source: rtems/c/src/exec/score/cpu/a29k/rtems/score/cpu.h @ 08311cc3

4.104.114.84.95
Last change on this file since 08311cc3 was 08311cc3, checked in by Joel Sherrill <joel.sherrill@…>, on 11/17/99 at 17:51:34

Updated copyright notice.

  • Property mode set to 100644
File size: 32.3 KB
Line 
1/*  cpu.h
2 *
3 *  This include file contains information pertaining to the AMD 29K
4 *  processor.
5 *
6 *  Author:     Craig Lebakken <craigl@transition.com>
7 *
8 *  COPYRIGHT (c) 1996 by Transition Networks Inc.
9 *
10 *  To anyone who acknowledges that this file is provided "AS IS"
11 *  without any express or implied warranty:
12 *      permission to use, copy, modify, and distribute this file
13 *      for any purpose is hereby granted without fee, provided that
14 *      the above copyright notice and this notice appears in all
15 *      copies, and that the name of Transition Networks not be used in
16 *      advertising or publicity pertaining to distribution of the
17 *      software without specific, written prior permission.
18 *      Transition Networks makes no representations about the suitability
19 *      of this software for any purpose.
20 *
21 *  Derived from c/src/exec/score/cpu/no_cpu/cpu_asm.c:
22 *
23 *  COPYRIGHT (c) 1989-1999.
24 *  On-Line Applications Research Corporation (OAR).
25 *
26 *  The license and distribution terms for this file may be
27 *  found in the file LICENSE in this distribution or at
28 *  http://www.OARcorp.com/rtems/license.html.
29 *
30 *  $Id$
31 */
32/* @(#)cpu.h    10/21/96        1.11 */
33
34#ifndef __CPU_h
35#define __CPU_h
36
37#ifdef __cplusplus
38extern "C" {
39#endif
40
41#include <rtems/score/a29k.h>                /* pick up machine definitions */
42#ifndef ASM
43#include <rtems/score/a29ktypes.h>
44#endif
45
46extern unsigned int a29k_disable( void );
47extern void a29k_enable( unsigned int cookie );
48extern unsigned int a29k_getops( void );
49extern void a29k_getops_sup( void );
50extern void a29k_disable_sup( void );
51extern void a29k_enable_sup( void );
52extern void a29k_disable_all( void );
53extern void a29k_disable_all_sup( void );
54extern void a29k_enable_all( void );
55extern void a29k_enable_all_sup( void );
56extern void a29k_halt( void );
57extern void a29k_fatal_error( unsigned32 error );
58extern void a29k_as70( void );
59extern void a29k_super_mode( void );
60extern void a29k_context_switch_sup(void);
61extern void a29k_context_restore_sup(void);
62extern void a29k_context_save_sup(void);
63extern void a29k_sigdfl_sup(void);
64
65/* conditional compilation parameters */
66
67/*
68 *  Should the calls to _Thread_Enable_dispatch be inlined?
69 *
70 *  If TRUE, then they are inlined.
71 *  If FALSE, then a subroutine call is made.
72 *
73 *  Basically this is an example of the classic trade-off of size
74 *  versus speed.  Inlining the call (TRUE) typically increases the
75 *  size of RTEMS while speeding up the enabling of dispatching.
76 *  [NOTE: In general, the _Thread_Dispatch_disable_level will
77 *  only be 0 or 1 unless you are in an interrupt handler and that
78 *  interrupt handler invokes the executive.]  When not inlined
79 *  something calls _Thread_Enable_dispatch which in turns calls
80 *  _Thread_Dispatch.  If the enable dispatch is inlined, then
81 *  one subroutine call is avoided entirely.]
82 */
83
84#define CPU_INLINE_ENABLE_DISPATCH       TRUE
85
86/*
87 *  Should the body of the search loops in _Thread_queue_Enqueue_priority
88 *  be unrolled one time?  In unrolled each iteration of the loop examines
89 *  two "nodes" on the chain being searched.  Otherwise, only one node
90 *  is examined per iteration.
91 *
92 *  If TRUE, then the loops are unrolled.
93 *  If FALSE, then the loops are not unrolled.
94 *
95 *  The primary factor in making this decision is the cost of disabling
96 *  and enabling interrupts (_ISR_Flash) versus the cost of rest of the
97 *  body of the loop.  On some CPUs, the flash is more expensive than
98 *  one iteration of the loop body.  In this case, it might be desirable
99 *  to unroll the loop.  It is important to note that on some CPUs, this
100 *  code is the longest interrupt disable period in RTEMS.  So it is
101 *  necessary to strike a balance when setting this parameter.
102 */
103
104#define CPU_UNROLL_ENQUEUE_PRIORITY      TRUE
105
106/*
107 *  Does RTEMS manage a dedicated interrupt stack in software?
