source: rtems/c/src/exec/score/cpu/h8300/rtems/score/cpu.h @ 8bc62aeb

4.104.114.84.95
Last change on this file since 8bc62aeb was 8bc62aeb, checked in by Joel Sherrill <joel.sherrill@…>, on Jul 3, 2000 at 6:44:12 PM

Interrupt stack is allocated in _ISR_Handler_initialization not
_Interrupt_Manager_initialization.

  • Property mode set to 100644
File size: 32.0 KB
Line 
1/*  cpu.h
2 *
3 *  This include file contains information pertaining to the XXX
4 *  processor.
5 *
6 *  COPYRIGHT (c) 1989-1999.
7 *  On-Line Applications Research Corporation (OAR).
8 *
9 *  The license and distribution terms for this file may be
10 *  found in the file LICENSE in this distribution or at
11 *  http://www.OARcorp.com/rtems/license.html.
12 *
13 *  $Id$
14 */
15
16#ifndef __CPU_h
17#define __CPU_h
18
19#ifdef __cplusplus
20extern "C" {
21#endif
22
23#include <rtems/score/h8300.h>               /* pick up machine definitions */
24#ifndef ASM
25#include <rtems/score/h8300types.h>
26#endif
27
28/* conditional compilation parameters */
29
30/*
31 *  Should the calls to _Thread_Enable_dispatch be inlined?
32 *
33 *  If TRUE, then they are inlined.
34 *  If FALSE, then a subroutine call is made.
35 *
36 *  Basically this is an example of the classic trade-off of size
37 *  versus speed.  Inlining the call (TRUE) typically increases the
38 *  size of RTEMS while speeding up the enabling of dispatching.
39 *  [NOTE: In general, the _Thread_Dispatch_disable_level will
40 *  only be 0 or 1 unless you are in an interrupt handler and that
41 *  interrupt handler invokes the executive.]  When not inlined
42 *  something calls _Thread_Enable_dispatch which in turns calls
43 *  _Thread_Dispatch.  If the enable dispatch is inlined, then
44 *  one subroutine call is avoided entirely.]
45 *
46 *  H8300 Specific Information:
47 *
48 *  XXX
49 */
50
51#define CPU_INLINE_ENABLE_DISPATCH       FALSE
52
53/*
54 *  Should the body of the search loops in _Thread_queue_Enqueue_priority
55 *  be unrolled one time?  In unrolled each iteration of the loop examines
56 *  two "nodes" on the chain being searched.  Otherwise, only one node
57 *  is examined per iteration.
58 *
59 *  If TRUE, then the loops are unrolled.
60 *  If FALSE, then the loops are not unrolled.
61 *
62 *  The primary factor in making this decision is the cost of disabling
63 *  and enabling interrupts (_ISR_Flash) versus the cost of rest of the
64 *  body of the loop.  On some CPUs, the flash is more expensive than
65 *  one iteration of the loop body.  In this case, it might be desirable
66 *  to unroll the loop.  It is important to note that on some CPUs, this
67 *  code is the longest interrupt disable period in RTEMS.  So it is
68 *  necessary to strike a balance when setting this parameter.
69 *
70 *  H8300 Specific Information:
71 *
72 *  XXX
73 */
74
75#define CPU_UNROLL_ENQUEUE_PRIORITY      TRUE
76
77/*
78 *  Does RTEMS manage a dedicated interrupt stack in software?
79 *
80 *  If TRUE, then a stack is allocated in _ISR_Handler_initialization.
81 *  If FALSE, nothing is done.
82 *
83 *  If the CPU supports a dedicated interrupt stack in hardware,
84 *  then it is generally the responsibility of the BSP to allocate it
85 *  and set it up.
86 *
87 *  If the CPU does not support a dedicated interrupt stack, then
88 *  the porter has two options: (1) execute interrupts on the
89 *  stack of the interrupted task, and (2) have RTEMS manage a dedicated
90 *  interrupt stack.
91 *
92 *  If this is TRUE, CPU_ALLOCATE_INTERRUPT_STACK should also be TRUE.
93 *
94 *  Only one of CPU_HAS_SOFTWARE_INTERRUPT_STACK and
95 *  CPU_HAS_HARDWARE_INTERRUPT_STACK should be set to TRUE.  It is
96 *  possible that both are FALSE for a particular CPU.  Although it
97 *  is unclear what that would imply about the interrupt processing
98 *  procedure on that CPU.
99 *
100 *  H8300 Specific Information:
101 *
102 *  XXX
103 */
104
105#define CPU_HAS_SOFTWARE_INTERRUPT_STACK TRUE
106
107/*
108 *  Does this CPU have hardware support for a dedicated interrupt stack?
109 *
110 *  If TRUE, then it must be installed during initialization.
111 *  If FALSE, then no installation is performed.
112 *
113 *  If this is TRUE, CPU_ALLOCATE_INTERRUPT_STACK should also be TRUE.
