INTERRUPT_STACK should also be TRUE.
85 *
86 *  Only one of CPU_HAS_SOFTWARE_INTERRUPT_STACK and
87 *  CPU_HAS_HARDWARE_INTERRUPT_STACK should be set to TRUE.  It is
88 *  possible that both are FALSE for a particular CPU.  Although it
89 *  is unclear what that would imply about the interrupt processing
90 *  procedure on that CPU.
91 */
92
93#define CPU_HAS_SOFTWARE_INTERRUPT_STACK FALSE
94
95/*
96 *  Does this CPU have hardware support for a dedicated interrupt stack?
97 *
98 *  If TRUE, then it must be installed during initialization.
99 *  If FALSE, then no installation is performed.
100 *
101 *  If this is TRUE, CPU_ALLOCATE_INTERRUPT_STACK should also be TRUE.
102 *
103 *  Only one of CPU_HAS_SOFTWARE_INTERRUPT_STACK and
104 *  CPU_HAS_HARDWARE_INTERRUPT_STACK should be set to TRUE.  It is
105 *  possible that both are FALSE for a particular CPU.  Although it
106 *  is unclear what that would imply about the interrupt processing
107 *  procedure on that CPU.
108 */
109
110#define CPU_HAS_HARDWARE_INTERRUPT_STACK TRUE
111
112/*
113 *  Does RTEMS allocate a dedicated interrupt stack in the Interrupt Manager?
114 *
115 *  If TRUE, then the memory is allocated during initialization.
116 *  If FALSE, then the memory is allocated during initialization.
117 *
118 *  This should be TRUE is CPU_HAS_SOFTWARE_INTERRUPT_STACK is TRUE
119 *  or CPU_INSTALL_HARDWARE_INTERRUPT_STACK is TRUE.
120 */
121
122#define CPU_ALLOCATE_INTERRUPT_STACK TRUE
123
124/*
125 *  Does the RTEMS invoke the user's ISR with the vector number and
126 *  a pointer to the saved interrupt frame (1) or just the vector
127 *  number (0)?
128 */
129
130#define CPU_ISR_PASSES_FRAME_POINTER 0
131
132/*
133 *  Does the CPU have hardware floating point?
134 *
135 *  If TRUE, then the RTEMS_FLOATING_POINT task attribute is supported.
136 *  If FALSE, then the RTEMS_FLOATING_POINT task attribute is ignored.
137 *
138 *  If there is a FP coprocessor such as the i387 or mc68881, then
139 *  the answer is TRUE.
140 *
141 *  The macro name "NO_CPU_HAS_FPU" should be made CPU specific.
142 *  It indicates whether or not this CPU model has FP support.  For
143 *  example, it would be possible to have an i386_nofp CPU model
144 *  which set this to false to indicate that you have an i386 without
145 *  an i387 and wish to leave floating point support out of RTEMS.
146 */
147
148#if ( NO_CPU_HAS_FPU == 1 )
149#define CPU_HARDWARE_FP     TRUE
150#else
151#define CPU_HARDWARE_FP     FALSE
152#endif
153
154/*
155 *  Are all tasks RTEMS_FLOATING_POINT tasks implicitly?
156 *
157 *  If TRUE, then the RTEMS_FLOATING_POINT task attribute is assumed.
158 *  If FALSE, then the RTEMS_FLOATING_POINT task attribute is followed.
159 *
160 *  So far, the only CPU in which this option has been used is the
161 *  HP PA-RISC.  The HP C compiler and gcc both implicitly use the
162 *  floating point registers to perform integer multiplies.  If
163 *  a function which you would not think utilize the FP unit DOES,
164 *  then one can not easily predict which tasks will use the FP hardware.
165 *  In this case, this option should be TRUE.
166 *
167 *  If CPU_HARDWARE_FP is FALSE, then this should be FALSE as well.
168 */
169
170#define CPU_ALL_TASKS_ARE_FP     TRUE
171
172/*
173 *  Should the IDLE task have a floating point context?
174 *
175 *  If TRUE, then the IDLE task is created as a RTEMS_FLOATING_POINT task
176 *  and it has a floating point context which is switched in and out.
177 *  If FALSE, then the IDLE task does not have a floating point context.
