source: rtems/c/src/exec/score/cpu/no_cpu/cpu.h @ ac7d5ef0

4.104.114.84.95
Last change on this file since ac7d5ef0 was ac7d5ef0, checked in by Joel Sherrill <joel.sherrill@…>, on 05/11/95 at 17:39:37

Initial revision

  • Property mode set to 100644
File size: 26.8 KB
Line 
1/*  cpu.h
2 *
3 *  This include file contains information pertaining to the XXX
4 *  processor.
5 *
6 *  COPYRIGHT (c) 1989, 1990, 1991, 1992, 1993, 1994.
7 *  On-Line Applications Research Corporation (OAR).
8 *  All rights assigned to U.S. Government, 1994.
9 *
10 *  This material may be reproduced by or for the U.S. Government pursuant
11 *  to the copyright license under the clause at DFARS 252.227-7013.  This
12 *  notice must appear in all copies of this file and its derivatives.
13 *
14 *  $Id$
15 */
16
17#ifndef __CPU_h
18#define __CPU_h
19
20#ifdef __cplusplus
21extern "C" {
22#endif
23
24#include <no_cpu.h>               /* pick up machine definitions */
25
26/* conditional compilation parameters */
27
28/*
29 *  Should the calls to _Thread_Enable_dispatch be inlined?
30 *
31 *  If TRUE, then they are inlined.
32 *  If FALSE, then a subroutine call is made.
33 *
34 *  Basically this is an example of the classic trade-off of size
35 *  versus speed.  Inlining the call (TRUE) typically increases the
36 *  size of RTEMS while speeding up the enabling of dispatching.
37 *  [NOTE: In general, the _Thread_Dispatch_disable_level will
38 *  only be 0 or 1 unless you are in an interrupt handler and that
39 *  interrupt handler invokes the executive.]  When not inlined
40 *  something calls _Thread_Enable_dispatch which in turns calls
41 *  _Thread_Dispatch.  If the enable dispatch is inlined, then
42 *  one subroutine call is avoided entirely.]
43 */
44
45#define CPU_INLINE_ENABLE_DISPATCH       FALSE
46
47/*
48 *  Should the body of the search loops in _Thread_queue_Enqueue_priority
49 *  be unrolled one time?  In unrolled each iteration of the loop examines
50 *  two "nodes" on the chain being searched.  Otherwise, only one node
51 *  is examined per iteration.
52 *
53 *  If TRUE, then the loops are unrolled.
54 *  If FALSE, then the loops are not unrolled.
55 *
56 *  The primary factor in making this decision is the cost of disabling
57 *  and enabling interrupts (_ISR_Flash) versus the cost of rest of the
58 *  body of the loop.  On some CPUs, the flash is more expensive than
59 *  one iteration of the loop body.  In this case, it might be desirable
60 *  to unroll the loop.  It is important to note that on some CPUs, this
61 *  code is the longest interrupt disable period in RTEMS.  So it is
62 *  necessary to strike a balance when setting this parameter.
63 */
64
65#define CPU_UNROLL_ENQUEUE_PRIORITY      TRUE
66
67/*
68 *  Does RTEMS manage a dedicated interrupt stack in software?
69 *
70 *  If TRUE, then a stack is allocated in _Interrupt_Manager_initialization.
71 *  If FALSE, nothing is done.
72 *
73 *  If the CPU supports a dedicated interrupt stack in hardware,
74 *  then it is generally the responsibility of the BSP to allocate it
75 *  and set it up.
76 *
77 *  If the CPU does not support a dedicated interrupt stack, then
78 *  the porter has two options: (1) execute interrupts on the
79 *  stack of the interrupted task, and (2) have RTEMS manage a dedicated
80 *  interrupt stack.
81 *
82 *  If this is TRUE, CPU_ALLOCATE_INTERRUPT_STACK should also be TRUE.
