source: rtems/c/src/exec/score/cpu/mips64orion/rtems/score/cpu.h @ d6ea098

4.104.114.84.95
Last change on this file since d6ea098 was d6ea098, checked in by Joel Sherrill <joel.sherrill@…>, on 01/03/01 at 16:37:08

2001-01-03 Joel Sherrill <joel@…>

  • rtems/score/cpu.h: Added _CPU_Initialize_vectors().
  • Property mode set to 100644
File size: 31.6 KB
Line 
1/*  cpu.h
2 *
3 *  This include file contains information pertaining to the IDT 4650
4 *  processor.
5 *
6 *  Author:     Craig Lebakken <craigl@transition.com>
7 *
8 *  COPYRIGHT (c) 1996 by Transition Networks Inc.
9 *
10 *  To anyone who acknowledges that this file is provided "AS IS"
11 *  without any express or implied warranty:
12 *      permission to use, copy, modify, and distribute this file
13 *      for any purpose is hereby granted without fee, provided that
14 *      the above copyright notice and this notice appears in all
15 *      copies, and that the name of Transition Networks not be used in
16 *      advertising or publicity pertaining to distribution of the
17 *      software without specific, written prior permission.
18 *      Transition Networks makes no representations about the suitability
19 *      of this software for any purpose.
20 *
21 *  Derived from source copyrighted as follows:
22 *
23 *  COPYRIGHT (c) 1989-1999.
24 *  On-Line Applications Research Corporation (OAR).
25 *
26 *  The license and distribution terms for this file may be
27 *  found in the file LICENSE in this distribution or at
28 *  http://www.OARcorp.com/rtems/license.html.
29 *
30 *  $Id$
31 */
32/* @(#)cpu.h       08/29/96     1.7 */
33
34#ifndef __CPU_h
35#define __CPU_h
36
37#ifdef __cplusplus
38extern "C" {
39#endif
40
41#include <rtems/score/mips64orion.h>       /* pick up machine definitions */
42#ifndef ASM
43#include <rtems/score/mipstypes.h>
44#endif
45
46extern int mips_disable_interrupts( void );
47extern void mips_enable_interrupts( int _level );
48extern int mips_disable_global_interrupts( void );
49extern void mips_enable_global_interrupts( void );
50extern void mips_fatal_error ( int error );
51
52/* conditional compilation parameters */
53
54/*
55 *  Should the calls to _Thread_Enable_dispatch be inlined?
56 *
57 *  If TRUE, then they are inlined.
58 *  If FALSE, then a subroutine call is made.
59 *
60 *  Basically this is an example of the classic trade-off of size
61 *  versus speed.  Inlining the call (TRUE) typically increases the
62 *  size of RTEMS while speeding up the enabling of dispatching.
63 *  [NOTE: In general, the _Thread_Dispatch_disable_level will
64 *  only be 0 or 1 unless you are in an interrupt handler and that
65 *  interrupt handler invokes the executive.]  When not inlined
66 *  something calls _Thread_Enable_dispatch which in turns calls
67 *  _Thread_Dispatch.  If the enable dispatch is inlined, then
68 *  one subroutine call is avoided entirely.]
69 */
70
71#define CPU_INLINE_ENABLE_DISPATCH       TRUE
72
73/*
74 *  Should the body of the search loops in _Thread_queue_Enqueue_priority
75 *  be unrolled one time?  In unrolled each iteration of the loop examines
76 *  two "nodes" on the chain being searched.  Otherwise, only one node
77 *  is examined per iteration.
78 *
79 *  If TRUE, then the loops are unrolled.
80 *  If FALSE, then the loops are not unrolled.
81 *
82 *  The primary factor in making this decision is the cost of disabling
83 *  and enabling interrupts (_ISR_Flash) versus the cost of rest of the
84 *  body of the loop.  On some CPUs, the flash is more expensive than
85 *  one iteration of the loop body.  In this case, it might be desirable
86 *  to unroll the loop.  It is important to note that on some CPUs, this
87 *  code is the longest interrupt disable period in RTEMS.  So it is
88 *  necessary to strike a balance when setting this parameter.
89 */
90
91#define CPU_UNROLL_ENQUEUE_PRIORITY      TRUE
92
93/*
94 *  Does RTEMS manage a dedicated interrupt stack in software?
95 *
96 *  If TRUE, then a stack is allocated in _ISR_Handler_initialization.
97 *  If FALSE, nothing is done.
98 *
99 *  If the CPU supports a dedicated interrupt stack in hardware,
100 *  then it is generally the responsibility of the BSP to allocate it
101 *  and set it up.
102 *
103 *  If the CPU does not support a dedicated interrupt stack, then
104 *  the porter has two options: (1) execute interrupts on the
105 *  stack of the interrupted task, and (2) have RTEMS manage a dedicated
106 *  interrupt stack.
