source: rtems/c/src/exec/score/cpu/mips/rtems/score/cpu.h @ acdb6558

4.104.114.84.95
Last change on this file since acdb6558 was 2e549dad, checked in by Joel Sherrill <joel.sherrill@…>, on 03/14/01 at 00:14:18

2001-03-13 Joel Sherrill <joel@…>

  • cpu.c, cpu_asm.S, iregdef.h, rtems/score/cpu.h, rtems/score/mips.h: Merged MIPS1 and MIPS3 code reducing the number of lines of assembly. Also reimplemented some assembly routines in C further reducing the amount of assembly and increasing maintainability.
  • Property mode set to 100644
File size: 32.3 KB
Line 
1/*  cpu.h
2 *
3 *  This include file contains information pertaining to the IDT 4650
4 *  processor.
5 *
6 *  Author:     Craig Lebakken <craigl@transition.com>
7 *
8 *  COPYRIGHT (c) 1996 by Transition Networks Inc.
9 *
10 *  To anyone who acknowledges that this file is provided "AS IS"
11 *  without any express or implied warranty:
12 *      permission to use, copy, modify, and distribute this file
13 *      for any purpose is hereby granted without fee, provided that
14 *      the above copyright notice and this notice appears in all
15 *      copies, and that the name of Transition Networks not be used in
16 *      advertising or publicity pertaining to distribution of the
17 *      software without specific, written prior permission.
18 *      Transition Networks makes no representations about the suitability
19 *      of this software for any purpose.
20 *
21 *  Derived from c/src/exec/score/cpu/no_cpu/cpu.h:
22 *
23 *  COPYRIGHT (c) 1989-1999.
24 *  On-Line Applications Research Corporation (OAR).
25 *
26 *  The license and distribution terms for this file may be
27 *  found in the file LICENSE in this distribution or at
28 *  http://www.OARcorp.com/rtems/license.html.
29 *
30 *  $Id$
31 */
32/* @(#)cpu.h       08/29/96     1.7 */
33
34#ifndef __CPU_h
35#define __CPU_h
36
37#ifdef __cplusplus
38extern "C" {
39#endif
40
41#include <rtems/score/mips.h>       /* pick up machine definitions */
42#ifndef ASM
43#include <rtems/score/mipstypes.h>
44#endif
45
46/* conditional compilation parameters */
47
48/*
49 *  Should the calls to _Thread_Enable_dispatch be inlined?
50 *
51 *  If TRUE, then they are inlined.
52 *  If FALSE, then a subroutine call is made.
53 *
54 *  Basically this is an example of the classic trade-off of size
55 *  versus speed.  Inlining the call (TRUE) typically increases the
56 *  size of RTEMS while speeding up the enabling of dispatching.
57 *  [NOTE: In general, the _Thread_Dispatch_disable_level will
58 *  only be 0 or 1 unless you are in an interrupt handler and that
59 *  interrupt handler invokes the executive.]  When not inlined
60 *  something calls _Thread_Enable_dispatch which in turns calls
61 *  _Thread_Dispatch.  If the enable dispatch is inlined, then
62 *  one subroutine call is avoided entirely.]
63 */
64
65#define CPU_INLINE_ENABLE_DISPATCH       TRUE
66
67/*
68 *  Should the body of the search loops in _Thread_queue_Enqueue_priority
69 *  be unrolled one time?  In unrolled each iteration of the loop examines
70 *  two "nodes" on the chain being searched.  Otherwise, only one node
71 *  is examined per iteration.
72 *
73 *  If TRUE, then the loops are unrolled.
74 *  If FALSE, then the loops are not unrolled.
75 *
76 *  The primary factor in making this decision is the cost of disabling
77 *  and enabling interrupts (_ISR_Flash) versus the cost of rest of the
78 *  body of the loop.  On some CPUs, the flash is more expensive than
79 *  one iteration of the loop body.  In this case, it might be desirable
80 *  to unroll the loop.  It is important to note that on some CPUs, this
81 *  code is the longest interrupt disable period in RTEMS.  So it is
82 *  necessary to strike a balance when setting this parameter.
83 */
84
85#define CPU_UNROLL_ENQUEUE_PRIORITY      TRUE
86
87/*
88 *  Does RTEMS manage a dedicated interrupt stack in software?
89 *
90 *  If TRUE, then a stack is allocated in _Interrupt_Manager_initialization.
91 *  If FALSE, nothing is done.
92 *
93 *  If the CPU supports a dedicated interrupt stack in hardware,
94 *  then it is generally the responsibility of the BSP to allocate it
95 *  and set it up.
96 *
97 *  If the CPU does not support a dedicated interrupt stack, then
98 *  the porter has two options: (1) execute interrupts on the
99 *  stack of the interrupted task, and (2) have RTEMS manage a dedicated
100 *  interrupt stack.
101 *
102 *  If this is TRUE, CPU_ALLOCATE_INTERRUPT_STACK should also be TRUE.