178 *
179 *  Setting this to TRUE negatively impacts the time required to preempt
180 *  the IDLE task from an interrupt because the floating point context
181 *  must be saved as part of the preemption.
182 */
183
184#define CPU_IDLE_TASK_IS_FP      FALSE
185
186/*
187 *  Should the saving of the floating point registers be deferred
188 *  until a context switch is made to another different floating point
189 *  task?
190 *
191 *  If TRUE, then the floating point context will not be stored until
192 *  necessary.  It will remain in the floating point registers and not
193 *  disturned until another floating point task is switched to.
194 *
195 *  If FALSE, then the floating point context is saved when a floating
196 *  point task is switched out and restored when the next floating point
197 *  task is restored.  The state of the floating point registers between
198 *  those two operations is not specified.
199 *
200 *  If the floating point context does NOT have to be saved as part of
201 *  interrupt dispatching, then it should be safe to set this to TRUE.
202 *
203 *  Setting this flag to TRUE results in using a different algorithm
204 *  for deciding when to save and restore the floating point context.
205 *  The deferred FP switch algorithm minimizes the number of times
206 *  the FP context is saved and restored.  The FP context is not saved
207 *  until a context switch is made to another, different FP task.
208 *  Thus in a system with only one FP task, the FP context will never
209 *  be saved or restored.
210 */
211
212#define CPU_USE_DEFERRED_FP_SWITCH       TRUE
213
214/*
215 *  Does this port provide a CPU dependent IDLE task implementation?
216 *
217 *  If TRUE, then the routine _CPU_Thread_Idle_body
218 *  must be provided and is the default IDLE thread body instead of
219 *  _CPU_Thread_Idle_body.
220 *
221 *  If FALSE, then use the generic IDLE thread body if the BSP does
222 *  not provide one.
223 *
224 *  This is intended to allow for supporting processors which have
225 *  a low power or idle mode.  When the IDLE thread is executed, then
226 *  the CPU can be powered down.
227 *
228 *  The order of precedence for selecting the IDLE thread body is:
229 *
230 *    1.  BSP provided
231 *    2.  CPU dependent (if provided)
232 *    3.  generic (if no BSP and no CPU dependent)
233 */
234
235#define CPU_PROVIDES_IDLE_THREAD_BODY    TRUE
236
237/*
238 *  Does the stack grow up (toward higher addresses) or down
239 *  (toward lower addresses)?
240 *
241 *  If TRUE, then the grows upward.
242 *  If FALSE, then the grows toward smaller addresses.
243 */
244
245#define CPU_STACK_GROWS_UP               TRUE
246
247/*
248 *  The following is the variable attribute used to force alignment
249 *  of critical RTEMS structures.  On some processors it may make
250 *  sense to have these aligned on tighter boundaries than
251 *  the minimum requirements of the compiler in order to have as
252 *  much of the critical data area as possible in a cache line.
253 *
254 *  The placement of this macro in the declaration of the variables
255 *  is based on the syntactically requirements of the GNU C
256 *  "__attribute__" extension.  For example with GNU C, use
257 *  the following to force a structures to a 32 byte boundary.
258 *
259 *      __attribute__ ((aligned (32)))
260 *
261 *  NOTE:  Currently only the Priority Bit Map table uses this feature.
262 *         To benefit from using this, the data must be heavily
263 *         used so it will stay in the cache and used frequently enough
264 *         in the executive to justify turning this on.
265 */
266
267#define CPU_STRUCTURE_ALIGNMENT
268
269/*
270 *  Define what is required to specify how the network to host conversion
271 *  routines are handled.
272 */
273
274#define CPU_HAS_OWN_HOST_TO_NETWORK_ROUTINES     FALSE
275#define CPU_BIG_ENDIAN                           TRUE
276#define CPU_LITTLE_ENDIAN                        FALSE
277
278/*
279 *  The following defines the number of bits actually used in the
280 *  interrupt field of the task mode.  How those bits map to the
281 *  CPU interrupt levels is defined by the routine _CPU_ISR_Set_level().
282 */
283
284#define CPU_MODES_INTERRUPT_MASK   0x00000001
285
286/*
287 *  Processor defined structures
288 *
289 *  Examples structures include the descriptor tables from the i386
290 *  and the processor control structure on the i960ca.