107 *
108 *  If this is TRUE, CPU_ALLOCATE_INTERRUPT_STACK should also be TRUE.
109 *
110 *  Only one of CPU_HAS_SOFTWARE_INTERRUPT_STACK and
111 *  CPU_HAS_HARDWARE_INTERRUPT_STACK should be set to TRUE.  It is
112 *  possible that both are FALSE for a particular CPU.  Although it
113 *  is unclear what that would imply about the interrupt processing
114 *  procedure on that CPU.
115 */
116
117#define CPU_HAS_SOFTWARE_INTERRUPT_STACK FALSE
118
119/*
120 *  Does this CPU have hardware support for a dedicated interrupt stack?
121 *
122 *  If TRUE, then it must be installed during initialization.
123 *  If FALSE, then no installation is performed.
124 *
125 *  If this is TRUE, CPU_ALLOCATE_INTERRUPT_STACK should also be TRUE.
126 *
127 *  Only one of CPU_HAS_SOFTWARE_INTERRUPT_STACK and
128 *  CPU_HAS_HARDWARE_INTERRUPT_STACK should be set to TRUE.  It is
129 *  possible that both are FALSE for a particular CPU.  Although it
130 *  is unclear what that would imply about the interrupt processing
131 *  procedure on that CPU.
132 */
133
134#define CPU_HAS_HARDWARE_INTERRUPT_STACK FALSE
135
136/*
137 *  Does RTEMS allocate a dedicated interrupt stack in the Interrupt Manager?
138 *
139 *  If TRUE, then the memory is allocated during initialization.
140 *  If FALSE, then the memory is allocated during initialization.
141 *
142 *  This should be TRUE is CPU_HAS_SOFTWARE_INTERRUPT_STACK is TRUE
143 *  or CPU_INSTALL_HARDWARE_INTERRUPT_STACK is TRUE.
144 */
145
146#define CPU_ALLOCATE_INTERRUPT_STACK FALSE
147
148/*
149 *  Does the RTEMS invoke the user's ISR with the vector number and
150 *  a pointer to the saved interrupt frame (1) or just the vector
151 *  number (0)?
152 */
153
154#define CPU_ISR_PASSES_FRAME_POINTER 0
155
156/*
157 *  Does the CPU have hardware floating point?
158 *
159 *  If TRUE, then the RTEMS_FLOATING_POINT task attribute is supported.
160 *  If FALSE, then the RTEMS_FLOATING_POINT task attribute is ignored.
161 *
162 *  If there is a FP coprocessor such as the i387 or mc68881, then
163 *  the answer is TRUE.
164 *
165 *  The macro name "MIPS64ORION_HAS_FPU" should be made CPU specific.
166 *  It indicates whether or not this CPU model has FP support.  For
167 *  example, it would be possible to have an i386_nofp CPU model
168 *  which set this to false to indicate that you have an i386 without
169 *  an i387 and wish to leave floating point support out of RTEMS.
170 */
171
172#if ( MIPS64ORION_HAS_FPU == 1 )
173#define CPU_HARDWARE_FP     TRUE
174#else
175#define CPU_HARDWARE_FP     FALSE
176#endif
177#define CPU_SOFTWARE_FP     FALSE
178
179/*
180 *  Are all tasks RTEMS_FLOATING_POINT tasks implicitly?
181 *
182 *  If TRUE, then the RTEMS_FLOATING_POINT task attribute is assumed.
183 *  If FALSE, then the RTEMS_FLOATING_POINT task attribute is followed.
184 *
185 *  So far, the only CPU in which this option has been used is the
186 *  HP PA-RISC.  The HP C compiler and gcc both implicitly use the
187 *  floating point registers to perform integer multiplies.  If
188 *  a function which you would not think utilize the FP unit DOES,
189 *  then one can not easily predict which tasks will use the FP hardware.
190 *  In this case, this option should be TRUE.
191 *
192 *  If CPU_HARDWARE_FP is FALSE, then this should be FALSE as well.
193 */
194
195#define CPU_ALL_TASKS_ARE_FP    FALSE
196
197/*
198 *  Should the IDLE task have a floating point context?
199 *
200 *  If TRUE, then the IDLE task is created as a RTEMS_FLOATING_POINT task
201 *  and it has a floating point context which is switched in and out.
202 *  If FALSE, then the IDLE task does not have a floating point context.
203 *
204 *  Setting this to TRUE negatively impacts the time required to preempt
205 *  the IDLE task from an interrupt because the floating point context
206 *  must be saved as part of the preemption.