83 *
84 *  Only one of CPU_HAS_SOFTWARE_INTERRUPT_STACK and
85 *  CPU_HAS_HARDWARE_INTERRUPT_STACK should be set to TRUE.  It is
86 *  possible that both are FALSE for a particular CPU.  Although it
87 *  is unclear what that would imply about the interrupt processing
88 *  procedure on that CPU.
89 */
90
91#define CPU_HAS_SOFTWARE_INTERRUPT_STACK FALSE
92
93/*
94 *  Does this CPU have hardware support for a dedicated interrupt stack?
95 *
96 *  If TRUE, then it must be installed during initialization.
97 *  If FALSE, then no installation is performed.
98 *
99 *  If this is TRUE, CPU_ALLOCATE_INTERRUPT_STACK should also be TRUE.
100 *
101 *  Only one of CPU_HAS_SOFTWARE_INTERRUPT_STACK and
102 *  CPU_HAS_HARDWARE_INTERRUPT_STACK should be set to TRUE.  It is
103 *  possible that both are FALSE for a particular CPU.  Although it
104 *  is unclear what that would imply about the interrupt processing
105 *  procedure on that CPU.
106 */
107
108#define CPU_HAS_HARDWARE_INTERRUPT_STACK TRUE
109
110/*
111 *  Does RTEMS allocate a dedicated interrupt stack in the Interrupt Manager?
112 *
113 *  If TRUE, then the memory is allocated during initialization.
114 *  If FALSE, then the memory is allocated during initialization.
115 *
116 *  This should be TRUE is CPU_HAS_SOFTWARE_INTERRUPT_STACK is TRUE
117 *  or CPU_INSTALL_HARDWARE_INTERRUPT_STACK is TRUE.
118 */
119
120#define CPU_ALLOCATE_INTERRUPT_STACK TRUE
121
122/*
123 *  Does the CPU have hardware floating point?
124 *
125 *  If TRUE, then the RTEMS_FLOATING_POINT task attribute is supported.
126 *  If FALSE, then the RTEMS_FLOATING_POINT task attribute is ignored.
127 *
128 *  If there is a FP coprocessor such as the i387 or mc68881, then
129 *  the answer is TRUE.
130 *
131 *  The macro name "NO_CPU_HAS_FPU" should be made CPU specific.
132 *  It indicates whether or not this CPU model has FP support.  For
133 *  example, it would be possible to have an i386_nofp CPU model
134 *  which set this to false to indicate that you have an i386 without
135 *  an i387 and wish to leave floating point support out of RTEMS.
136 */
137
138#if ( NO_CPU_HAS_FPU == 1 )
139#define CPU_HARDWARE_FP     TRUE
140#else
141#define CPU_HARDWARE_FP     FALSE
142#endif
143
144/*
145 *  Are all tasks RTEMS_FLOATING_POINT tasks implicitly?
146 *
147 *  If TRUE, then the RTEMS_FLOATING_POINT task attribute is assumed.
148 *  If FALSE, then the RTEMS_FLOATING_POINT task attribute is followed.
149 *
150 *  So far, the only CPU in which this option has been used is the
151 *  HP PA-RISC.  The HP C compiler and gcc both implicitly use the
152 *  floating point registers to perform integer multiplies.  If
153 *  a function which you would not think utilize the FP unit DOES,
154 *  then one can not easily predict which tasks will use the FP hardware.
155 *  In this case, this option should be TRUE.
156 *
157 *  If CPU_HARDWARE_FP is FALSE, then this should be FALSE as well.
158 */
159
160#define CPU_ALL_TASKS_ARE_FP     TRUE
161
162/*
163 *  Should the IDLE task have a floating point context?
164 *
165 *  If TRUE, then the IDLE task is created as a RTEMS_FLOATING_POINT task
166 *  and it has a floating point context which is switched in and out.
167 *  If FALSE, then the IDLE task does not have a floating point context.
168 *
169 *  Setting this to TRUE negatively impacts the time required to preempt
170 *  the IDLE task from an interrupt because the floating point context
171 *  must be saved as part of the preemption.
