source: rtems/c/src/exec/score/cpu/no_cpu/cpu.h @ 4ca27cf

4.104.114.84.95
Last change on this file since 4ca27cf was 637df35, checked in by Joel Sherrill <joel.sherrill@…>, on 07/12/95 at 19:47:25

Ada95, gnat, go32

  • Property mode set to 100644
File size: 27.1 KB
Line 
1/*  cpu.h
2 *
3 *  This include file contains information pertaining to the XXX
4 *  processor.
5 *
6 *  COPYRIGHT (c) 1989, 1990, 1991, 1992, 1993, 1994.
7 *  On-Line Applications Research Corporation (OAR).
8 *  All rights assigned to U.S. Government, 1994.
9 *
10 *  This material may be reproduced by or for the U.S. Government pursuant
11 *  to the copyright license under the clause at DFARS 252.227-7013.  This
12 *  notice must appear in all copies of this file and its derivatives.
13 *
14 *  $Id$
15 */
16
17#ifndef __CPU_h
18#define __CPU_h
19
20#ifdef __cplusplus
21extern "C" {
22#endif
23
24#include <rtems/no_cpu.h>               /* pick up machine definitions */
25#ifndef ASM
26#include <rtems/no_cputypes.h>
27#endif
28
29/* conditional compilation parameters */
30
31/*
32 *  Should the calls to _Thread_Enable_dispatch be inlined?
33 *
34 *  If TRUE, then they are inlined.
35 *  If FALSE, then a subroutine call is made.
36 *
37 *  Basically this is an example of the classic trade-off of size
38 *  versus speed.  Inlining the call (TRUE) typically increases the
39 *  size of RTEMS while speeding up the enabling of dispatching.
40 *  [NOTE: In general, the _Thread_Dispatch_disable_level will
41 *  only be 0 or 1 unless you are in an interrupt handler and that
42 *  interrupt handler invokes the executive.]  When not inlined
43 *  something calls _Thread_Enable_dispatch which in turns calls
44 *  _Thread_Dispatch.  If the enable dispatch is inlined, then
45 *  one subroutine call is avoided entirely.]
46 */
47
48#define CPU_INLINE_ENABLE_DISPATCH       FALSE
49
50/*
51 *  Should the body of the search loops in _Thread_queue_Enqueue_priority
52 *  be unrolled one time?  In unrolled each iteration of the loop examines
53 *  two "nodes" on the chain being searched.  Otherwise, only one node
54 *  is examined per iteration.
55 *
56 *  If TRUE, then the loops are unrolled.
57 *  If FALSE, then the loops are not unrolled.
58 *
59 *  The primary factor in making this decision is the cost of disabling
60 *  and enabling interrupts (_ISR_Flash) versus the cost of rest of the
61 *  body of the loop.  On some CPUs, the flash is more expensive than
62 *  one iteration of the loop body.  In this case, it might be desirable
63 *  to unroll the loop.  It is important to note that on some CPUs, this
64 *  code is the longest interrupt disable period in RTEMS.  So it is
65 *  necessary to strike a balance when setting this parameter.
66 */
67
68#define CPU_UNROLL_ENQUEUE_PRIORITY      TRUE
69
70/*
71 *  Does RTEMS manage a dedicated interrupt stack in software?
72 *
73 *  If TRUE, then a stack is allocated in _Interrupt_Manager_initialization.
74 *  If FALSE, nothing is done.
75 *
76 *  If the CPU supports a dedicated interrupt stack in hardware,
77 *  then it is generally the responsibility of the BSP to allocate it
78 *  and set it up.
79 *
80 *  If the CPU does not support a dedicated interrupt stack, then
81 *  the porter has two options: (1) execute interrupts on the
82 *  stack of the interrupted task, and (2) have RTEMS manage a dedicated
83 *  interrupt stack.
84 *
85 *  If this is TRUE, CPU_ALLOCATE_INTERRUPT_STACK should also be TRUE.
