source: rtems-libbsd/mDNSResponder/mDNSCore/DNSCommon.c @ f761b29

55-freebsd-126-freebsd-12
Last change on this file since f761b29 was f761b29, checked in by Sebastian Huber <sebastian.huber@…>, on 09/19/18 at 06:52:21

mDNSResponder: Update to v625.41.2

The sources can be obtained via:

https://opensource.apple.com/tarballs/mDNSResponder/mDNSResponder-625.41.2.tar.gz

Update #3522.

  • Property mode set to 100644
File size: 184.6 KB
Line 
1/* -*- Mode: C; tab-width: 4 -*-
2 *
3 * Copyright (c) 2002-2015 Apple Inc. All rights reserved.
4 *
5 * Licensed under the Apache License, Version 2.0 (the "License");
6 * you may not use this file except in compliance with the License.
7 * You may obtain a copy of the License at
8 *
9 *     http://www.apache.org/licenses/LICENSE-2.0
10 *
11 * Unless required by applicable law or agreed to in writing, software
12 * distributed under the License is distributed on an "AS IS" BASIS,
13 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14 * See the License for the specific language governing permissions and
15 * limitations under the License.
16 */
17
18// Set mDNS_InstantiateInlines to tell mDNSEmbeddedAPI.h to instantiate inline functions, if necessary
19#define mDNS_InstantiateInlines 1
20#include "DNSCommon.h"
21#include "CryptoAlg.h"
22#include "anonymous.h"
23
24// Disable certain benign warnings with Microsoft compilers
25#if (defined(_MSC_VER))
26// Disable "conditional expression is constant" warning for debug macros.
27// Otherwise, this generates warnings for the perfectly natural construct "while(1)"
28// If someone knows a variant way of writing "while(1)" that doesn't generate warning messages, please let us know
29    #pragma warning(disable:4127)
30// Disable "array is too small to include a terminating null character" warning
31// -- domain labels have an initial length byte, not a terminating null character
32    #pragma warning(disable:4295)
33#endif
34
35// ***************************************************************************
36#if COMPILER_LIKES_PRAGMA_MARK
37#pragma mark - Program Constants
38#endif
39
40mDNSexport const mDNSInterfaceID mDNSInterface_Any       = 0;
41mDNSexport const mDNSInterfaceID mDNSInterfaceMark       = (mDNSInterfaceID)-1;
42mDNSexport const mDNSInterfaceID mDNSInterface_LocalOnly = (mDNSInterfaceID)-2;
43mDNSexport const mDNSInterfaceID mDNSInterface_Unicast   = (mDNSInterfaceID)-3;
44mDNSexport const mDNSInterfaceID mDNSInterface_P2P       = (mDNSInterfaceID)-4;
45mDNSexport const mDNSInterfaceID uDNSInterfaceMark       = (mDNSInterfaceID)-5;
46
47// Note: Microsoft's proposed "Link Local Multicast Name Resolution Protocol" (LLMNR) is essentially a limited version of
48// Multicast DNS, using the same packet formats, naming syntax, and record types as Multicast DNS, but on a different UDP
49// port and multicast address, which means it won't interoperate with the existing installed base of Multicast DNS responders.
50// LLMNR uses IPv4 multicast address 224.0.0.252, IPv6 multicast address FF02::0001:0003, and UDP port 5355.
51// Uncomment the appropriate lines below to build a special Multicast DNS responder for testing interoperability
52// with Microsoft's LLMNR client code.
53
54#define   DiscardPortAsNumber               9
55#define   SSHPortAsNumber                  22
56#define   UnicastDNSPortAsNumber           53
57#define   SSDPPortAsNumber               1900
58#define   IPSECPortAsNumber              4500
59#define   NSIPCPortAsNumber              5030       // Port used for dnsextd to talk to local nameserver bound to loopback
60#define   NATPMPAnnouncementPortAsNumber 5350
61#define   NATPMPPortAsNumber             5351
62#define   DNSEXTPortAsNumber             5352       // Port used for end-to-end DNS operations like LLQ, Updates with Leases, etc.