172 */
173
174#define CPU_IDLE_TASK_IS_FP      FALSE
175
176/*
177 *  Should the saving of the floating point registers be deferred
178 *  until a context switch is made to another different floating point
179 *  task?
180 *
181 *  If TRUE, then the floating point context will not be stored until
182 *  necessary.  It will remain in the floating point registers and not
183 *  disturned until another floating point task is switched to.
184 *
185 *  If FALSE, then the floating point context is saved when a floating
186 *  point task is switched out and restored when the next floating point
187 *  task is restored.  The state of the floating point registers between
188 *  those two operations is not specified.
189 *
190 *  If the floating point context does NOT have to be saved as part of
191 *  interrupt dispatching, then it should be safe to set this to TRUE.
192 *
193 *  Setting this flag to TRUE results in using a different algorithm
194 *  for deciding when to save and restore the floating point context.
195 *  The deferred FP switch algorithm minimizes the number of times
196 *  the FP context is saved and restored.  The FP context is not saved
197 *  until a context switch is made to another, different FP task.
198 *  Thus in a system with only one FP task, the FP context will never
199 *  be saved or restored.
200 */
201
202#define CPU_USE_DEFERRED_FP_SWITCH       TRUE
203
204/*
205 *  Does this port provide a CPU dependent IDLE task implementation?
206 *
207 *  If TRUE, then the routine _CPU_Internal_threads_Idle_thread_body
208 *  must be provided and is the default IDLE thread body instead of
209 *  _Internal_threads_Idle_thread_body.
210 *
211 *  If FALSE, then use the generic IDLE thread body if the BSP does
212 *  not provide one.
213 *
214 *  This is intended to allow for supporting processors which have
215 *  a low power or idle mode.  When the IDLE thread is executed, then
216 *  the CPU can be powered down.
217 *
218 *  The order of precedence for selecting the IDLE thread body is:
219 *
220 *    1.  BSP provided
221 *    2.  CPU dependent (if provided)
222 *    3.  generic (if no BSP and no CPU dependent)
223 */
224
225#define CPU_PROVIDES_IDLE_THREAD_BODY    TRUE
226
227/*
228 *  Does the stack grow up (toward higher addresses) or down
229 *  (toward lower addresses)?
230 *
231 *  If TRUE, then the grows upward.
232 *  If FALSE, then the grows toward smaller addresses.
233 */
234
235#define CPU_STACK_GROWS_UP               TRUE
236
237/*
238 *  The following is the variable attribute used to force alignment
239 *  of critical RTEMS structures.  On some processors it may make
240 *  sense to have these aligned on tighter boundaries than
241 *  the minimum requirements of the compiler in order to have as
242 *  much of the critical data area as possible in a cache line.
243 *
244 *  The placement of this macro in the declaration of the variables
245 *  is based on the syntactically requirements of the GNU C
246 *  "__attribute__" extension.  For example with GNU C, use
247 *  the following to force a structures to a 32 byte boundary.
248 *
249 *      __attribute__ ((aligned (32)))
250 *
251 *  NOTE:  Currently only the Priority Bit Map table uses this feature.
252 *         To benefit from using this, the data must be heavily
253 *         used so it will stay in the cache and used frequently enough
254 *         in the executive to justify turning this on.
255 */
256
257#define CPU_STRUCTURE_ALIGNMENT
258
259/*
260 *  The following defines the number of bits actually used in the
261 *  interrupt field of the task mode.  How those bits map to the
262 *  CPU interrupt levels is defined by the routine _CPU_ISR_Set_level().
263 */
264
265#define CPU_MODES_INTERRUPT_MASK   0x00000001
266
267/*
268 *  Processor defined structures
269 *
270 *  Examples structures include the descriptor tables from the i386
271 *  and the processor control structure on the i960ca.