86 *
87 *  Only one of CPU_HAS_SOFTWARE_INTERRUPT_STACK and
88 *  CPU_HAS_HARDWARE_INTERRUPT_STACK should be set to TRUE.  It is
89 *  possible that both are FALSE for a particular CPU.  Although it
90 *  is unclear what that would imply about the interrupt processing
91 *  procedure on that CPU.
92 */
93
94#define CPU_HAS_SOFTWARE_INTERRUPT_STACK FALSE
95
96/*
97 *  Does this CPU have hardware support for a dedicated interrupt stack?
98 *
99 *  If TRUE, then it must be installed during initialization.
100 *  If FALSE, then no installation is performed.
101 *
102 *  If this is TRUE, CPU_ALLOCATE_INTERRUPT_STACK should also be TRUE.
103 *
104 *  Only one of CPU_HAS_SOFTWARE_INTERRUPT_STACK and
105 *  CPU_HAS_HARDWARE_INTERRUPT_STACK should be set to TRUE.  It is
106 *  possible that both are FALSE for a particular CPU.  Although it
107 *  is unclear what that would imply about the interrupt processing
108 *  procedure on that CPU.
109 */
110
111#define CPU_HAS_HARDWARE_INTERRUPT_STACK TRUE
112
113/*
114 *  Does RTEMS allocate a dedicated interrupt stack in the Interrupt Manager?
115 *
116 *  If TRUE, then the memory is allocated during initialization.
117 *  If FALSE, then the memory is allocated during initialization.
118 *
119 *  This should be TRUE is CPU_HAS_SOFTWARE_INTERRUPT_STACK is TRUE
120 *  or CPU_INSTALL_HARDWARE_INTERRUPT_STACK is TRUE.
121 */
122
123#define CPU_ALLOCATE_INTERRUPT_STACK TRUE
124
125/*
126 *  Does the CPU have hardware floating point?
127 *
128 *  If TRUE, then the RTEMS_FLOATING_POINT task attribute is supported.
129 *  If FALSE, then the RTEMS_FLOATING_POINT task attribute is ignored.
130 *
131 *  If there is a FP coprocessor such as the i387 or mc68881, then
132 *  the answer is TRUE.
133 *
134 *  The macro name "NO_CPU_HAS_FPU" should be made CPU specific.
135 *  It indicates whether or not this CPU model has FP support.  For
136 *  example, it would be possible to have an i386_nofp CPU model
137 *  which set this to false to indicate that you have an i386 without
138 *  an i387 and wish to leave floating point support out of RTEMS.
139 */
140
141#if ( NO_CPU_HAS_FPU == 1 )
142#define CPU_HARDWARE_FP     TRUE
143#else
144#define CPU_HARDWARE_FP     FALSE
145#endif
146
147/*
148 *  Are all tasks RTEMS_FLOATING_POINT tasks implicitly?
149 *
150 *  If TRUE, then the RTEMS_FLOATING_POINT task attribute is assumed.
151 *  If FALSE, then the RTEMS_FLOATING_POINT task attribute is followed.
152 *
153 *  So far, the only CPU in which this option has been used is the
154 *  HP PA-RISC.  The HP C compiler and gcc both implicitly use the
155 *  floating point registers to perform integer multiplies.  If
156 *  a function which you would not think utilize the FP unit DOES,
157 *  then one can not easily predict which tasks will use the FP hardware.
158 *  In this case, this option should be TRUE.
159 *
160 *  If CPU_HARDWARE_FP is FALSE, then this should be FALSE as well.
161 */
162
163#define CPU_ALL_TASKS_ARE_FP     TRUE
164
165/*
166 *  Should the IDLE task have a floating point context?
167 *
168 *  If TRUE, then the IDLE task is created as a RTEMS_FLOATING_POINT task
169 *  and it has a floating point context which is switched in and out.
170 *  If FALSE, then the IDLE task does not have a floating point context.
171 *
172 *  Setting this to TRUE negatively impacts the time required to preempt
173 *  the IDLE task from an interrupt because the floating point context
174 *  must be saved as part of the preemption.