63#define   MulticastDNSPortAsNumber       5353
64#define   LoopbackIPCPortAsNumber        5354
65//#define MulticastDNSPortAsNumber       5355           // LLMNR
66#define   PrivateDNSPortAsNumber         5533
67
68mDNSexport const mDNSIPPort DiscardPort            = { { DiscardPortAsNumber            >> 8, DiscardPortAsNumber            & 0xFF } };
69mDNSexport const mDNSIPPort SSHPort                = { { SSHPortAsNumber                >> 8, SSHPortAsNumber                & 0xFF } };
70mDNSexport const mDNSIPPort UnicastDNSPort         = { { UnicastDNSPortAsNumber         >> 8, UnicastDNSPortAsNumber         & 0xFF } };
71mDNSexport const mDNSIPPort SSDPPort               = { { SSDPPortAsNumber               >> 8, SSDPPortAsNumber               & 0xFF } };
72mDNSexport const mDNSIPPort IPSECPort              = { { IPSECPortAsNumber              >> 8, IPSECPortAsNumber              & 0xFF } };
73mDNSexport const mDNSIPPort NSIPCPort              = { { NSIPCPortAsNumber              >> 8, NSIPCPortAsNumber              & 0xFF } };
74mDNSexport const mDNSIPPort NATPMPAnnouncementPort = { { NATPMPAnnouncementPortAsNumber >> 8, NATPMPAnnouncementPortAsNumber & 0xFF } };
75mDNSexport const mDNSIPPort NATPMPPort             = { { NATPMPPortAsNumber             >> 8, NATPMPPortAsNumber             & 0xFF } };
76mDNSexport const mDNSIPPort DNSEXTPort             = { { DNSEXTPortAsNumber             >> 8, DNSEXTPortAsNumber             & 0xFF } };
77mDNSexport const mDNSIPPort MulticastDNSPort       = { { MulticastDNSPortAsNumber       >> 8, MulticastDNSPortAsNumber       & 0xFF } };
78mDNSexport const mDNSIPPort LoopbackIPCPort        = { { LoopbackIPCPortAsNumber        >> 8, LoopbackIPCPortAsNumber        & 0xFF } };
79mDNSexport const mDNSIPPort PrivateDNSPort         = { { PrivateDNSPortAsNumber         >> 8, PrivateDNSPortAsNumber         & 0xFF } };
80
81mDNSexport const OwnerOptData zeroOwner         = { 0, 0, { { 0 } }, { { 0 } }, { { 0 } } };
82
83mDNSexport const mDNSIPPort zeroIPPort        = { { 0 } };
84mDNSexport const mDNSv4Addr zerov4Addr        = { { 0 } };
85mDNSexport const mDNSv6Addr zerov6Addr        = { { 0 } };
86mDNSexport const mDNSEthAddr zeroEthAddr       = { { 0 } };
87mDNSexport const mDNSv4Addr onesIPv4Addr      = { { 255, 255, 255, 255 } };
88mDNSexport const mDNSv6Addr onesIPv6Addr      = { { 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255 } };
89mDNSexport const mDNSEthAddr onesEthAddr       = { { 255, 255, 255, 255, 255, 255 } };
90mDNSexport const mDNSAddr zeroAddr          = { mDNSAddrType_None, {{{ 0 }}} };
91
92mDNSexport const mDNSv4Addr AllDNSAdminGroup   = { { 239, 255, 255, 251 } };
93mDNSexport const mDNSv4Addr AllHosts_v4        = { { 224,   0,   0,   1 } };  // For NAT-PMP & PCP Annoucements
94mDNSexport const mDNSv6Addr AllHosts_v6        = { { 0xFF,0x02,0x00,0x00, 0x00,0x00,0x00,0x00, 0x00,0x00,0x00,0x00, 0x00,0x00,0x00,0x01 } };
95mDNSexport const mDNSv6Addr NDP_prefix         = { { 0xFF,0x02,0x00,0x00, 0x00,0x00,0x00,0x00, 0x00,0x00,0x00,0x01, 0xFF,0x00,0x00,0xFB } };  // FF02:0:0:0:0:1:FF00::/104
96mDNSexport const mDNSEthAddr AllHosts_v6_Eth    = { { 0x33, 0x33, 0x00, 0x00, 0x00, 0x01 } };
97mDNSexport const mDNSAddr AllDNSLinkGroup_v4 = { mDNSAddrType_IPv4, { { { 224,   0,   0, 251 } } } };
98//mDNSexport const mDNSAddr  AllDNSLinkGroup_v4 = { mDNSAddrType_IPv4, { { { 224,   0,   0, 252 } } } }; // LLMNR
99mDNSexport const mDNSAddr AllDNSLinkGroup_v6 = { mDNSAddrType_IPv6, { { { 0xFF,0x02,0x00,0x00, 0x00,0x00,0x00,0x00, 0x00,0x00,0x00,0x00, 0x00,0x00,0x00,0xFB } } } };
100//mDNSexport const mDNSAddr  AllDNSLinkGroup_v6 = { mDNSAddrType_IPv6, { { { 0xFF,0x02,0x00,0x00, 0x00,0x00,0x00,0x00, 0x00,0x00,0x00,0x00, 0x00,0x01,0x00,0x03 } } } }; // LLMNR
101
102mDNSexport const mDNSOpaque16 zeroID          = { { 0, 0 } };
103mDNSexport const mDNSOpaque16 onesID          = { { 255, 255 } };