272 */
273
274/* may need to put some structures here.  */
275
276/*
277 * Contexts
278 *
279 *  Generally there are 2 types of context to save.
280 *     1. Interrupt registers to save
281 *     2. Task level registers to save
282 *
283 *  This means we have the following 3 context items:
284 *     1. task level context stuff::  Context_Control
285 *     2. floating point task stuff:: Context_Control_fp
286 *     3. special interrupt level context :: Context_Control_interrupt
287 *
288 *  On some processors, it is cost-effective to save only the callee
289 *  preserved registers during a task context switch.  This means
290 *  that the ISR code needs to save those registers which do not
291 *  persist across function calls.  It is not mandatory to make this
292 *  distinctions between the caller/callee saves registers for the
293 *  purpose of minimizing context saved during task switch and on interrupts.
294 *  If the cost of saving extra registers is minimal, simplicity is the
295 *  choice.  Save the same context on interrupt entry as for tasks in
296 *  this case.
297 *
298 *  Additionally, if gdb is to be made aware of RTEMS tasks for this CPU, then
299 *  care should be used in designing the context area.
300 *
301 *  On some CPUs with hardware floating point support, the Context_Control_fp
302 *  structure will not be used or it simply consist of an array of a
303 *  fixed number of bytes.   This is done when the floating point context
304 *  is dumped by a "FP save context" type instruction and the format
305 *  is not really defined by the CPU.  In this case, there is no need
306 *  to figure out the exact format -- only the size.  Of course, although
307 *  this is enough information for RTEMS, it is probably not enough for
308 *  a debugger such as gdb.  But that is another problem.
309 */
310
311typedef struct {
312    unsigned32 some_integer_register;
313    unsigned32 some_system_register;
314} Context_Control;
315
316typedef struct {
317    double      some_float_register;
318} Context_Control_fp;
319
320typedef struct {
321    unsigned32 special_interrupt_register;
322} CPU_Interrupt_frame;
323
324
325/*
326 *  The following table contains the information required to configure
327 *  the XXX processor specific parameters.
328 *
329 *  NOTE: The interrupt_stack_size field is required if
330 *        CPU_ALLOCATE_INTERRUPT_STACK is defined as TRUE.
331 *
332 *        The pretasking_hook, predriver_hook, and postdriver_hook,
333 *        and the do_zero_of_workspace fields are required on ALL CPUs.
334 */
335
336typedef struct {
337  void       (*pretasking_hook)( void );
338  void       (*predriver_hook)( void );
339  void       (*postdriver_hook)( void );
340  void       (*idle_task)( void );
341  boolean      do_zero_of_workspace;
342  unsigned32   interrupt_stack_size;
343  unsigned32   extra_system_initialization_stack;
344  unsigned32   some_other_cpu_dependent_info;
345}   rtems_cpu_table;
346
347/*
348 *  This variable is optional.  It is used on CPUs on which it is difficult
349 *  to generate an "uninitialized" FP context.  It is filled in by
350 *  _CPU_Initialize and copied into the task's FP context area during
351 *  _CPU_Context_Initialize.
352 */
353
354EXTERN Context_Control_fp  _CPU_Null_fp_context;
355
356/*
357 *  On some CPUs, RTEMS supports a software managed interrupt stack.
358 *  This stack is allocated by the Interrupt Manager and the switch
359 *  is performed in _ISR_Handler.  These variables contain pointers
360 *  to the lowest and highest addresses in the chunk of memory allocated
361 *  for the interrupt stack.  Since it is unknown whether the stack
362 *  grows up or down (in general), this give the CPU dependent
363 *  code the option of picking the version it wants to use.
364 *
365 *  NOTE: These two variables are required if the macro
366 *        CPU_HAS_SOFTWARE_INTERRUPT_STACK is defined as TRUE.