175 */
176
177#define CPU_IDLE_TASK_IS_FP      FALSE
178
179/*
180 *  Should the saving of the floating point registers be deferred
181 *  until a context switch is made to another different floating point
182 *  task?
183 *
184 *  If TRUE, then the floating point context will not be stored until
185 *  necessary.  It will remain in the floating point registers and not
186 *  disturned until another floating point task is switched to.
187 *
188 *  If FALSE, then the floating point context is saved when a floating
189 *  point task is switched out and restored when the next floating point
190 *  task is restored.  The state of the floating point registers between
191 *  those two operations is not specified.
192 *
193 *  If the floating point context does NOT have to be saved as part of
194 *  interrupt dispatching, then it should be safe to set this to TRUE.
195 *
196 *  Setting this flag to TRUE results in using a different algorithm
197 *  for deciding when to save and restore the floating point context.
198 *  The deferred FP switch algorithm minimizes the number of times
199 *  the FP context is saved and restored.  The FP context is not saved
200 *  until a context switch is made to another, different FP task.
201 *  Thus in a system with only one FP task, the FP context will never
202 *  be saved or restored.
203 */
204
205#define CPU_USE_DEFERRED_FP_SWITCH       TRUE
206
207/*
208 *  Does this port provide a CPU dependent IDLE task implementation?
209 *
210 *  If TRUE, then the routine _CPU_Internal_threads_Idle_thread_body
211 *  must be provided and is the default IDLE thread body instead of
212 *  _Internal_threads_Idle_thread_body.
213 *
214 *  If FALSE, then use the generic IDLE thread body if the BSP does
215 *  not provide one.
216 *
217 *  This is intended to allow for supporting processors which have
218 *  a low power or idle mode.  When the IDLE thread is executed, then
219 *  the CPU can be powered down.
220 *
221 *  The order of precedence for selecting the IDLE thread body is:
222 *
223 *    1.  BSP provided
224 *    2.  CPU dependent (if provided)
225 *    3.  generic (if no BSP and no CPU dependent)
226 */
227
228#define CPU_PROVIDES_IDLE_THREAD_BODY    TRUE
229
230/*
231 *  Does the stack grow up (toward higher addresses) or down
232 *  (toward lower addresses)?
233 *
234 *  If TRUE, then the grows upward.
235 *  If FALSE, then the grows toward smaller addresses.
236 */
237
238#define CPU_STACK_GROWS_UP               TRUE
239
240/*
241 *  The following is the variable attribute used to force alignment
242 *  of critical RTEMS structures.  On some processors it may make
243 *  sense to have these aligned on tighter boundaries than
244 *  the minimum requirements of the compiler in order to have as
245 *  much of the critical data area as possible in a cache line.
246 *
247 *  The placement of this macro in the declaration of the variables
248 *  is based on the syntactically requirements of the GNU C
249 *  "__attribute__" extension.  For example with GNU C, use
250 *  the following to force a structures to a 32 byte boundary.
251 *
252 *      __attribute__ ((aligned (32)))
253 *
254 *  NOTE:  Currently only the Priority Bit Map table uses this feature.
255 *         To benefit from using this, the data must be heavily
256 *         used so it will stay in the cache and used frequently enough
257 *         in the executive to justify turning this on.
258 */
259
260#define CPU_STRUCTURE_ALIGNMENT
261
262/*
263 *  The following defines the number of bits actually used in the
264 *  interrupt field of the task mode.  How those bits map to the
265 *  CPU interrupt levels is defined by the routine _CPU_ISR_Set_level().
266 */
267
268#define CPU_MODES_INTERRUPT_MASK   0x00000001
269
270/*
271 *  Processor defined structures
272 *
273 *  Examples structures include the descriptor tables from the i386
274 *  and the processor control structure on the i960ca.
275 */
276
277/* may need to put some structures here.  */
278
279/*
280 * Contexts
281 *
282 *  Generally there are 2 types of context to save.