103 *
104 *  Only one of CPU_HAS_SOFTWARE_INTERRUPT_STACK and
105 *  CPU_HAS_HARDWARE_INTERRUPT_STACK should be set to TRUE.  It is
106 *  possible that both are FALSE for a particular CPU.  Although it
107 *  is unclear what that would imply about the interrupt processing
108 *  procedure on that CPU.
109 */
110
111#define CPU_HAS_SOFTWARE_INTERRUPT_STACK FALSE
112
113/*
114 *  Does this CPU have hardware support for a dedicated interrupt stack?
115 *
116 *  If TRUE, then it must be installed during initialization.
117 *  If FALSE, then no installation is performed.
118 *
119 *  If this is TRUE, CPU_ALLOCATE_INTERRUPT_STACK should also be TRUE.
120 *
121 *  Only one of CPU_HAS_SOFTWARE_INTERRUPT_STACK and
122 *  CPU_HAS_HARDWARE_INTERRUPT_STACK should be set to TRUE.  It is
123 *  possible that both are FALSE for a particular CPU.  Although it
124 *  is unclear what that would imply about the interrupt processing
125 *  procedure on that CPU.
126 */
127
128#define CPU_HAS_HARDWARE_INTERRUPT_STACK FALSE
129
130/*
131 *  Does RTEMS allocate a dedicated interrupt stack in the Interrupt Manager?
132 *
133 *  If TRUE, then the memory is allocated during initialization.
134 *  If FALSE, then the memory is allocated during initialization.
135 *
136 *  This should be TRUE is CPU_HAS_SOFTWARE_INTERRUPT_STACK is TRUE
137 *  or CPU_INSTALL_HARDWARE_INTERRUPT_STACK is TRUE.
138 */
139
140#define CPU_ALLOCATE_INTERRUPT_STACK FALSE
141
142/*
143 *  Does the RTEMS invoke the user's ISR with the vector number and
144 *  a pointer to the saved interrupt frame (1) or just the vector
145 *  number (0)?
146 */
147
148#define CPU_ISR_PASSES_FRAME_POINTER 0
149
150/*
151 *  Does the CPU have hardware floating point?
152 *
153 *  If TRUE, then the RTEMS_FLOATING_POINT task attribute is supported.
154 *  If FALSE, then the RTEMS_FLOATING_POINT task attribute is ignored.
155 *
156 *  If there is a FP coprocessor such as the i387 or mc68881, then
157 *  the answer is TRUE.
158 *
159 *  The macro name "MIPS_HAS_FPU" should be made CPU specific.
160 *  It indicates whether or not this CPU model has FP support.  For
161 *  example, it would be possible to have an i386_nofp CPU model
162 *  which set this to false to indicate that you have an i386 without
163 *  an i387 and wish to leave floating point support out of RTEMS.
164 */
165
166#if ( MIPS_HAS_FPU == 1 )
167#define CPU_HARDWARE_FP     TRUE
168#else
169#define CPU_HARDWARE_FP     FALSE
170#endif
171
172/*
173 *  Are all tasks RTEMS_FLOATING_POINT tasks implicitly?
174 *
175 *  If TRUE, then the RTEMS_FLOATING_POINT task attribute is assumed.
176 *  If FALSE, then the RTEMS_FLOATING_POINT task attribute is followed.
177 *
178 *  So far, the only CPU in which this option has been used is the
179 *  HP PA-RISC.  The HP C compiler and gcc both implicitly use the
180 *  floating point registers to perform integer multiplies.  If
181 *  a function which you would not think utilize the FP unit DOES,
182 *  then one can not easily predict which tasks will use the FP hardware.
183 *  In this case, this option should be TRUE.
184 *
185 *  If CPU_HARDWARE_FP is FALSE, then this should be FALSE as well.
186 */
187
188#define CPU_ALL_TASKS_ARE_FP    FALSE
189
190/*
191 *  Should the IDLE task have a floating point context?
192 *
193 *  If TRUE, then the IDLE task is created as a RTEMS_FLOATING_POINT task
194 *  and it has a floating point context which is switched in and out.
195 *  If FALSE, then the IDLE task does not have a floating point context.
196 *
197 *  Setting this to TRUE negatively impacts the time required to preempt
198 *  the IDLE task from an interrupt because the floating point context
199 *  must be saved as part of the preemption.
200 */
201
202#define CPU_IDLE_TASK_IS_FP      FALSE
203
204/*
205 *  Should the saving of the floating point registers be deferred
206 *  until a context switch is made to another different floating point
207 *  task?
208 *
209 *  If TRUE, then the floating point context will not be stored until
210 *  necessary.  It will remain in the floating point registers and not
211 *  disturned until another floating point task is switched to.
212 *
213 *  If FALSE, then the floating point context is saved when a floating
214 *  point task is switched out and restored when the next floating point
215 *  task is restored.  The state of the floating point registers between
216 *  those two operations is not specified.
217 *
218 *  If the floating point context does NOT have to be saved as part of
219 *  interrupt dispatching, then it should be safe to set this to TRUE.
