source: rtems/c/src/exec/score/cpu/hppa1.1/cpu.h @ 5c491aef

4.104.114.84.95
Last change on this file since 5c491aef was ca201c9, checked in by Joel Sherrill <joel.sherrill@…>, on 12/05/95 at 15:28:12

minor changes so it would compile

  • Property mode set to 100644
File size: 17.7 KB
Line 
1/*  cpu.h
2 *
3 *  This include file contains information pertaining to the HP
4 *  PA-RISC processor (Level 1.1).
5 *
6 *  COPYRIGHT (c) 1994 by Division Incorporated
7 *
8 *  To anyone who acknowledges that this file is provided "AS IS"
9 *  without any express or implied warranty:
10 *      permission to use, copy, modify, and distribute this file
11 *      for any purpose is hereby granted without fee, provided that
12 *      the above copyright notice and this notice appears in all
13 *      copies, and that the name of Division Incorporated not be
14 *      used in advertising or publicity pertaining to distribution
15 *      of the software without specific, written prior permission.
16 *      Division Incorporated makes no representations about the
17 *      suitability of this software for any purpose.
18 *
19 *
20 * Note:
21 *      This file is included by both C and assembler code ( -DASM )
22 *
23 *  $Id$
24 */
25
26#ifndef __CPU_h
27#define __CPU_h
28
29#ifdef __cplusplus
30extern "C" {
31#endif
32
33#include <rtems/score/hppa.h>              /* pick up machine definitions */
34#ifndef ASM
35#include <rtems/score/hppatypes.h>
36#endif
37
38/* conditional compilation parameters */
39
40#define CPU_INLINE_ENABLE_DISPATCH       FALSE
41#define CPU_UNROLL_ENQUEUE_PRIORITY      TRUE
42
43/*
44 *  RTEMS manages an interrupt stack in software for the HPPA.
45 */
46
47#define CPU_HAS_SOFTWARE_INTERRUPT_STACK TRUE
48#define CPU_HAS_HARDWARE_INTERRUPT_STACK FALSE
49#define CPU_ALLOCATE_INTERRUPT_STACK     TRUE
50
51/*
52 *  HPPA has hardware FP, it is assumed to exist by GCC so all tasks
53 *  may implicitly use it (especially for integer multiplies).  Because
54 *  the FP context is technically part of the basic integer context
55 *  on this CPU, we cannot use the deferred FP context switch algorithm.
56 */
57
58#define CPU_HARDWARE_FP                  TRUE
59#define CPU_ALL_TASKS_ARE_FP             TRUE
60#define CPU_IDLE_TASK_IS_FP              FALSE
61#define CPU_USE_DEFERRED_FP_SWITCH       FALSE
62
63#define CPU_PROVIDES_IDLE_THREAD_BODY    FALSE
64#define CPU_STACK_GROWS_UP               TRUE
65#define CPU_STRUCTURE_ALIGNMENT          __attribute__ ((__aligned__ (32)))
66
67/* constants */
68
69#define CPU_MODES_INTERRUPT_LEVEL  0x00000001 /* interrupt level in mode */
70#define CPU_MODES_INTERRUPT_MASK   0x00000001 /* interrupt level in mode */
71
72/*
73 * PSW contstants
74 */
75
76#define CPU_PSW_BASE (HPPA_PSW_C | HPPA_PSW_Q | HPPA_PSW_P | HPPA_PSW_D)
77#define CPU_PSW_INTERRUPTS_ON    (CPU_PSW_BASE | HPPA_PSW_I)
78#define CPU_PSW_INTERRUPTS_OFF   (CPU_PSW_BASE)
79
80#define CPU_PSW_DEFAULT     CPU_PSW_BASE
81
82
83#ifndef ASM
84
85/*
86 * Contexts
87 *
88 *  This means we have the following context items:
89 *    1. task level context stuff::  Context_Control
90 *    2. floating point task stuff:: Context_Control_fp
91 *
92 *  The PA-RISC is very fast so the expense of saving an extra register
93 *  or two is not of great concern at the present.  So we are not making
94 *  a distinction between what is saved during a task switch and what is
95 *  saved at each interrupt.  Plus saving the entire context should make
96 *  it easier to make gdb aware of RTEMS tasks.