207 */
208
209#define CPU_IDLE_TASK_IS_FP      FALSE
210
211/*
212 *  Should the saving of the floating point registers be deferred
213 *  until a context switch is made to another different floating point
214 *  task?
215 *
216 *  If TRUE, then the floating point context will not be stored until
217 *  necessary.  It will remain in the floating point registers and not
218 *  disturned until another floating point task is switched to.
219 *
220 *  If FALSE, then the floating point context is saved when a floating
221 *  point task is switched out and restored when the next floating point
222 *  task is restored.  The state of the floating point registers between
223 *  those two operations is not specified.
224 *
225 *  If the floating point context does NOT have to be saved as part of
226 *  interrupt dispatching, then it should be safe to set this to TRUE.
227 *
228 *  Setting this flag to TRUE results in using a different algorithm
229 *  for deciding when to save and restore the floating point context.
230 *  The deferred FP switch algorithm minimizes the number of times
231 *  the FP context is saved and restored.  The FP context is not saved
232 *  until a context switch is made to another, different FP task.
233 *  Thus in a system with only one FP task, the FP context will never
234 *  be saved or restored.
235 */
236
237#define CPU_USE_DEFERRED_FP_SWITCH       TRUE
238
239/*
240 *  Does this port provide a CPU dependent IDLE task implementation?
241 *
242 *  If TRUE, then the routine _CPU_Internal_threads_Idle_thread_body
243 *  must be provided and is the default IDLE thread body instead of
244 *  _Internal_threads_Idle_thread_body.
245 *
246 *  If FALSE, then use the generic IDLE thread body if the BSP does
247 *  not provide one.
248 *
249 *  This is intended to allow for supporting processors which have
250 *  a low power or idle mode.  When the IDLE thread is executed, then
251 *  the CPU can be powered down.
252 *
253 *  The order of precedence for selecting the IDLE thread body is:
254 *
255 *    1.  BSP provided
256 *    2.  CPU dependent (if provided)
257 *    3.  generic (if no BSP and no CPU dependent)
258 */
259
260/* we can use the low power wait instruction for the IDLE thread */
261#define CPU_PROVIDES_IDLE_THREAD_BODY    TRUE
262
263/*
264 *  Does the stack grow up (toward higher addresses) or down
265 *  (toward lower addresses)?
266 *
267 *  If TRUE, then the grows upward.
268 *  If FALSE, then the grows toward smaller addresses.
269 */
270
271/* our stack grows down */
272#define CPU_STACK_GROWS_UP               FALSE
273
274/*
275 *  The following is the variable attribute used to force alignment
276 *  of critical RTEMS structures.  On some processors it may make
277 *  sense to have these aligned on tighter boundaries than
278 *  the minimum requirements of the compiler in order to have as
279 *  much of the critical data area as possible in a cache line.
280 *
281 *  The placement of this macro in the declaration of the variables
282 *  is based on the syntactically requirements of the GNU C
283 *  "__attribute__" extension.  For example with GNU C, use
284 *  the following to force a structures to a 32 byte boundary.
285 *
286 *      __attribute__ ((aligned (32)))
287 *
288 *  NOTE:  Currently only the Priority Bit Map table uses this feature.
289 *         To benefit from using this, the data must be heavily
290 *         used so it will stay in the cache and used frequently enough
291 *         in the executive to justify turning this on.
292 */
293
294/* our cache line size is 16 bytes */
295#if __GNUC__
296#define CPU_STRUCTURE_ALIGNMENT __attribute__ ((aligned (16)))
297#else
298#define CPU_STRUCTURE_ALIGNMENT
299#endif
300
301/*
302 *  Define what is required to specify how the network to host conversion
303 *  routines are handled.
304 */
305
306#define CPU_HAS_OWN_HOST_TO_NETWORK_ROUTINES     FALSE
307#define CPU_BIG_ENDIAN                           TRUE
308#define CPU_LITTLE_ENDIAN                        FALSE
309
310/*
311 *  The following defines the number of bits actually used in the
312 *  interrupt field of the task mode.  How those bits map to the
313 *  CPU interrupt levels is defined by the routine _CPU_ISR_Set_level().
314 */
315
316#define CPU_MODES_INTERRUPT_MASK   0x00000001
317
318/*
319 *  Processor defined structures
320 *
321 *  Examples structures include the descriptor tables from the i386
322 *  and the processor control structure on the i960ca.
323 */
324
325/* may need to put some structures here.  */
326
327/*
328 * Contexts
329 *
330 *  Generally there are 2 types of context to save.