283 *     1. Interrupt registers to save
284 *     2. Task level registers to save
285 *
286 *  This means we have the following 3 context items:
287 *     1. task level context stuff::  Context_Control
288 *     2. floating point task stuff:: Context_Control_fp
289 *     3. special interrupt level context :: Context_Control_interrupt
290 *
291 *  On some processors, it is cost-effective to save only the callee
292 *  preserved registers during a task context switch.  This means
293 *  that the ISR code needs to save those registers which do not
294 *  persist across function calls.  It is not mandatory to make this
295 *  distinctions between the caller/callee saves registers for the
296 *  purpose of minimizing context saved during task switch and on interrupts.
297 *  If the cost of saving extra registers is minimal, simplicity is the
298 *  choice.  Save the same context on interrupt entry as for tasks in
299 *  this case.
300 *
301 *  Additionally, if gdb is to be made aware of RTEMS tasks for this CPU, then
302 *  care should be used in designing the context area.
303 *
304 *  On some CPUs with hardware floating point support, the Context_Control_fp
305 *  structure will not be used or it simply consist of an array of a
306 *  fixed number of bytes.   This is done when the floating point context
307 *  is dumped by a "FP save context" type instruction and the format
308 *  is not really defined by the CPU.  In this case, there is no need
309 *  to figure out the exact format -- only the size.  Of course, although
310 *  this is enough information for RTEMS, it is probably not enough for
311 *  a debugger such as gdb.  But that is another problem.
312 */
313
314typedef struct {
315    unsigned32 some_integer_register;
316    unsigned32 some_system_register;
317} Context_Control;
318
319typedef struct {
320    double      some_float_register;
321} Context_Control_fp;
322
323typedef struct {
324    unsigned32 special_interrupt_register;
325} CPU_Interrupt_frame;
326
327
328/*
329 *  The following table contains the information required to configure
330 *  the XXX processor specific parameters.
331 *
332 *  NOTE: The interrupt_stack_size field is required if
333 *        CPU_ALLOCATE_INTERRUPT_STACK is defined as TRUE.
334 *
335 *        The pretasking_hook, predriver_hook, and postdriver_hook,
336 *        and the do_zero_of_workspace fields are required on ALL CPUs.
337 */
338
339typedef struct {
340  void       (*pretasking_hook)( void );
341  void       (*predriver_hook)( void );
342  void       (*postdriver_hook)( void );
343  void       (*idle_task)( void );
344  boolean      do_zero_of_workspace;
345  unsigned32   interrupt_stack_size;
346  unsigned32   extra_system_initialization_stack;
347  unsigned32   some_other_cpu_dependent_info;
348}   rtems_cpu_table;
349
350/*
351 *  This variable is optional.  It is used on CPUs on which it is difficult
352 *  to generate an "uninitialized" FP context.  It is filled in by
353 *  _CPU_Initialize and copied into the task's FP context area during
354 *  _CPU_Context_Initialize.
355 */
356
357EXTERN Context_Control_fp  _CPU_Null_fp_context;
358
359/*
360 *  On some CPUs, RTEMS supports a software managed interrupt stack.
361 *  This stack is allocated by the Interrupt Manager and the switch
362 *  is performed in _ISR_Handler.  These variables contain pointers
363 *  to the lowest and highest addresses in the chunk of memory allocated
364 *  for the interrupt stack.  Since it is unknown whether the stack
365 *  grows up or down (in general), this give the CPU dependent
366 *  code the option of picking the version it wants to use.
367 *
368 *  NOTE: These two variables are required if the macro
369 *        CPU_HAS_SOFTWARE_INTERRUPT_STACK is defined as TRUE.
370 */
371
372EXTERN void               *_CPU_Interrupt_stack_low;
373EXTERN void               *_CPU_Interrupt_stack_high;
374
375/*
376 *  With some compilation systems, it is difficult if not impossible to
377 *  call a high-level language routine from assembly language.  This
378 *  is especially true of commercial Ada compilers and name mangling
379 *  C++ ones.  This variable can be optionally defined by the CPU porter
380 *  and contains the address of the routine _Thread_Dispatch.  This
381 *  can make it easier to invoke that routine at the end of the interrupt
382 *  sequence (if a dispatch is necessary).