97 */
98
99typedef struct {
100    unsigned32 flags;      /* whatever */
101    unsigned32 gr1;        /* scratch -- caller saves */
102    unsigned32 gr2;        /* RP -- return pointer */
103    unsigned32 gr3;        /* scratch -- callee saves */
104    unsigned32 gr4;        /* scratch -- callee saves */
105    unsigned32 gr5;        /* scratch -- callee saves */
106    unsigned32 gr6;        /* scratch -- callee saves */
107    unsigned32 gr7;        /* scratch -- callee saves */
108    unsigned32 gr8;        /* scratch -- callee saves */
109    unsigned32 gr9;        /* scratch -- callee saves */
110    unsigned32 gr10;       /* scratch -- callee saves */
111    unsigned32 gr11;       /* scratch -- callee saves */
112    unsigned32 gr12;       /* scratch -- callee saves */
113    unsigned32 gr13;       /* scratch -- callee saves */
114    unsigned32 gr14;       /* scratch -- callee saves */
115    unsigned32 gr15;       /* scratch -- callee saves */
116    unsigned32 gr16;       /* scratch -- callee saves */
117    unsigned32 gr17;       /* scratch -- callee saves */
118    unsigned32 gr18;       /* scratch -- callee saves */
119    unsigned32 gr19;       /* scratch -- caller saves */
120    unsigned32 gr20;       /* scratch -- caller saves */
121    unsigned32 gr21;       /* scratch -- caller saves */
122    unsigned32 gr22;       /* scratch -- caller saves */
123    unsigned32 gr23;       /* argument 3 */
124    unsigned32 gr24;       /* argument 2 */
125    unsigned32 gr25;       /* argument 1 */
126    unsigned32 gr26;       /* argument 0 */
127    unsigned32 gr27;       /* DP -- global data pointer */
128    unsigned32 gr28;       /* return values -- caller saves */
129    unsigned32 gr29;       /* return values -- caller saves */
130    unsigned32 sp;         /* gr30 */
131    unsigned32 gr31;
132
133    /* Various control registers */
134
135    unsigned32 sar;         /* cr11 */
136    unsigned32 ipsw;        /* cr22; full 32 bits of psw */
137    unsigned32 iir;         /* cr19; interrupt instruction register */
138    unsigned32 ior;         /* cr21; interrupt offset register */
139    unsigned32 isr;         /* cr20; interrupt space register (not used) */
140    unsigned32 pcoqfront;   /* cr18; front que offset */
141    unsigned32 pcoqback;    /* cr18; back que offset */
142    unsigned32 pcsqfront;   /* cr17; front que space (not used) */
143    unsigned32 pcsqback;    /* cr17; back que space (not used) */
144    unsigned32 itimer;      /* cr16; itimer value */
145
146} Context_Control;
147
148
149/* Must be double word aligned.
150 * This will be ok since our allocator returns 8 byte aligned chunks
151 */
152
153typedef struct {
154    double      fr0;        /* status */
155    double      fr1;        /* exception information */
156    double      fr2;        /* exception information */
157    double      fr3;        /* exception information */
158    double      fr4;        /* argument */
159    double      fr5;        /* argument */
160    double      fr6;        /* argument */
161    double      fr7;        /* argument */
162    double      fr8;        /* scratch -- caller saves */
163    double      fr9;        /* scratch -- caller saves */
164    double      fr10;       /* scratch -- caller saves */
165    double      fr11;       /* scratch -- caller saves */
166    double      fr12;       /* callee saves -- (PA-RISC 1.1 CPUs) */
167    double      fr13;       /* callee saves -- (PA-RISC 1.1 CPUs) */
168    double      fr14;       /* callee saves -- (PA-RISC 1.1 CPUs) */
169    double      fr15;       /* callee saves -- (PA-RISC 1.1 CPUs) */
170    double      fr16;       /* callee saves -- (PA-RISC 1.1 CPUs) */
171    double      fr17;       /* callee saves -- (PA-RISC 1.1 CPUs) */
172    double      fr18;       /* callee saves -- (PA-RISC 1.1 CPUs) */
173    double      fr19;       /* callee saves -- (PA-RISC 1.1 CPUs) */
174    double      fr20;       /* callee saves -- (PA-RISC 1.1 CPUs) */
175    double      fr21;       /* callee saves -- (PA-RISC 1.1 CPUs) */
176    double      fr22;       /* caller saves -- (PA-RISC 1.1 CPUs) */
177    double      fr23;       /* caller saves -- (PA-RISC 1.1 CPUs) */
178    double      fr24;       /* caller saves -- (PA-RISC 1.1 CPUs) */
179    double      fr25;       /* caller saves -- (PA-RISC 1.1 CPUs) */
180    double      fr26;       /* caller saves -- (PA-RISC 1.1 CPUs) */
181    double      fr27;       /* caller saves -- (PA-RISC 1.1 CPUs) */
182    double      fr28;       /* caller saves -- (PA-RISC 1.1 CPUs) */
183    double      fr29;       /* caller saves -- (PA-RISC 1.1 CPUs) */
184    double      fr30;       /* caller saves -- (PA-RISC 1.1 CPUs) */
185    double      fr31;       /* caller saves -- (PA-RISC 1.1 CPUs) */
186} Context_Control_fp;
187
188/*
189 *  The following structure defines the set of information saved
190 *  on the current stack by RTEMS upon receipt of each interrupt.