367 */
368
369EXTERN void               *_CPU_Interrupt_stack_low;
370EXTERN void               *_CPU_Interrupt_stack_high;
371
372/*
373 *  With some compilation systems, it is difficult if not impossible to
374 *  call a high-level language routine from assembly language.  This
375 *  is especially true of commercial Ada compilers and name mangling
376 *  C++ ones.  This variable can be optionally defined by the CPU porter
377 *  and contains the address of the routine _Thread_Dispatch.  This
378 *  can make it easier to invoke that routine at the end of the interrupt
379 *  sequence (if a dispatch is necessary).
380 */
381
382EXTERN void           (*_CPU_Thread_dispatch_pointer)();
383
384/*
385 *  Nothing prevents the porter from declaring more CPU specific variables.
386 */
387
388/* XXX: if needed, put more variables here */
389
390/*
391 *  The size of the floating point context area.  On some CPUs this
392 *  will not be a "sizeof" because the format of the floating point
393 *  area is not defined -- only the size is.  This is usually on
394 *  CPUs with a "floating point save context" instruction.
395 */
396
397#define CPU_CONTEXT_FP_SIZE sizeof( Context_Control_fp )
398
399/*
400 *  Amount of extra stack (above minimum stack size) required by
401 *  system initialization thread.  Remember that in a multiprocessor
402 *  system the system intialization thread becomes the MP server thread.
403 */
404
405#define CPU_SYSTEM_INITIALIZATION_THREAD_EXTRA_STACK 0
406
407/*
408 *  This defines the number of entries in the ISR_Vector_table managed
409 *  by RTEMS.
410 */
411
412#define CPU_INTERRUPT_NUMBER_OF_VECTORS  32
413
414/*
415 *  Should be large enough to run all RTEMS tests.  This insures
416 *  that a "reasonable" small application should not have any problems.
417 */
418
419#define CPU_STACK_MINIMUM_SIZE          (1024*4)
420
421/*
422 *  CPU's worst alignment requirement for data types on a byte boundary.  This
423 *  alignment does not take into account the requirements for the stack.
424 */
425
426#define CPU_ALIGNMENT              8
427
428/*
429 *  This number corresponds to the byte alignment requirement for the
430 *  heap handler.  This alignment requirement may be stricter than that
431 *  for the data types alignment specified by CPU_ALIGNMENT.  It is
432 *  common for the heap to follow the same alignment requirement as
433 *  CPU_ALIGNMENT.  If the CPU_ALIGNMENT is strict enough for the heap,
434 *  then this should be set to CPU_ALIGNMENT.
435 *
436 *  NOTE:  This does not have to be a power of 2.  It does have to
437 *         be greater or equal to than CPU_ALIGNMENT.
438 */
439
440#define CPU_HEAP_ALIGNMENT         CPU_ALIGNMENT
441
442/*
443 *  This number corresponds to the byte alignment requirement for memory
444 *  buffers allocated by the partition manager.  This alignment requirement
445 *  may be stricter than that for the data types alignment specified by
446 *  CPU_ALIGNMENT.  It is common for the partition to follow the same
447 *  alignment requirement as CPU_ALIGNMENT.  If the CPU_ALIGNMENT is strict
448 *  enough for the partition, then this should be set to CPU_ALIGNMENT.
449 *
450 *  NOTE:  This does not have to be a power of 2.  It does have to
451 *         be greater or equal to than CPU_ALIGNMENT.
452 */
453
454#define CPU_PARTITION_ALIGNMENT    CPU_ALIGNMENT
455
456/*
457 *  This number corresponds to the byte alignment requirement for the
458 *  stack.  This alignment requirement may be stricter than that for the
459 *  data types alignment specified by CPU_ALIGNMENT.  If the CPU_ALIGNMENT
460 *  is strict enough for the stack, then this should be set to 0.
461 *
462 *  NOTE:  This must be a power of 2 either 0 or greater than CPU_ALIGNMENT.
463 */
464
465#define CPU_STACK_ALIGNMENT        0
466
467/* ISR handler macros */
468
469/*
470 *  Disable all interrupts for an RTEMS critical section.  The previous
471 *  level is returned in _level.
