source: rtems/c/src/exec/score/cpu/a29k/cpu.h @ 98e4ebf5

4.104.114.84.95
Last change on this file since 98e4ebf5 was 98e4ebf5, checked in by Joel Sherrill <joel.sherrill@…>, on 10/08/97 at 15:45:54

Fixed typo in the pointer to the license terms.

  • Property mode set to 100644
File size: 31.8 KB
Line 
1/*  cpu.h
2 *
3 *  This include file contains information pertaining to the AMD 29K
4 *  processor.
5 *
6 *  Author:     Craig Lebakken <craigl@transition.com>
7 *
8 *  COPYRIGHT (c) 1996 by Transition Networks Inc.
9 *
10 *  To anyone who acknowledges that this file is provided "AS IS"
11 *  without any express or implied warranty:
12 *      permission to use, copy, modify, and distribute this file
13 *      for any purpose is hereby granted without fee, provided that
14 *      the above copyright notice and this notice appears in all
15 *      copies, and that the name of Transition Networks not be used in
16 *      advertising or publicity pertaining to distribution of the
17 *      software without specific, written prior permission.
18 *      Transition Networks makes no representations about the suitability
19 *      of this software for any purpose.
20 *
21 *  Derived from c/src/exec/score/cpu/no_cpu/cpu_asm.c:
22 *
23 *  COPYRIGHT (c) 1989-1997.
24 *  On-Line Applications Research Corporation (OAR).
25 *  Copyright assigned to U.S. Government, 1994.
26 *
27 *  The license and distribution terms for this file may be
28 *  found in the file LICENSE in this distribution or at
29 *  http://www.OARcorp.com/rtems/license.html.
30 *
31 *  $Id$
32 */
33/* @(#)cpu.h    10/21/96        1.11 */
34
35#ifndef __CPU_h
36#define __CPU_h
37
38#ifdef __cplusplus
39extern "C" {
40#endif
41
42#include <rtems/score/a29k.h>                /* pick up machine definitions */
43#ifndef ASM
44#include <rtems/score/a29ktypes.h>
45#endif
46
47extern unsigned int a29k_disable( void );
48extern void a29k_enable( unsigned int cookie );
49extern unsigned int a29k_getops( void );
50extern void a29k_getops_sup( void );
51extern void a29k_disable_sup( void );
52extern void a29k_enable_sup( void );
53extern void a29k_disable_all( void );
54extern void a29k_disable_all_sup( void );
55extern void a29k_enable_all( void );
56extern void a29k_enable_all_sup( void );
57extern void a29k_halt( void );
58extern void a29k_fatal_error( unsigned32 error );
59extern void a29k_as70( void );
60extern void a29k_super_mode( void );
61extern void a29k_context_switch_sup(void);
62extern void a29k_context_restore_sup(void);
63extern void a29k_context_save_sup(void);
64extern void a29k_sigdfl_sup(void);
65
66/* conditional compilation parameters */
67
68/*
69 *  Should the calls to _Thread_Enable_dispatch be inlined?
70 *
71 *  If TRUE, then they are inlined.
72 *  If FALSE, then a subroutine call is made.
73 *
74 *  Basically this is an example of the classic trade-off of size
75 *  versus speed.  Inlining the call (TRUE) typically increases the
76 *  size of RTEMS while speeding up the enabling of dispatching.
77 *  [NOTE: In general, the _Thread_Dispatch_disable_level will
78 *  only be 0 or 1 unless you are in an interrupt handler and that
79 *  interrupt handler invokes the executive.]  When not inlined
80 *  something calls _Thread_Enable_dispatch which in turns calls
81 *  _Thread_Dispatch.  If the enable dispatch is inlined, then
82 *  one subroutine call is avoided entirely.]
83 */
84
85#define CPU_INLINE_ENABLE_DISPATCH       TRUE
86
87/*
88 *  Should the body of the search loops in _Thread_queue_Enqueue_priority
89 *  be unrolled one time?  In unrolled each iteration of the loop examines
90 *  two "nodes" on the chain being searched.  Otherwise, only one node
91 *  is examined per iteration.
92 *
93 *  If TRUE, then the loops are unrolled.
94 *  If FALSE, then the loops are not unrolled.
95 *
96 *  The primary factor in making this decision is the cost of disabling
97 *  and enabling interrupts (_ISR_Flash) versus the cost of rest of the
98 *  body of the loop.  On some CPUs, the flash is more expensive than
99 *  one iteration of the loop body.  In this case, it might be desirable
100 *  to unroll the loop.  It is important to note that on some CPUs, this
101 *  code is the longest interrupt disable period in RTEMS.  So it is
102 *  necessary to strike a balance when setting this parameter.