191 */
192
193typedef struct {
194  Context_Control             Integer;
195  Context_Control_fp          Floating_Point;
196} CPU_Interrupt_frame;
197
198/*
199 * The following table contains the information required to configure
200 * the HPPA specific parameters.
201 */
202
203typedef struct {
204  void       (*pretasking_hook)( void );
205  void       (*predriver_hook)( void );
206  void       (*postdriver_hook)( void );
207  void       (*idle_task)( void );
208
209                 /* HPPA simulator is slow enough; don't waste time
210                  * zeroing memory that is already zero
211                  */
212  boolean      do_zero_of_workspace;
213
214  unsigned32   interrupt_stack_size;
215  unsigned32   extra_system_initialization_stack;
216
217  /*
218   * Control of external interrupts.
219   * We keep a table of external vector numbers (0 - 31)
220   * The table is sorted by priority, that is: the first entry
221   * in the table indicates the vector that is highest priorty.
222   * The handler function is stored in _ISR_Vector_Table[] and
223   * is set by rtems_interrupt_catch()
224   */
225
226  unsigned32   external_interrupts;   /* # of external interrupts we use */
227  unsigned32   external_interrupt[HPPA_EXTERNAL_INTERRUPTS];
228
229  void       (*spurious_handler)( unsigned32 mask, CPU_Interrupt_frame *);
230
231  unsigned32   itimer_clicks_per_microsecond; /* for use by Clock driver */
232}   rtems_cpu_table;
233
234/* variables */
235
236EXTERN Context_Control_fp  _CPU_Null_fp_context;
237EXTERN unsigned32          _CPU_Default_gr27;
238EXTERN void               *_CPU_Interrupt_stack_low;
239EXTERN void               *_CPU_Interrupt_stack_high;
240
241#endif          /* ! ASM */
242
243/*
244 *  context size area for floating point
245 */
246
247#ifndef ASM
248#define CPU_CONTEXT_FP_SIZE sizeof( Context_Control_fp )
249#endif
250
251/*
252 *  size of a frame on the stack
253 */
254
255#define CPU_FRAME_SIZE (16 * 4)
256
257/*
258 * (Optional) # of bytes for libmisc/stackchk to check
259 * If not specifed, then it defaults to something reasonable
260 * for most architectures.
261 */
262
263#define CPU_STACK_CHECK_SIZE    (CPU_FRAME_SIZE * 2)
264
265/*
266 *  extra stack required by system initialization thread
267 */
268
269#define CPU_SYSTEM_INITIALIZATION_THREAD_EXTRA_STACK 0
270
271/*
272 * HPPA has 32 interrupts, then 32 external interrupts
273 * Rtems (_ISR_Vector_Table) is aware of the first 64
274 * A BSP may reserve more.
275 *
276 * External interrupts all come thru the same vector (4)
277 * The external handler is the only person aware of the other
278 * interrupts (genie, rhino, etc)
279 */
280
281#define CPU_INTERRUPT_NUMBER_OF_VECTORS      (HPPA_INTERRUPT_MAX)
282#define CPU_INTERRUPT_MAXIMUM_VECTOR_NUMBER  (CPU_INTERRUPT_NUMBER_OF_VECTORS - 1)
283
284/*
285 * Don't be chintzy here; we don't want to debug these problems
286 * Some of the tests eat almost 4k.
287 * Plus, the HPPA always allocates chunks of 64 bytes for stack
288 *       growth.
289 */
290
291#define CPU_STACK_MINIMUM_SIZE          (8 * 1024)
292
293/*
294 * HPPA double's must be on 8 byte boundary
295 */
296
297#define CPU_ALIGNMENT              8
298
299/*
300 * just follow the basic HPPA alignment for the heap and partition
301 */
302
303#define CPU_HEAP_ALIGNMENT         CPU_ALIGNMENT
304#define CPU_PARTITION_ALIGNMENT    CPU_ALIGNMENT
305
306/*
307 * HPPA stack is best when 64 byte aligned.