291 */
292
293/* may need to put some structures here.  */
294
295/*
296 * Contexts
297 *
298 *  Generally there are 2 types of context to save.
299 *     1. Interrupt registers to save
300 *     2. Task level registers to save
301 *
302 *  This means we have the following 3 context items:
303 *     1. task level context stuff::  Context_Control
304 *     2. floating point task stuff:: Context_Control_fp
305 *     3. special interrupt level context :: Context_Control_interrupt
306 *
307 *  On some processors, it is cost-effective to save only the callee
308 *  preserved registers during a task context switch.  This means
309 *  that the ISR code needs to save those registers which do not
310 *  persist across function calls.  It is not mandatory to make this
311 *  distinctions between the caller/callee saves registers for the
312 *  purpose of minimizing context saved during task switch and on interrupts.
313 *  If the cost of saving extra registers is minimal, simplicity is the
314 *  choice.  Save the same context on interrupt entry as for tasks in
315 *  this case.
316 *
317 *  Additionally, if gdb is to be made aware of RTEMS tasks for this CPU, then
318 *  care should be used in designing the context area.
319 *
320 *  On some CPUs with hardware floating point support, the Context_Control_fp
321 *  structure will not be used or it simply consist of an array of a
322 *  fixed number of bytes.   This is done when the floating point context
323 *  is dumped by a "FP save context" type instruction and the format
324 *  is not really defined by the CPU.  In this case, there is no need
325 *  to figure out the exact format -- only the size.  Of course, although
326 *  this is enough information for RTEMS, it is probably not enough for
327 *  a debugger such as gdb.  But that is another problem.
328 */
329
330typedef struct {
331    unsigned32 some_integer_register;
332    unsigned32 some_system_register;
333} Context_Control;
334
335typedef struct {
336    double      some_float_register;
337} Context_Control_fp;
338
339typedef struct {
340    unsigned32 special_interrupt_register;
341} CPU_Interrupt_frame;
342
343
344/*
345 *  The following table contains the information required to configure
346 *  the XXX processor specific parameters.
347 */
348
349typedef struct {
350  void       (*pretasking_hook)( void );
351  void       (*predriver_hook)( void );
352  void       (*postdriver_hook)( void );
353  void       (*idle_task)( void );
354  boolean      do_zero_of_workspace;
355  unsigned32   idle_task_stack_size;
356  unsigned32   interrupt_stack_size;
357  unsigned32   extra_mpci_receive_server_stack;
358  void *     (*stack_allocate_hook)( unsigned32 );
359  void       (*stack_free_hook)( void* );
360  /* end of fields required on all CPUs */
361
362}   rtems_cpu_table;
363
364/*
365 *  Macros to access required entires in the CPU Table are in
366 *  the file rtems/system.h.
367 */
368
369/*
370 *  Macros to access NO_CPU specific additions to the CPU Table
371 */
372
373/* There are no CPU specific additions to the CPU Table for this port. */
374
375/*
376 *  This variable is optional.  It is used on CPUs on which it is difficult
377 *  to generate an "uninitialized" FP context.  It is filled in by
378 *  _CPU_Initialize and copied into the task's FP context area during
379 *  _CPU_Context_Initialize.
380 */
381
382SCORE_EXTERN Context_Control_fp  _CPU_Null_fp_context;
383
384/*
385 *  On some CPUs, RTEMS supports a software managed interrupt stack.
386 *  This stack is allocated by the Interrupt Manager and the switch
387 *  is performed in _ISR_Handler.  These variables contain pointers
388 *  to the lowest and highest addresses in the chunk of memory allocated
389 *  for the interrupt stack.  Since it is unknown whether the stack
390 *  grows up or down (in general), this give the CPU dependent
391 *  code the option of picking the version it wants to use.
392 *
393 *  NOTE: These two variables are required if the macro
394 *        CPU_HAS_SOFTWARE_INTERRUPT_STACK is defined as TRUE.
395 */
396
397SCORE_EXTERN void               *_CPU_Interrupt_stack_low;
398SCORE_EXTERN void               *_CPU_Interrupt_stack_high;
399
400/*
401 *  With some compilation systems, it is difficult if not impossible to
402 *  call a high-level language routine from assembly language.  This
403 *  is especially true of commercial Ada compilers and name mangling
404 *  C++ ones.  This variable can be optionally defined by the CPU porter
405 *  and contains the address of the routine _Thread_Dispatch.  This
406 *  can make it easier to invoke that routine at the end of the interrupt
407 *  sequence (if a dispatch is necessary).