108 *
109 *  If TRUE, then a stack is allocated in _Interrupt_Manager_initialization.
110 *  If FALSE, nothing is done.
111 *
112 *  If the CPU supports a dedicated interrupt stack in hardware,
113 *  then it is generally the responsibility of the BSP to allocate it
114 *  and set it up.
115 *
116 *  If the CPU does not support a dedicated interrupt stack, then
117 *  the porter has two options: (1) execute interrupts on the
118 *  stack of the interrupted task, and (2) have RTEMS manage a dedicated
119 *  interrupt stack.
120 *
121 *  If this is TRUE, CPU_ALLOCATE_INTERRUPT_STACK should also be TRUE.
122 *
123 *  Only one of CPU_HAS_SOFTWARE_INTERRUPT_STACK and
124 *  CPU_HAS_HARDWARE_INTERRUPT_STACK should be set to TRUE.  It is
125 *  possible that both are FALSE for a particular CPU.  Although it
126 *  is unclear what that would imply about the interrupt processing
127 *  procedure on that CPU.
128 */
129
130#define CPU_HAS_SOFTWARE_INTERRUPT_STACK FALSE
131
132/*
133 *  Does this CPU have hardware support for a dedicated interrupt stack?
134 *
135 *  If TRUE, then it must be installed during initialization.
136 *  If FALSE, then no installation is performed.
137 *
138 *  If this is TRUE, CPU_ALLOCATE_INTERRUPT_STACK should also be TRUE.
139 *
140 *  Only one of CPU_HAS_SOFTWARE_INTERRUPT_STACK and
141 *  CPU_HAS_HARDWARE_INTERRUPT_STACK should be set to TRUE.  It is
142 *  possible that both are FALSE for a particular CPU.  Although it
143 *  is unclear what that would imply about the interrupt processing
144 *  procedure on that CPU.
145 */
146
147#define CPU_HAS_HARDWARE_INTERRUPT_STACK FALSE
148
149/*
150 *  Does RTEMS allocate a dedicated interrupt stack in the Interrupt Manager?
151 *
152 *  If TRUE, then the memory is allocated during initialization.
153 *  If FALSE, then the memory is allocated during initialization.
154 *
155 *  This should be TRUE is CPU_HAS_SOFTWARE_INTERRUPT_STACK is TRUE
156 *  or CPU_INSTALL_HARDWARE_INTERRUPT_STACK is TRUE.
157 */
158
159#define CPU_ALLOCATE_INTERRUPT_STACK FALSE
160
161/*
162 *  Does the RTEMS invoke the user's ISR with the vector number and
163 *  a pointer to the saved interrupt frame (1) or just the vector
164 *  number (0)?
165 */
166
167#define CPU_ISR_PASSES_FRAME_POINTER 0
168
169/*
170 *  Does the CPU have hardware floating point?
171 *
172 *  If TRUE, then the RTEMS_FLOATING_POINT task attribute is supported.
173 *  If FALSE, then the RTEMS_FLOATING_POINT task attribute is ignored.
174 *
175 *  If there is a FP coprocessor such as the i387 or mc68881, then
176 *  the answer is TRUE.
177 *
178 *  The macro name "NO_CPU_HAS_FPU" should be made CPU specific.
179 *  It indicates whether or not this CPU model has FP support.  For
180 *  example, it would be possible to have an i386_nofp CPU model
181 *  which set this to false to indicate that you have an i386 without
182 *  an i387 and wish to leave floating point support out of RTEMS.
183 */
184
185#if ( A29K_HAS_FPU == 1 )
186#define CPU_HARDWARE_FP     TRUE
187#else
188#define CPU_HARDWARE_FP     FALSE
189#endif
190
191/*
192 *  Are all tasks RTEMS_FLOATING_POINT tasks implicitly?
193 *
194 *  If TRUE, then the RTEMS_FLOATING_POINT task attribute is assumed.
195 *  If FALSE, then the RTEMS_FLOATING_POINT task attribute is followed.
196 *
197 *  So far, the only CPU in which this option has been used is the
198 *  HP PA-RISC.  The HP C compiler and gcc both implicitly use the
199 *  floating point registers to perform integer multiplies.  If
200 *  a function which you would not think utilize the FP unit DOES,
201 *  then one can not easily predict which tasks will use the FP hardware.
202 *  In this case, this option should be TRUE.
203 *
204 *  If CPU_HARDWARE_FP is FALSE, then this should be FALSE as well.
205 */
206
207#define CPU_ALL_TASKS_ARE_FP     FALSE
208
209/*
210 *  Should the IDLE task have a floating point context?
211 *
212 *  If TRUE, then the IDLE task is created as a RTEMS_FLOATING_POINT task
213 *  and it has a floating point context which is switched in and out.
214 *  If FALSE, then the IDLE task does not have a floating point context.