308 */
309
310#define CPU_STACK_ALIGNMENT        64
311
312#ifndef ASM
313
314/* macros */
315
316/*
317 *  ISR handler macros
318 *
319 *  These macros perform the following functions:
320 *     + disable all maskable CPU interrupts
321 *     + restore previous interrupt level (enable)
322 *     + temporarily restore interrupts (flash)
323 *     + set a particular level
324 */
325
326/* Disable interrupts; returning previous level in _level */
327#define _CPU_ISR_Disable( _isr_cookie ) \
328  do { \
329         HPPA_ASM_RSM(HPPA_PSW_I, _isr_cookie);   \
330  } while(0)
331
332/* Enable interrupts to previous level from _CPU_ISR_Disable
333 * does not change 'level' */
334#define _CPU_ISR_Enable( _isr_cookie )  \
335  { \
336        HPPA_ASM_MTSM( _isr_cookie ); \
337  }
338
339/* restore, then disable interrupts; does not change level */
340#define _CPU_ISR_Flash( _isr_cookie ) \
341  { \
342        register int _ignore;  \
343        _CPU_ISR_Enable( _isr_cookie ); \
344        _CPU_ISR_Disable( _ignore ); \
345  }
346
347/*
348 * Interrupt task levels
349 *
350 * Future scheme proposal
351 *      level will be an index into a array.
352 *      Each entry of array will be the interrupt bits
353 *        enabled for that level.  There will be 32 bits of external
354 *        interrupts (to be placed in EIEM) and some (optional) bsp
355 *        specific bits
356 *
357 * For pixel flow this *may* mean something like:
358 *      level 0:   all interrupts enabled (external + rhino)
359 *      level 1:   rhino disabled
360 *      level 2:   all io interrupts disabled (timer still enabled)
361 *      level 7:   *ALL* disabled (timer disabled)
362 */
363
364/* set interrupts on or off; does not return new level */
365#define _CPU_ISR_Set_level( new_level ) \
366  { \
367        volatile int ignore; \
368        if ( new_level )  HPPA_ASM_RSM(HPPA_PSW_I, ignore); \
369        else              HPPA_ASM_SSM(HPPA_PSW_I, ignore); \
370  }
371
372/* return current level */
373unsigned32 _CPU_ISR_Get_level( void );
374
375/* end of ISR handler macros */
376
377/*
378 *  Context handler macros
379 *
380 *  These macros perform the following functions:
381 *     + initialize a context area
382 *     + restart the current thread
383 *     + calculate the initial pointer into a FP context area
384 *     + initialize an FP context area
385 *
386 *  HPPA port adds two macros which hide the "indirectness" of the
387 *  pointer passed the save/restore FP context assembly routines.
388 */
389
390#define _CPU_Context_Initialize( _the_context, _stack_base, _size, \
391                                  _new_level, _entry_point, _is_fp ) \
392  do { \
393    unsigned32 _stack; \
394    \
395    (_the_context)->flags = 0xfeedf00d; \
396    (_the_context)->pcoqfront = (unsigned32)(_entry_point); \
397    (_the_context)->pcoqback  = (unsigned32)(_entry_point) + 4; \
398    (_the_context)->pcsqfront = 0; \
399    (_the_context)->pcsqback  = 0; \
400    if ( (_new_level) ) \
401        (_the_context)->ipsw = CPU_PSW_INTERRUPTS_OFF; \
402    else \
403        (_the_context)->ipsw = CPU_PSW_INTERRUPTS_ON; \
404    \
405    _stack = ((unsigned32)(_stack_base) + (CPU_STACK_ALIGNMENT - 1)); \
406    _stack &= ~(CPU_STACK_ALIGNMENT - 1); \
407    if ((_stack - (unsigned32) (_stack_base)) < CPU_FRAME_SIZE) \
408       _stack += CPU_FRAME_SIZE; \
409    \
410    (_the_context)->sp = (_stack); \
411    (_the_context)->gr27 = _CPU_Default_gr27; \
412  } while (0)
413
414#define _CPU_Context_Restart_self( _the_context ) \
415    do { \
416         _CPU_Context_restore( (_the_context) ); \
417    } while (0)
418
419#define _CPU_Context_Fp_start( _base, _offset ) \
420   ( (void *) (_base) + (_offset) )
421
422#define _CPU_Context_Initialize_fp( _destination ) \
423  do { \
424    *((Context_Control_fp *) *((void **) _destination)) = _CPU_Null_fp_context;\
425  } while(0)
426
427#define _CPU_Context_save_fp( _fp_context ) \
428   _CPU_Save_float_context( *(Context_Control_fp **)(_fp_context) )
429
430#define _CPU_Context_restore_fp( _fp_context ) \
431   _CPU_Restore_float_context( *(Context_Control_fp **)(_fp_context) )
432
433/* end of Context handler macros */
434
435/*
436 *  Fatal Error manager macros
437 *
438 *  These macros perform the following functions:
439 *    + disable interrupts and halt the CPU
440 */
441
442void    hppa_cpu_halt(unsigned32 type_of_halt, unsigned32 the_error);
443#define _CPU_Fatal_halt( _error ) \
444    hppa_cpu_halt(0, _error)
445
446/* end of Fatal Error manager macros */
447
448/*
449 *  Bitfield handler macros
450 *
451 *  These macros perform the following functions:
452 *     + scan for the highest numbered (MSB) set in a 16 bit bitfield
453 *
454 *  NOTE:
455 *
456 *  The HPPA does not have a scan instruction.  This functionality
457 *  is implemented in software.