331 *     1. Interrupt registers to save
332 *     2. Task level registers to save
333 *
334 *  This means we have the following 3 context items:
335 *     1. task level context stuff::  Context_Control
336 *     2. floating point task stuff:: Context_Control_fp
337 *     3. special interrupt level context :: Context_Control_interrupt
338 *
339 *  On some processors, it is cost-effective to save only the callee
340 *  preserved registers during a task context switch.  This means
341 *  that the ISR code needs to save those registers which do not
342 *  persist across function calls.  It is not mandatory to make this
343 *  distinctions between the caller/callee saves registers for the
344 *  purpose of minimizing context saved during task switch and on interrupts.
345 *  If the cost of saving extra registers is minimal, simplicity is the
346 *  choice.  Save the same context on interrupt entry as for tasks in
347 *  this case.
348 *
349 *  Additionally, if gdb is to be made aware of RTEMS tasks for this CPU, then
350 *  care should be used in designing the context area.
351 *
352 *  On some CPUs with hardware floating point support, the Context_Control_fp
353 *  structure will not be used or it simply consist of an array of a
354 *  fixed number of bytes.   This is done when the floating point context
355 *  is dumped by a "FP save context" type instruction and the format
356 *  is not really defined by the CPU.  In this case, there is no need
357 *  to figure out the exact format -- only the size.  Of course, although
358 *  this is enough information for RTEMS, it is probably not enough for
359 *  a debugger such as gdb.  But that is another problem.
360 */
361
362/* WARNING: If this structure is modified, the constants in cpu.h must be updated. */
363typedef struct {
364    unsigned64 s0;
365    unsigned64 s1;
366    unsigned64 s2;
367    unsigned64 s3;
368    unsigned64 s4;
369    unsigned64 s5;
370    unsigned64 s6;
371    unsigned64 s7;
372    unsigned64 sp;
373    unsigned64 fp;
374    unsigned64 ra;
375    unsigned64 c0_sr;
376    unsigned64 c0_epc;
377} Context_Control;
378
379/* WARNING: If this structure is modified, the constants in cpu.h must be updated. */
380typedef struct {
381    unsigned32      fp0;
382    unsigned32      fp1;
383    unsigned32      fp2;
384    unsigned32      fp3;
385    unsigned32      fp4;
386    unsigned32      fp5;
387    unsigned32      fp6;
388    unsigned32      fp7;
389    unsigned32      fp8;
390    unsigned32      fp9;
391    unsigned32      fp10;
392    unsigned32      fp11;
393    unsigned32      fp12;
394    unsigned32      fp13;
395    unsigned32      fp14;
396    unsigned32      fp15;
397    unsigned32      fp16;
398    unsigned32      fp17;
399    unsigned32      fp18;
400    unsigned32      fp19;
401    unsigned32      fp20;
402    unsigned32      fp21;
403    unsigned32      fp22;
404    unsigned32      fp23;
405    unsigned32      fp24;
406    unsigned32      fp25;
407    unsigned32      fp26;
408    unsigned32      fp27;
409    unsigned32      fp28;
410    unsigned32      fp29;
411    unsigned32      fp30;
412    unsigned32      fp31;
413} Context_Control_fp;
414
415typedef struct {
416    unsigned32 special_interrupt_register;
417} CPU_Interrupt_frame;
418
419
420/*
421 *  The following table contains the information required to configure
422 *  the mips processor specific parameters.
423 */
424
425typedef struct {
426  void       (*pretasking_hook)( void );
427  void       (*predriver_hook)( void );
428  void       (*postdriver_hook)( void );
429  void       (*idle_task)( void );
430  boolean      do_zero_of_workspace;
431  unsigned32   idle_task_stack_size;
432  unsigned32   interrupt_stack_size;
433  unsigned32   extra_mpci_receive_server_stack;
434  void *     (*stack_allocate_hook)( unsigned32 );
435  void       (*stack_free_hook)( void* );
436  /* end of fields required on all CPUs */
437
438  unsigned32   clicks_per_microsecond;
439}   rtems_cpu_table;
440
441/*
442 *  Macros to access required entires in the CPU Table are in
443 *  the file rtems/system.h.
444 */
445
446/*
447 *  Macros to access MIPS64ORION specific additions to the CPU Table
448 */
449
450#define rtems_cpu_configuration_get_clicks_per_microsecond() \
451   (_CPU_Table.clicks_per_microsecond)
452
453/*
454 *  This variable is optional.  It is used on CPUs on which it is difficult
455 *  to generate an "uninitialized" FP context.  It is filled in by
456 *  _CPU_Initialize and copied into the task's FP context area during
457 *  _CPU_Context_Initialize.
458 */
459
460SCORE_EXTERN Context_Control_fp  _CPU_Null_fp_context;
461
462/*
463 *  On some CPUs, RTEMS supports a software managed interrupt stack.