215 *
216 *  Setting this to TRUE negatively impacts the time required to preempt
217 *  the IDLE task from an interrupt because the floating point context
218 *  must be saved as part of the preemption.
219 */
220
221#define CPU_IDLE_TASK_IS_FP      FALSE
222
223/*
224 *  Should the saving of the floating point registers be deferred
225 *  until a context switch is made to another different floating point
226 *  task?
227 *
228 *  If TRUE, then the floating point context will not be stored until
229 *  necessary.  It will remain in the floating point registers and not
230 *  disturned until another floating point task is switched to.
231 *
232 *  If FALSE, then the floating point context is saved when a floating
233 *  point task is switched out and restored when the next floating point
234 *  task is restored.  The state of the floating point registers between
235 *  those two operations is not specified.
236 *
237 *  If the floating point context does NOT have to be saved as part of
238 *  interrupt dispatching, then it should be safe to set this to TRUE.
239 *
240 *  Setting this flag to TRUE results in using a different algorithm
241 *  for deciding when to save and restore the floating point context.
242 *  The deferred FP switch algorithm minimizes the number of times
243 *  the FP context is saved and restored.  The FP context is not saved
244 *  until a context switch is made to another, different FP task.
245 *  Thus in a system with only one FP task, the FP context will never
246 *  be saved or restored.
247 */
248
249#define CPU_USE_DEFERRED_FP_SWITCH       TRUE
250
251/*
252 *  Does this port provide a CPU dependent IDLE task implementation?
253 *
254 *  If TRUE, then the routine _CPU_Internal_threads_Idle_thread_body
255 *  must be provided and is the default IDLE thread body instead of
256 *  _Internal_threads_Idle_thread_body.
257 *
258 *  If FALSE, then use the generic IDLE thread body if the BSP does
259 *  not provide one.
260 *
261 *  This is intended to allow for supporting processors which have
262 *  a low power or idle mode.  When the IDLE thread is executed, then
263 *  the CPU can be powered down.
264 *
265 *  The order of precedence for selecting the IDLE thread body is:
266 *
267 *    1.  BSP provided
268 *    2.  CPU dependent (if provided)
269 *    3.  generic (if no BSP and no CPU dependent)
270 */
271
272#define CPU_PROVIDES_IDLE_THREAD_BODY    TRUE
273
274/*
275 *  Does the stack grow up (toward higher addresses) or down
276 *  (toward lower addresses)?
277 *
278 *  If TRUE, then the grows upward.
279 *  If FALSE, then the grows toward smaller addresses.
280 */
281
282#define CPU_STACK_GROWS_UP               FALSE
283
284/*
285 *  The following is the variable attribute used to force alignment
286 *  of critical RTEMS structures.  On some processors it may make
287 *  sense to have these aligned on tighter boundaries than
288 *  the minimum requirements of the compiler in order to have as
289 *  much of the critical data area as possible in a cache line.
290 *
291 *  The placement of this macro in the declaration of the variables
292 *  is based on the syntactically requirements of the GNU C
293 *  "__attribute__" extension.  For example with GNU C, use
294 *  the following to force a structures to a 32 byte boundary.
295 *
296 *      __attribute__ ((aligned (32)))
297 *
298 *  NOTE:  Currently only the Priority Bit Map table uses this feature.
299 *         To benefit from using this, the data must be heavily
300 *         used so it will stay in the cache and used frequently enough
301 *         in the executive to justify turning this on.
302 */
303
304#define CPU_STRUCTURE_ALIGNMENT
305
306/*
307 *  Define what is required to specify how the network to host conversion
308 *  routines are handled.
309 *
310 */
311
312#error "Check these definitions!!!"
313
314#define CPU_HAS_OWN_HOST_TO_NETWORK_ROUTINES     FALSE
315#define CPU_BIG_ENDIAN                           TRUE
316#define CPU_LITTLE_ENDIAN                        FALSE
317
318/*
319 *  The following defines the number of bits actually used in the
320 *  interrupt field of the task mode.  How those bits map to the
321 *  CPU interrupt levels is defined by the routine _CPU_ISR_Set_level().
322 */
323
324#define CPU_MODES_INTERRUPT_MASK   0x00000001
325
326/*
327 *  Processor defined structures
328 *
329 *  Examples structures include the descriptor tables from the i386
330 *  and the processor control structure on the i960ca.
331 */
332
333/* may need to put some structures here.  */
334
335/*
336 * Contexts
337 *
338 *  Generally there are 2 types of context to save.