472 */
473
474#define _CPU_ISR_Disable( _isr_cookie ) \
475  { \
476    (_isr_cookie) = 0;   /* do something to prevent warnings */ \
477  }
478
479/*
480 *  Enable interrupts to the previous level (returned by _CPU_ISR_Disable).
481 *  This indicates the end of an RTEMS critical section.  The parameter
482 *  _level is not modified.
483 */
484
485#define _CPU_ISR_Enable( _isr_cookie )  \
486  { \
487  }
488
489/*
490 *  This temporarily restores the interrupt to _level before immediately
491 *  disabling them again.  This is used to divide long RTEMS critical
492 *  sections into two or more parts.  The parameter _level is not
493 * modified.
494 */
495
496#define _CPU_ISR_Flash( _isr_cookie ) \
497  { \
498  }
499
500/*
501 *  Map interrupt level in task mode onto the hardware that the CPU
502 *  actually provides.  Currently, interrupt levels which do not
503 *  map onto the CPU in a generic fashion are undefined.  Someday,
504 *  it would be nice if these were "mapped" by the application
505 *  via a callout.  For example, m68k has 8 levels 0 - 7, levels
506 *  8 - 255 would be available for bsp/application specific meaning.
507 *  This could be used to manage a programmable interrupt controller
508 *  via the rtems_task_mode directive.
509 */
510
511#define _CPU_ISR_Set_level( new_level ) \
512  { \
513  }
514
515/* end of ISR handler macros */
516
517/* Context handler macros */
518
519/*
520 *  Initialize the context to a state suitable for starting a
521 *  task after a context restore operation.  Generally, this
522 *  involves:
523 *
524 *     - setting a starting address
525 *     - preparing the stack
526 *     - preparing the stack and frame pointers
527 *     - setting the proper interrupt level in the context
528 *     - initializing the floating point context
529 *
530 *  This routine generally does not set any unnecessary register
531 *  in the context.  The state of the "general data" registers is
532 *  undefined at task start time.
533 */
534
535#define _CPU_Context_Initialize( _the_context, _stack_base, _size, \
536                                 _isr, _entry_point ) \
537  { \
538  }
539
540/*
541 *  This routine is responsible for somehow restarting the currently
542 *  executing task.  If you are lucky, then all that is necessary
543 *  is restoring the context.  Otherwise, there will need to be
544 *  a special assembly routine which does something special in this
545 *  case.  Context_Restore should work most of the time.  It will
546 *  not work if restarting self conflicts with the stack frame
547 *  assumptions of restoring a context.
548 */
549
550#define _CPU_Context_Restart_self( _the_context ) \
551   _CPU_Context_restore( (_the_context) );
552
553/*
554 *  The purpose of this macro is to allow the initial pointer into
555 *  a floating point context area (used to save the floating point
556 *  context) to be at an arbitrary place in the floating point
557 *  context area.
558 *
559 *  This is necessary because some FP units are designed to have
560 *  their context saved as a stack which grows into lower addresses.
561 *  Other FP units can be saved by simply moving registers into offsets
562 *  from the base of the context area.  Finally some FP units provide
563 *  a "dump context" instruction which could fill in from high to low
564 *  or low to high based on the whim of the CPU designers.
565 */
566
567#define _CPU_Context_Fp_start( _base, _offset ) \
568   ( (void *) (_base) + (_offset) )
569
570/*
571 *  This routine initializes the FP context area passed to it to.
572 *  There are a few standard ways in which to initialize the
573 *  floating point context.  The code included for this macro assumes
574 *  that this is a CPU in which a "initial" FP context was saved into
575 *  _CPU_Null_fp_context and it simply copies it to the destination
576 *  context passed to it.
577 *
578 *  Other models include (1) not doing anything, and (2) putting
579 *  a "null FP status word" in the correct place in the FP context.