464 *  This stack is allocated by the Interrupt Manager and the switch
465 *  is performed in _ISR_Handler.  These variables contain pointers
466 *  to the lowest and highest addresses in the chunk of memory allocated
467 *  for the interrupt stack.  Since it is unknown whether the stack
468 *  grows up or down (in general), this give the CPU dependent
469 *  code the option of picking the version it wants to use.
470 *
471 *  NOTE: These two variables are required if the macro
472 *        CPU_HAS_SOFTWARE_INTERRUPT_STACK is defined as TRUE.
473 */
474
475SCORE_EXTERN void               *_CPU_Interrupt_stack_low;
476SCORE_EXTERN void               *_CPU_Interrupt_stack_high;
477
478/*
479 *  With some compilation systems, it is difficult if not impossible to
480 *  call a high-level language routine from assembly language.  This
481 *  is especially true of commercial Ada compilers and name mangling
482 *  C++ ones.  This variable can be optionally defined by the CPU porter
483 *  and contains the address of the routine _Thread_Dispatch.  This
484 *  can make it easier to invoke that routine at the end of the interrupt
485 *  sequence (if a dispatch is necessary).
486 */
487
488SCORE_EXTERN void           (*_CPU_Thread_dispatch_pointer)();
489
490/*
491 *  Nothing prevents the porter from declaring more CPU specific variables.
492 */
493
494/* XXX: if needed, put more variables here */
495
496/*
497 *  The size of the floating point context area.  On some CPUs this
498 *  will not be a "sizeof" because the format of the floating point
499 *  area is not defined -- only the size is.  This is usually on
500 *  CPUs with a "floating point save context" instruction.
501 */
502
503#define CPU_CONTEXT_FP_SIZE sizeof( Context_Control_fp )
504
505/*
506 *  Amount of extra stack (above minimum stack size) required by
507 *  system initialization thread.  Remember that in a multiprocessor
508 *  system the system intialization thread becomes the MP server thread.
509 */
510
511#define CPU_MPCI_RECEIVE_SERVER_EXTRA_STACK 0
512
513/*
514 *  This defines the number of entries in the ISR_Vector_table managed
515 *  by RTEMS.
516 */
517
518#define CPU_INTERRUPT_NUMBER_OF_VECTORS      8
519#define CPU_INTERRUPT_MAXIMUM_VECTOR_NUMBER  (CPU_INTERRUPT_NUMBER_OF_VECTORS - 1)
520
521/*
522 *  Should be large enough to run all RTEMS tests.  This insures
523 *  that a "reasonable" small application should not have any problems.
524 */
525
526#define CPU_STACK_MINIMUM_SIZE          (2048*sizeof(unsigned32))
527
528/*
529 *  CPU's worst alignment requirement for data types on a byte boundary.  This
530 *  alignment does not take into account the requirements for the stack.
531 */
532
533#define CPU_ALIGNMENT              8
534
535/*
536 *  This number corresponds to the byte alignment requirement for the
537 *  heap handler.  This alignment requirement may be stricter than that
538 *  for the data types alignment specified by CPU_ALIGNMENT.  It is
539 *  common for the heap to follow the same alignment requirement as
540 *  CPU_ALIGNMENT.  If the CPU_ALIGNMENT is strict enough for the heap,
541 *  then this should be set to CPU_ALIGNMENT.
542 *
543 *  NOTE:  This does not have to be a power of 2.  It does have to
544 *         be greater or equal to than CPU_ALIGNMENT.
545 */
546
547#define CPU_HEAP_ALIGNMENT         CPU_ALIGNMENT
548
549/*
550 *  This number corresponds to the byte alignment requirement for memory
551 *  buffers allocated by the partition manager.  This alignment requirement
552 *  may be stricter than that for the data types alignment specified by
553 *  CPU_ALIGNMENT.  It is common for the partition to follow the same
554 *  alignment requirement as CPU_ALIGNMENT.  If the CPU_ALIGNMENT is strict
555 *  enough for the partition, then this should be set to CPU_ALIGNMENT.
556 *
557 *  NOTE:  This does not have to be a power of 2.  It does have to
558 *         be greater or equal to than CPU_ALIGNMENT.
559 */
560
561#define CPU_PARTITION_ALIGNMENT    CPU_ALIGNMENT
562
563/*
564 *  This number corresponds to the byte alignment requirement for the
565 *  stack.  This alignment requirement may be stricter than that for the
566 *  data types alignment specified by CPU_ALIGNMENT.  If the CPU_ALIGNMENT
567 *  is strict enough for the stack, then this should be set to 0.
568 *
569 *  NOTE:  This must be a power of 2 either 0 or greater than CPU_ALIGNMENT.
570 */
571
572#define CPU_STACK_ALIGNMENT        CPU_ALIGNMENT
573
574/*
575 * ISR handler macros
576 */
577
578/*
579 *  Support routine to initialize the RTEMS vector table after it is allocated.