103 */
104
105#define CPU_UNROLL_ENQUEUE_PRIORITY      TRUE
106
107/*
108 *  Does RTEMS manage a dedicated interrupt stack in software?
109 *
110 *  If TRUE, then a stack is allocated in _Interrupt_Manager_initialization.
111 *  If FALSE, nothing is done.
112 *
113 *  If the CPU supports a dedicated interrupt stack in hardware,
114 *  then it is generally the responsibility of the BSP to allocate it
115 *  and set it up.
116 *
117 *  If the CPU does not support a dedicated interrupt stack, then
118 *  the porter has two options: (1) execute interrupts on the
119 *  stack of the interrupted task, and (2) have RTEMS manage a dedicated
120 *  interrupt stack.
121 *
122 *  If this is TRUE, CPU_ALLOCATE_INTERRUPT_STACK should also be TRUE.
123 *
124 *  Only one of CPU_HAS_SOFTWARE_INTERRUPT_STACK and
125 *  CPU_HAS_HARDWARE_INTERRUPT_STACK should be set to TRUE.  It is
126 *  possible that both are FALSE for a particular CPU.  Although it
127 *  is unclear what that would imply about the interrupt processing
128 *  procedure on that CPU.
129 */
130
131#define CPU_HAS_SOFTWARE_INTERRUPT_STACK FALSE
132
133/*
134 *  Does this CPU have hardware support for a dedicated interrupt stack?
135 *
136 *  If TRUE, then it must be installed during initialization.
137 *  If FALSE, then no installation is performed.
138 *
139 *  If this is TRUE, CPU_ALLOCATE_INTERRUPT_STACK should also be TRUE.
140 *
141 *  Only one of CPU_HAS_SOFTWARE_INTERRUPT_STACK and
142 *  CPU_HAS_HARDWARE_INTERRUPT_STACK should be set to TRUE.  It is
143 *  possible that both are FALSE for a particular CPU.  Although it
144 *  is unclear what that would imply about the interrupt processing
145 *  procedure on that CPU.
146 */
147
148#define CPU_HAS_HARDWARE_INTERRUPT_STACK FALSE
149
150/*
151 *  Does RTEMS allocate a dedicated interrupt stack in the Interrupt Manager?
152 *
153 *  If TRUE, then the memory is allocated during initialization.
154 *  If FALSE, then the memory is allocated during initialization.
155 *
156 *  This should be TRUE is CPU_HAS_SOFTWARE_INTERRUPT_STACK is TRUE
157 *  or CPU_INSTALL_HARDWARE_INTERRUPT_STACK is TRUE.
158 */
159
160#define CPU_ALLOCATE_INTERRUPT_STACK FALSE
161
162/*
163 *  Does the CPU have hardware floating point?
164 *
165 *  If TRUE, then the RTEMS_FLOATING_POINT task attribute is supported.
166 *  If FALSE, then the RTEMS_FLOATING_POINT task attribute is ignored.
167 *
168 *  If there is a FP coprocessor such as the i387 or mc68881, then
169 *  the answer is TRUE.
170 *
171 *  The macro name "NO_CPU_HAS_FPU" should be made CPU specific.
172 *  It indicates whether or not this CPU model has FP support.  For
173 *  example, it would be possible to have an i386_nofp CPU model
174 *  which set this to false to indicate that you have an i386 without
175 *  an i387 and wish to leave floating point support out of RTEMS.
176 */
177
178#if ( A29K_HAS_FPU == 1 )
179#define CPU_HARDWARE_FP     TRUE
180#else
181#define CPU_HARDWARE_FP     FALSE
182#endif
183
184/*
185 *  Are all tasks RTEMS_FLOATING_POINT tasks implicitly?
186 *
187 *  If TRUE, then the RTEMS_FLOATING_POINT task attribute is assumed.
188 *  If FALSE, then the RTEMS_FLOATING_POINT task attribute is followed.
189 *
190 *  So far, the only CPU in which this option has been used is the
191 *  HP PA-RISC.  The HP C compiler and gcc both implicitly use the
192 *  floating point registers to perform integer multiplies.  If
193 *  a function which you would not think utilize the FP unit DOES,
194 *  then one can not easily predict which tasks will use the FP hardware.
195 *  In this case, this option should be TRUE.
196 *
197 *  If CPU_HARDWARE_FP is FALSE, then this should be FALSE as well.
198 */
199
200#define CPU_ALL_TASKS_ARE_FP     FALSE
201
202/*
203 *  Should the IDLE task have a floating point context?
204 *
205 *  If TRUE, then the IDLE task is created as a RTEMS_FLOATING_POINT task
206 *  and it has a floating point context which is switched in and out.
207 *  If FALSE, then the IDLE task does not have a floating point context.