339 *     1. Interrupt registers to save
340 *     2. Task level registers to save
341 *
342 *  This means we have the following 3 context items:
343 *     1. task level context stuff::  Context_Control
344 *     2. floating point task stuff:: Context_Control_fp
345 *     3. special interrupt level context :: Context_Control_interrupt
346 *
347 *  On some processors, it is cost-effective to save only the callee
348 *  preserved registers during a task context switch.  This means
349 *  that the ISR code needs to save those registers which do not
350 *  persist across function calls.  It is not mandatory to make this
351 *  distinctions between the caller/callee saves registers for the
352 *  purpose of minimizing context saved during task switch and on interrupts.
353 *  If the cost of saving extra registers is minimal, simplicity is the
354 *  choice.  Save the same context on interrupt entry as for tasks in
355 *  this case.
356 *
357 *  Additionally, if gdb is to be made aware of RTEMS tasks for this CPU, then
358 *  care should be used in designing the context area.
359 *
360 *  On some CPUs with hardware floating point support, the Context_Control_fp
361 *  structure will not be used or it simply consist of an array of a
362 *  fixed number of bytes.   This is done when the floating point context
363 *  is dumped by a "FP save context" type instruction and the format
364 *  is not really defined by the CPU.  In this case, there is no need
365 *  to figure out the exact format -- only the size.  Of course, although
366 *  this is enough information for RTEMS, it is probably not enough for
367 *  a debugger such as gdb.  But that is another problem.
368 */
369
370typedef struct {
371    unsigned32 signal;
372    unsigned32 gr1;
373    unsigned32 rab;
374    unsigned32 PC0;
375    unsigned32 PC1;
376    unsigned32 PC2;
377    unsigned32 CHA;
378    unsigned32 CHD;
379    unsigned32 CHC;
380    unsigned32 ALU;
381    unsigned32 OPS;
382    unsigned32 tav;
383    unsigned32 lr1;
384    unsigned32 rfb;
385    unsigned32 msp;
386
387    unsigned32 FPStat0;
388    unsigned32 FPStat1;
389    unsigned32 FPStat2;
390    unsigned32 IPA;
391    unsigned32 IPB;
392    unsigned32 IPC;
393    unsigned32 Q;
394
395    unsigned32 gr96;
396    unsigned32 gr97;
397    unsigned32 gr98;
398    unsigned32 gr99;
399    unsigned32 gr100;
400    unsigned32 gr101;
401    unsigned32 gr102;
402    unsigned32 gr103;
403    unsigned32 gr104;
404    unsigned32 gr105;
405    unsigned32 gr106;
406    unsigned32 gr107;
407    unsigned32 gr108;
408    unsigned32 gr109;
409    unsigned32 gr110;
410    unsigned32 gr111;
411
412    unsigned32 gr112;
413    unsigned32 gr113;
414    unsigned32 gr114;
415    unsigned32 gr115;
416
417    unsigned32 gr116;
418    unsigned32 gr117;
419    unsigned32 gr118;
420    unsigned32 gr119;
421    unsigned32 gr120;
422    unsigned32 gr121;
423    unsigned32 gr122;
424    unsigned32 gr123;
425    unsigned32 gr124;
426
427    unsigned32 local_count;
428
429    unsigned32 locals[128];
430} Context_Control;
431
432typedef struct {
433    double      some_float_register;
434} Context_Control_fp;
435
436typedef struct {
437    unsigned32 special_interrupt_register;
438} CPU_Interrupt_frame;
439
440
441/*
442 *  The following table contains the information required to configure
443 *  the XXX processor specific parameters.
444 *
445 *  NOTE: The interrupt_stack_size field is required if
446 *        CPU_ALLOCATE_INTERRUPT_STACK is defined as TRUE.
447 *
448 *        The pretasking_hook, predriver_hook, and postdriver_hook,
449 *        and the do_zero_of_workspace fields are required on ALL CPUs.
450 */
451
452typedef struct {
453  void       (*pretasking_hook)( void );
454  void       (*predriver_hook)( void );
455  void       (*postdriver_hook)( void );
456  void       (*idle_task)( void );
457  boolean      do_zero_of_workspace;
458  unsigned32   idle_task_stack_size;
459  unsigned32   interrupt_stack_size;
460  unsigned32   extra_system_initialization_stack;
461}   rtems_cpu_table;
462
463/*
464 *  Macros to access required entires in the CPU Table are in
465 *  the file rtems/system.h.
466 */
467
468/*
469 *  Macros to access AMD A29K specific additions to the CPU Table
470 */
471
472/* There are no CPU specific additions to the CPU Table for this port. */
473
474/*
475 *  This variable is optional.  It is used on CPUs on which it is difficult
476 *  to generate an "uninitialized" FP context.  It is filled in by
477 *  _CPU_Initialize and copied into the task's FP context area during
478 *  _CPU_Context_Initialize.
479 */
480
481EXTERN Context_Control_fp  _CPU_Null_fp_context;
482
483/*
484 *  On some CPUs, RTEMS supports a software managed interrupt stack.