408 */
409
410SCORE_EXTERN void           (*_CPU_Thread_dispatch_pointer)();
411
412/*
413 *  Nothing prevents the porter from declaring more CPU specific variables.
414 */
415
416/* XXX: if needed, put more variables here */
417
418/*
419 *  The size of the floating point context area.  On some CPUs this
420 *  will not be a "sizeof" because the format of the floating point
421 *  area is not defined -- only the size is.  This is usually on
422 *  CPUs with a "floating point save context" instruction.
423 */
424
425#define CPU_CONTEXT_FP_SIZE sizeof( Context_Control_fp )
426
427/*
428 *  Amount of extra stack (above minimum stack size) required by
429 *  MPCI receive server thread.  Remember that in a multiprocessor
430 *  system this thread must exist and be able to process all directives.
431 */
432
433#define CPU_MPCI_RECEIVE_SERVER_EXTRA_STACK 0
434
435/*
436 *  This defines the number of entries in the ISR_Vector_table managed
437 *  by RTEMS.
438 */
439
440#define CPU_INTERRUPT_NUMBER_OF_VECTORS      32
441#define CPU_INTERRUPT_MAXIMUM_VECTOR_NUMBER  (CPU_INTERRUPT_NUMBER_OF_VECTORS - 1)
442
443/*
444 *  Should be large enough to run all RTEMS tests.  This insures
445 *  that a "reasonable" small application should not have any problems.
446 */
447
448#define CPU_STACK_MINIMUM_SIZE          (1024*4)
449
450/*
451 *  CPU's worst alignment requirement for data types on a byte boundary.  This
452 *  alignment does not take into account the requirements for the stack.
453 */
454
455#define CPU_ALIGNMENT              8
456
457/*
458 *  This number corresponds to the byte alignment requirement for the
459 *  heap handler.  This alignment requirement may be stricter than that
460 *  for the data types alignment specified by CPU_ALIGNMENT.  It is
461 *  common for the heap to follow the same alignment requirement as
462 *  CPU_ALIGNMENT.  If the CPU_ALIGNMENT is strict enough for the heap,
463 *  then this should be set to CPU_ALIGNMENT.
464 *
465 *  NOTE:  This does not have to be a power of 2.  It does have to
466 *         be greater or equal to than CPU_ALIGNMENT.
467 */
468
469#define CPU_HEAP_ALIGNMENT         CPU_ALIGNMENT
470
471/*
472 *  This number corresponds to the byte alignment requirement for memory
473 *  buffers allocated by the partition manager.  This alignment requirement
474 *  may be stricter than that for the data types alignment specified by
475 *  CPU_ALIGNMENT.  It is common for the partition to follow the same
476 *  alignment requirement as CPU_ALIGNMENT.  If the CPU_ALIGNMENT is strict
477 *  enough for the partition, then this should be set to CPU_ALIGNMENT.
478 *
479 *  NOTE:  This does not have to be a power of 2.  It does have to
480 *         be greater or equal to than CPU_ALIGNMENT.
481 */
482
483#define CPU_PARTITION_ALIGNMENT    CPU_ALIGNMENT
484
485/*
486 *  This number corresponds to the byte alignment requirement for the
487 *  stack.  This alignment requirement may be stricter than that for the
488 *  data types alignment specified by CPU_ALIGNMENT.  If the CPU_ALIGNMENT
489 *  is strict enough for the stack, then this should be set to 0.
490 *
491 *  NOTE:  This must be a power of 2 either 0 or greater than CPU_ALIGNMENT.
492 */
493
494#define CPU_STACK_ALIGNMENT        0
495
496/* ISR handler macros */
497
498/*
499 *  Disable all interrupts for an RTEMS critical section.  The previous
500 *  level is returned in _level.
501 */
502
503#define _CPU_ISR_Disable( _isr_cookie ) \
504  { \
505    (_isr_cookie) = 0;   /* do something to prevent warnings */ \
506  }
507
508/*
509 *  Enable interrupts to the previous level (returned by _CPU_ISR_Disable).