104mDNSexport const mDNSOpaque16 QueryFlags      = { { kDNSFlag0_QR_Query    | kDNSFlag0_OP_StdQuery,                0 } };
105mDNSexport const mDNSOpaque16 uQueryFlags     = { { kDNSFlag0_QR_Query    | kDNSFlag0_OP_StdQuery | kDNSFlag0_RD, 0 } };
106mDNSexport const mDNSOpaque16 DNSSecQFlags    = { { kDNSFlag0_QR_Query    | kDNSFlag0_OP_StdQuery | kDNSFlag0_RD, kDNSFlag1_CD } };
107mDNSexport const mDNSOpaque16 ResponseFlags   = { { kDNSFlag0_QR_Response | kDNSFlag0_OP_StdQuery | kDNSFlag0_AA, 0 } };
108mDNSexport const mDNSOpaque16 UpdateReqFlags  = { { kDNSFlag0_QR_Query    | kDNSFlag0_OP_Update,                  0 } };
109mDNSexport const mDNSOpaque16 UpdateRespFlags = { { kDNSFlag0_QR_Response | kDNSFlag0_OP_Update,                  0 } };
110
111mDNSexport const mDNSOpaque64 zeroOpaque64    = { { 0 } };
112
113// ***************************************************************************
114#if COMPILER_LIKES_PRAGMA_MARK
115#pragma mark -
116#pragma mark - General Utility Functions
117#endif
118
119// return true for RFC1918 private addresses
120mDNSexport mDNSBool mDNSv4AddrIsRFC1918(const mDNSv4Addr * const addr)
121{
122    return ((addr->b[0] == 10) ||                                 // 10/8 prefix
123            (addr->b[0] == 172 && (addr->b[1] & 0xF0) == 16) ||   // 172.16/12
124            (addr->b[0] == 192 && addr->b[1] == 168));            // 192.168/16
125}
126
127mDNSexport void mDNSAddrMapIPv4toIPv6(mDNSv4Addr* in, mDNSv6Addr* out)
128{
129    out->l[0] = 0;
130    out->l[1] = 0;
131    out->w[4] = 0;
132    out->w[5] = 0xffff;
133    out->b[12] = in->b[0];
134    out->b[13] = in->b[1];
135    out->b[14] = in->b[2];
136    out->b[15] = in->b[3];
137}
138
139mDNSexport mDNSBool mDNSAddrIPv4FromMappedIPv6(mDNSv6Addr *in, mDNSv4Addr* out)
140{
141    if (in->l[0] != 0 || in->l[1] != 0 || in->w[4] != 0 || in->w[5] != 0xffff)
142        return mDNSfalse;
143
144    out->NotAnInteger = in->l[3];
145    return mDNStrue;
146}
147
148mDNSexport NetworkInterfaceInfo *GetFirstActiveInterface(NetworkInterfaceInfo *intf)
149{
150    while (intf && !intf->InterfaceActive) intf = intf->next;
151    return(intf);
152}
153
154mDNSexport mDNSInterfaceID GetNextActiveInterfaceID(const NetworkInterfaceInfo *intf)
155{
156    const NetworkInterfaceInfo *next = GetFirstActiveInterface(intf->next);
157    if (next) return(next->InterfaceID);else return(mDNSNULL);
158}
159
160mDNSexport mDNSu32 NumCacheRecordsForInterfaceID(const mDNS *const m, mDNSInterfaceID id)
161{
162    mDNSu32 slot, used = 0;
163    CacheGroup *cg;
164    const CacheRecord *rr;
165    FORALL_CACHERECORDS(slot, cg, rr)
166    {
167        if (rr->resrec.InterfaceID == id)
168            used++;
169    }
170    return(used);
171}
172
173mDNSexport char *DNSTypeName(mDNSu16 rrtype)
174{
175    switch (rrtype)
176    {
177    case kDNSType_A:    return("Addr");
178    case kDNSType_NS:   return("NS");
179    case kDNSType_CNAME: return("CNAME");
180    case kDNSType_SOA:  return("SOA");
181    case kDNSType_NULL: return("NULL");
182    case kDNSType_PTR:  return("PTR");
183    case kDNSType_HINFO: return("HINFO");
184    case kDNSType_TXT:  return("TXT");
185    case kDNSType_AAAA: return("AAAA");
186    case kDNSType_SRV:  return("SRV");
187    case kDNSType_OPT:  return("OPT");
188    case kDNSType_NSEC: return("NSEC");
189    case kDNSType_NSEC3: return("NSEC3");
190    case kDNSType_NSEC3PARAM: return("NSEC3PARAM");
191    case kDNSType_TSIG: return("TSIG");
192    case kDNSType_RRSIG: return("RRSIG");
193    case kDNSType_DNSKEY: return("DNSKEY");
194    case kDNSType_DS: return("DS");
195    case kDNSQType_ANY: return("ANY");
196    default:            {
197        static char buffer[16];
198        mDNS_snprintf(buffer, sizeof(buffer), "TYPE%d", rrtype);
199        return(buffer);
200    }
201    }
202}
203
204mDNSlocal char *DNSSECAlgName(mDNSu8 alg)
205{
206    switch (alg)