383 */
384
385EXTERN void           (*_CPU_Thread_dispatch_pointer)();
386
387/*
388 *  Nothing prevents the porter from declaring more CPU specific variables.
389 */
390
391/* XXX: if needed, put more variables here */
392
393/*
394 *  The size of the floating point context area.  On some CPUs this
395 *  will not be a "sizeof" because the format of the floating point
396 *  area is not defined -- only the size is.  This is usually on
397 *  CPUs with a "floating point save context" instruction.
398 */
399
400#define CPU_CONTEXT_FP_SIZE sizeof( Context_Control_fp )
401
402/*
403 *  Amount of extra stack (above minimum stack size) required by
404 *  system initialization thread.  Remember that in a multiprocessor
405 *  system the system intialization thread becomes the MP server thread.
406 */
407
408#define CPU_SYSTEM_INITIALIZATION_THREAD_EXTRA_STACK 0
409
410/*
411 *  This defines the number of entries in the ISR_Vector_table managed
412 *  by RTEMS.
413 */
414
415#define CPU_INTERRUPT_NUMBER_OF_VECTORS  32
416
417/*
418 *  Should be large enough to run all RTEMS tests.  This insures
419 *  that a "reasonable" small application should not have any problems.
420 */
421
422#define CPU_STACK_MINIMUM_SIZE          (1024*4)
423
424/*
425 *  CPU's worst alignment requirement for data types on a byte boundary.  This
426 *  alignment does not take into account the requirements for the stack.
427 */
428
429#define CPU_ALIGNMENT              8
430
431/*
432 *  This number corresponds to the byte alignment requirement for the
433 *  heap handler.  This alignment requirement may be stricter than that
434 *  for the data types alignment specified by CPU_ALIGNMENT.  It is
435 *  common for the heap to follow the same alignment requirement as
436 *  CPU_ALIGNMENT.  If the CPU_ALIGNMENT is strict enough for the heap,
437 *  then this should be set to CPU_ALIGNMENT.
438 *
439 *  NOTE:  This does not have to be a power of 2.  It does have to
440 *         be greater or equal to than CPU_ALIGNMENT.
441 */
442
443#define CPU_HEAP_ALIGNMENT         CPU_ALIGNMENT
444
445/*
446 *  This number corresponds to the byte alignment requirement for memory
447 *  buffers allocated by the partition manager.  This alignment requirement
448 *  may be stricter than that for the data types alignment specified by
449 *  CPU_ALIGNMENT.  It is common for the partition to follow the same
450 *  alignment requirement as CPU_ALIGNMENT.  If the CPU_ALIGNMENT is strict
451 *  enough for the partition, then this should be set to CPU_ALIGNMENT.
452 *
453 *  NOTE:  This does not have to be a power of 2.  It does have to
454 *         be greater or equal to than CPU_ALIGNMENT.
455 */
456
457#define CPU_PARTITION_ALIGNMENT    CPU_ALIGNMENT
458
459/*
460 *  This number corresponds to the byte alignment requirement for the
461 *  stack.  This alignment requirement may be stricter than that for the
462 *  data types alignment specified by CPU_ALIGNMENT.  If the CPU_ALIGNMENT
463 *  is strict enough for the stack, then this should be set to 0.
464 *
465 *  NOTE:  This must be a power of 2 either 0 or greater than CPU_ALIGNMENT.
466 */
467
468#define CPU_STACK_ALIGNMENT        0
469
470/* ISR handler macros */
471
472/*
473 *  Disable all interrupts for an RTEMS critical section.  The previous
474 *  level is returned in _level.
475 */
476
477#define _CPU_ISR_Disable( _isr_cookie ) \
478  { \
479    (_isr_cookie) = 0;   /* do something to prevent warnings */ \
480  }
481
482/*
483 *  Enable interrupts to the previous level (returned by _CPU_ISR_Disable).