485 *  This stack is allocated by the Interrupt Manager and the switch
486 *  is performed in _ISR_Handler.  These variables contain pointers
487 *  to the lowest and highest addresses in the chunk of memory allocated
488 *  for the interrupt stack.  Since it is unknown whether the stack
489 *  grows up or down (in general), this give the CPU dependent
490 *  code the option of picking the version it wants to use.
491 *
492 *  NOTE: These two variables are required if the macro
493 *        CPU_HAS_SOFTWARE_INTERRUPT_STACK is defined as TRUE.
494 */
495
496EXTERN void               *_CPU_Interrupt_stack_low;
497EXTERN void               *_CPU_Interrupt_stack_high;
498
499/*
500 *  With some compilation systems, it is difficult if not impossible to
501 *  call a high-level language routine from assembly language.  This
502 *  is especially true of commercial Ada compilers and name mangling
503 *  C++ ones.  This variable can be optionally defined by the CPU porter
504 *  and contains the address of the routine _Thread_Dispatch.  This
505 *  can make it easier to invoke that routine at the end of the interrupt
506 *  sequence (if a dispatch is necessary).
507 */
508
509EXTERN void           (*_CPU_Thread_dispatch_pointer)();
510
511/*
512 *  Nothing prevents the porter from declaring more CPU specific variables.
513 */
514
515/* XXX: if needed, put more variables here */
516
517/*
518 *  The size of the floating point context area.  On some CPUs this
519 *  will not be a "sizeof" because the format of the floating point
520 *  area is not defined -- only the size is.  This is usually on
521 *  CPUs with a "floating point save context" instruction.
522 */
523
524#define CPU_CONTEXT_FP_SIZE sizeof( Context_Control_fp )
525
526/*
527 *  Amount of extra stack (above minimum stack size) required by
528 *  system initialization thread.  Remember that in a multiprocessor
529 *  system the system intialization thread becomes the MP server thread.
530 */
531
532#define CPU_SYSTEM_INITIALIZATION_THREAD_EXTRA_STACK 0
533
534/*
535 *  This defines the number of entries in the ISR_Vector_table managed
536 *  by RTEMS.
537 */
538
539#define CPU_INTERRUPT_NUMBER_OF_VECTORS      256
540#define CPU_INTERRUPT_MAXIMUM_VECTOR_NUMBER  (CPU_INTERRUPT_NUMBER_OF_VECTORS - 1)
541
542/*
543 *  Should be large enough to run all RTEMS tests.  This insures
544 *  that a "reasonable" small application should not have any problems.
545 */
546
547#define CPU_STACK_MINIMUM_SIZE          (8192)
548
549/*
550 *  CPU's worst alignment requirement for data types on a byte boundary.  This
551 *  alignment does not take into account the requirements for the stack.
552 */
553
554#define CPU_ALIGNMENT              4
555
556/*
557 *  This number corresponds to the byte alignment requirement for the
558 *  heap handler.  This alignment requirement may be stricter than that
559 *  for the data types alignment specified by CPU_ALIGNMENT.  It is
560 *  common for the heap to follow the same alignment requirement as
561 *  CPU_ALIGNMENT.  If the CPU_ALIGNMENT is strict enough for the heap,
562 *  then this should be set to CPU_ALIGNMENT.
563 *
564 *  NOTE:  This does not have to be a power of 2.  It does have to
565 *         be greater or equal to than CPU_ALIGNMENT.
566 */
567
568#define CPU_HEAP_ALIGNMENT         CPU_ALIGNMENT
569
570/*
571 *  This number corresponds to the byte alignment requirement for memory
572 *  buffers allocated by the partition manager.  This alignment requirement
573 *  may be stricter than that for the data types alignment specified by
574 *  CPU_ALIGNMENT.  It is common for the partition to follow the same
575 *  alignment requirement as CPU_ALIGNMENT.  If the CPU_ALIGNMENT is strict
576 *  enough for the partition, then this should be set to CPU_ALIGNMENT.
577 *
578 *  NOTE:  This does not have to be a power of 2.  It does have to
579 *         be greater or equal to than CPU_ALIGNMENT.
580 */
581
582#define CPU_PARTITION_ALIGNMENT    CPU_ALIGNMENT
583
584/*
585 *  This number corresponds to the byte alignment requirement for the
586 *  stack.  This alignment requirement may be stricter than that for the
587 *  data types alignment specified by CPU_ALIGNMENT.  If the CPU_ALIGNMENT
588 *  is strict enough for the stack, then this should be set to 0.
589 *
590 *  NOTE:  This must be a power of 2 either 0 or greater than CPU_ALIGNMENT.
591 */
592
593#define CPU_STACK_ALIGNMENT        0
594
595/* ISR handler macros */
596
597/*
598 *  Disable all interrupts for an RTEMS critical section.  The previous
599 *  level is returned in _level.