207    {
208    case CRYPTO_RSA_SHA1: return "RSA_SHA1";
209    case CRYPTO_DSA_NSEC3_SHA1: return "DSA_NSEC3_SHA1";
210    case CRYPTO_RSA_NSEC3_SHA1: return "RSA_NSEC3_SHA1";
211    case CRYPTO_RSA_SHA256: return "RSA_SHA256";
212    case CRYPTO_RSA_SHA512: return "RSA_SHA512";
213    default: {
214        static char algbuffer[16];
215        mDNS_snprintf(algbuffer, sizeof(algbuffer), "ALG%d", alg);
216        return(algbuffer);
217    }
218    }
219}
220
221mDNSlocal char *DNSSECDigestName(mDNSu8 digest)
222{
223    switch (digest)
224    {
225    case SHA1_DIGEST_TYPE: return "SHA1";
226    case SHA256_DIGEST_TYPE: return "SHA256";
227    default:
228        {
229        static char digbuffer[16];
230        mDNS_snprintf(digbuffer, sizeof(digbuffer), "DIG%d", digest);
231        return(digbuffer);
232        }
233    }
234}
235
236mDNSexport mDNSu32 swap32(mDNSu32 x)
237{
238    mDNSu8 *ptr = (mDNSu8 *)&x;
239    return (mDNSu32)((mDNSu32)ptr[0] << 24 | (mDNSu32)ptr[1] << 16 | (mDNSu32)ptr[2] << 8 | ptr[3]);
240}
241
242mDNSexport mDNSu16 swap16(mDNSu16 x)
243{
244    mDNSu8 *ptr = (mDNSu8 *)&x;
245    return (mDNSu16)((mDNSu16)ptr[0] << 8 | ptr[1]);
246}
247
248// RFC 4034 Appendix B: Get the keyid of a DNS KEY. It is not transmitted
249// explicitly on the wire.
250//
251// Note: This just helps narrow down the list of keys to look at. It is possible
252// for two DNS keys to have the same ID i.e., key ID is not a unqiue tag. We ignore
253// MD5 keys.
254//
255// 1st argument - the RDATA part of the DNSKEY RR
256// 2nd argument - the RDLENGTH
257//
258mDNSlocal mDNSu32 keytag(mDNSu8 *key, mDNSu32 keysize)
259{
260    unsigned long ac;
261    unsigned int i;
262
263    for (ac = 0, i = 0; i < keysize; ++i)
264        ac += (i & 1) ? key[i] : key[i] << 8;
265    ac += (ac >> 16) & 0xFFFF;
266    return ac & 0xFFFF;
267}
268
269mDNSexport int baseEncode(char *buffer, int blen, const mDNSu8 *data, int len, int encAlg)
270{
271    AlgContext *ctx;
272    mDNSu8 *outputBuffer;
273    int length;
274
275    ctx = AlgCreate(ENC_ALG, encAlg);
276    if (!ctx)
277    {
278        LogMsg("baseEncode: AlgCreate failed\n");
279        return 0;
280    }
281    AlgAdd(ctx, data, len);
282    outputBuffer = AlgEncode(ctx);
283    length = 0;
284    if (outputBuffer)
285    {
286        // Note: don't include any spaces in the format string below. This
287        // is also used by NSEC3 code for proving non-existence where it
288        // needs the base32 encoding without any spaces etc.
289        length = mDNS_snprintf(buffer, blen, "%s", outputBuffer);
290    }
291    AlgDestroy(ctx);
292    return length;
293}
294
295mDNSlocal void PrintTypeBitmap(const mDNSu8 *bmap, int bitmaplen, char *const buffer, mDNSu32 length)
296{
297    int win, wlen, type;
298
299    while (bitmaplen > 0)
300    {
301        int i;
302
303        if (bitmaplen < 3)
304        {
305            LogMsg("PrintTypeBitmap: malformed bitmap, bitmaplen %d short", bitmaplen);
306            break;
307        }
308
309        win = *bmap++;
310        wlen = *bmap++;
311        bitmaplen -= 2;
312        if (bitmaplen < wlen || wlen < 1 || wlen > 32)
313        {
314            LogInfo("PrintTypeBitmap: malformed nsec, bitmaplen %d wlen %d", bitmaplen, wlen);
315            break;
316        }
317        if (win < 0 || win >= 256)
318        {
319            LogInfo("PrintTypeBitmap: malformed nsec, bad window win %d", win);
320            break;
321        }
322        type = win * 256;
323        for (i = 0; i < wlen * 8; i++)
324        {
325            if (bmap[i>>3] & (128 >> (i&7)))
326                length += mDNS_snprintf(buffer+length, (MaxMsg - 1) - length, "%s ", DNSTypeName(type + i));
327        }
328        bmap += wlen;
329        bitmaplen -= wlen;
330    }
331}
332
333// Parse the fields beyond the base header. NSEC3 should have been validated.