458 */
459
460#define CPU_USE_GENERIC_BITFIELD_CODE FALSE
461#define CPU_USE_GENERIC_BITFIELD_DATA FALSE
462
463int hppa_rtems_ffs(unsigned int value);
464#define _CPU_Bitfield_Find_first_bit( _value, _output ) \
465    _output = hppa_rtems_ffs(_value)
466
467/* end of Bitfield handler macros */
468
469/*
470 *  Priority handler macros
471 *
472 *  These macros perform the following functions:
473 *    + return a mask with the bit for this major/minor portion of
474 *      of thread priority set.
475 *    + translate the bit number returned by "Bitfield_find_first_bit"
476 *      into an index into the thread ready chain bit maps
477 *
478 *  Note: 255 is the lowest priority
479 */
480
481#define _CPU_Priority_Mask( _bit_number ) \
482  ( 1 << (_bit_number) )
483
484#define _CPU_Priority_bits_index( _priority ) \
485  (_priority)
486
487/* end of Priority handler macros */
488
489/* functions */
490
491/*
492 *  _CPU_Initialize
493 *
494 *  This routine performs CPU dependent initialization.
495 */
496
497void _CPU_Initialize(
498  rtems_cpu_table  *cpu_table,
499  void      (*thread_dispatch)
500);
501
502/*
503 *  _CPU_ISR_install_raw_handler
504 *
505 *  This routine installs a "raw" interrupt handler directly into the
506 *  processor's vector table.
507 */
508 
509void _CPU_ISR_install_raw_handler(
510  unsigned32  vector,
511  proc_ptr    new_handler,
512  proc_ptr   *old_handler
513);
514
515/*
516 *  _CPU_ISR_install_vector
517 *
518 *  This routine installs an interrupt vector.
519 */
520
521void _CPU_ISR_install_vector(
522  unsigned32  vector,
523  proc_ptr    new_handler,
524  proc_ptr   *old_handler
525);
526
527/*
528 *  _CPU_Context_switch
529 *
530 *  This routine switches from the run context to the heir context.
531 */
532
533void _CPU_Context_switch(
534  Context_Control  *run,
535  Context_Control  *heir
536);
537
538/*
539 *  _CPU_Context_restore
540 *
541 *  This routine is generally used only to restart self in an
542 *  efficient manner and avoid stack conflicts.
543 */
544
545void _CPU_Context_restore(
546  Context_Control *new_context
547);
548
549/*
550 *  _CPU_Save_float_context
551 *
552 *  This routine saves the floating point context passed to it.
553 *
554 *  NOTE:  _CPU_Context_save_fp is implemented as a macro on the HPPA
555 *         which dereferences the pointer before calling this.
556 */
557
558void _CPU_Save_float_context(
559  Context_Control_fp *fp_context
560);
561
562/*
563 *  _CPU_Restore_float_context
564 *
565 *  This routine restores the floating point context passed to it.
566 *
567 *  NOTE:  _CPU_Context_save_fp is implemented as a macro on the HPPA
568 *         which dereferences the pointer before calling this.
569 */
570
571void _CPU_Restore_float_context(
572  Context_Control_fp *fp_context
573);
574
575
576/*  The following routine swaps the endian format of an unsigned int.
577 *  It must be static so it can be referenced indirectly.
578 */
579
580static inline unsigned int
581CPU_swap_u32(unsigned32 value)
582{
583  unsigned32 swapped;
584
585  HPPA_ASM_SWAPBYTES(value, swapped);
586
587  return( swapped );
588}
589
590/*
591 * Unused; I think it should go away
592 */
593
594#if 0
595#define enable_tracing()
596#endif
597
598#endif   /* ! ASM */
599
600#ifdef __cplusplus
601}
602#endif
603
604#endif   /* ! __CPU_h */
Note: See TracBrowser for help on using the repository browser.