208 *
209 *  Setting this to TRUE negatively impacts the time required to preempt
210 *  the IDLE task from an interrupt because the floating point context
211 *  must be saved as part of the preemption.
212 */
213
214#define CPU_IDLE_TASK_IS_FP      FALSE
215
216/*
217 *  Should the saving of the floating point registers be deferred
218 *  until a context switch is made to another different floating point
219 *  task?
220 *
221 *  If TRUE, then the floating point context will not be stored until
222 *  necessary.  It will remain in the floating point registers and not
223 *  disturned until another floating point task is switched to.
224 *
225 *  If FALSE, then the floating point context is saved when a floating
226 *  point task is switched out and restored when the next floating point
227 *  task is restored.  The state of the floating point registers between
228 *  those two operations is not specified.
229 *
230 *  If the floating point context does NOT have to be saved as part of
231 *  interrupt dispatching, then it should be safe to set this to TRUE.
232 *
233 *  Setting this flag to TRUE results in using a different algorithm
234 *  for deciding when to save and restore the floating point context.
235 *  The deferred FP switch algorithm minimizes the number of times
236 *  the FP context is saved and restored.  The FP context is not saved
237 *  until a context switch is made to another, different FP task.
238 *  Thus in a system with only one FP task, the FP context will never
239 *  be saved or restored.
240 */
241
242#define CPU_USE_DEFERRED_FP_SWITCH       TRUE
243
244/*
245 *  Does this port provide a CPU dependent IDLE task implementation?
246 *
247 *  If TRUE, then the routine _CPU_Internal_threads_Idle_thread_body
248 *  must be provided and is the default IDLE thread body instead of
249 *  _Internal_threads_Idle_thread_body.
250 *
251 *  If FALSE, then use the generic IDLE thread body if the BSP does
252 *  not provide one.
253 *
254 *  This is intended to allow for supporting processors which have
255 *  a low power or idle mode.  When the IDLE thread is executed, then
256 *  the CPU can be powered down.
257 *
258 *  The order of precedence for selecting the IDLE thread body is:
259 *
260 *    1.  BSP provided
261 *    2.  CPU dependent (if provided)
262 *    3.  generic (if no BSP and no CPU dependent)
263 */
264
265#define CPU_PROVIDES_IDLE_THREAD_BODY    TRUE
266
267/*
268 *  Does the stack grow up (toward higher addresses) or down
269 *  (toward lower addresses)?
270 *
271 *  If TRUE, then the grows upward.
272 *  If FALSE, then the grows toward smaller addresses.
273 */
274
275#define CPU_STACK_GROWS_UP               FALSE
276
277/*
278 *  The following is the variable attribute used to force alignment
279 *  of critical RTEMS structures.  On some processors it may make
280 *  sense to have these aligned on tighter boundaries than
281 *  the minimum requirements of the compiler in order to have as
282 *  much of the critical data area as possible in a cache line.
283 *
284 *  The placement of this macro in the declaration of the variables
285 *  is based on the syntactically requirements of the GNU C
286 *  "__attribute__" extension.  For example with GNU C, use
287 *  the following to force a structures to a 32 byte boundary.
288 *
289 *      __attribute__ ((aligned (32)))
290 *
291 *  NOTE:  Currently only the Priority Bit Map table uses this feature.
292 *         To benefit from using this, the data must be heavily
293 *         used so it will stay in the cache and used frequently enough
294 *         in the executive to justify turning this on.
295 */
296
297#define CPU_STRUCTURE_ALIGNMENT
298
299/*
300 *  Define what is required to specify how the network to host conversion
301 *  routines are handled.
302 *
303 */
304
305#error "Check these definitions!!!"
306
307#define CPU_CPU_HAS_OWN_HOST_TO_NETWORK_ROUTINES FALSE
308#define CPU_BIG_ENDIAN                           TRUE
309#define CPU_LITTLE_ENDIAN                        FALSE
310
311/*
312 *  The following defines the number of bits actually used in the
313 *  interrupt field of the task mode.  How those bits map to the
314 *  CPU interrupt levels is defined by the routine _CPU_ISR_Set_level().
315 */
316
317#define CPU_MODES_INTERRUPT_MASK   0x00000001
318
319/*
320 *  Processor defined structures
321 *
322 *  Examples structures include the descriptor tables from the i386
323 *  and the processor control structure on the i960ca.
324 */
325
326/* may need to put some structures here.  */
327
328/*
329 * Contexts
330 *
331 *  Generally there are 2 types of context to save.