334mDNSexport void NSEC3Parse(const ResourceRecord *const rr, mDNSu8 **salt, int *hashLength, mDNSu8 **nxtName, int *bitmaplen, mDNSu8 **bitmap)
335{
336        const RDataBody2 *const rdb = (RDataBody2 *)rr->rdata->u.data;
337        rdataNSEC3 *nsec3 = (rdataNSEC3 *)rdb->data;
338    mDNSu8 *p = (mDNSu8 *)&nsec3->salt;
339    int hlen;
340
341    if (salt)
342    {
343        if (nsec3->saltLength)
344            *salt = p;
345        else
346            *salt = mDNSNULL;
347    }
348    p += nsec3->saltLength;
349    // p is pointing at hashLength
350    hlen = (int)*p;
351    if (hashLength)
352        *hashLength = hlen;
353    p++;
354    if (nxtName)
355        *nxtName = p;
356    p += hlen;
357    if (bitmaplen)
358        *bitmaplen = rr->rdlength - (int)(p - rdb->data);
359    if (bitmap)
360        *bitmap = p;
361}
362
363// Note slight bug: this code uses the rdlength from the ResourceRecord object, to display
364// the rdata from the RDataBody object. Sometimes this could be the wrong length -- but as
365// long as this routine is only used for debugging messages, it probably isn't a big problem.
366mDNSexport char *GetRRDisplayString_rdb(const ResourceRecord *const rr, const RDataBody *const rd1, char *const buffer)
367{
368    const RDataBody2 *const rd = (RDataBody2 *)rd1;
369    #define RemSpc (MaxMsg-1-length)
370    char *ptr = buffer;
371    mDNSu32 length = mDNS_snprintf(buffer, MaxMsg-1, "%4d %##s %s ", rr->rdlength, rr->name->c, DNSTypeName(rr->rrtype));
372    if (rr->RecordType == kDNSRecordTypePacketNegative) return(buffer);
373    if (!rr->rdlength && rr->rrtype != kDNSType_OPT) { mDNS_snprintf(buffer+length, RemSpc, "<< ZERO RDATA LENGTH >>"); return(buffer); }
374
375    switch (rr->rrtype)
376    {
377    case kDNSType_A:    mDNS_snprintf(buffer+length, RemSpc, "%.4a", &rd->ipv4);          break;
378
379    case kDNSType_NS:       // Same as PTR
380    case kDNSType_CNAME:    // Same as PTR
381    case kDNSType_PTR:  mDNS_snprintf(buffer+length, RemSpc, "%##s", rd->name.c);       break;
382
383    case kDNSType_SOA:  mDNS_snprintf(buffer+length, RemSpc, "%##s %##s %d %d %d %d %d",
384                                      rd->soa.mname.c, rd->soa.rname.c,
385                                      rd->soa.serial, rd->soa.refresh, rd->soa.retry, rd->soa.expire, rd->soa.min);
386        break;
387
388    case kDNSType_HINFO:    // Display this the same as TXT (show all constituent strings)
389    case kDNSType_TXT:  {
390        const mDNSu8 *t = rd->txt.c;
391        while (t < rd->txt.c + rr->rdlength)
392        {
393            length += mDNS_snprintf(buffer+length, RemSpc, "%s%#s", t > rd->txt.c ? "Š" : "", t);
394            t += 1 + t[0];
395        }
396    } break;
397
398    case kDNSType_AAAA: mDNS_snprintf(buffer+length, RemSpc, "%.16a", &rd->ipv6);       break;
399    case kDNSType_SRV:  mDNS_snprintf(buffer+length, RemSpc, "%u %u %u %##s",
400                                      rd->srv.priority, rd->srv.weight, mDNSVal16(rd->srv.port), rd->srv.target.c); break;
401
402    case kDNSType_OPT:  {
403        const rdataOPT *opt;
404        const rdataOPT *const end = (const rdataOPT *)&rd->data[rr->rdlength];
405        length += mDNS_snprintf(buffer+length, RemSpc, "Max %d", rr->rrclass);
406        for (opt = &rd->opt[0]; opt < end; opt++)
407        {
408            switch(opt->opt)
409            {
410            case kDNSOpt_LLQ:
411                length += mDNS_snprintf(buffer+length, RemSpc, " LLQ");
412                length += mDNS_snprintf(buffer+length, RemSpc, " Vers %d",     opt->u.llq.vers);
413                length += mDNS_snprintf(buffer+length, RemSpc, " Op %d",       opt->u.llq.llqOp);
414                length += mDNS_snprintf(buffer+length, RemSpc, " Err/Port %d", opt->u.llq.err);