220 *
221 *  Setting this flag to TRUE results in using a different algorithm
222 *  for deciding when to save and restore the floating point context.
223 *  The deferred FP switch algorithm minimizes the number of times
224 *  the FP context is saved and restored.  The FP context is not saved
225 *  until a context switch is made to another, different FP task.
226 *  Thus in a system with only one FP task, the FP context will never
227 *  be saved or restored.
228 */
229
230#define CPU_USE_DEFERRED_FP_SWITCH       TRUE
231
232/*
233 *  Does this port provide a CPU dependent IDLE task implementation?
234 *
235 *  If TRUE, then the routine _CPU_Internal_threads_Idle_thread_body
236 *  must be provided and is the default IDLE thread body instead of
237 *  _Internal_threads_Idle_thread_body.
238 *
239 *  If FALSE, then use the generic IDLE thread body if the BSP does
240 *  not provide one.
241 *
242 *  This is intended to allow for supporting processors which have
243 *  a low power or idle mode.  When the IDLE thread is executed, then
244 *  the CPU can be powered down.
245 *
246 *  The order of precedence for selecting the IDLE thread body is:
247 *
248 *    1.  BSP provided
249 *    2.  CPU dependent (if provided)
250 *    3.  generic (if no BSP and no CPU dependent)
251 */
252
253/* we can use the low power wait instruction for the IDLE thread */
254#define CPU_PROVIDES_IDLE_THREAD_BODY    TRUE
255
256/*
257 *  Does the stack grow up (toward higher addresses) or down
258 *  (toward lower addresses)?
259 *
260 *  If TRUE, then the grows upward.
261 *  If FALSE, then the grows toward smaller addresses.
262 */
263
264/* our stack grows down */
265#define CPU_STACK_GROWS_UP               FALSE
266
267/*
268 *  The following is the variable attribute used to force alignment
269 *  of critical RTEMS structures.  On some processors it may make
270 *  sense to have these aligned on tighter boundaries than
271 *  the minimum requirements of the compiler in order to have as
272 *  much of the critical data area as possible in a cache line.
273 *
274 *  The placement of this macro in the declaration of the variables
275 *  is based on the syntactically requirements of the GNU C
276 *  "__attribute__" extension.  For example with GNU C, use
277 *  the following to force a structures to a 32 byte boundary.
278 *
279 *      __attribute__ ((aligned (32)))
280 *
281 *  NOTE:  Currently only the Priority Bit Map table uses this feature.
282 *         To benefit from using this, the data must be heavily
283 *         used so it will stay in the cache and used frequently enough
284 *         in the executive to justify turning this on.
285 */
286
287/* our cache line size is 16 bytes */
288#if __GNUC__
289#define CPU_STRUCTURE_ALIGNMENT __attribute__ ((aligned (16)))
290#else
291#define CPU_STRUCTURE_ALIGNMENT
292#endif
293
294/*
295 *  Define what is required to specify how the network to host conversion
296 *  routines are handled.
297 */
298
299#define CPU_HAS_OWN_HOST_TO_NETWORK_ROUTINES     FALSE
300#define CPU_BIG_ENDIAN                           TRUE
301#define CPU_LITTLE_ENDIAN                        FALSE
302
303/*
304 *  The following defines the number of bits actually used in the
305 *  interrupt field of the task mode.  How those bits map to the
306 *  CPU interrupt levels is defined by the routine _CPU_ISR_Set_level().
307 */
308
309#define CPU_MODES_INTERRUPT_MASK   0x00000001
310
311/*
312 *  Processor defined structures
313 *
314 *  Examples structures include the descriptor tables from the i386
315 *  and the processor control structure on the i960ca.
316 */
317
318/* may need to put some structures here.  */
319
320/*
321 * Contexts
322 *
323 *  Generally there are 2 types of context to save.
324 *     1. Interrupt registers to save
325 *     2. Task level registers to save
326 *
327 *  This means we have the following 3 context items:
328 *     1. task level context stuff::  Context_Control
329 *     2. floating point task stuff:: Context_Control_fp
330 *     3. special interrupt level context :: Context_Control_interrupt
331 *
332 *  On some processors, it is cost-effective to save only the callee
333 *  preserved registers during a task context switch.  This means
334 *  that the ISR code needs to save those registers which do not
335 *  persist across function calls.  It is not mandatory to make this
336 *  distinctions between the caller/callee saves registers for the
337 *  purpose of minimizing context saved during task switch and on interrupts.
338 *  If the cost of saving extra registers is minimal, simplicity is the
339 *  choice.  Save the same context on interrupt entry as for tasks in
340 *  this case.
341 *
342 *  Additionally, if gdb is to be made aware of RTEMS tasks for this CPU, then
343 *  care should be used in designing the context area.
344 *
345 *  On some CPUs with hardware floating point support, the Context_Control_fp
346 *  structure will not be used or it simply consist of an array of a
347 *  fixed number of bytes.   This is done when the floating point context
348 *  is dumped by a "FP save context" type instruction and the format
349 *  is not really defined by the CPU.  In this case, there is no need
350 *  to figure out the exact format -- only the size.  Of course, although
351 *  this is enough information for RTEMS, it is probably not enough for
352 *  a debugger such as gdb.  But that is another problem.