580 */
581
582#define _CPU_Context_Initialize_fp( _destination ) \
583  { \
584   *((Context_Control_fp *) *((void **) _destination)) = _CPU_Null_fp_context; \
585  }
586
587/* end of Context handler macros */
588
589/* Fatal Error manager macros */
590
591/*
592 *  This routine copies _error into a known place -- typically a stack
593 *  location or a register, optionally disables interrupts, and
594 *  halts/stops the CPU.
595 */
596
597#define _CPU_Fatal_halt( _error ) \
598  { \
599  }
600
601/* end of Fatal Error manager macros */
602
603/* Bitfield handler macros */
604
605/*
606 *  This routine sets _output to the bit number of the first bit
607 *  set in _value.  _value is of CPU dependent type Priority_Bit_map_control.
608 *  This type may be either 16 or 32 bits wide although only the 16
609 *  least significant bits will be used.
610 *
611 *  There are a number of variables in using a "find first bit" type
612 *  instruction.
613 *
614 *    (1) What happens when run on a value of zero?
615 *    (2) Bits may be numbered from MSB to LSB or vice-versa.
616 *    (3) The numbering may be zero or one based.
617 *    (4) The "find first bit" instruction may search from MSB or LSB.
618 *
619 *  RTEMS guarantees that (1) will never happen so it is not a concern.
620 *  (2),(3), (4) are handled by the macros _CPU_Priority_mask() and
621 *  _CPU_Priority_Bits_index().  These three form a set of routines
622 *  which must logically operate together.  Bits in the _value are
623 *  set and cleared based on masks built by _CPU_Priority_mask().
624 *  The basic major and minor values calculated by _Priority_Major()
625 *  and _Priority_Minor() are "massaged" by _CPU_Priority_Bits_index()
626 *  to properly range between the values returned by the "find first bit"
627 *  instruction.  This makes it possible for _Priority_Get_highest() to
628 *  calculate the major and directly index into the minor table.
629 *  This mapping is necessary to ensure that 0 (a high priority major/minor)
630 *  is the first bit found.
631 *
632 *  This entire "find first bit" and mapping process depends heavily
633 *  on the manner in which a priority is broken into a major and minor
634 *  components with the major being the 4 MSB of a priority and minor
635 *  the 4 LSB.  Thus (0 << 4) + 0 corresponds to priority 0 -- the highest
636 *  priority.  And (15 << 4) + 14 corresponds to priority 254 -- the next
637 *  to the lowest priority.
638 *
639 *  If your CPU does not have a "find first bit" instruction, then
640 *  there are ways to make do without it.  Here are a handful of ways
641 *  to implement this in software:
642 *
643 *    - a series of 16 bit test instructions
644 *    - a "binary search using if's"
645 *    - _number = 0
646 *      if _value > 0x00ff
647 *        _value >>=8
648 *        _number = 8;
649 *
650 *      if _value > 0x0000f
651 *        _value >=8
652 *        _number += 4
653 *
654 *      _number += bit_set_table[ _value ]
655 *
656 *    where bit_set_table[ 16 ] has values which indicate the first
657 *      bit set
658 */
659
660#define _CPU_Bitfield_Find_first_bit( _value, _output ) \
661  { \
662    (_output) = 0;   /* do something to prevent warnings */ \
663  }
664
665/* end of Bitfield handler macros */
666
667/*
668 *  This routine builds the mask which corresponds to the bit fields
669 *  as searched by _CPU_Bitfield_Find_first_bit().  See the discussion
670 *  for that routine.
671 */
672
673#define _CPU_Priority_Mask( _bit_number ) \
674  ( 1 << (_bit_number) )
675
676/*
677 *  This routine translates the bit numbers returned by
678 *  _CPU_Bitfield_Find_first_bit() into something suitable for use as
679 *  a major or minor component of a priority.  See the discussion
680 *  for that routine.