484 *  This indicates the end of an RTEMS critical section.  The parameter
485 *  _level is not modified.
486 */
487
488#define _CPU_ISR_Enable( _isr_cookie )  \
489  { \
490  }
491
492/*
493 *  This temporarily restores the interrupt to _level before immediately
494 *  disabling them again.  This is used to divide long RTEMS critical
495 *  sections into two or more parts.  The parameter _level is not
496 * modified.
497 */
498
499#define _CPU_ISR_Flash( _isr_cookie ) \
500  { \
501  }
502
503/*
504 *  Map interrupt level in task mode onto the hardware that the CPU
505 *  actually provides.  Currently, interrupt levels which do not
506 *  map onto the CPU in a generic fashion are undefined.  Someday,
507 *  it would be nice if these were "mapped" by the application
508 *  via a callout.  For example, m68k has 8 levels 0 - 7, levels
509 *  8 - 255 would be available for bsp/application specific meaning.
510 *  This could be used to manage a programmable interrupt controller
511 *  via the rtems_task_mode directive.
512 */
513
514#define _CPU_ISR_Set_level( new_level ) \
515  { \
516  }
517
518/* end of ISR handler macros */
519
520/* Context handler macros */
521
522/*
523 *  Initialize the context to a state suitable for starting a
524 *  task after a context restore operation.  Generally, this
525 *  involves:
526 *
527 *     - setting a starting address
528 *     - preparing the stack
529 *     - preparing the stack and frame pointers
530 *     - setting the proper interrupt level in the context
531 *     - initializing the floating point context
532 *
533 *  This routine generally does not set any unnecessary register
534 *  in the context.  The state of the "general data" registers is
535 *  undefined at task start time.
536 */
537
538#define _CPU_Context_Initialize( _the_context, _stack_base, _size, \
539                                 _isr, _entry_point ) \
540  { \
541  }
542
543/*
544 *  This routine is responsible for somehow restarting the currently
545 *  executing task.  If you are lucky, then all that is necessary
546 *  is restoring the context.  Otherwise, there will need to be
547 *  a special assembly routine which does something special in this
548 *  case.  Context_Restore should work most of the time.  It will
549 *  not work if restarting self conflicts with the stack frame
550 *  assumptions of restoring a context.
551 */
552
553#define _CPU_Context_Restart_self( _the_context ) \
554   _CPU_Context_restore( (_the_context) );
555
556/*
557 *  The purpose of this macro is to allow the initial pointer into
558 *  a floating point context area (used to save the floating point
559 *  context) to be at an arbitrary place in the floating point
560 *  context area.
561 *
562 *  This is necessary because some FP units are designed to have
563 *  their context saved as a stack which grows into lower addresses.
564 *  Other FP units can be saved by simply moving registers into offsets
565 *  from the base of the context area.  Finally some FP units provide
566 *  a "dump context" instruction which could fill in from high to low
567 *  or low to high based on the whim of the CPU designers.
568 */
569
570#define _CPU_Context_Fp_start( _base, _offset ) \
571   ( (void *) (_base) + (_offset) )
572
573/*
574 *  This routine initializes the FP context area passed to it to.
575 *  There are a few standard ways in which to initialize the
576 *  floating point context.  The code included for this macro assumes
577 *  that this is a CPU in which a "initial" FP context was saved into
578 *  _CPU_Null_fp_context and it simply copies it to the destination
579 *  context passed to it.
580 *
581 *  Other models include (1) not doing anything, and (2) putting
582 *  a "null FP status word" in the correct place in the FP context.
583 */
584
585#define _CPU_Context_Initialize_fp( _destination ) \
586  { \
587   *((Context_Control_fp *) *((void **) _destination)) = _CPU_Null_fp_context; \
588  }
589
590/* end of Context handler macros */
591
592/* Fatal Error manager macros */
593
594/*
595 *  This routine copies _error into a known place -- typically a stack
596 *  location or a register, optionally disables interrupts, and
597 *  halts/stops the CPU.