353 */
354
355/* WARNING: If this structure is modified, the constants in cpu.h must be updated. */
356#if __mips == 1
357#define __MIPS_REGISTER_TYPE     unsigned32
358#define __MIPS_FPU_REGISTER_TYPE unsigned32
359#elif __mips == 3
360#define __MIPS_REGISTER_TYPE     unsigned64
361#define __MIPS_FPU_REGISTER_TYPE unsigned64
362#else
363#error "mips register size: unknown architecture level!!"
364#endif
365typedef struct {
366    __MIPS_REGISTER_TYPE s0;
367    __MIPS_REGISTER_TYPE s1;
368    __MIPS_REGISTER_TYPE s2;
369    __MIPS_REGISTER_TYPE s3;
370    __MIPS_REGISTER_TYPE s4;
371    __MIPS_REGISTER_TYPE s5;
372    __MIPS_REGISTER_TYPE s6;
373    __MIPS_REGISTER_TYPE s7;
374    __MIPS_REGISTER_TYPE sp;
375    __MIPS_REGISTER_TYPE fp;
376    __MIPS_REGISTER_TYPE ra;
377    __MIPS_REGISTER_TYPE c0_sr;
378    __MIPS_REGISTER_TYPE c0_epc;
379} Context_Control;
380
381/* WARNING: If this structure is modified, the constants in cpu.h
382 *          must also be updated.
383 */
384
385typedef struct {
386#if ( CPU_HARDWARE_FP == TRUE )
387    __MIPS_FPU_REGISTER_TYPE fp0;
388    __MIPS_FPU_REGISTER_TYPE fp1;
389    __MIPS_FPU_REGISTER_TYPE fp2;
390    __MIPS_FPU_REGISTER_TYPE fp3;
391    __MIPS_FPU_REGISTER_TYPE fp4;
392    __MIPS_FPU_REGISTER_TYPE fp5;
393    __MIPS_FPU_REGISTER_TYPE fp6;
394    __MIPS_FPU_REGISTER_TYPE fp7;
395    __MIPS_FPU_REGISTER_TYPE fp8;
396    __MIPS_FPU_REGISTER_TYPE fp9;
397    __MIPS_FPU_REGISTER_TYPE fp10;
398    __MIPS_FPU_REGISTER_TYPE fp11;
399    __MIPS_FPU_REGISTER_TYPE fp12;
400    __MIPS_FPU_REGISTER_TYPE fp13;
401    __MIPS_FPU_REGISTER_TYPE fp14;
402    __MIPS_FPU_REGISTER_TYPE fp15;
403    __MIPS_FPU_REGISTER_TYPE fp16;
404    __MIPS_FPU_REGISTER_TYPE fp17;
405    __MIPS_FPU_REGISTER_TYPE fp18;
406    __MIPS_FPU_REGISTER_TYPE fp19;
407    __MIPS_FPU_REGISTER_TYPE fp20;
408    __MIPS_FPU_REGISTER_TYPE fp21;
409    __MIPS_FPU_REGISTER_TYPE fp22;
410    __MIPS_FPU_REGISTER_TYPE fp23;
411    __MIPS_FPU_REGISTER_TYPE fp24;
412    __MIPS_FPU_REGISTER_TYPE fp25;
413    __MIPS_FPU_REGISTER_TYPE fp26;
414    __MIPS_FPU_REGISTER_TYPE fp27;
415    __MIPS_FPU_REGISTER_TYPE fp28;
416    __MIPS_FPU_REGISTER_TYPE fp29;
417    __MIPS_FPU_REGISTER_TYPE fp30;
418    __MIPS_FPU_REGISTER_TYPE fp31;
419#endif
420} Context_Control_fp;
421
422typedef struct {
423    unsigned32 special_interrupt_register;
424} CPU_Interrupt_frame;
425
426
427/*
428 *  The following table contains the information required to configure
429 *  the mips processor specific parameters.
430 */
431
432typedef struct {
433  void       (*pretasking_hook)( void );
434  void       (*predriver_hook)( void );
435  void       (*postdriver_hook)( void );
436  void       (*idle_task)( void );
437  boolean      do_zero_of_workspace;
438  unsigned32   idle_task_stack_size;
439  unsigned32   interrupt_stack_size;
440  unsigned32   extra_mpci_receive_server_stack;
441  void *     (*stack_allocate_hook)( unsigned32 );
442  void       (*stack_free_hook)( void* );
443  /* end of fields required on all CPUs */
444
445  unsigned32   clicks_per_microsecond;
446}   rtems_cpu_table;
447
448/*
449 *  Macros to access required entires in the CPU Table are in
450 *  the file rtems/system.h.