510 *  This indicates the end of an RTEMS critical section.  The parameter
511 *  _level is not modified.
512 */
513
514#define _CPU_ISR_Enable( _isr_cookie )  \
515  { \
516  }
517
518/*
519 *  This temporarily restores the interrupt to _level before immediately
520 *  disabling them again.  This is used to divide long RTEMS critical
521 *  sections into two or more parts.  The parameter _level is not
522 * modified.
523 */
524
525#define _CPU_ISR_Flash( _isr_cookie ) \
526  { \
527  }
528
529/*
530 *  Map interrupt level in task mode onto the hardware that the CPU
531 *  actually provides.  Currently, interrupt levels which do not
532 *  map onto the CPU in a generic fashion are undefined.  Someday,
533 *  it would be nice if these were "mapped" by the application
534 *  via a callout.  For example, m68k has 8 levels 0 - 7, levels
535 *  8 - 255 would be available for bsp/application specific meaning.
536 *  This could be used to manage a programmable interrupt controller
537 *  via the rtems_task_mode directive.
538 *
539 *  The get routine usually must be implemented as a subroutine.
540 */
541
542#define _CPU_ISR_Set_level( new_level ) \
543  { \
544  }
545
546unsigned32 _CPU_ISR_Get_level( void );
547
548/* end of ISR handler macros */
549
550/* Context handler macros */
551
552/*
553 *  Initialize the context to a state suitable for starting a
554 *  task after a context restore operation.  Generally, this
555 *  involves:
556 *
557 *     - setting a starting address
558 *     - preparing the stack
559 *     - preparing the stack and frame pointers
560 *     - setting the proper interrupt level in the context
561 *     - initializing the floating point context
562 *
563 *  This routine generally does not set any unnecessary register
564 *  in the context.  The state of the "general data" registers is
565 *  undefined at task start time.
566 *
567 *  NOTE: This is_fp parameter is TRUE if the thread is to be a floating
568 *        point thread.  This is typically only used on CPUs where the
569 *        FPU may be easily disabled by software such as on the SPARC
570 *        where the PSR contains an enable FPU bit.
571 */
572
573#define _CPU_Context_Initialize( _the_context, _stack_base, _size, \
574                                 _isr, _entry_point, _is_fp ) \
575  { \
576  }
577
578/*
579 *  This routine is responsible for somehow restarting the currently
580 *  executing task.  If you are lucky, then all that is necessary
581 *  is restoring the context.  Otherwise, there will need to be
582 *  a special assembly routine which does something special in this
583 *  case.  Context_Restore should work most of the time.  It will
584 *  not work if restarting self conflicts with the stack frame
585 *  assumptions of restoring a context.
586 */
587
588#define _CPU_Context_Restart_self( _the_context ) \
589   _CPU_Context_restore( (_the_context) );
590
591/*
592 *  The purpose of this macro is to allow the initial pointer into
593 *  a floating point context area (used to save the floating point
594 *  context) to be at an arbitrary place in the floating point
595 *  context area.
596 *
597 *  This is necessary because some FP units are designed to have
598 *  their context saved as a stack which grows into lower addresses.
599 *  Other FP units can be saved by simply moving registers into offsets
600 *  from the base of the context area.  Finally some FP units provide
601 *  a "dump context" instruction which could fill in from high to low
602 *  or low to high based on the whim of the CPU designers.
603 */
604
605#define _CPU_Context_Fp_start( _base, _offset ) \
606   ( (void *) _Addresses_Add_offset( (_base), (_offset) ) )
607
608/*
609 *  This routine initializes the FP context area passed to it to.
610 *  There are a few standard ways in which to initialize the
611 *  floating point context.  The code included for this macro assumes
612 *  that this is a CPU in which a "initial" FP context was saved into
613 *  _CPU_Null_fp_context and it simply copies it to the destination
614 *  context passed to it.
615 *
616 *  Other models include (1) not doing anything, and (2) putting
617 *  a "null FP status word" in the correct place in the FP context.
618 */
619
620#define _CPU_Context_Initialize_fp( _destination ) \
621  { \
622   *((Context_Control_fp *) *((void **) _destination)) = _CPU_Null_fp_context; \
623  }
624
625/* end of Context handler macros */
626
627/* Fatal Error manager macros */
628
629/*
630 *  This routine copies _error into a known place -- typically a stack
631 *  location or a register, optionally disables interrupts, and
632 *  halts/stops the CPU.