600 */
601
602#define _CPU_ISR_Disable( _isr_cookie ) \
603    do{ _isr_cookie = a29k_disable(); }while(0)
604
605/*
606 *  Enable interrupts to the previous level (returned by _CPU_ISR_Disable).
607 *  This indicates the end of an RTEMS critical section.  The parameter
608 *  _level is not modified.
609 */
610
611#define _CPU_ISR_Enable( _isr_cookie )  \
612      do{ a29k_enable(_isr_cookie) ; }while(0)
613
614/*
615 *  This temporarily restores the interrupt to _level before immediately
616 *  disabling them again.  This is used to divide long RTEMS critical
617 *  sections into two or more parts.  The parameter _level is not
618 * modified.
619 */
620
621#define _CPU_ISR_Flash( _isr_cookie ) \
622  do{ \
623     _CPU_ISR_Enable( _isr_cookie ); \
624     _CPU_ISR_Disable( _isr_cookie ); \
625  }while(0)
626
627/*
628 *  Map interrupt level in task mode onto the hardware that the CPU
629 *  actually provides.  Currently, interrupt levels which do not
630 *  map onto the CPU in a generic fashion are undefined.  Someday,
631 *  it would be nice if these were "mapped" by the application
632 *  via a callout.  For example, m68k has 8 levels 0 - 7, levels
633 *  8 - 255 would be available for bsp/application specific meaning.
634 *  This could be used to manage a programmable interrupt controller
635 *  via the rtems_task_mode directive.
636 */
637
638#define _CPU_ISR_Set_level( new_level ) \
639  do{ \
640    if ( new_level ) a29k_disable_all(); \
641    else a29k_enable_all(); \
642  }while(0);
643
644/* end of ISR handler macros */
645
646/* Context handler macros */
647
648extern void _CPU_Context_save(
649  Context_Control *new_context
650);
651
652/*
653 *  Initialize the context to a state suitable for starting a
654 *  task after a context restore operation.  Generally, this
655 *  involves:
656 *
657 *     - setting a starting address
658 *     - preparing the stack
659 *     - preparing the stack and frame pointers
660 *     - setting the proper interrupt level in the context
661 *     - initializing the floating point context
662 *
663 *  This routine generally does not set any unnecessary register
664 *  in the context.  The state of the "general data" registers is
665 *  undefined at task start time.
666 *
667 *  NOTE: This is_fp parameter is TRUE if the thread is to be a floating
668 *        point thread.  This is typically only used on CPUs where the
669 *        FPU may be easily disabled by software such as on the SPARC
670 *        where the PSR contains an enable FPU bit.
671 */
672
673#define _CPU_Context_Initialize( _the_context, _stack_base, _size, \
674                                 _isr, _entry_point, _is_fp ) \
675  do{ /* allocate 1/4 of stack for memory stack, 3/4 of stack for register stack */           \
676      unsigned32 _mem_stack_tmp = (unsigned32)(_stack_base) + (_size);  \
677      unsigned32 _reg_stack_tmp = (unsigned32)(_stack_base) + (((_size)*3)/4); \
678      _mem_stack_tmp &= ~(CPU_ALIGNMENT-1);                         \
679      _reg_stack_tmp &= ~(CPU_ALIGNMENT-1);                         \
680      _CPU_Context_save(_the_context);                              \
681      (_the_context)->msp = _mem_stack_tmp;           /* gr125 */   \
682      (_the_context)->lr1 =                                         \
683      (_the_context)->locals[1] =                                   \
684      (_the_context)->rfb = _reg_stack_tmp;           /* gr127 */   \
685      (_the_context)->gr1 = _reg_stack_tmp - 4 * 4;                 \
686      (_the_context)->rab = _reg_stack_tmp - 128 * 4; /* gr126 */   \
687      (_the_context)->local_count = 1-1;                            \
688      (_the_context)->PC1 = _entry_point;                           \
689      (_the_context)->PC0 = (unsigned32)((char *)_entry_point + 4); \
690      if (_isr) { (_the_context)->OPS |= (TD | DI); }               \
691      else                                                          \
692                { (_the_context)->OPS &= ~(TD | DI); }              \
693  }while(0)
694
695/*
696 *  This routine is responsible for somehow restarting the currently
697 *  executing task.  If you are lucky, then all that is necessary
698 *  is restoring the context.  Otherwise, there will need to be
699 *  a special assembly routine which does something special in this
700 *  case.  Context_Restore should work most of the time.  It will
701 *  not work if restarting self conflicts with the stack frame
702 *  assumptions of restoring a context.
703 */
704
705#define _CPU_Context_Restart_self( _the_context ) \
706   _CPU_Context_restore( (_the_context) )
707
708/*
709 *  The purpose of this macro is to allow the initial pointer into
710 *  a floating point context area (used to save the floating point
711 *  context) to be at an arbitrary place in the floating point
712 *  context area.