451 */
452
453/*
454 *  Macros to access MIPS specific additions to the CPU Table
455 */
456
457#define rtems_cpu_configuration_get_clicks_per_microsecond() \
458   (_CPU_Table.clicks_per_microsecond)
459
460/*
461 *  This variable is optional.  It is used on CPUs on which it is difficult
462 *  to generate an "uninitialized" FP context.  It is filled in by
463 *  _CPU_Initialize and copied into the task's FP context area during
464 *  _CPU_Context_Initialize.
465 */
466
467SCORE_EXTERN Context_Control_fp  _CPU_Null_fp_context;
468
469/*
470 *  On some CPUs, RTEMS supports a software managed interrupt stack.
471 *  This stack is allocated by the Interrupt Manager and the switch
472 *  is performed in _ISR_Handler.  These variables contain pointers
473 *  to the lowest and highest addresses in the chunk of memory allocated
474 *  for the interrupt stack.  Since it is unknown whether the stack
475 *  grows up or down (in general), this give the CPU dependent
476 *  code the option of picking the version it wants to use.
477 *
478 *  NOTE: These two variables are required if the macro
479 *        CPU_HAS_SOFTWARE_INTERRUPT_STACK is defined as TRUE.
480 */
481
482SCORE_EXTERN void               *_CPU_Interrupt_stack_low;
483SCORE_EXTERN void               *_CPU_Interrupt_stack_high;
484
485/*
486 *  With some compilation systems, it is difficult if not impossible to
487 *  call a high-level language routine from assembly language.  This
488 *  is especially true of commercial Ada compilers and name mangling
489 *  C++ ones.  This variable can be optionally defined by the CPU porter
490 *  and contains the address of the routine _Thread_Dispatch.  This
491 *  can make it easier to invoke that routine at the end of the interrupt
492 *  sequence (if a dispatch is necessary).
493 */
494
495SCORE_EXTERN void           (*_CPU_Thread_dispatch_pointer)();
496
497/*
498 *  Nothing prevents the porter from declaring more CPU specific variables.
499 */
500
501/* XXX: if needed, put more variables here */
502
503/*
504 *  The size of the floating point context area.  On some CPUs this
505 *  will not be a "sizeof" because the format of the floating point
506 *  area is not defined -- only the size is.  This is usually on
507 *  CPUs with a "floating point save context" instruction.
508 */
509
510#define CPU_CONTEXT_FP_SIZE sizeof( Context_Control_fp )
511
512/*
513 *  Amount of extra stack (above minimum stack size) required by
514 *  system initialization thread.  Remember that in a multiprocessor
515 *  system the system intialization thread becomes the MP server thread.
516 */
517
518#define CPU_MPCI_RECEIVE_SERVER_EXTRA_STACK 0
519
520/*
521 *  This defines the number of entries in the ISR_Vector_table managed
522 *  by RTEMS.
523 */
524
525extern unsigned int mips_interrupt_number_of_vectors;
526#define CPU_INTERRUPT_NUMBER_OF_VECTORS      (mips_interrupt_number_of_vectors)
527#define CPU_INTERRUPT_MAXIMUM_VECTOR_NUMBER  (CPU_INTERRUPT_NUMBER_OF_VECTORS - 1)
528
529/*
530 *  Should be large enough to run all RTEMS tests.  This insures
531 *  that a "reasonable" small application should not have any problems.
532 */
533
534#define CPU_STACK_MINIMUM_SIZE          (2048*sizeof(unsigned32))
535
536/*
537 *  CPU's worst alignment requirement for data types on a byte boundary.  This
538 *  alignment does not take into account the requirements for the stack.
539 */
540
541#define CPU_ALIGNMENT              8
542
543/*
544 *  This number corresponds to the byte alignment requirement for the
545 *  heap handler.  This alignment requirement may be stricter than that
546 *  for the data types alignment specified by CPU_ALIGNMENT.  It is
547 *  common for the heap to follow the same alignment requirement as
548 *  CPU_ALIGNMENT.  If the CPU_ALIGNMENT is strict enough for the heap,
549 *  then this should be set to CPU_ALIGNMENT.
550 *
551 *  NOTE:  This does not have to be a power of 2.  It does have to
552 *         be greater or equal to than CPU_ALIGNMENT.
553 */
554
555#define CPU_HEAP_ALIGNMENT         CPU_ALIGNMENT
556
557/*
558 *  This number corresponds to the byte alignment requirement for memory
559 *  buffers allocated by the partition manager.  This alignment requirement
560 *  may be stricter than that for the data types alignment specified by
561 *  CPU_ALIGNMENT.  It is common for the partition to follow the same
562 *  alignment requirement as CPU_ALIGNMENT.  If the CPU_ALIGNMENT is strict
563 *  enough for the partition, then this should be set to CPU_ALIGNMENT.
564 *
565 *  NOTE:  This does not have to be a power of 2.  It does have to
566 *         be greater or equal to than CPU_ALIGNMENT.