633 */
634
635#define _CPU_Fatal_halt( _error ) \
636  { \
637  }
638
639/* end of Fatal Error manager macros */
640
641/* Bitfield handler macros */
642
643/*
644 *  This routine sets _output to the bit number of the first bit
645 *  set in _value.  _value is of CPU dependent type Priority_Bit_map_control.
646 *  This type may be either 16 or 32 bits wide although only the 16
647 *  least significant bits will be used.
648 *
649 *  There are a number of variables in using a "find first bit" type
650 *  instruction.
651 *
652 *    (1) What happens when run on a value of zero?
653 *    (2) Bits may be numbered from MSB to LSB or vice-versa.
654 *    (3) The numbering may be zero or one based.
655 *    (4) The "find first bit" instruction may search from MSB or LSB.
656 *
657 *  RTEMS guarantees that (1) will never happen so it is not a concern.
658 *  (2),(3), (4) are handled by the macros _CPU_Priority_mask() and
659 *  _CPU_Priority_bits_index().  These three form a set of routines
660 *  which must logically operate together.  Bits in the _value are
661 *  set and cleared based on masks built by _CPU_Priority_mask().
662 *  The basic major and minor values calculated by _Priority_Major()
663 *  and _Priority_Minor() are "massaged" by _CPU_Priority_bits_index()
664 *  to properly range between the values returned by the "find first bit"
665 *  instruction.  This makes it possible for _Priority_Get_highest() to
666 *  calculate the major and directly index into the minor table.
667 *  This mapping is necessary to ensure that 0 (a high priority major/minor)
668 *  is the first bit found.
669 *
670 *  This entire "find first bit" and mapping process depends heavily
671 *  on the manner in which a priority is broken into a major and minor
672 *  components with the major being the 4 MSB of a priority and minor
673 *  the 4 LSB.  Thus (0 << 4) + 0 corresponds to priority 0 -- the highest
674 *  priority.  And (15 << 4) + 14 corresponds to priority 254 -- the next
675 *  to the lowest priority.
676 *
677 *  If your CPU does not have a "find first bit" instruction, then
678 *  there are ways to make do without it.  Here are a handful of ways
679 *  to implement this in software:
680 *
681 *    - a series of 16 bit test instructions
682 *    - a "binary search using if's"
683 *    - _number = 0
684 *      if _value > 0x00ff
685 *        _value >>=8
686 *        _number = 8;
687 *
688 *      if _value > 0x0000f
689 *        _value >=8
690 *        _number += 4
691 *
692 *      _number += bit_set_table[ _value ]
693 *
694 *    where bit_set_table[ 16 ] has values which indicate the first
695 *      bit set
696 */
697
698#define CPU_USE_GENERIC_BITFIELD_CODE TRUE
699#define CPU_USE_GENERIC_BITFIELD_DATA TRUE
700
701#if (CPU_USE_GENERIC_BITFIELD_CODE == FALSE)
702
703#define _CPU_Bitfield_Find_first_bit( _value, _output ) \
704  { \
705    (_output) = 0;   /* do something to prevent warnings */ \
706  }
707
708#endif
709
710/* end of Bitfield handler macros */
711
712/*
713 *  This routine builds the mask which corresponds to the bit fields
714 *  as searched by _CPU_Bitfield_Find_first_bit().  See the discussion
715 *  for that routine.
716 */
717
718#if (CPU_USE_GENERIC_BITFIELD_CODE == FALSE)
719
720#define _CPU_Priority_Mask( _bit_number ) \
721  ( 1 << (_bit_number) )
722
723#endif
724
725/*
726 *  This routine translates the bit numbers returned by
727 *  _CPU_Bitfield_Find_first_bit() into something suitable for use as
728 *  a major or minor component of a priority.  See the discussion
729 *  for that routine.
730 */
731
732#if (CPU_USE_GENERIC_BITFIELD_CODE == FALSE)
733
734#define _CPU_Priority_bits_index( _priority ) \
735  (_priority)
736
737#endif
738
739/* end of Priority handler macros */
740
741/* functions */
742
743/*
744 *  _CPU_Initialize
745 *
746 *  This routine performs CPU dependent initialization.