114 *
115 *  Only one of CPU_HAS_SOFTWARE_INTERRUPT_STACK and
116 *  CPU_HAS_HARDWARE_INTERRUPT_STACK should be set to TRUE.  It is
117 *  possible that both are FALSE for a particular CPU.  Although it
118 *  is unclear what that would imply about the interrupt processing
119 *  procedure on that CPU.
120 *
121 *  H8300 Specific Information:
122 *
123 *  XXX
124 */
125
126#define CPU_HAS_HARDWARE_INTERRUPT_STACK FALSE
127
128/*
129 *  Does RTEMS allocate a dedicated interrupt stack in the Interrupt Manager?
130 *
131 *  If TRUE, then the memory is allocated during initialization.
132 *  If FALSE, then the memory is allocated during initialization.
133 *
134 *  This should be TRUE is CPU_HAS_SOFTWARE_INTERRUPT_STACK is TRUE
135 *  or CPU_INSTALL_HARDWARE_INTERRUPT_STACK is TRUE.
136 *
137 *  H8300 Specific Information:
138 *
139 *  XXX
140 */
141
142#define CPU_ALLOCATE_INTERRUPT_STACK TRUE
143
144/*
145 *  Does the CPU have hardware floating point?
146 *
147 *  If TRUE, then the RTEMS_FLOATING_POINT task attribute is supported.
148 *  If FALSE, then the RTEMS_FLOATING_POINT task attribute is ignored.
149 *
150 *  If there is a FP coprocessor such as the i387 or mc68881, then
151 *  the answer is TRUE.
152 *
153 *  The macro name "NO_CPU_HAS_FPU" should be made CPU specific.
154 *  It indicates whether or not this CPU model has FP support.  For
155 *  example, it would be possible to have an i386_nofp CPU model
156 *  which set this to false to indicate that you have an i386 without
157 *  an i387 and wish to leave floating point support out of RTEMS.
158 *
159 *  H8300 Specific Information:
160 *
161 *  XXX
162 */
163
164#define CPU_HARDWARE_FP     FALSE
165
166/*
167 *  Are all tasks RTEMS_FLOATING_POINT tasks implicitly?
168 *
169 *  If TRUE, then the RTEMS_FLOATING_POINT task attribute is assumed.
170 *  If FALSE, then the RTEMS_FLOATING_POINT task attribute is followed.
171 *
172 *  So far, the only CPU in which this option has been used is the
173 *  HP PA-RISC.  The HP C compiler and gcc both implicitly use the
174 *  floating point registers to perform integer multiplies.  If
175 *  a function which you would not think utilize the FP unit DOES,
176 *  then one can not easily predict which tasks will use the FP hardware.
177 *  In this case, this option should be TRUE.
178 *
179 *  If CPU_HARDWARE_FP is FALSE, then this should be FALSE as well.
180 *
181 *  H8300 Specific Information:
182 *
183 *  XXX
184 */
185
186#define CPU_ALL_TASKS_ARE_FP     FALSE
187
188/*
189 *  Should the IDLE task have a floating point context?
190 *
191 *  If TRUE, then the IDLE task is created as a RTEMS_FLOATING_POINT task
192 *  and it has a floating point context which is switched in and out.
193 *  If FALSE, then the IDLE task does not have a floating point context.
194 *
195 *  Setting this to TRUE negatively impacts the time required to preempt
196 *  the IDLE task from an interrupt because the floating point context
197 *  must be saved as part of the preemption.
198 *
199 *  H8300 Specific Information:
200 *
201 *  XXX
202 */
203
204#define CPU_IDLE_TASK_IS_FP      FALSE
205
206/*
207 *  Should the saving of the floating point registers be deferred
208 *  until a context switch is made to another different floating point
209 *  task?
210 *
211 *  If TRUE, then the floating point context will not be stored until
212 *  necessary.  It will remain in the floating point registers and not
213 *  disturned until another floating point task is switched to.
214 *
215 *  If FALSE, then the floating point context is saved when a floating
216 *  point task is switched out and restored when the next floating point
217 *  task is restored.  The state of the floating point registers between
218 *  those two operations is not specified.
219 *
220 *  If the floating point context does NOT have to be saved as part of
221 *  interrupt dispatching, then it should be safe to set this to TRUE.
222 *
223 *  Setting this flag to TRUE results in using a different algorithm
224 *  for deciding when to save and restore the floating point context.
225 *  The deferred FP switch algorithm minimizes the number of times
226 *  the FP context is saved and restored.  The FP context is not saved
227 *  until a context switch is made to another, different FP task.
228 *  Thus in a system with only one FP task, the FP context will never
229 *  be saved or restored.
230 *
231 *  H8300 Specific Information:
232 *
233 *  XXX
234 */
235
236#define CPU_USE_DEFERRED_FP_SWITCH       TRUE
237
238/*
239 *  Does this port provide a CPU dependent IDLE task implementation?
240 *
241 *  If TRUE, then the routine _CPU_Internal_threads_Idle_thread_body
242 *  must be provided and is the default IDLE thread body instead of
243 *  _Internal_threads_Idle_thread_body.