567 */
568
569#define CPU_PARTITION_ALIGNMENT    CPU_ALIGNMENT
570
571/*
572 *  This number corresponds to the byte alignment requirement for the
573 *  stack.  This alignment requirement may be stricter than that for the
574 *  data types alignment specified by CPU_ALIGNMENT.  If the CPU_ALIGNMENT
575 *  is strict enough for the stack, then this should be set to 0.
576 *
577 *  NOTE:  This must be a power of 2 either 0 or greater than CPU_ALIGNMENT.
578 */
579
580#define CPU_STACK_ALIGNMENT        CPU_ALIGNMENT
581
582/*
583 *  ISR handler macros
584 */
585
586/*
587 *  Support routine to initialize the RTEMS vector table after it is allocated.
588 */
589
590#define _CPU_Initialize_vectors()
591
592/*
593 *  Disable all interrupts for an RTEMS critical section.  The previous
594 *  level is returned in _level.
595 */
596
597#define _CPU_ISR_Disable( _level ) \
598  do { \
599    mips_get_sr( _level ); \
600    mips_set_sr( (_level) & ~SR_INTERRUPT_ENABLE_BITS ); \
601  } while(0)
602
603/*
604 *  Enable interrupts to the previous level (returned by _CPU_ISR_Disable).
605 *  This indicates the end of an RTEMS critical section.  The parameter
606 *  _level is not modified.
607 */
608
609#define _CPU_ISR_Enable( _level )  \
610  do { \
611    mips_set_sr(_level); \
612  } while(0)
613
614/*
615 *  This temporarily restores the interrupt to _level before immediately
616 *  disabling them again.  This is used to divide long RTEMS critical
617 *  sections into two or more parts.  The parameter _level is not
618 * modified.
619 */
620
621#define _CPU_ISR_Flash( _xlevel ) \
622  do { \
623    unsigned int _scratch; \
624    _CPU_ISR_Enable( _xlevel ); \
625    _CPU_ISR_Disable( _scratch ); \
626  } while(0)
627
628/*
629 *  Map interrupt level in task mode onto the hardware that the CPU
630 *  actually provides.  Currently, interrupt levels which do not
631 *  map onto the CPU in a generic fashion are undefined.  Someday,
632 *  it would be nice if these were "mapped" by the application
633 *  via a callout.  For example, m68k has 8 levels 0 - 7, levels
634 *  8 - 255 would be available for bsp/application specific meaning.
635 *  This could be used to manage a programmable interrupt controller
636 *  via the rtems_task_mode directive.
637 *
638 *  On the MIPS, 0 is all on.  Non-zero is all off.  This only
639 *  manipulates the IEC.
640 */
641
642unsigned32 _CPU_ISR_Get_level( void );  /* in cpu.c */
643
644void _CPU_ISR_Set_level( unsigned32 );  /* in cpu.c */
645
646/* end of ISR handler macros */
647
648/* Context handler macros */
649
650/*
651 *  Initialize the context to a state suitable for starting a
652 *  task after a context restore operation.  Generally, this
653 *  involves:
654 *
655 *     - setting a starting address
656 *     - preparing the stack
657 *     - preparing the stack and frame pointers
658 *     - setting the proper interrupt level in the context
659 *     - initializing the floating point context
660 *
661 *  This routine generally does not set any unnecessary register
662 *  in the context.  The state of the "general data" registers is
663 *  undefined at task start time.
664 *
665 *  NOTE: This is_fp parameter is TRUE if the thread is to be a floating
666 *        point thread.  This is typically only used on CPUs where the
667 *        FPU may be easily disabled by software such as on the SPARC
668 *        where the PSR contains an enable FPU bit.
669 */
670
671#define _CPU_Context_Initialize( _the_context, _stack_base, _size, \
672                                 _isr, _entry_point, _is_fp ) \
673  { \
674        unsigned32 _stack_tmp = \
675           (unsigned32)(_stack_base) + (_size) - CPU_STACK_ALIGNMENT; \
676        _stack_tmp &= ~(CPU_STACK_ALIGNMENT - 1); \
677        (_the_context)->sp = _stack_tmp; \
678        (_the_context)->fp = _stack_tmp; \
679        (_the_context)->ra = (unsigned64)_entry_point; \
680        if (_isr) (_the_context)->c0_sr = 0xff00; \
681        else      (_the_context)->c0_sr = 0xff01; \
682  }
683
684/*
685 *  This routine is responsible for somehow restarting the currently
686 *  executing task.  If you are lucky, then all that is necessary
687 *  is restoring the context.  Otherwise, there will need to be
688 *  a special assembly routine which does something special in this
689 *  case.  Context_Restore should work most of the time.  It will
690 *  not work if restarting self conflicts with the stack frame
691 *  assumptions of restoring a context.
692 */
693
694#define _CPU_Context_Restart_self( _the_context ) \
695   _CPU_Context_restore( (_the_context) );
696
697/*
698 *  The purpose of this macro is to allow the initial pointer into
699 *  A floating point context area (used to save the floating point
700 *  context) to be at an arbitrary place in the floating point
701 *  context area.