713 *
714 *  This is necessary because some FP units are designed to have
715 *  their context saved as a stack which grows into lower addresses.
716 *  Other FP units can be saved by simply moving registers into offsets
717 *  from the base of the context area.  Finally some FP units provide
718 *  a "dump context" instruction which could fill in from high to low
719 *  or low to high based on the whim of the CPU designers.
720 */
721
722#define _CPU_Context_Fp_start( _base, _offset ) \
723   ( (char *) (_base) + (_offset) )
724
725/*
726 *  This routine initializes the FP context area passed to it to.
727 *  There are a few standard ways in which to initialize the
728 *  floating point context.  The code included for this macro assumes
729 *  that this is a CPU in which a "initial" FP context was saved into
730 *  _CPU_Null_fp_context and it simply copies it to the destination
731 *  context passed to it.
732 *
733 *  Other models include (1) not doing anything, and (2) putting
734 *  a "null FP status word" in the correct place in the FP context.
735 */
736
737#define _CPU_Context_Initialize_fp( _destination ) \
738  do { \
739   *((Context_Control_fp *) *((void **) _destination)) = _CPU_Null_fp_context; \
740  } while(0)
741
742/* end of Context handler macros */
743
744/* Fatal Error manager macros */
745
746/*
747 *  This routine copies _error into a known place -- typically a stack
748 *  location or a register, optionally disables interrupts, and
749 *  halts/stops the CPU.
750 */
751
752#define _CPU_Fatal_halt( _error ) \
753        a29k_fatal_error(_error)
754
755/* end of Fatal Error manager macros */
756
757/* Bitfield handler macros */
758
759/*
760 *  This routine sets _output to the bit number of the first bit
761 *  set in _value.  _value is of CPU dependent type Priority_Bit_map_control.
762 *  This type may be either 16 or 32 bits wide although only the 16
763 *  least significant bits will be used.
764 *
765 *  There are a number of variables in using a "find first bit" type
766 *  instruction.
767 *
768 *    (1) What happens when run on a value of zero?
769 *    (2) Bits may be numbered from MSB to LSB or vice-versa.
770 *    (3) The numbering may be zero or one based.
771 *    (4) The "find first bit" instruction may search from MSB or LSB.
772 *
773 *  RTEMS guarantees that (1) will never happen so it is not a concern.
774 *  (2),(3), (4) are handled by the macros _CPU_Priority_mask() and
775 *  _CPU_Priority_bits_index().  These three form a set of routines
776 *  which must logically operate together.  Bits in the _value are
777 *  set and cleared based on masks built by _CPU_Priority_mask().
778 *  The basic major and minor values calculated by _Priority_Major()
779 *  and _Priority_Minor() are "massaged" by _CPU_Priority_bits_index()
780 *  to properly range between the values returned by the "find first bit"
781 *  instruction.  This makes it possible for _Priority_Get_highest() to
782 *  calculate the major and directly index into the minor table.
783 *  This mapping is necessary to ensure that 0 (a high priority major/minor)
784 *  is the first bit found.
785 *
786 *  This entire "find first bit" and mapping process depends heavily
787 *  on the manner in which a priority is broken into a major and minor
788 *  components with the major being the 4 MSB of a priority and minor
789 *  the 4 LSB.  Thus (0 << 4) + 0 corresponds to priority 0 -- the highest
790 *  priority.  And (15 << 4) + 14 corresponds to priority 254 -- the next
791 *  to the lowest priority.
792 *
793 *  If your CPU does not have a "find first bit" instruction, then
794 *  there are ways to make do without it.  Here are a handful of ways
795 *  to implement this in software:
796 *
797 *    - a series of 16 bit test instructions
798 *    - a "binary search using if's"
799 *    - _number = 0
800 *      if _value > 0x00ff
801 *        _value >>=8
802 *        _number = 8;
803 *
804 *      if _value > 0x0000f
805 *        _value >=8
806 *        _number += 4
807 *
808 *      _number += bit_set_table[ _value ]
809 *
810 *    where bit_set_table[ 16 ] has values which indicate the first
811 *      bit set
812 */
813
814#define CPU_USE_GENERIC_BITFIELD_CODE TRUE
815#define CPU_USE_GENERIC_BITFIELD_DATA TRUE
816
817#if (CPU_USE_GENERIC_BITFIELD_CODE == FALSE)
818
819#define _CPU_Bitfield_Find_first_bit( _value, _output ) \
820  { \
821    (_output) = 0;   /* do something to prevent warnings */ \
822  }
823
824#endif
825
826/* end of Bitfield handler macros */
827
828/*
829 *  This routine builds the mask which corresponds to the bit fields
830 *  as searched by _CPU_Bitfield_Find_first_bit().  See the discussion
831 *  for that routine.