244 *
245 *  If FALSE, then use the generic IDLE thread body if the BSP does
246 *  not provide one.
247 *
248 *  This is intended to allow for supporting processors which have
249 *  a low power or idle mode.  When the IDLE thread is executed, then
250 *  the CPU can be powered down.
251 *
252 *  The order of precedence for selecting the IDLE thread body is:
253 *
254 *    1.  BSP provided
255 *    2.  CPU dependent (if provided)
256 *    3.  generic (if no BSP and no CPU dependent)
257 *
258 *  H8300 Specific Information:
259 *
260 *  XXX
261 *  The port initially called a BSP dependent routine called
262 *  IDLE_Monitor.  The idle task body can be overridden by
263 *  the BSP in newer versions of RTEMS.
264 */
265
266#define CPU_PROVIDES_IDLE_THREAD_BODY    FALSE
267
268/*
269 *  Does the stack grow up (toward higher addresses) or down
270 *  (toward lower addresses)?
271 *
272 *  If TRUE, then the grows upward.
273 *  If FALSE, then the grows toward smaller addresses.
274 *
275 *  H8300 Specific Information:
276 *
277 *  XXX
278 */
279
280#define CPU_STACK_GROWS_UP               FALSE
281
282/*
283 *  The following is the variable attribute used to force alignment
284 *  of critical RTEMS structures.  On some processors it may make
285 *  sense to have these aligned on tighter boundaries than
286 *  the minimum requirements of the compiler in order to have as
287 *  much of the critical data area as possible in a cache line.
288 *
289 *  The placement of this macro in the declaration of the variables
290 *  is based on the syntactically requirements of the GNU C
291 *  "__attribute__" extension.  For example with GNU C, use
292 *  the following to force a structures to a 32 byte boundary.
293 *
294 *      __attribute__ ((aligned (32)))
295 *
296 *  NOTE:  Currently only the Priority Bit Map table uses this feature.
297 *         To benefit from using this, the data must be heavily
298 *         used so it will stay in the cache and used frequently enough
299 *         in the executive to justify turning this on.
300 *
301 *  H8300 Specific Information:
302 *
303 *  XXX
304 */
305
306#define CPU_STRUCTURE_ALIGNMENT
307
308/*
309 *  Define what is required to specify how the network to host conversion
310 *  routines are handled.
311 */
312
313#define CPU_HAS_OWN_HOST_TO_NETWORK_ROUTINES     FALSE
314#define CPU_BIG_ENDIAN                           TRUE
315#define CPU_LITTLE_ENDIAN                        FALSE
316
317/*
318 *  The following defines the number of bits actually used in the
319 *  interrupt field of the task mode.  How those bits map to the
320 *  CPU interrupt levels is defined by the routine _CPU_ISR_Set_level().
321 *
322 *  H8300 Specific Information:
323 *
324 *  XXX
325 */
326
327#define CPU_MODES_INTERRUPT_MASK   0x00000001
328
329/*
330 *  Processor defined structures
331 *
332 *  Examples structures include the descriptor tables from the i386
333 *  and the processor control structure on the i960ca.
334 *
335 *  H8300 Specific Information:
336 *
337 *  XXX
338 */
339
340/* may need to put some structures here.  */
341
342/*
343 * Contexts
344 *
345 *  Generally there are 2 types of context to save.
346 *     1. Interrupt registers to save
347 *     2. Task level registers to save
348 *
349 *  This means we have the following 3 context items:
350 *     1. task level context stuff::  Context_Control
351 *     2. floating point task stuff:: Context_Control_fp
352 *     3. special interrupt level context :: Context_Control_interrupt
353 *
354 *  On some processors, it is cost-effective to save only the callee
355 *  preserved registers during a task context switch.  This means
356 *  that the ISR code needs to save those registers which do not
357 *  persist across function calls.  It is not mandatory to make this
358 *  distinctions between the caller/callee saves registers for the
359 *  purpose of minimizing context saved during task switch and on interrupts.
360 *  If the cost of saving extra registers is minimal, simplicity is the
361 *  choice.  Save the same context on interrupt entry as for tasks in
362 *  this case.
363 *
364 *  Additionally, if gdb is to be made aware of RTEMS tasks for this CPU, then
365 *  care should be used in designing the context area.
366 *
367 *  On some CPUs with hardware floating point support, the Context_Control_fp
368 *  structure will not be used or it simply consist of an array of a
369 *  fixed number of bytes.   This is done when the floating point context
370 *  is dumped by a "FP save context" type instruction and the format
371 *  is not really defined by the CPU.  In this case, there is no need
372 *  to figure out the exact format -- only the size.  Of course, although
373 *  this is enough information for RTEMS, it is probably not enough for
374 *  a debugger such as gdb.  But that is another problem.