332 *     1. Interrupt registers to save
333 *     2. Task level registers to save
334 *
335 *  This means we have the following 3 context items:
336 *     1. task level context stuff::  Context_Control
337 *     2. floating point task stuff:: Context_Control_fp
338 *     3. special interrupt level context :: Context_Control_interrupt
339 *
340 *  On some processors, it is cost-effective to save only the callee
341 *  preserved registers during a task context switch.  This means
342 *  that the ISR code needs to save those registers which do not
343 *  persist across function calls.  It is not mandatory to make this
344 *  distinctions between the caller/callee saves registers for the
345 *  purpose of minimizing context saved during task switch and on interrupts.
346 *  If the cost of saving extra registers is minimal, simplicity is the
347 *  choice.  Save the same context on interrupt entry as for tasks in
348 *  this case.
349 *
350 *  Additionally, if gdb is to be made aware of RTEMS tasks for this CPU, then
351 *  care should be used in designing the context area.
352 *
353 *  On some CPUs with hardware floating point support, the Context_Control_fp
354 *  structure will not be used or it simply consist of an array of a
355 *  fixed number of bytes.   This is done when the floating point context
356 *  is dumped by a "FP save context" type instruction and the format
357 *  is not really defined by the CPU.  In this case, there is no need
358 *  to figure out the exact format -- only the size.  Of course, although
359 *  this is enough information for RTEMS, it is probably not enough for
360 *  a debugger such as gdb.  But that is another problem.
361 */
362
363typedef struct {
364    unsigned32 signal;
365    unsigned32 gr1;
366    unsigned32 rab;
367    unsigned32 PC0;
368    unsigned32 PC1;
369    unsigned32 PC2;
370    unsigned32 CHA;
371    unsigned32 CHD;
372    unsigned32 CHC;
373    unsigned32 ALU;
374    unsigned32 OPS;
375    unsigned32 tav;
376    unsigned32 lr1;
377    unsigned32 rfb;
378    unsigned32 msp;
379
380    unsigned32 FPStat0;
381    unsigned32 FPStat1;
382    unsigned32 FPStat2;
383    unsigned32 IPA;
384    unsigned32 IPB;
385    unsigned32 IPC;
386    unsigned32 Q;
387
388    unsigned32 gr96;
389    unsigned32 gr97;
390    unsigned32 gr98;
391    unsigned32 gr99;
392    unsigned32 gr100;
393    unsigned32 gr101;
394    unsigned32 gr102;
395    unsigned32 gr103;
396    unsigned32 gr104;
397    unsigned32 gr105;
398    unsigned32 gr106;
399    unsigned32 gr107;
400    unsigned32 gr108;
401    unsigned32 gr109;
402    unsigned32 gr110;
403    unsigned32 gr111;
404
405    unsigned32 gr112;
406    unsigned32 gr113;
407    unsigned32 gr114;
408    unsigned32 gr115;
409
410    unsigned32 gr116;
411    unsigned32 gr117;
412    unsigned32 gr118;
413    unsigned32 gr119;
414    unsigned32 gr120;
415    unsigned32 gr121;
416    unsigned32 gr122;
417    unsigned32 gr123;
418    unsigned32 gr124;
419
420    unsigned32 local_count;
421
422    unsigned32 locals[128];
423} Context_Control;
424
425typedef struct {
426    double      some_float_register;
427} Context_Control_fp;
428
429typedef struct {
430    unsigned32 special_interrupt_register;
431} CPU_Interrupt_frame;
432
433
434/*
435 *  The following table contains the information required to configure
436 *  the XXX processor specific parameters.
437 *
438 *  NOTE: The interrupt_stack_size field is required if
439 *        CPU_ALLOCATE_INTERRUPT_STACK is defined as TRUE.
440 *
441 *        The pretasking_hook, predriver_hook, and postdriver_hook,
442 *        and the do_zero_of_workspace fields are required on ALL CPUs.
443 */
444
445typedef struct {
446  void       (*pretasking_hook)( void );
447  void       (*predriver_hook)( void );
448  void       (*postdriver_hook)( void );
449  void       (*idle_task)( void );
450  boolean      do_zero_of_workspace;
451  unsigned32   interrupt_stack_size;
452  unsigned32   extra_system_initialization_stack;
453  unsigned32   some_other_cpu_dependent_info;
454}   rtems_cpu_table;
455
456/*
457 *  This variable is optional.  It is used on CPUs on which it is difficult
458 *  to generate an "uninitialized" FP context.  It is filled in by
459 *  _CPU_Initialize and copied into the task's FP context area during
460 *  _CPU_Context_Initialize.
461 */
462
463EXTERN Context_Control_fp  _CPU_Null_fp_context;
464
465/*
466 *  On some CPUs, RTEMS supports a software managed interrupt stack.
467 *  This stack is allocated by the Interrupt Manager and the switch
468 *  is performed in _ISR_Handler.  These variables contain pointers
469 *  to the lowest and highest addresses in the chunk of memory allocated
470 *  for the interrupt stack.  Since it is unknown whether the stack
471 *  grows up or down (in general), this give the CPU dependent
472 *  code the option of picking the version it wants to use.