415                length += mDNS_snprintf(buffer+length, RemSpc, " ID %08X%08X", opt->u.llq.id.l[0], opt->u.llq.id.l[1]);
416                length += mDNS_snprintf(buffer+length, RemSpc, " Lease %d",    opt->u.llq.llqlease);
417                break;
418            case kDNSOpt_Lease:
419                length += mDNS_snprintf(buffer+length, RemSpc, " Lease %d",    opt->u.updatelease);
420                break;
421            case kDNSOpt_Owner:
422                length += mDNS_snprintf(buffer+length, RemSpc, " Owner");
423                length += mDNS_snprintf(buffer+length, RemSpc, " Vers %d",     opt->u.owner.vers);
424                length += mDNS_snprintf(buffer+length, RemSpc, " Seq %3d", (mDNSu8)opt->u.owner.seq);                           // Display as unsigned
425                length += mDNS_snprintf(buffer+length, RemSpc, " MAC %.6a",    opt->u.owner.HMAC.b);
426                if (opt->optlen >= DNSOpt_OwnerData_ID_Wake_Space-4)
427                {
428                    length += mDNS_snprintf(buffer+length, RemSpc, " I-MAC %.6a", opt->u.owner.IMAC.b);
429                    if (opt->optlen > DNSOpt_OwnerData_ID_Wake_Space-4)
430                        length += mDNS_snprintf(buffer+length, RemSpc, " Password %.6a", opt->u.owner.password.b);
431                }
432                break;
433            case kDNSOpt_Trace:
434                length += mDNS_snprintf(buffer+length, RemSpc, " Trace");
435                length += mDNS_snprintf(buffer+length, RemSpc, " Platform %d",    opt->u.tracer.platf);
436                length += mDNS_snprintf(buffer+length, RemSpc, " mDNSVers %d",    opt->u.tracer.mDNSv);
437                break;
438            default:
439                length += mDNS_snprintf(buffer+length, RemSpc, " Unknown %d",  opt->opt);
440                break;
441            }
442        }
443    }
444    break;
445
446    case kDNSType_NSEC: {
447        domainname *next = (domainname *)rd->data;
448        int len, bitmaplen;
449        mDNSu8 *bmap;
450        len = DomainNameLength(next);
451        bitmaplen = rr->rdlength - len;
452        bmap = (mDNSu8 *)((mDNSu8 *)next + len);
453
454        if (UNICAST_NSEC(rr))
455            length += mDNS_snprintf(buffer+length, RemSpc, "%##s ", next->c);
456        PrintTypeBitmap(bmap, bitmaplen, buffer, length);
457
458    }
459    break;
460    case kDNSType_NSEC3: {
461        rdataNSEC3 *nsec3 = (rdataNSEC3 *)rd->data;
462        const mDNSu8 *p = (mDNSu8 *)&nsec3->salt;
463        int hashLength, bitmaplen, i;
464
465        length += mDNS_snprintf(buffer+length, RemSpc, "\t%s  %d  %d ",
466                                DNSSECDigestName(nsec3->alg), nsec3->flags, swap16(nsec3->iterations));
467       
468        if (!nsec3->saltLength)
469        {
470            length += mDNS_snprintf(buffer+length, RemSpc, "-");
471        }
472        else
473        {
474            for (i = 0; i < nsec3->saltLength; i++)
475            {
476                length += mDNS_snprintf(buffer+length, RemSpc, "%x", p[i]);
477            }
478        }
479
480        // put a space at the end
481        length += mDNS_snprintf(buffer+length, RemSpc, " ");
482
483        p += nsec3->saltLength;
484        // p is pointing at hashLength
485        hashLength = (int)*p++;
486       
487        length += baseEncode(buffer + length, RemSpc, p, hashLength, ENC_BASE32);
488
489        // put a space at the end
490        length += mDNS_snprintf(buffer+length, RemSpc, " ");
491
492        p += hashLength;
493        bitmaplen = rr->rdlength - (int)(p - rd->data);
494        PrintTypeBitmap(p, bitmaplen, buffer, length);
495    }
496    break;
497    case kDNSType_RRSIG:    {
498        rdataRRSig *rrsig = (rdataRRSig *)rd->data;
499        mDNSu8 expTimeBuf[64];
500        mDNSu8 inceptTimeBuf[64];
501        unsigned long inceptClock;
502        unsigned long expClock;