375 *
376 *  H8300 Specific Information:
377 *
378 *  XXX
379 */
380
381
382
383#define nogap __attribute__ ((packed))
384
385typedef struct {
386    unsigned16  ccr nogap;
387    void        *er7 nogap;
388    void        *er6 nogap;
389    unsigned32  er5 nogap;
390    unsigned32  er4 nogap;
391    unsigned32  er3 nogap;
392    unsigned32  er2 nogap;
393    unsigned32  er1 nogap;
394    unsigned32  er0 nogap;
395    unsigned32  xxx nogap;
396} Context_Control;
397
398typedef struct {
399    double      some_float_register[2];
400} Context_Control_fp;
401
402typedef struct {
403    unsigned32 special_interrupt_register;
404} CPU_Interrupt_frame;
405
406
407/*
408 *  The following table contains the information required to configure
409 *  the XXX processor specific parameters.
410 *
411 *  NOTE: The interrupt_stack_size field is required if
412 *        CPU_ALLOCATE_INTERRUPT_STACK is defined as TRUE.
413 *
414 *        The pretasking_hook, predriver_hook, and postdriver_hook,
415 *        and the do_zero_of_workspace fields are required on ALL CPUs.
416 *
417 *  H8300 Specific Information:
418 *
419 *  XXX
420 */
421
422typedef struct {
423  void       (*pretasking_hook)( void );
424  void       (*predriver_hook)( void );
425  void       (*postdriver_hook)( void );
426  void       (*idle_task)( void );
427  boolean      do_zero_of_workspace;
428  unsigned32   idle_task_stack_size;
429  unsigned32   interrupt_stack_size;
430  unsigned32   extra_mpci_receive_server_stack;
431  void *     (*stack_allocate_hook)( unsigned32 );
432  void       (*stack_free_hook)( void* );
433}   rtems_cpu_table;
434
435/*
436 *  This variable is optional.  It is used on CPUs on which it is difficult
437 *  to generate an "uninitialized" FP context.  It is filled in by
438 *  _CPU_Initialize and copied into the task's FP context area during
439 *  _CPU_Context_Initialize.
440 *
441 *  H8300 Specific Information:
442 *
443 *  XXX
444 */
445
446SCORE_EXTERN Context_Control_fp  _CPU_Null_fp_context;
447
448/*
449 *  On some CPUs, RTEMS supports a software managed interrupt stack.
450 *  This stack is allocated by the Interrupt Manager and the switch
451 *  is performed in _ISR_Handler.  These variables contain pointers
452 *  to the lowest and highest addresses in the chunk of memory allocated
453 *  for the interrupt stack.  Since it is unknown whether the stack
454 *  grows up or down (in general), this give the CPU dependent
455 *  code the option of picking the version it wants to use.
456 *
457 *  NOTE: These two variables are required if the macro
458 *        CPU_HAS_SOFTWARE_INTERRUPT_STACK is defined as TRUE.
459 *
460 *  H8300 Specific Information:
461 *
462 *  XXX
463 */
464
465SCORE_EXTERN void               *_CPU_Interrupt_stack_low;
466SCORE_EXTERN void               *_CPU_Interrupt_stack_high;
467
468/*
469 *  With some compilation systems, it is difficult if not impossible to
470 *  call a high-level language routine from assembly language.  This
471 *  is especially true of commercial Ada compilers and name mangling
472 *  C++ ones.  This variable can be optionally defined by the CPU porter
473 *  and contains the address of the routine _Thread_Dispatch.  This
474 *  can make it easier to invoke that routine at the end of the interrupt
475 *  sequence (if a dispatch is necessary).
476 *
477 *  H8300 Specific Information:
478 *
479 *  XXX
480 */
481
482SCORE_EXTERN void           (*_CPU_Thread_dispatch_pointer)();
483
484/*
485 *  Nothing prevents the porter from declaring more CPU specific variables.
486 *
487 *  H8300 Specific Information:
488 *
489 *  XXX
490 */
491
492/* XXX: if needed, put more variables here */
493
494/*
495 *  The size of the floating point context area.  On some CPUs this
496 *  will not be a "sizeof" because the format of the floating point
497 *  area is not defined -- only the size is.  This is usually on
498 *  CPUs with a "floating point save context" instruction.
499 *
500 *  H8300 Specific Information:
501 *
502 *  XXX
503 */
504
505#define CPU_CONTEXT_FP_SIZE sizeof( Context_Control_fp )
506
507/*
508 *  Amount of extra stack (above minimum stack size) required by
509 *  system initialization thread.  Remember that in a multiprocessor
510 *  system the system intialization thread becomes the MP server thread.
511 *
512 *  H8300 Specific Information:
513 *
514 *  XXX
515 */
516
517#define CPU_SYSTEM_INITIALIZATION_THREAD_EXTRA_STACK 0
518
519/*
520 *  This defines the number of entries in the ISR_Vector_table managed
521 *  by RTEMS.
522 *
523 *  H8300 Specific Information:
524 *
525 *  XXX
526 */
527
528#define CPU_INTERRUPT_NUMBER_OF_VECTORS      64
529#define CPU_INTERRUPT_MAXIMUM_VECTOR_NUMBER  (CPU_INTERRUPT_NUMBER_OF_VECTORS - 1)
530
531/*
532 *  Should be large enough to run all RTEMS tests.  This insures
533 *  that a "reasonable" small application should not have any problems.