473 *
474 *  NOTE: These two variables are required if the macro
475 *        CPU_HAS_SOFTWARE_INTERRUPT_STACK is defined as TRUE.
476 */
477
478EXTERN void               *_CPU_Interrupt_stack_low;
479EXTERN void               *_CPU_Interrupt_stack_high;
480
481/*
482 *  With some compilation systems, it is difficult if not impossible to
483 *  call a high-level language routine from assembly language.  This
484 *  is especially true of commercial Ada compilers and name mangling
485 *  C++ ones.  This variable can be optionally defined by the CPU porter
486 *  and contains the address of the routine _Thread_Dispatch.  This
487 *  can make it easier to invoke that routine at the end of the interrupt
488 *  sequence (if a dispatch is necessary).
489 */
490
491EXTERN void           (*_CPU_Thread_dispatch_pointer)();
492
493/*
494 *  Nothing prevents the porter from declaring more CPU specific variables.
495 */
496
497/* XXX: if needed, put more variables here */
498
499/*
500 *  The size of the floating point context area.  On some CPUs this
501 *  will not be a "sizeof" because the format of the floating point
502 *  area is not defined -- only the size is.  This is usually on
503 *  CPUs with a "floating point save context" instruction.
504 */
505
506#define CPU_CONTEXT_FP_SIZE sizeof( Context_Control_fp )
507
508/*
509 *  Amount of extra stack (above minimum stack size) required by
510 *  system initialization thread.  Remember that in a multiprocessor
511 *  system the system intialization thread becomes the MP server thread.
512 */
513
514#define CPU_SYSTEM_INITIALIZATION_THREAD_EXTRA_STACK 0
515
516/*
517 *  This defines the number of entries in the ISR_Vector_table managed
518 *  by RTEMS.
519 */
520
521#define CPU_INTERRUPT_NUMBER_OF_VECTORS      256
522#define CPU_INTERRUPT_MAXIMUM_VECTOR_NUMBER  (CPU_INTERRUPT_NUMBER_OF_VECTORS - 1)
523
524/*
525 *  Should be large enough to run all RTEMS tests.  This insures
526 *  that a "reasonable" small application should not have any problems.
527 */
528
529#define CPU_STACK_MINIMUM_SIZE          (8192)
530
531/*
532 *  CPU's worst alignment requirement for data types on a byte boundary.  This
533 *  alignment does not take into account the requirements for the stack.
534 */
535
536#define CPU_ALIGNMENT              4
537
538/*
539 *  This number corresponds to the byte alignment requirement for the
540 *  heap handler.  This alignment requirement may be stricter than that
541 *  for the data types alignment specified by CPU_ALIGNMENT.  It is
542 *  common for the heap to follow the same alignment requirement as
543 *  CPU_ALIGNMENT.  If the CPU_ALIGNMENT is strict enough for the heap,
544 *  then this should be set to CPU_ALIGNMENT.
545 *
546 *  NOTE:  This does not have to be a power of 2.  It does have to
547 *         be greater or equal to than CPU_ALIGNMENT.
548 */
549
550#define CPU_HEAP_ALIGNMENT         CPU_ALIGNMENT
551
552/*
553 *  This number corresponds to the byte alignment requirement for memory
554 *  buffers allocated by the partition manager.  This alignment requirement
555 *  may be stricter than that for the data types alignment specified by
556 *  CPU_ALIGNMENT.  It is common for the partition to follow the same
557 *  alignment requirement as CPU_ALIGNMENT.  If the CPU_ALIGNMENT is strict
558 *  enough for the partition, then this should be set to CPU_ALIGNMENT.
559 *
560 *  NOTE:  This does not have to be a power of 2.  It does have to
561 *         be greater or equal to than CPU_ALIGNMENT.
562 */
563
564#define CPU_PARTITION_ALIGNMENT    CPU_ALIGNMENT
565
566/*
567 *  This number corresponds to the byte alignment requirement for the
568 *  stack.  This alignment requirement may be stricter than that for the
569 *  data types alignment specified by CPU_ALIGNMENT.  If the CPU_ALIGNMENT
570 *  is strict enough for the stack, then this should be set to 0.
571 *
572 *  NOTE:  This must be a power of 2 either 0 or greater than CPU_ALIGNMENT.
573 */
574
575#define CPU_STACK_ALIGNMENT        0
576
577/* ISR handler macros */
578
579/*
580 *  Disable all interrupts for an RTEMS critical section.  The previous
581 *  level is returned in _level.