503        int len;
504
505        expClock = (unsigned long)swap32(rrsig->sigExpireTime);
506        mDNSPlatformFormatTime(expClock, expTimeBuf, sizeof(expTimeBuf));
507
508        inceptClock = (unsigned long)swap32(rrsig->sigInceptTime);
509        mDNSPlatformFormatTime(inceptClock, inceptTimeBuf, sizeof(inceptTimeBuf));
510
511        length += mDNS_snprintf(buffer+length, RemSpc, "\t%s  %s  %d  %d  %s  %s  %d  %##s ",
512                                DNSTypeName(swap16(rrsig->typeCovered)), DNSSECAlgName(rrsig->alg), rrsig->labels, swap32(rrsig->origTTL),
513                                expTimeBuf, inceptTimeBuf, swap16(rrsig->keyTag), ((domainname *)(&rrsig->signerName))->c);
514
515        len = DomainNameLength((domainname *)&rrsig->signerName);
516        baseEncode(buffer + length, RemSpc, (const mDNSu8 *)(rd->data + len + RRSIG_FIXED_SIZE),
517                               rr->rdlength - (len + RRSIG_FIXED_SIZE), ENC_BASE64);
518    }
519    break;
520    case kDNSType_DNSKEY:   {
521        rdataDNSKey *rrkey = (rdataDNSKey *)rd->data;
522        length += mDNS_snprintf(buffer+length, RemSpc, "\t%d  %d  %s  %u ", swap16(rrkey->flags), rrkey->proto,
523                                DNSSECAlgName(rrkey->alg), (unsigned int)keytag((mDNSu8 *)rrkey, rr->rdlength));
524        baseEncode(buffer + length, RemSpc, (const mDNSu8 *)(rd->data + DNSKEY_FIXED_SIZE),
525                               rr->rdlength - DNSKEY_FIXED_SIZE, ENC_BASE64);
526    }
527    break;
528    case kDNSType_DS:       {
529        mDNSu8 *p;
530        int i;
531        rdataDS *rrds = (rdataDS *)rd->data;
532
533        length += mDNS_snprintf(buffer+length, RemSpc, "\t%s\t%d\t%s ", DNSSECAlgName(rrds->alg), swap16(rrds->keyTag),
534                                DNSSECDigestName(rrds->digestType));
535
536        p = (mDNSu8 *)(rd->data + DS_FIXED_SIZE);
537        for (i = 0; i < (rr->rdlength - DS_FIXED_SIZE); i++)
538        {
539            length += mDNS_snprintf(buffer+length, RemSpc, "%x", p[i]);
540        }
541    }
542    break;
543
544    default:            mDNS_snprintf(buffer+length, RemSpc, "RDLen %d: %s", rr->rdlength, rd->data);
545        // Really should scan buffer to check if text is valid UTF-8 and only replace with dots if not
546        for (ptr = buffer; *ptr; ptr++) if (*ptr < ' ') *ptr = '.';
547        break;
548    }
549    return(buffer);
550}
551
552// See comments in mDNSEmbeddedAPI.h
553#if _PLATFORM_HAS_STRONG_PRNG_
554#define mDNSRandomNumber mDNSPlatformRandomNumber
555#else
556mDNSlocal mDNSu32 mDNSRandomFromSeed(mDNSu32 seed)
557{
558    return seed * 21 + 1;
559}
560
561mDNSlocal mDNSu32 mDNSMixRandomSeed(mDNSu32 seed, mDNSu8 iteration)
562{
563    return iteration ? mDNSMixRandomSeed(mDNSRandomFromSeed(seed), --iteration) : seed;
564}
565
566mDNSlocal mDNSu32 mDNSRandomNumber()
567{
568    static mDNSBool seeded = mDNSfalse;
569    static mDNSu32 seed = 0;
570    if (!seeded)
571    {
572        seed = mDNSMixRandomSeed(mDNSPlatformRandomSeed(), 100);
573        seeded = mDNStrue;
574    }
575    return (seed = mDNSRandomFromSeed(seed));
576}
577#endif // ! _PLATFORM_HAS_STRONG_PRNG_
578
579mDNSexport mDNSu32 mDNSRandom(mDNSu32 max)      // Returns pseudo-random result from zero to max inclusive
580{
581    mDNSu32 ret = 0;
582    mDNSu32 mask = 1;
583
584    while (mask < max) mask = (mask << 1) | 1;
585
586    do ret = mDNSRandomNumber() & mask;
587    while (ret > max);
588
589    return ret;
590}
591
592mDNSexport mDNSBool mDNSSameAddress(const mDNSAddr *ip1, const mDNSAddr *ip2)
593{
594    if (ip1->type == ip2->type)
595    {
596        switch (ip1->type)
597        {
598        case mDNSAddrType_None: return(mDNStrue);      // Empty addresses have no data and are therefore always equal
599        case mDNSAddrType_IPv4: return (mDNSBool)(mDNSSameIPv4Address(ip1->ip.v4, ip2->ip.v4));