534 *
535 *  H8300 Specific Information:
536 *
537 *  XXX
538 */
539
540#define CPU_STACK_MINIMUM_SIZE          (1536)
541
542/*
543 *  CPU's worst alignment requirement for data types on a byte boundary.  This
544 *  alignment does not take into account the requirements for the stack.
545 *
546 *  H8300 Specific Information:
547 *
548 *  XXX
549 */
550
551#define CPU_ALIGNMENT              8
552
553/*
554 *  This number corresponds to the byte alignment requirement for the
555 *  heap handler.  This alignment requirement may be stricter than that
556 *  for the data types alignment specified by CPU_ALIGNMENT.  It is
557 *  common for the heap to follow the same alignment requirement as
558 *  CPU_ALIGNMENT.  If the CPU_ALIGNMENT is strict enough for the heap,
559 *  then this should be set to CPU_ALIGNMENT.
560 *
561 *  NOTE:  This does not have to be a power of 2.  It does have to
562 *         be greater or equal to than CPU_ALIGNMENT.
563 *
564 *  H8300 Specific Information:
565 *
566 *  XXX
567 */
568
569#define CPU_HEAP_ALIGNMENT         CPU_ALIGNMENT
570
571/*
572 *  This number corresponds to the byte alignment requirement for memory
573 *  buffers allocated by the partition manager.  This alignment requirement
574 *  may be stricter than that for the data types alignment specified by
575 *  CPU_ALIGNMENT.  It is common for the partition to follow the same
576 *  alignment requirement as CPU_ALIGNMENT.  If the CPU_ALIGNMENT is strict
577 *  enough for the partition, then this should be set to CPU_ALIGNMENT.
578 *
579 *  NOTE:  This does not have to be a power of 2.  It does have to
580 *         be greater or equal to than CPU_ALIGNMENT.
581 *
582 *  H8300 Specific Information:
583 *
584 *  XXX
585 */
586
587#define CPU_PARTITION_ALIGNMENT    CPU_ALIGNMENT
588
589/*
590 *  This number corresponds to the byte alignment requirement for the
591 *  stack.  This alignment requirement may be stricter than that for the
592 *  data types alignment specified by CPU_ALIGNMENT.  If the CPU_ALIGNMENT
593 *  is strict enough for the stack, then this should be set to 0.
594 *
595 *  NOTE:  This must be a power of 2 either 0 or greater than CPU_ALIGNMENT.
596 *
597 *  H8300 Specific Information:
598 *
599 *  XXX
600 */
601
602#define CPU_STACK_ALIGNMENT        2
603
604/* ISR handler macros */
605
606/*
607 *  Disable all interrupts for an RTEMS critical section.  The previous
608 *  level is returned in _level.
609 *
610 *  H8300 Specific Information:
611 *
612 *  XXX  FIXME this does not nest properly for the H8300.
613 */
614
615#if defined(__H8300__)
616#define _CPU_ISR_Disable( _isr_cookie )
617    asm volatile( "orc #0x80,ccr " );
618#else
619#define _CPU_ISR_Disable( _isr_cookie ) \
620  do { \
621    unsigned char __ccr; \
622    asm volatile( "stc ccr, %0 ; orc #0x80,ccr " \
623             : "=m" (__ccr) : "0" (__ccr) ); \
624    (_isr_cookie) = __ccr; \
625  } while (0)
626#endif
627
628
629/*
630 *  Enable interrupts to the previois level (returned by _CPU_ISR_Disable).
631 *  This indicates the end of an RTEMS critical section.  The parameter
632 *  _level is not modified.
633 *
634 *  H8300 Specific Information:
635 *
636 *  XXX
637 */
638
639#if defined(__H8300__)
640#define _CPU_ISR_Enable( _isr_cookie )  \
641   asm(" andc #0x7f,ccr \n")
642#else
643#define _CPU_ISR_Enable( _isr_cookie )  \
644  do { \
645    unsigned char __ccr = (unsigned char) (_isr_cookie); \
646    asm volatile( "ldc %0, ccr" :  : "m" (__ccr) ); \
647  } while (0)
648#endif
649
650/*
651 *  This temporarily restores the interrupt to _level before immediately
652 *  disabling them again.  This is used to divide long RTEMS critical
653 *  sections into two or more parts.  The parameter _level is not
654 *  modified.
655 *
656 *  H8300 Specific Information:
657 *
658 *  XXX
659 */
660
661#if defined(__H8300__)
662#define _CPU_ISR_Enable( _isr_cookie )  \
663   asm( "andc #0x7f,ccr \n orc #0x80,ccr\n" )
664#else
665#define _CPU_ISR_Flash( _isr_cookie ) \
666  do { \
667    unsigned char __ccr = (unsigned char) (_isr_cookie); \
668    asm volatile( "ldc %0, ccr ; orc #0x80,ccr " :  : "m" (__ccr) ); \
669  } while (0)
670#endif
671
672
673/*
674 *  Map interrupt level in task mode onto the hardware that the CPU
675 *  actually provides.  Currently, interrupt levels which do not
676 *  map onto the CPU in a generic fashion are undefined.  Someday,
677 *  it would be nice if these were "mapped" by the application
678 *  via a callout.  For example, m68k has 8 levels 0 - 7, levels
679 *  8 - 255 would be available for bsp/application specific meaning.