582 */
583
584#define _CPU_ISR_Disable( _isr_cookie ) \
585    do{ _isr_cookie = a29k_disable(); }while(0)
586
587/*
588 *  Enable interrupts to the previous level (returned by _CPU_ISR_Disable).
589 *  This indicates the end of an RTEMS critical section.  The parameter
590 *  _level is not modified.
591 */
592
593#define _CPU_ISR_Enable( _isr_cookie )  \
594      do{ a29k_enable(_isr_cookie) ; }while(0)
595
596/*
597 *  This temporarily restores the interrupt to _level before immediately
598 *  disabling them again.  This is used to divide long RTEMS critical
599 *  sections into two or more parts.  The parameter _level is not
600 * modified.
601 */
602
603#define _CPU_ISR_Flash( _isr_cookie ) \
604  do{ \
605     _CPU_ISR_Enable( _isr_cookie ); \
606     _CPU_ISR_Disable( _isr_cookie ); \
607  }while(0)
608
609/*
610 *  Map interrupt level in task mode onto the hardware that the CPU
611 *  actually provides.  Currently, interrupt levels which do not
612 *  map onto the CPU in a generic fashion are undefined.  Someday,
613 *  it would be nice if these were "mapped" by the application
614 *  via a callout.  For example, m68k has 8 levels 0 - 7, levels
615 *  8 - 255 would be available for bsp/application specific meaning.
616 *  This could be used to manage a programmable interrupt controller
617 *  via the rtems_task_mode directive.
618 */
619
620#define _CPU_ISR_Set_level( new_level ) \
621  do{ \
622    if ( new_level ) a29k_disable_all(); \
623    else a29k_enable_all(); \
624  }while(0);
625
626/* end of ISR handler macros */
627
628/* Context handler macros */
629
630extern void _CPU_Context_save(
631  Context_Control *new_context
632);
633
634/*
635 *  Initialize the context to a state suitable for starting a
636 *  task after a context restore operation.  Generally, this
637 *  involves:
638 *
639 *     - setting a starting address
640 *     - preparing the stack
641 *     - preparing the stack and frame pointers
642 *     - setting the proper interrupt level in the context
643 *     - initializing the floating point context
644 *
645 *  This routine generally does not set any unnecessary register
646 *  in the context.  The state of the "general data" registers is
647 *  undefined at task start time.
648 *
649 *  NOTE: This is_fp parameter is TRUE if the thread is to be a floating
650 *        point thread.  This is typically only used on CPUs where the
651 *        FPU may be easily disabled by software such as on the SPARC
652 *        where the PSR contains an enable FPU bit.
653 */
654
655#define _CPU_Context_Initialize( _the_context, _stack_base, _size, \
656                                 _isr, _entry_point, _is_fp ) \
657  do{ /* allocate 1/4 of stack for memory stack, 3/4 of stack for register stack */           \
658      unsigned32 _mem_stack_tmp = (unsigned32)(_stack_base) + (_size);  \
659      unsigned32 _reg_stack_tmp = (unsigned32)(_stack_base) + (((_size)*3)/4); \
660      _mem_stack_tmp &= ~(CPU_ALIGNMENT-1);                         \
661      _reg_stack_tmp &= ~(CPU_ALIGNMENT-1);                         \
662      _CPU_Context_save(_the_context);                              \
663      (_the_context)->msp = _mem_stack_tmp;           /* gr125 */   \
664      (_the_context)->lr1 =                                         \
665      (_the_context)->locals[1] =                                   \
666      (_the_context)->rfb = _reg_stack_tmp;           /* gr127 */   \
667      (_the_context)->gr1 = _reg_stack_tmp - 4 * 4;                 \
668      (_the_context)->rab = _reg_stack_tmp - 128 * 4; /* gr126 */   \
669      (_the_context)->local_count = 1-1;                            \
670      (_the_context)->PC1 = _entry_point;                           \
671      (_the_context)->PC0 = (unsigned32)((char *)_entry_point + 4); \
672      if (_isr) { (_the_context)->OPS |= (TD | DI); }               \
673      else                                                          \
674                { (_the_context)->OPS &= ~(TD | DI); }              \
675  }while(0)
676
677/*
678 *  This routine is responsible for somehow restarting the currently
679 *  executing task.  If you are lucky, then all that is necessary
680 *  is restoring the context.  Otherwise, there will need to be
681 *  a special assembly routine which does something special in this
682 *  case.  Context_Restore should work most of the time.  It will
683 *  not work if restarting self conflicts with the stack frame
684 *  assumptions of restoring a context.
685 */
686
687#define _CPU_Context_Restart_self( _the_context ) \
688   _CPU_Context_restore( (_the_context) )
689
690/*
691 *  The purpose of this macro is to allow the initial pointer into
692 *  a floating point context area (used to save the floating point
693 *  context) to be at an arbitrary place in the floating point
694 *  context area.