580 */
581
582#define _CPU_Initialize_vectors()
583
584/*
585 *  Disable all interrupts for an RTEMS critical section.  The previous
586 *  level is returned in _level.
587 */
588
589#define _CPU_ISR_Disable( _int_level ) \
590  do{ \
591        _int_level = mips_disable_interrupts(); \
592  }while(0)
593
594/*
595 *  Enable interrupts to the previous level (returned by _CPU_ISR_Disable).
596 *  This indicates the end of an RTEMS critical section.  The parameter
597 *  _level is not modified.
598 */
599
600#define _CPU_ISR_Enable( _level )  \
601  do{ \
602        mips_enable_interrupts(_level); \
603  }while(0)
604
605/*
606 *  This temporarily restores the interrupt to _level before immediately
607 *  disabling them again.  This is used to divide long RTEMS critical
608 *  sections into two or more parts.  The parameter _level is not
609 * modified.
610 */
611
612#define _CPU_ISR_Flash( _xlevel ) \
613  do{ \
614        int _scratch; \
615        _CPU_ISR_Enable( _xlevel ); \
616        _CPU_ISR_Disable( _scratch ); \
617  }while(0)
618
619/*
620 *  Map interrupt level in task mode onto the hardware that the CPU
621 *  actually provides.  Currently, interrupt levels which do not
622 *  map onto the CPU in a generic fashion are undefined.  Someday,
623 *  it would be nice if these were "mapped" by the application
624 *  via a callout.  For example, m68k has 8 levels 0 - 7, levels
625 *  8 - 255 would be available for bsp/application specific meaning.
626 *  This could be used to manage a programmable interrupt controller
627 *  via the rtems_task_mode directive.
628 */
629extern void _CPU_ISR_Set_level( unsigned32 _new_level );
630
631unsigned32 _CPU_ISR_Get_level( void );
632
633/* end of ISR handler macros */
634
635/* Context handler macros */
636
637/*
638 *  Initialize the context to a state suitable for starting a
639 *  task after a context restore operation.  Generally, this
640 *  involves:
641 *
642 *     - setting a starting address
643 *     - preparing the stack
644 *     - preparing the stack and frame pointers
645 *     - setting the proper interrupt level in the context
646 *     - initializing the floating point context
647 *
648 *  This routine generally does not set any unnecessary register
649 *  in the context.  The state of the "general data" registers is
650 *  undefined at task start time.
651 *
652 *  NOTE: This is_fp parameter is TRUE if the thread is to be a floating
653 *        point thread.  This is typically only used on CPUs where the
654 *        FPU may be easily disabled by software such as on the SPARC
655 *        where the PSR contains an enable FPU bit.
656 */
657
658#define _CPU_Context_Initialize( _the_context, _stack_base, _size, \
659                                 _isr, _entry_point, _is_fp ) \
660  { \
661        unsigned32 _stack_tmp = (unsigned32)(_stack_base) + (_size) - CPU_STACK_ALIGNMENT; \
662        _stack_tmp &= ~(CPU_STACK_ALIGNMENT - 1); \
663        (_the_context)->sp = _stack_tmp; \
664        (_the_context)->fp = _stack_tmp; \
665        (_the_context)->ra = (unsigned64)_entry_point; \
666        (_the_context)->c0_sr = 0; \
667  }
668
669/*
670 *  This routine is responsible for somehow restarting the currently
671 *  executing task.  If you are lucky, then all that is necessary
672 *  is restoring the context.  Otherwise, there will need to be
673 *  a special assembly routine which does something special in this
674 *  case.  Context_Restore should work most of the time.  It will
675 *  not work if restarting self conflicts with the stack frame
676 *  assumptions of restoring a context.
677 */
678
679#define _CPU_Context_Restart_self( _the_context ) \
680   _CPU_Context_restore( (_the_context) );
681
682/*
683 *  The purpose of this macro is to allow the initial pointer into
684 *  A floating point context area (used to save the floating point
685 *  context) to be at an arbitrary place in the floating point
686 *  context area.
687 *
688 *  This is necessary because some FP units are designed to have
689 *  their context saved as a stack which grows into lower addresses.
690 *  Other FP units can be saved by simply moving registers into offsets
691 *  from the base of the context area.  Finally some FP units provide
692 *  a "dump context" instruction which could fill in from high to low
693 *  or low to high based on the whim of the CPU designers.
694 */
695
696#define _CPU_Context_Fp_start( _base, _offset ) \
697   ( (void *) _Addresses_Add_offset( (_base), (_offset) ) )
698
699/*
700 *  This routine initializes the FP context area passed to it to.