680 *  This could be used to manage a programmable interrupt controller
681 *  via the rtems_task_mode directive.
682 *
683 *  H8300 Specific Information:
684 *
685 *  XXX
686 */
687
688#define _CPU_ISR_Set_level( _new_level ) \
689  { \
690    if ( _new_level ) asm volatile ( "orc #0x80,ccr\n" ); \
691    else              asm volatile ( "andc #0x7f,ccr\n" ); \
692  }
693
694unsigned32 _CPU_ISR_Get_level( void );
695
696/* end of ISR handler macros */
697
698/* Context handler macros */
699
700/*
701 *  Initialize the context to a state suitable for starting a
702 *  task after a context restore operation.  Generally, this
703 *  involves:
704 *
705 *     - setting a starting address
706 *     - preparing the stack
707 *     - preparing the stack and frame pointers
708 *     - setting the proper interrupt level in the context
709 *     - initializing the floating point context
710 *
711 *  This routine generally does not set any unnecessary register
712 *  in the context.  The state of the "general data" registers is
713 *  undefined at task start time.
714 *
715 *  NOTE: This is_fp parameter is TRUE if the thread is to be a floating
716 *        point thread.  This is typically only used on CPUs where the
717 *        FPU may be easily disabled by software such as on the SPARC
718 *        where the PSR contains an enable FPU bit.
719 *
720 *  H8300 Specific Information:
721 *
722 *  XXX
723 */
724
725
726#define CPU_CCR_INTERRUPTS_ON  0x80
727#define CPU_CCR_INTERRUPTS_OFF 0x00
728
729#define _CPU_Context_Initialize( _the_context, _stack_base, _size, \
730                                   _isr, _entry_point, _is_fp ) \
731  /* Locate Me */ \
732  do { \
733    unsigned32 _stack; \
734    \
735    if ( (_isr) ) (_the_context)->ccr = CPU_CCR_INTERRUPTS_OFF; \
736    else          (_the_context)->ccr = CPU_CCR_INTERRUPTS_ON; \
737    \
738    _stack = ((unsigned32)(_stack_base)) + (_size) - 4; \
739    *((proc_ptr *)(_stack)) = (_entry_point); \
740     (_the_context)->er7     = (void *) _stack; \
741     (_the_context)->er6     = (void *) _stack; \
742     (_the_context)->er5     = 0; \
743     (_the_context)->er4     = 1; \
744     (_the_context)->er3     = 2; \
745  } while (0)
746
747
748/*
749 *  This routine is responsible for somehow restarting the currently
750 *  executing task.  If you are lucky, then all that is necessary
751 *  is restoring the context.  Otherwise, there will need to be
752 *  a special assembly routine which does something special in this
753 *  case.  Context_Restore should work most of the time.  It will
754 *  not work if restarting self conflicts with the stack frame
755 *  assumptions of restoring a context.
756 *
757 *  H8300 Specific Information:
758 *
759 *  XXX
760 */
761
762#define _CPU_Context_Restart_self( _the_context ) \
763   _CPU_Context_restore( (_the_context) );
764
765/*
766 *  The purpose of this macro is to allow the initial pointer into
767 *  a floating point context area (used to save the floating point
768 *  context) to be at an arbitrary place in the floating point
769 *  context area.
770 *
771 *  This is necessary because some FP units are designed to have
772 *  their context saved as a stack which grows into lower addresses.
773 *  Other FP units can be saved by simply moving registers into offsets
774 *  from the base of the context area.  Finally some FP units provide
775 *  a "dump context" instruction which could fill in from high to low
776 *  or low to high based on the whim of the CPU designers.
777 *
778 *  H8300 Specific Information:
779 *
780 *  XXX
781 */
782
783#define _CPU_Context_Fp_start( _base, _offset ) \
784   ( (void *) (_base) + (_offset) )
785
786/*
787 *  This routine initializes the FP context area passed to it to.
788 *  There are a few standard ways in which to initialize the
789 *  floating point context.  The code included for this macro assumes
790 *  that this is a CPU in which a "initial" FP context was saved into
791 *  _CPU_Null_fp_context and it simply copies it to the destination
792 *  context passed to it.
793 *
794 *  Other models include (1) not doing anything, and (2) putting
795 *  a "null FP status word" in the correct place in the FP context.