702 *
703 *  This is necessary because some FP units are designed to have
704 *  their context saved as a stack which grows into lower addresses.
705 *  Other FP units can be saved by simply moving registers into offsets
706 *  from the base of the context area.  Finally some FP units provide
707 *  a "dump context" instruction which could fill in from high to low
708 *  or low to high based on the whim of the CPU designers.
709 */
710
711#define _CPU_Context_Fp_start( _base, _offset ) \
712   ( (void *) _Addresses_Add_offset( (_base), (_offset) ) )
713
714/*
715 *  This routine initializes the FP context area passed to it to.
716 *  There are a few standard ways in which to initialize the
717 *  floating point context.  The code included for this macro assumes
718 *  that this is a CPU in which a "initial" FP context was saved into
719 *  _CPU_Null_fp_context and it simply copies it to the destination
720 *  context passed to it.
721 *
722 *  Other models include (1) not doing anything, and (2) putting
723 *  a "null FP status word" in the correct place in the FP context.
724 */
725
726#if ( CPU_HARDWARE_FP == TRUE )
727#define _CPU_Context_Initialize_fp( _destination ) \
728  { \
729   *((Context_Control_fp *) *((void **) _destination)) = _CPU_Null_fp_context; \
730  }
731#endif
732
733/* end of Context handler macros */
734
735/* Fatal Error manager macros */
736
737/*
738 *  This routine copies _error into a known place -- typically a stack
739 *  location or a register, optionally disables interrupts, and
740 *  halts/stops the CPU.
741 */
742
743void mips_fatal_error ( int error );
744
745#define _CPU_Fatal_halt( _error ) \
746  do { \
747    unsigned int _level; \
748    _CPU_ISR_Disable(_level); \
749    mips_fatal_error(_error); \
750  } while (0)
751
752/* end of Fatal Error manager macros */
753
754/* Bitfield handler macros */
755
756/*
757 *  This routine sets _output to the bit number of the first bit
758 *  set in _value.  _value is of CPU dependent type Priority_Bit_map_control.
759 *  This type may be either 16 or 32 bits wide although only the 16
760 *  least significant bits will be used.
761 *
762 *  There are a number of variables in using a "find first bit" type
763 *  instruction.
764 *
765 *    (1) What happens when run on a value of zero?
766 *    (2) Bits may be numbered from MSB to LSB or vice-versa.
767 *    (3) The numbering may be zero or one based.
768 *    (4) The "find first bit" instruction may search from MSB or LSB.
769 *
770 *  RTEMS guarantees that (1) will never happen so it is not a concern.
771 *  (2),(3), (4) are handled by the macros _CPU_Priority_mask() and
772 *  _CPU_Priority_bits_index().  These three form a set of routines
773 *  which must logically operate together.  Bits in the _value are
774 *  set and cleared based on masks built by _CPU_Priority_mask().
775 *  The basic major and minor values calculated by _Priority_Major()
776 *  and _Priority_Minor() are "massaged" by _CPU_Priority_bits_index()
777 *  to properly range between the values returned by the "find first bit"
778 *  instruction.  This makes it possible for _Priority_Get_highest() to
779 *  calculate the major and directly index into the minor table.
780 *  This mapping is necessary to ensure that 0 (a high priority major/minor)
781 *  is the first bit found.
782 *
783 *  This entire "find first bit" and mapping process depends heavily
784 *  on the manner in which a priority is broken into a major and minor
785 *  components with the major being the 4 MSB of a priority and minor
786 *  the 4 LSB.  Thus (0 << 4) + 0 corresponds to priority 0 -- the highest
787 *  priority.  And (15 << 4) + 14 corresponds to priority 254 -- the next
788 *  to the lowest priority.
789 *
790 *  If your CPU does not have a "find first bit" instruction, then
791 *  there are ways to make do without it.  Here are a handful of ways
792 *  to implement this in software:
793 *
794 *    - a series of 16 bit test instructions
795 *    - a "binary search using if's"
796 *    - _number = 0
797 *      if _value > 0x00ff
798 *        _value >>=8
799 *        _number = 8;
800 *
801 *      if _value > 0x0000f
802 *        _value >=8
803 *        _number += 4
804 *
805 *      _number += bit_set_table[ _value ]
806 *
807 *    where bit_set_table[ 16 ] has values which indicate the first
808 *      bit set
809 */
810
811#define CPU_USE_GENERIC_BITFIELD_CODE TRUE
812#define CPU_USE_GENERIC_BITFIELD_DATA TRUE
813
814#if (CPU_USE_GENERIC_BITFIELD_CODE == FALSE)
815
816#define _CPU_Bitfield_Find_first_bit( _value, _output ) \
817  { \
818    (_output) = 0;   /* do something to prevent warnings */ \
819  }
820
821#endif
822
823/* end of Bitfield handler macros */
824
825/*
826 *  This routine builds the mask which corresponds to the bit fields
827 *  as searched by _CPU_Bitfield_Find_first_bit().  See the discussion
828 *  for that routine.