701 *  There are a few standard ways in which to initialize the
702 *  floating point context.  The code included for this macro assumes
703 *  that this is a CPU in which a "initial" FP context was saved into
704 *  _CPU_Null_fp_context and it simply copies it to the destination
705 *  context passed to it.
706 *
707 *  Other models include (1) not doing anything, and (2) putting
708 *  a "null FP status word" in the correct place in the FP context.
709 */
710
711#define _CPU_Context_Initialize_fp( _destination ) \
712  { \
713   *((Context_Control_fp *) *((void **) _destination)) = _CPU_Null_fp_context; \
714  }
715
716/* end of Context handler macros */
717
718/* Fatal Error manager macros */
719
720/*
721 *  This routine copies _error into a known place -- typically a stack
722 *  location or a register, optionally disables interrupts, and
723 *  halts/stops the CPU.
724 */
725
726#define _CPU_Fatal_halt( _error ) \
727  { \
728    mips_disable_global_interrupts(); \
729    mips_fatal_error(_error); \
730  }
731
732/* end of Fatal Error manager macros */
733
734/* Bitfield handler macros */
735
736/*
737 *  This routine sets _output to the bit number of the first bit
738 *  set in _value.  _value is of CPU dependent type Priority_Bit_map_control.
739 *  This type may be either 16 or 32 bits wide although only the 16
740 *  least significant bits will be used.
741 *
742 *  There are a number of variables in using a "find first bit" type
743 *  instruction.
744 *
745 *    (1) What happens when run on a value of zero?
746 *    (2) Bits may be numbered from MSB to LSB or vice-versa.
747 *    (3) The numbering may be zero or one based.
748 *    (4) The "find first bit" instruction may search from MSB or LSB.
749 *
750 *  RTEMS guarantees that (1) will never happen so it is not a concern.
751 *  (2),(3), (4) are handled by the macros _CPU_Priority_mask() and
752 *  _CPU_Priority_bits_index().  These three form a set of routines
753 *  which must logically operate together.  Bits in the _value are
754 *  set and cleared based on masks built by _CPU_Priority_mask().
755 *  The basic major and minor values calculated by _Priority_Major()
756 *  and _Priority_Minor() are "massaged" by _CPU_Priority_bits_index()
757 *  to properly range between the values returned by the "find first bit"
758 *  instruction.  This makes it possible for _Priority_Get_highest() to
759 *  calculate the major and directly index into the minor table.
760 *  This mapping is necessary to ensure that 0 (a high priority major/minor)
761 *  is the first bit found.
762 *
763 *  This entire "find first bit" and mapping process depends heavily
764 *  on the manner in which a priority is broken into a major and minor
765 *  components with the major being the 4 MSB of a priority and minor
766 *  the 4 LSB.  Thus (0 << 4) + 0 corresponds to priority 0 -- the highest
767 *  priority.  And (15 << 4) + 14 corresponds to priority 254 -- the next
768 *  to the lowest priority.
769 *
770 *  If your CPU does not have a "find first bit" instruction, then
771 *  there are ways to make do without it.  Here are a handful of ways
772 *  to implement this in software:
773 *
774 *    - a series of 16 bit test instructions
775 *    - a "binary search using if's"
776 *    - _number = 0
777 *      if _value > 0x00ff
778 *        _value >>=8
779 *        _number = 8;
780 *
781 *      if _value > 0x0000f
782 *        _value >=8
783 *        _number += 4
784 *
785 *      _number += bit_set_table[ _value ]
786 *
787 *    where bit_set_table[ 16 ] has values which indicate the first
788 *      bit set
789 */
790
791#define CPU_USE_GENERIC_BITFIELD_CODE TRUE
792#define CPU_USE_GENERIC_BITFIELD_DATA TRUE
793
794#if (CPU_USE_GENERIC_BITFIELD_CODE == FALSE)
795
796#define _CPU_Bitfield_Find_first_bit( _value, _output ) \
797  { \
798    (_output) = 0;   /* do something to prevent warnings */ \
799  }
800
801#endif
802
803/* end of Bitfield handler macros */
804
805/*
806 *  This routine builds the mask which corresponds to the bit fields
807 *  as searched by _CPU_Bitfield_Find_first_bit().  See the discussion
808 *  for that routine.
809 */
810
811#if (CPU_USE_GENERIC_BITFIELD_CODE == FALSE)
812
813#define _CPU_Priority_Mask( _bit_number ) \
814  ( 1 << (_bit_number) )
815
816#endif
817
818/*
819 *  This routine translates the bit numbers returned by
820 *  _CPU_Bitfield_Find_first_bit() into something suitable for use as
821 *  a major or minor component of a priority.  See the discussion
822 *  for that routine.