796 *
797 *  H8300 Specific Information:
798 *
799 *  XXX
800 */
801
802#define _CPU_Context_Initialize_fp( _destination ) \
803  { \
804   *((Context_Control_fp *) *((void **) _destination)) = _CPU_Null_fp_context; \
805  }
806
807/* end of Context handler macros */
808
809/* Fatal Error manager macros */
810
811/*
812 *  This routine copies _error into a known place -- typically a stack
813 *  location or a register, optionally disables interrupts, and
814 *  halts/stops the CPU.
815 *
816 *  H8300 Specific Information:
817 *
818 *  XXX
819 */
820
821#define _CPU_Fatal_halt( _error ) \
822        printk("Fatal Error %d Halted\n",_error); \
823        for(;;)
824 
825
826/* end of Fatal Error manager macros */
827
828/* Bitfield handler macros */
829
830/*
831 *  This routine sets _output to the bit number of the first bit
832 *  set in _value.  _value is of CPU dependent type Priority_Bit_map_control.
833 *  This type may be either 16 or 32 bits wide although only the 16
834 *  least significant bits will be used.
835 *
836 *  There are a number of variables in using a "find first bit" type
837 *  instruction.
838 *
839 *    (1) What happens when run on a value of zero?
840 *    (2) Bits may be numbered from MSB to LSB or vice-versa.
841 *    (3) The numbering may be zero or one based.
842 *    (4) The "find first bit" instruction may search from MSB or LSB.
843 *
844 *  RTEMS guarantees that (1) will never happen so it is not a concern.
845 *  (2),(3), (4) are handled by the macros _CPU_Priority_mask() and
846 *  _CPU_Priority_bits_index().  These three form a set of routines
847 *  which must logically operate together.  Bits in the _value are
848 *  set and cleared based on masks built by _CPU_Priority_mask().
849 *  The basic major and minor values calculated by _Priority_Major()
850 *  and _Priority_Minor() are "massaged" by _CPU_Priority_bits_index()
851 *  to properly range between the values returned by the "find first bit"
852 *  instruction.  This makes it possible for _Priority_Get_highest() to
853 *  calculate the major and directly index into the minor table.
854 *  This mapping is necessary to ensure that 0 (a high priority major/minor)
855 *  is the first bit found.
856 *
857 *  This entire "find first bit" and mapping process depends heavily
858 *  on the manner in which a priority is broken into a major and minor
859 *  components with the major being the 4 MSB of a priority and minor
860 *  the 4 LSB.  Thus (0 << 4) + 0 corresponds to priority 0 -- the highest
861 *  priority.  And (15 << 4) + 14 corresponds to priority 254 -- the next
862 *  to the lowest priority.
863 *
864 *  If your CPU does not have a "find first bit" instruction, then
865 *  there are ways to make do without it.  Here are a handful of ways
866 *  to implement this in software:
867 *
868 *    - a series of 16 bit test instructions
869 *    - a "binary search using if's"
870 *    - _number = 0
871 *      if _value > 0x00ff
872 *        _value >>=8
873 *        _number = 8;
874 *
875 *      if _value > 0x0000f
876 *        _value >=8
877 *        _number += 4
878 *
879 *      _number += bit_set_table[ _value ]
880 *
881 *    where bit_set_table[ 16 ] has values which indicate the first
882 *      bit set
883 *
884 *  H8300 Specific Information:
885 *
886 *  XXX
887 */
888
889#define CPU_USE_GENERIC_BITFIELD_CODE TRUE
890#define CPU_USE_GENERIC_BITFIELD_DATA TRUE
891
892#if (CPU_USE_GENERIC_BITFIELD_CODE == FALSE)
893
894#define _CPU_Bitfield_Find_first_bit( _value, _output ) \
895  { \
896    (_output) = 0;   /* do something to prevent warnings */ \
897  }
898
899#endif
900
901/* end of Bitfield handler macros */
902
903/*
904 *  This routine builds the mask which corresponds to the bit fields
905 *  as searched by _CPU_Bitfield_Find_first_bit().  See the discussion
906 *  for that routine.
907 *
908 *  H8300 Specific Information:
909 *
910 *  XXX
911 */
912
913#if (CPU_USE_GENERIC_BITFIELD_CODE == FALSE)
914
915#define _CPU_Priority_Mask( _bit_number ) \
916  ( 1 << (_bit_number) )
917
918#endif
919
920/*
921 *  This routine translates the bit numbers returned by
922 *  _CPU_Bitfield_Find_first_bit() into something suitable for use as
923 *  a major or minor component of a priority.  See the discussion
924 *  for that routine.
925 *
926 *  H8300 Specific Information:
927 *
928 *  XXX
929 */
930
931#if (CPU_USE_GENERIC_BITFIELD_CODE == FALSE)
932
933#define _CPU_Priority_bits_index( _priority ) \
934  (_priority)
935
936#endif
937
938/* end of Priority handler macros */
939
940/* functions */
941
942/*
943 *  _CPU_Initialize
944 *
945 *  This routine performs CPU dependent initialization.