695 *
696 *  This is necessary because some FP units are designed to have
697 *  their context saved as a stack which grows into lower addresses.
698 *  Other FP units can be saved by simply moving registers into offsets
699 *  from the base of the context area.  Finally some FP units provide
700 *  a "dump context" instruction which could fill in from high to low
701 *  or low to high based on the whim of the CPU designers.
702 */
703
704#define _CPU_Context_Fp_start( _base, _offset ) \
705   ( (char *) (_base) + (_offset) )
706
707/*
708 *  This routine initializes the FP context area passed to it to.
709 *  There are a few standard ways in which to initialize the
710 *  floating point context.  The code included for this macro assumes
711 *  that this is a CPU in which a "initial" FP context was saved into
712 *  _CPU_Null_fp_context and it simply copies it to the destination
713 *  context passed to it.
714 *
715 *  Other models include (1) not doing anything, and (2) putting
716 *  a "null FP status word" in the correct place in the FP context.
717 */
718
719#define _CPU_Context_Initialize_fp( _destination ) \
720  do { \
721   *((Context_Control_fp *) *((void **) _destination)) = _CPU_Null_fp_context; \
722  } while(0)
723
724/* end of Context handler macros */
725
726/* Fatal Error manager macros */
727
728/*
729 *  This routine copies _error into a known place -- typically a stack
730 *  location or a register, optionally disables interrupts, and
731 *  halts/stops the CPU.
732 */
733
734#define _CPU_Fatal_halt( _error ) \
735        a29k_fatal_error(_error)
736
737/* end of Fatal Error manager macros */
738
739/* Bitfield handler macros */
740
741/*
742 *  This routine sets _output to the bit number of the first bit
743 *  set in _value.  _value is of CPU dependent type Priority_Bit_map_control.
744 *  This type may be either 16 or 32 bits wide although only the 16
745 *  least significant bits will be used.
746 *
747 *  There are a number of variables in using a "find first bit" type
748 *  instruction.
749 *
750 *    (1) What happens when run on a value of zero?
751 *    (2) Bits may be numbered from MSB to LSB or vice-versa.
752 *    (3) The numbering may be zero or one based.
753 *    (4) The "find first bit" instruction may search from MSB or LSB.
754 *
755 *  RTEMS guarantees that (1) will never happen so it is not a concern.
756 *  (2),(3), (4) are handled by the macros _CPU_Priority_mask() and
757 *  _CPU_Priority_bits_index().  These three form a set of routines
758 *  which must logically operate together.  Bits in the _value are
759 *  set and cleared based on masks built by _CPU_Priority_mask().
760 *  The basic major and minor values calculated by _Priority_Major()
761 *  and _Priority_Minor() are "massaged" by _CPU_Priority_bits_index()
762 *  to properly range between the values returned by the "find first bit"
763 *  instruction.  This makes it possible for _Priority_Get_highest() to
764 *  calculate the major and directly index into the minor table.
765 *  This mapping is necessary to ensure that 0 (a high priority major/minor)
766 *  is the first bit found.
767 *
768 *  This entire "find first bit" and mapping process depends heavily
769 *  on the manner in which a priority is broken into a major and minor
770 *  components with the major being the 4 MSB of a priority and minor
771 *  the 4 LSB.  Thus (0 << 4) + 0 corresponds to priority 0 -- the highest
772 *  priority.  And (15 << 4) + 14 corresponds to priority 254 -- the next
773 *  to the lowest priority.
774 *
775 *  If your CPU does not have a "find first bit" instruction, then
776 *  there are ways to make do without it.  Here are a handful of ways
777 *  to implement this in software:
778 *
779 *    - a series of 16 bit test instructions
780 *    - a "binary search using if's"
781 *    - _number = 0
782 *      if _value > 0x00ff
783 *        _value >>=8
784 *        _number = 8;
785 *
786 *      if _value > 0x0000f
787 *        _value >=8
788 *        _number += 4
789 *
790 *      _number += bit_set_table[ _value ]
791 *
792 *    where bit_set_table[ 16 ] has values which indicate the first
793 *      bit set
794 */
795
796#define CPU_USE_GENERIC_BITFIELD_CODE TRUE
797#define CPU_USE_GENERIC_BITFIELD_DATA TRUE
798
799#if (CPU_USE_GENERIC_BITFIELD_CODE == FALSE)
800
801#define _CPU_Bitfield_Find_first_bit( _value, _output ) \
802  { \
803    (_output) = 0;   /* do something to prevent warnings */ \
804  }
805
806#endif
807
808/* end of Bitfield handler macros */
809
810/*
811 *  This routine builds the mask which corresponds to the bit fields
812 *  as searched by _CPU_Bitfield_Find_first_bit().  See the discussion
813 *  for that routine.