598 */
599
600#define _CPU_Fatal_halt( _error ) \
601  { \
602  }
603
604/* end of Fatal Error manager macros */
605
606/* Bitfield handler macros */
607
608/*
609 *  This routine sets _output to the bit number of the first bit
610 *  set in _value.  _value is of CPU dependent type Priority_Bit_map_control.
611 *  This type may be either 16 or 32 bits wide although only the 16
612 *  least significant bits will be used.
613 *
614 *  There are a number of variables in using a "find first bit" type
615 *  instruction.
616 *
617 *    (1) What happens when run on a value of zero?
618 *    (2) Bits may be numbered from MSB to LSB or vice-versa.
619 *    (3) The numbering may be zero or one based.
620 *    (4) The "find first bit" instruction may search from MSB or LSB.
621 *
622 *  RTEMS guarantees that (1) will never happen so it is not a concern.
623 *  (2),(3), (4) are handled by the macros _CPU_Priority_mask() and
624 *  _CPU_Priority_Bits_index().  These three form a set of routines
625 *  which must logically operate together.  Bits in the _value are
626 *  set and cleared based on masks built by _CPU_Priority_mask().
627 *  The basic major and minor values calculated by _Priority_Major()
628 *  and _Priority_Minor() are "massaged" by _CPU_Priority_Bits_index()
629 *  to properly range between the values returned by the "find first bit"
630 *  instruction.  This makes it possible for _Priority_Get_highest() to
631 *  calculate the major and directly index into the minor table.
632 *  This mapping is necessary to ensure that 0 (a high priority major/minor)
633 *  is the first bit found.
634 *
635 *  This entire "find first bit" and mapping process depends heavily
636 *  on the manner in which a priority is broken into a major and minor
637 *  components with the major being the 4 MSB of a priority and minor
638 *  the 4 LSB.  Thus (0 << 4) + 0 corresponds to priority 0 -- the highest
639 *  priority.  And (15 << 4) + 14 corresponds to priority 254 -- the next
640 *  to the lowest priority.
641 *
642 *  If your CPU does not have a "find first bit" instruction, then
643 *  there are ways to make do without it.  Here are a handful of ways
644 *  to implement this in software:
645 *
646 *    - a series of 16 bit test instructions
647 *    - a "binary search using if's"
648 *    - _number = 0
649 *      if _value > 0x00ff
650 *        _value >>=8
651 *        _number = 8;
652 *
653 *      if _value > 0x0000f
654 *        _value >=8
655 *        _number += 4
656 *
657 *      _number += bit_set_table[ _value ]
658 *
659 *    where bit_set_table[ 16 ] has values which indicate the first
660 *      bit set
661 */
662
663#define _CPU_Bitfield_Find_first_bit( _value, _output ) \
664  { \
665    (_output) = 0;   /* do something to prevent warnings */ \
666  }
667
668/* end of Bitfield handler macros */
669
670/*
671 *  This routine builds the mask which corresponds to the bit fields
672 *  as searched by _CPU_Bitfield_Find_first_bit().  See the discussion
673 *  for that routine.
674 */
675
676#define _CPU_Priority_Mask( _bit_number ) \
677  ( 1 << (_bit_number) )
678
679/*
680 *  This routine translates the bit numbers returned by
681 *  _CPU_Bitfield_Find_first_bit() into something suitable for use as
682 *  a major or minor component of a priority.  See the discussion
683 *  for that routine.
684 */
685
686#define _CPU_Priority_Bits_index( _priority ) \
687  (_priority)
688
689/* end of Priority handler macros */
690
691/* functions */
692
693/*
694 *  _CPU_Initialize
695 *
696 *  This routine performs CPU dependent initialization.