946 *
947 *  H8300 Specific Information:
948 *
949 *  XXX
950 */
951
952void _CPU_Initialize(
953  rtems_cpu_table  *cpu_table,
954  void      (*thread_dispatch)
955);
956
957/*
958 *  _CPU_ISR_install_raw_handler
959 *
960 *  This routine installs a "raw" interrupt handler directly into the
961 *  processor's vector table.
962 *
963 *  H8300 Specific Information:
964 *
965 *  XXX
966 */
967 
968void _CPU_ISR_install_raw_handler(
969  unsigned32  vector,
970  proc_ptr    new_handler,
971  proc_ptr   *old_handler
972);
973
974/*
975 *  _CPU_ISR_install_vector
976 *
977 *  This routine installs an interrupt vector.
978 *
979 *  H8300 Specific Information:
980 *
981 *  XXX
982 */
983
984void _CPU_ISR_install_vector(
985  unsigned32  vector,
986  proc_ptr    new_handler,
987  proc_ptr   *old_handler
988);
989
990/*
991 *  _CPU_Install_interrupt_stack
992 *
993 *  This routine installs the hardware interrupt stack pointer.
994 *
995 *  NOTE:  It need only be provided if CPU_HAS_HARDWARE_INTERRUPT_STACK
996 *         is TRUE.
997 *
998 *  H8300 Specific Information:
999 *
1000 *  XXX
1001 */
1002
1003void _CPU_Install_interrupt_stack( void );
1004
1005/*
1006 *  _CPU_Internal_threads_Idle_thread_body
1007 *
1008 *  This routine is the CPU dependent IDLE thread body.
1009 *
1010 *  NOTE:  It need only be provided if CPU_PROVIDES_IDLE_THREAD_BODY
1011 *         is TRUE.
1012 *
1013 *  H8300 Specific Information:
1014 *
1015 *  XXX
1016 */
1017
1018void _CPU_Thread_Idle_body( void );
1019
1020/*
1021 *  _CPU_Context_switch
1022 *
1023 *  This routine switches from the run context to the heir context.
1024 *
1025 *  H8300 Specific Information:
1026 *
1027 *  XXX
1028 */
1029
1030void _CPU_Context_switch(
1031  Context_Control  *run,
1032  Context_Control  *heir
1033);
1034
1035/*
1036 *  _CPU_Context_restore
1037 *
1038 *  This routine is generallu used only to restart self in an
1039 *  efficient manner.  It may simply be a label in _CPU_Context_switch.
1040 *
1041 *  NOTE: May be unnecessary to reload some registers.
1042 *
1043 *  H8300 Specific Information:
1044 *
1045 *  XXX
1046 */
1047
1048void _CPU_Context_restore(
1049  Context_Control *new_context
1050);
1051
1052/*
1053 *  _CPU_Context_save_fp
1054 *
1055 *  This routine saves the floating point context passed to it.
1056 *
1057 *  H8300 Specific Information:
1058 *
1059 *  XXX
1060 */
1061
1062void _CPU_Context_save_fp(
1063  void **fp_context_ptr
1064);
1065
1066/*
1067 *  _CPU_Context_restore_fp
1068 *
1069 *  This routine restores the floating point context passed to it.
1070 *
1071 *  H8300 Specific Information:
1072 *
1073 *  XXX
1074 */
1075
1076void _CPU_Context_restore_fp(
1077  void **fp_context_ptr
1078);
1079
1080/*  The following routine swaps the endian format of an unsigned int.
1081 *  It must be static because it is referenced indirectly.
1082 *
1083 *  This version will work on any processor, but if there is a better
1084 *  way for your CPU PLEASE use it.  The most common way to do this is to:
1085 *
1086 *     swap least significant two bytes with 16-bit rotate
1087 *     swap upper and lower 16-bits
1088 *     swap most significant two bytes with 16-bit rotate
1089 *
1090 *  Some CPUs have special instructions which swap a 32-bit quantity in
1091 *  a single instruction (e.g. i486).  It is probably best to avoid
1092 *  an "endian swapping control bit" in the CPU.  One good reason is
1093 *  that interrupts would probably have to be disabled to insure that
1094 *  an interrupt does not try to access the same "chunk" with the wrong
1095 *  endian.  Another good reason is that on some CPUs, the endian bit
1096 *  endianness for ALL fetches -- both code and data -- so the code
1097 *  will be fetched incorrectly.
1098 *
1099 *  H8300 Specific Information:
1100 *
1101 *  XXX
1102 */
1103 
1104static inline unsigned int CPU_swap_u32(
1105  unsigned int value
1106)
1107{
1108  unsigned32 byte1, byte2, byte3, byte4, swapped;
1109 
1110  byte4 = (value >> 24) & 0xff;
1111  byte3 = (value >> 16) & 0xff;
1112  byte2 = (value >> 8)  & 0xff;
1113  byte1 =  value        & 0xff;
1114 
1115  swapped = (byte1 << 24) | (byte2 << 16) | (byte3 << 8) | byte4;
1116  return( swapped );
1117}
1118
1119#ifdef __cplusplus
1120}
1121#endif
1122
1123#endif
Note: See TracBrowser for help on using the repository browser.