814 */
815
816#if (CPU_USE_GENERIC_BITFIELD_CODE == FALSE)
817
818#define _CPU_Priority_Mask( _bit_number ) \
819  ( 1 << (_bit_number) )
820
821#endif
822
823/*
824 *  This routine translates the bit numbers returned by
825 *  _CPU_Bitfield_Find_first_bit() into something suitable for use as
826 *  a major or minor component of a priority.  See the discussion
827 *  for that routine.
828 */
829
830#if (CPU_USE_GENERIC_BITFIELD_CODE == FALSE)
831
832#define _CPU_Priority_bits_index( _priority ) \
833  (_priority)
834
835#endif
836
837/* end of Priority handler macros */
838
839/* functions */
840
841/*
842 *  _CPU_Initialize
843 *
844 *  This routine performs CPU dependent initialization.
845 */
846
847void _CPU_Initialize(
848  rtems_cpu_table  *cpu_table,
849  void      (*thread_dispatch)()
850);
851
852/*
853 *  _CPU_ISR_install_raw_handler
854 *
855 *  This routine installs a "raw" interrupt handler directly into the
856 *  processor's vector table.
857 */
858 
859void _CPU_ISR_install_raw_handler(
860  unsigned32  vector,
861  proc_ptr    new_handler,
862  proc_ptr   *old_handler
863);
864
865/*
866 *  _CPU_ISR_install_vector
867 *
868 *  This routine installs an interrupt vector.
869 */
870
871void _CPU_ISR_install_vector(
872  unsigned32  vector,
873  proc_ptr    new_handler,
874  proc_ptr   *old_handler
875);
876
877/*
878 *  _CPU_Install_interrupt_stack
879 *
880 *  This routine installs the hardware interrupt stack pointer.
881 *
882 *  NOTE:  It need only be provided if CPU_HAS_HARDWARE_INTERRUPT_STACK
883 *         is TRUE.
884 */
885
886void _CPU_Install_interrupt_stack( void );
887
888/*
889 *  _CPU_Internal_threads_Idle_thread_body
890 *
891 *  This routine is the CPU dependent IDLE thread body.
892 *
893 *  NOTE:  It need only be provided if CPU_PROVIDES_IDLE_THREAD_BODY
894 *         is TRUE.
895 */
896
897void _CPU_Internal_threads_Idle_thread_body( void );
898
899/*
900 *  _CPU_Context_switch
901 *
902 *  This routine switches from the run context to the heir context.
903 */
904
905void _CPU_Context_switch(
906  Context_Control  *run,
907  Context_Control  *heir
908);
909
910/*
911 *  _CPU_Context_restore
912 *
913 *  This routine is generallu used only to restart self in an
914 *  efficient manner.  It may simply be a label in _CPU_Context_switch.
915 *
916 *  NOTE: May be unnecessary to reload some registers.
917 */
918
919void _CPU_Context_restore(
920  Context_Control *new_context
921);
922
923/*
924 *  _CPU_Context_save_fp
925 *
926 *  This routine saves the floating point context passed to it.
927 */
928
929void _CPU_Context_save_fp(
930  void **fp_context_ptr
931);
932
933/*
934 *  _CPU_Context_restore_fp
935 *
936 *  This routine restores the floating point context passed to it.
937 */
938
939void _CPU_Context_restore_fp(
940  void **fp_context_ptr
941);
942
943/*  The following routine swaps the endian format of an unsigned int.
944 *  It must be static because it is referenced indirectly.
945 *
946 *  This version will work on any processor, but if there is a better
947 *  way for your CPU PLEASE use it.  The most common way to do this is to:
948 *
949 *     swap least significant two bytes with 16-bit rotate
950 *     swap upper and lower 16-bits
951 *     swap most significant two bytes with 16-bit rotate
952 *
953 *  Some CPUs have special instructions which swap a 32-bit quantity in
954 *  a single instruction (e.g. i486).  It is probably best to avoid
955 *  an "endian swapping control bit" in the CPU.  One good reason is
956 *  that interrupts would probably have to be disabled to insure that
957 *  an interrupt does not try to access the same "chunk" with the wrong
958 *  endian.  Another good reason is that on some CPUs, the endian bit
959 *  endianness for ALL fetches -- both code and data -- so the code
960 *  will be fetched incorrectly.
961 */
962 
963#define CPU_swap_u32( value ) \
964  ((value&0xff) << 24) | (((value >> 8)&0xff) << 16) | (((value >> 16)&0xff) << 8) | ((value>>24)&0xff)
965
966#ifdef __cplusplus
967}
968#endif
969
970#endif
Note: See TracBrowser for help on using the repository browser.