697 */
698
699void _CPU_Initialize(
700  rtems_cpu_table  *cpu_table,
701  void      (*thread_dispatch)
702);
703
704/*
705 *  _CPU_ISR_install_raw_handler
706 *
707 *  This routine installs a "raw" interrupt handler directly into the
708 *  processor's vector table.
709 */
710 
711void _CPU_ISR_install_raw_handler(
712  unsigned32  vector,
713  proc_ptr    new_handler,
714  proc_ptr   *old_handler
715);
716
717/*
718 *  _CPU_ISR_install_vector
719 *
720 *  This routine installs an interrupt vector.
721 */
722
723void _CPU_ISR_install_vector(
724  unsigned32  vector,
725  proc_ptr    new_handler,
726  proc_ptr   *old_handler
727);
728
729/*
730 *  _CPU_Install_interrupt_stack
731 *
732 *  This routine installs the hardware interrupt stack pointer.
733 *
734 *  NOTE:  It need only be provided if CPU_HAS_HARDWARE_INTERRUPT_STACK
735 *         is TRUE.
736 */
737
738void _CPU_Install_interrupt_stack( void );
739
740/*
741 *  _CPU_Internal_threads_Idle_thread_body
742 *
743 *  This routine is the CPU dependent IDLE thread body.
744 *
745 *  NOTE:  It need only be provided if CPU_PROVIDES_IDLE_THREAD_BODY
746 *         is TRUE.
747 */
748
749void _CPU_Internal_threads_Idle_thread_body( void );
750
751/*
752 *  _CPU_Context_switch
753 *
754 *  This routine switches from the run context to the heir context.
755 */
756
757void _CPU_Context_switch(
758  Context_Control  *run,
759  Context_Control  *heir
760);
761
762/*
763 *  _CPU_Context_restore
764 *
765 *  This routine is generallu used only to restart self in an
766 *  efficient manner.  It may simply be a label in _CPU_Context_switch.
767 *
768 *  NOTE: May be unnecessary to reload some registers.
769 */
770
771void _CPU_Context_restore(
772  Context_Control *new_context
773);
774
775/*
776 *  _CPU_Context_save_fp
777 *
778 *  This routine saves the floating point context passed to it.
779 */
780
781void _CPU_Context_save_fp(
782  void **fp_context_ptr
783);
784
785/*
786 *  _CPU_Context_restore_fp
787 *
788 *  This routine restores the floating point context passed to it.
789 */
790
791void _CPU_Context_restore_fp(
792  void **fp_context_ptr
793);
794
795/*  The following routine swaps the endian format of an unsigned int.
796 *  It must be static because it is referenced indirectly.
797 *
798 *  This version will work on any processor, but if there is a better
799 *  way for your CPU PLEASE use it.  The most common way to do this is to:
800 *
801 *     swap least significant two bytes with 16-bit rotate
802 *     swap upper and lower 16-bits
803 *     swap most significant two bytes with 16-bit rotate
804 *
805 *  Some CPUs have special instructions which swap a 32-bit quantity in
806 *  a single instruction (e.g. i486).  It is probably best to avoid
807 *  an "endian swapping control bit" in the CPU.  One good reason is
808 *  that interrupts would probably have to be disabled to insure that
809 *  an interrupt does not try to access the same "chunk" with the wrong
810 *  endian.  Another good reason is that on some CPUs, the endian bit
811 *  endianness for ALL fetches -- both code and data -- so the code
812 *  will be fetched incorrectly.
813 */
814 
815static inline unsigned int CPU_swap_u32(
816  unsigned int value
817)
818{
819  unsigned32 byte1, byte2, byte3, byte4, swapped;
820 
821  byte4 = (value >> 24) & 0xff;
822  byte3 = (value >> 16) & 0xff;
823  byte2 = (value >> 8)  & 0xff;
824  byte1 =  value        & 0xff;
825 
826  swapped = (byte1 << 24) | (byte2 << 16) | (byte3 << 8) | byte4;
827  return( swapped );
828}
829
830#ifdef __cplusplus
831}
832#endif
833
834#endif
Note: See TracBrowser for help on using the repository browser.