823 */
824
825#if (CPU_USE_GENERIC_BITFIELD_CODE == FALSE)
826
827#define _CPU_Priority_bits_index( _priority ) \
828  (_priority)
829
830#endif
831
832/* end of Priority handler macros */
833
834/* functions */
835
836/*
837 *  _CPU_Initialize
838 *
839 *  This routine performs CPU dependent initialization.
840 */
841
842void _CPU_Initialize(
843  rtems_cpu_table  *cpu_table,
844  void      (*thread_dispatch)
845);
846
847/*
848 *  _CPU_ISR_install_raw_handler
849 *
850 *  This routine installs a "raw" interrupt handler directly into the
851 *  processor's vector table.
852 */
853 
854void _CPU_ISR_install_raw_handler(
855  unsigned32  vector,
856  proc_ptr    new_handler,
857  proc_ptr   *old_handler
858);
859
860/*
861 *  _CPU_ISR_install_vector
862 *
863 *  This routine installs an interrupt vector.
864 */
865
866void _CPU_ISR_install_vector(
867  unsigned32  vector,
868  proc_ptr    new_handler,
869  proc_ptr   *old_handler
870);
871
872/*
873 *  _CPU_Install_interrupt_stack
874 *
875 *  This routine installs the hardware interrupt stack pointer.
876 *
877 *  NOTE:  It need only be provided if CPU_HAS_HARDWARE_INTERRUPT_STACK
878 *         is TRUE.
879 */
880
881void _CPU_Install_interrupt_stack( void );
882
883/*
884 *  _CPU_Internal_threads_Idle_thread_body
885 *
886 *  This routine is the CPU dependent IDLE thread body.
887 *
888 *  NOTE:  It need only be provided if CPU_PROVIDES_IDLE_THREAD_BODY
889 *         is TRUE.
890 */
891
892void _CPU_Thread_Idle_body( void );
893
894/*
895 *  _CPU_Context_switch
896 *
897 *  This routine switches from the run context to the heir context.
898 */
899
900void _CPU_Context_switch(
901  Context_Control  *run,
902  Context_Control  *heir
903);
904
905/*
906 *  _CPU_Context_restore
907 *
908 *  This routine is generally used only to restart self in an
909 *  efficient manner.  It may simply be a label in _CPU_Context_switch.
910 *
911 *  NOTE: May be unnecessary to reload some registers.
912 */
913
914void _CPU_Context_restore(
915  Context_Control *new_context
916);
917
918/*
919 *  _CPU_Context_save_fp
920 *
921 *  This routine saves the floating point context passed to it.
922 */
923
924void _CPU_Context_save_fp(
925  void **fp_context_ptr
926);
927
928/*
929 *  _CPU_Context_restore_fp
930 *
931 *  This routine restores the floating point context passed to it.
932 */
933
934void _CPU_Context_restore_fp(
935  void **fp_context_ptr
936);
937
938/*  The following routine swaps the endian format of an unsigned int.
939 *  It must be static because it is referenced indirectly.
940 *
941 *  This version will work on any processor, but if there is a better
942 *  way for your CPU PLEASE use it.  The most common way to do this is to:
943 *
944 *     swap least significant two bytes with 16-bit rotate
945 *     swap upper and lower 16-bits
946 *     swap most significant two bytes with 16-bit rotate
947 *
948 *  Some CPUs have special instructions which swap a 32-bit quantity in
949 *  a single instruction (e.g. i486).  It is probably best to avoid
950 *  an "endian swapping control bit" in the CPU.  One good reason is
951 *  that interrupts would probably have to be disabled to insure that
952 *  an interrupt does not try to access the same "chunk" with the wrong
953 *  endian.  Another good reason is that on some CPUs, the endian bit
954 *  endianness for ALL fetches -- both code and data -- so the code
955 *  will be fetched incorrectly.
956 */
957 
958static inline unsigned int CPU_swap_u32(
959  unsigned int value
960)
961{
962  unsigned32 byte1, byte2, byte3, byte4, swapped;
963 
964  byte4 = (value >> 24) & 0xff;
965  byte3 = (value >> 16) & 0xff;
966  byte2 = (value >> 8)  & 0xff;
967  byte1 =  value        & 0xff;
968 
969  swapped = (byte1 << 24) | (byte2 << 16) | (byte3 << 8) | byte4;
970  return( swapped );
971}
972
973#define CPU_swap_u16( value ) \
974  (((value&0xff) << 8) | ((value >> 8)&0xff))
975
976/*
977 *  Miscellaneous prototypes
978 *
979 *  NOTE:  The names should have mips64orion in them.
980 */
981
982void disable_int( unsigned32 mask );
983void enable_int( unsigned32 mask );
984
985#ifdef __cplusplus
986}
987#endif
988
989#endif
Note: See TracBrowser for help on using the repository browser.