832 */
833
834#if (CPU_USE_GENERIC_BITFIELD_CODE == FALSE)
835
836#define _CPU_Priority_Mask( _bit_number ) \
837  ( 1 << (_bit_number) )
838
839#endif
840
841/*
842 *  This routine translates the bit numbers returned by
843 *  _CPU_Bitfield_Find_first_bit() into something suitable for use as
844 *  a major or minor component of a priority.  See the discussion
845 *  for that routine.
846 */
847
848#if (CPU_USE_GENERIC_BITFIELD_CODE == FALSE)
849
850#define _CPU_Priority_bits_index( _priority ) \
851  (_priority)
852
853#endif
854
855/* end of Priority handler macros */
856
857/* functions */
858
859/*
860 *  _CPU_Initialize
861 *
862 *  This routine performs CPU dependent initialization.
863 */
864
865void _CPU_Initialize(
866  rtems_cpu_table  *cpu_table,
867  void      (*thread_dispatch)()
868);
869
870/*
871 *  _CPU_ISR_install_raw_handler
872 *
873 *  This routine installs a "raw" interrupt handler directly into the
874 *  processor's vector table.
875 */
876 
877void _CPU_ISR_install_raw_handler(
878  unsigned32  vector,
879  proc_ptr    new_handler,
880  proc_ptr   *old_handler
881);
882
883/*
884 *  _CPU_ISR_install_vector
885 *
886 *  This routine installs an interrupt vector.
887 */
888
889void _CPU_ISR_install_vector(
890  unsigned32  vector,
891  proc_ptr    new_handler,
892  proc_ptr   *old_handler
893);
894
895/*
896 *  _CPU_Install_interrupt_stack
897 *
898 *  This routine installs the hardware interrupt stack pointer.
899 *
900 *  NOTE:  It need only be provided if CPU_HAS_HARDWARE_INTERRUPT_STACK
901 *         is TRUE.
902 */
903
904void _CPU_Install_interrupt_stack( void );
905
906/*
907 *  _CPU_Internal_threads_Idle_thread_body
908 *
909 *  This routine is the CPU dependent IDLE thread body.
910 *
911 *  NOTE:  It need only be provided if CPU_PROVIDES_IDLE_THREAD_BODY
912 *         is TRUE.
913 */
914
915void _CPU_Internal_threads_Idle_thread_body( void );
916
917/*
918 *  _CPU_Context_switch
919 *
920 *  This routine switches from the run context to the heir context.
921 */
922
923void _CPU_Context_switch(
924  Context_Control  *run,
925  Context_Control  *heir
926);
927
928/*
929 *  _CPU_Context_restore
930 *
931 *  This routine is generally used only to restart self in an
932 *  efficient manner.  It may simply be a label in _CPU_Context_switch.
933 *
934 *  NOTE: May be unnecessary to reload some registers.
935 */
936
937void _CPU_Context_restore(
938  Context_Control *new_context
939);
940
941/*
942 *  _CPU_Context_save_fp
943 *
944 *  This routine saves the floating point context passed to it.
945 */
946
947void _CPU_Context_save_fp(
948  void **fp_context_ptr
949);
950
951/*
952 *  _CPU_Context_restore_fp
953 *
954 *  This routine restores the floating point context passed to it.
955 */
956
957void _CPU_Context_restore_fp(
958  void **fp_context_ptr
959);
960
961/*  The following routine swaps the endian format of an unsigned int.
962 *  It must be static because it is referenced indirectly.
963 *
964 *  This version will work on any processor, but if there is a better
965 *  way for your CPU PLEASE use it.  The most common way to do this is to:
966 *
967 *     swap least significant two bytes with 16-bit rotate
968 *     swap upper and lower 16-bits
969 *     swap most significant two bytes with 16-bit rotate
970 *
971 *  Some CPUs have special instructions which swap a 32-bit quantity in
972 *  a single instruction (e.g. i486).  It is probably best to avoid
973 *  an "endian swapping control bit" in the CPU.  One good reason is
974 *  that interrupts would probably have to be disabled to insure that
975 *  an interrupt does not try to access the same "chunk" with the wrong
976 *  endian.  Another good reason is that on some CPUs, the endian bit
977 *  endianness for ALL fetches -- both code and data -- so the code
978 *  will be fetched incorrectly.
979 */
980 
981#define CPU_swap_u32( value ) \
982  ((value&0xff) << 24) | (((value >> 8)&0xff) << 16) | \
983    (((value >> 16)&0xff) << 8) | ((value>>24)&0xff)
984
985#define CPU_swap_u16( value ) \
986  (((value&0xff) << 8) | ((value >> 8)&0xff))
987
988#ifdef __cplusplus
989}
990#endif
991
992#endif
Note: See TracBrowser for help on using the repository browser.