829 */
830
831#if (CPU_USE_GENERIC_BITFIELD_CODE == FALSE)
832
833#define _CPU_Priority_Mask( _bit_number ) \
834  ( 1 << (_bit_number) )
835
836#endif
837
838/*
839 *  This routine translates the bit numbers returned by
840 *  _CPU_Bitfield_Find_first_bit() into something suitable for use as
841 *  a major or minor component of a priority.  See the discussion
842 *  for that routine.
843 */
844
845#if (CPU_USE_GENERIC_BITFIELD_CODE == FALSE)
846
847#define _CPU_Priority_bits_index( _priority ) \
848  (_priority)
849
850#endif
851
852/* end of Priority handler macros */
853
854/* functions */
855
856/*
857 *  _CPU_Initialize
858 *
859 *  This routine performs CPU dependent initialization.
860 */
861
862void _CPU_Initialize(
863  rtems_cpu_table  *cpu_table,
864  void      (*thread_dispatch)
865);
866
867/*
868 *  _CPU_ISR_install_raw_handler
869 *
870 *  This routine installs a "raw" interrupt handler directly into the
871 *  processor's vector table.
872 */
873 
874void _CPU_ISR_install_raw_handler(
875  unsigned32  vector,
876  proc_ptr    new_handler,
877  proc_ptr   *old_handler
878);
879
880/*
881 *  _CPU_ISR_install_vector
882 *
883 *  This routine installs an interrupt vector.
884 */
885
886void _CPU_ISR_install_vector(
887  unsigned32  vector,
888  proc_ptr    new_handler,
889  proc_ptr   *old_handler
890);
891
892/*
893 *  _CPU_Install_interrupt_stack
894 *
895 *  This routine installs the hardware interrupt stack pointer.
896 *
897 *  NOTE:  It need only be provided if CPU_HAS_HARDWARE_INTERRUPT_STACK
898 *         is TRUE.
899 */
900
901void _CPU_Install_interrupt_stack( void );
902
903/*
904 *  _CPU_Internal_threads_Idle_thread_body
905 *
906 *  This routine is the CPU dependent IDLE thread body.
907 *
908 *  NOTE:  It need only be provided if CPU_PROVIDES_IDLE_THREAD_BODY
909 *         is TRUE.
910 */
911
912void _CPU_Thread_Idle_body( void );
913
914/*
915 *  _CPU_Context_switch
916 *
917 *  This routine switches from the run context to the heir context.
918 */
919
920void _CPU_Context_switch(
921  Context_Control  *run,
922  Context_Control  *heir
923);
924
925/*
926 *  _CPU_Context_restore
927 *
928 *  This routine is generally used only to restart self in an
929 *  efficient manner.  It may simply be a label in _CPU_Context_switch.
930 *
931 *  NOTE: May be unnecessary to reload some registers.
932 */
933
934void _CPU_Context_restore(
935  Context_Control *new_context
936);
937
938/*
939 *  _CPU_Context_save_fp
940 *
941 *  This routine saves the floating point context passed to it.
942 */
943
944void _CPU_Context_save_fp(
945  void **fp_context_ptr
946);
947
948/*
949 *  _CPU_Context_restore_fp
950 *
951 *  This routine restores the floating point context passed to it.
952 */
953
954void _CPU_Context_restore_fp(
955  void **fp_context_ptr
956);
957
958/*  The following routine swaps the endian format of an unsigned int.
959 *  It must be static because it is referenced indirectly.
960 *
961 *  This version will work on any processor, but if there is a better
962 *  way for your CPU PLEASE use it.  The most common way to do this is to:
963 *
964 *     swap least significant two bytes with 16-bit rotate
965 *     swap upper and lower 16-bits
966 *     swap most significant two bytes with 16-bit rotate
967 *
968 *  Some CPUs have special instructions which swap a 32-bit quantity in
969 *  a single instruction (e.g. i486).  It is probably best to avoid
970 *  an "endian swapping control bit" in the CPU.  One good reason is
971 *  that interrupts would probably have to be disabled to insure that
972 *  an interrupt does not try to access the same "chunk" with the wrong
973 *  endian.  Another good reason is that on some CPUs, the endian bit
974 *  endianness for ALL fetches -- both code and data -- so the code
975 *  will be fetched incorrectly.
976 */
977 
978static inline unsigned int CPU_swap_u32(
979  unsigned int value
980)
981{
982  unsigned32 byte1, byte2, byte3, byte4, swapped;
983 
984  byte4 = (value >> 24) & 0xff;
985  byte3 = (value >> 16) & 0xff;
986  byte2 = (value >> 8)  & 0xff;
987  byte1 =  value        & 0xff;
988 
989  swapped = (byte1 << 24) | (byte2 << 16) | (byte3 << 8) | byte4;
990  return( swapped );
991}
992
993#define CPU_swap_u16( value ) \
994  (((value&0xff) << 8) | ((value >> 8)&0xff))
995
996#ifdef __cplusplus
997}
998#endif
999
1000#endif
Note: See TracBrowser for help on using the repository browser.