747 */
748
749void _CPU_Initialize(
750  rtems_cpu_table  *cpu_table,
751  void      (*thread_dispatch)
752);
753
754/*
755 *  _CPU_ISR_install_raw_handler
756 *
757 *  This routine installs a "raw" interrupt handler directly into the
758 *  processor's vector table.
759 */
760 
761void _CPU_ISR_install_raw_handler(
762  unsigned32  vector,
763  proc_ptr    new_handler,
764  proc_ptr   *old_handler
765);
766
767/*
768 *  _CPU_ISR_install_vector
769 *
770 *  This routine installs an interrupt vector.
771 */
772
773void _CPU_ISR_install_vector(
774  unsigned32  vector,
775  proc_ptr    new_handler,
776  proc_ptr   *old_handler
777);
778
779/*
780 *  _CPU_Install_interrupt_stack
781 *
782 *  This routine installs the hardware interrupt stack pointer.
783 *
784 *  NOTE:  It need only be provided if CPU_HAS_HARDWARE_INTERRUPT_STACK
785 *         is TRUE.
786 */
787
788void _CPU_Install_interrupt_stack( void );
789
790/*
791 *  _CPU_Thread_Idle_body
792 *
793 *  This routine is the CPU dependent IDLE thread body.
794 *
795 *  NOTE:  It need only be provided if CPU_PROVIDES_IDLE_THREAD_BODY
796 *         is TRUE.
797 */
798
799void _CPU_Thread_Idle_body( void );
800
801/*
802 *  _CPU_Context_switch
803 *
804 *  This routine switches from the run context to the heir context.
805 */
806
807void _CPU_Context_switch(
808  Context_Control  *run,
809  Context_Control  *heir
810);
811
812/*
813 *  _CPU_Context_restore
814 *
815 *  This routine is generally used only to restart self in an
816 *  efficient manner.  It may simply be a label in _CPU_Context_switch.
817 *
818 *  NOTE: May be unnecessary to reload some registers.
819 */
820
821void _CPU_Context_restore(
822  Context_Control *new_context
823);
824
825/*
826 *  _CPU_Context_save_fp
827 *
828 *  This routine saves the floating point context passed to it.
829 */
830
831void _CPU_Context_save_fp(
832  void **fp_context_ptr
833);
834
835/*
836 *  _CPU_Context_restore_fp
837 *
838 *  This routine restores the floating point context passed to it.
839 */
840
841void _CPU_Context_restore_fp(
842  void **fp_context_ptr
843);
844
845/*  The following routine swaps the endian format of an unsigned int.
846 *  It must be static because it is referenced indirectly.
847 *
848 *  This version will work on any processor, but if there is a better
849 *  way for your CPU PLEASE use it.  The most common way to do this is to:
850 *
851 *     swap least significant two bytes with 16-bit rotate
852 *     swap upper and lower 16-bits
853 *     swap most significant two bytes with 16-bit rotate
854 *
855 *  Some CPUs have special instructions which swap a 32-bit quantity in
856 *  a single instruction (e.g. i486).  It is probably best to avoid
857 *  an "endian swapping control bit" in the CPU.  One good reason is
858 *  that interrupts would probably have to be disabled to insure that
859 *  an interrupt does not try to access the same "chunk" with the wrong
860 *  endian.  Another good reason is that on some CPUs, the endian bit
861 *  endianness for ALL fetches -- both code and data -- so the code
862 *  will be fetched incorrectly.
863 */
864 
865static inline unsigned int CPU_swap_u32(
866  unsigned int value
867)
868{
869  unsigned32 byte1, byte2, byte3, byte4, swapped;
870 
871  byte4 = (value >> 24) & 0xff;
872  byte3 = (value >> 16) & 0xff;
873  byte2 = (value >> 8)  & 0xff;
874  byte1 =  value        & 0xff;
875 
876  swapped = (byte1 << 24) | (byte2 << 16) | (byte3 << 8) | byte4;
877  return( swapped );
878}
879
880#define CPU_swap_u16( value ) \
881  (((value&0xff) << 8) | ((value >> 8)&0xff))
882
883#ifdef __cplusplus
884}
885#endif
886
887#endif
Note: See TracBrowser for help on using the repository browser.