681 */
682
683#define _CPU_Priority_Bits_index( _priority ) \
684  (_priority)
685
686/* end of Priority handler macros */
687
688/* functions */
689
690/*
691 *  _CPU_Initialize
692 *
693 *  This routine performs CPU dependent initialization.
694 */
695
696void _CPU_Initialize(
697  rtems_cpu_table  *cpu_table,
698  void      (*thread_dispatch)
699);
700
701/*
702 *  _CPU_ISR_install_vector
703 *
704 *  This routine installs an interrupt vector.
705 */
706
707void _CPU_ISR_install_vector(
708  unsigned32  vector,
709  proc_ptr    new_handler,
710  proc_ptr   *old_handler
711);
712
713/*
714 *  _CPU_Install_interrupt_stack
715 *
716 *  This routine installs the hardware interrupt stack pointer.
717 *
718 *  NOTE:  It need only be provided if CPU_HAS_HARDWARE_INTERRUPT_STACK
719 *         is TRUE.
720 */
721
722void _CPU_Install_interrupt_stack( void );
723
724/*
725 *  _CPU_Internal_threads_Idle_thread_body
726 *
727 *  This routine is the CPU dependent IDLE thread body.
728 *
729 *  NOTE:  It need only be provided if CPU_PROVIDES_IDLE_THREAD_BODY
730 *         is TRUE.
731 */
732
733void _CPU_Internal_threads_Idle_thread_body( void );
734
735/*
736 *  _CPU_Context_switch
737 *
738 *  This routine switches from the run context to the heir context.
739 */
740
741void _CPU_Context_switch(
742  Context_Control  *run,
743  Context_Control  *heir
744);
745
746/*
747 *  _CPU_Context_restore
748 *
749 *  This routine is generallu used only to restart self in an
750 *  efficient manner.  It may simply be a label in _CPU_Context_switch.
751 *
752 *  NOTE: May be unnecessary to reload some registers.
753 */
754
755void _CPU_Context_restore(
756  Context_Control *new_context
757);
758
759/*
760 *  _CPU_Context_save_fp
761 *
762 *  This routine saves the floating point context passed to it.
763 */
764
765void _CPU_Context_save_fp(
766  void **fp_context_ptr
767);
768
769/*
770 *  _CPU_Context_restore_fp
771 *
772 *  This routine restores the floating point context passed to it.
773 */
774
775void _CPU_Context_restore_fp(
776  void **fp_context_ptr
777);
778
779/*  The following routine swaps the endian format of an unsigned int.
780 *  It must be static because it is referenced indirectly.
781 *
782 *  This version will work on any processor, but if there is a better
783 *  way for your CPU PLEASE use it.  The most common way to do this is to:
784 *
785 *     swap least significant two bytes with 16-bit rotate
786 *     swap upper and lower 16-bits
787 *     swap most significant two bytes with 16-bit rotate
788 *
789 *  Some CPUs have special instructions which swap a 32-bit quantity in
790 *  a single instruction (e.g. i486).  It is probably best to avoid
791 *  an "endian swapping control bit" in the CPU.  One good reason is
792 *  that interrupts would probably have to be disabled to insure that
793 *  an interrupt does not try to access the same "chunk" with the wrong
794 *  endian.  Another good reason is that on some CPUs, the endian bit
795 *  endianness for ALL fetches -- both code and data -- so the code
796 *  will be fetched incorrectly.
797 */
798 
799static inline unsigned int CPU_swap_u32(
800  unsigned int value
801)
802{
803  unsigned32 byte1, byte2, byte3, byte4, swapped;
804 
805  byte4 = (value >> 24) & 0xff;
806  byte3 = (value >> 16) & 0xff;
807  byte2 = (value >> 8)  & 0xff;
808  byte1 =  value        & 0xff;
809 
810  swapped = (byte1 << 24) | (byte2 << 16) | (byte3 << 8) | byte4;
811  return( swapped );
812}
813
814#ifdef __cplusplus
815}
816#endif
817
818#endif
Note: See TracBrowser for help on using the repository browser.