600        case mDNSAddrType_IPv6: return (mDNSBool)(mDNSSameIPv6Address(ip1->ip.v6, ip2->ip.v6));
601        }
602    }
603    return(mDNSfalse);
604}
605
606mDNSexport mDNSBool mDNSAddrIsDNSMulticast(const mDNSAddr *ip)
607{
608    switch(ip->type)
609    {
610    case mDNSAddrType_IPv4: return (mDNSBool)(mDNSSameIPv4Address(ip->ip.v4, AllDNSLinkGroup_v4.ip.v4));
611    case mDNSAddrType_IPv6: return (mDNSBool)(mDNSSameIPv6Address(ip->ip.v6, AllDNSLinkGroup_v6.ip.v6));
612    default: return(mDNSfalse);
613    }
614}
615
616// ***************************************************************************
617#if COMPILER_LIKES_PRAGMA_MARK
618#pragma mark -
619#pragma mark - Domain Name Utility Functions
620#endif
621
622mDNSexport mDNSBool SameDomainLabel(const mDNSu8 *a, const mDNSu8 *b)
623{
624    int i;
625    const int len = *a++;
626
627    if (len > MAX_DOMAIN_LABEL)
628    { debugf("Malformed label (too long)"); return(mDNSfalse); }
629
630    if (len != *b++) return(mDNSfalse);
631    for (i=0; i<len; i++)
632    {
633        mDNSu8 ac = *a++;
634        mDNSu8 bc = *b++;
635        if (mDNSIsUpperCase(ac)) ac += 'a' - 'A';
636        if (mDNSIsUpperCase(bc)) bc += 'a' - 'A';
637        if (ac != bc) return(mDNSfalse);
638    }
639    return(mDNStrue);
640}
641
642mDNSexport mDNSBool SameDomainName(const domainname *const d1, const domainname *const d2)
643{
644    const mDNSu8 *      a   = d1->c;
645    const mDNSu8 *      b   = d2->c;
646    const mDNSu8 *const max = d1->c + MAX_DOMAIN_NAME;          // Maximum that's valid
647
648    while (*a || *b)
649    {
650        if (a + 1 + *a >= max)
651        { debugf("Malformed domain name (more than 256 characters)"); return(mDNSfalse); }
652        if (!SameDomainLabel(a, b)) return(mDNSfalse);
653        a += 1 + *a;
654        b += 1 + *b;
655    }
656
657    return(mDNStrue);
658}
659
660mDNSexport mDNSBool SameDomainNameCS(const domainname *const d1, const domainname *const d2)
661{
662    mDNSu16 l1 = DomainNameLength(d1);
663    mDNSu16 l2 = DomainNameLength(d2);
664    return(l1 <= MAX_DOMAIN_NAME && l1 == l2 && mDNSPlatformMemSame(d1, d2, l1));
665}
666
667mDNSexport mDNSBool IsLocalDomain(const domainname *d)
668{
669    // Domains that are defined to be resolved via link-local multicast are:
670    // local., 254.169.in-addr.arpa., and {8,9,A,B}.E.F.ip6.arpa.
671    static const domainname *nL = (const domainname*)"\x5" "local";
672    static const domainname *nR = (const domainname*)"\x3" "254" "\x3" "169"         "\x7" "in-addr" "\x4" "arpa";
673    static const domainname *n8 = (const domainname*)"\x1" "8"   "\x1" "e" "\x1" "f" "\x3" "ip6"     "\x4" "arpa";
674    static const domainname *n9 = (const domainname*)"\x1" "9"   "\x1" "e" "\x1" "f" "\x3" "ip6"     "\x4" "arpa";
675    static const domainname *nA = (const domainname*)"\x1" "a"   "\x1" "e" "\x1" "f" "\x3" "ip6"     "\x4" "arpa";
676    static const domainname *nB = (const domainname*)"\x1" "b"   "\x1" "e" "\x1" "f" "\x3" "ip6"     "\x4" "arpa";
677
678    const domainname *d1, *d2, *d3, *d4, *d5;   // Top-level domain, second-level domain, etc.
679    d1 = d2 = d3 = d4 = d5 = mDNSNULL;
680    while (d->c[0])
681    {
682        d5 = d4; d4 = d3; d3 = d2; d2 = d1; d1 = d;
683        d = (const domainname*)(d->c + 1 + d->c[0]);
684    }
685
686    if (d1 && SameDomainName(d1, nL)) return(mDNStrue);
687    if (d4 && SameDomainName(d4, nR)) return(mDNStrue);
688    if (d5 && SameDomainName(d5, n8)) return(mDNStrue);
689    if (d5 && SameDomainName(d5, n9)) return(mDNStrue);
690    if (d5 && SameDomainName(d5, nA)) return(mDNStrue);
691    if (d5 && SameDomainName(d5, nB)) return(mDNStrue);
692    return(mDNSfalse);
693}
694
695mDNSexport const mDNSu8 *LastLabel(const domainname *d)
696{
697    const mDNSu8 *p = d->c;
698    while (d->c[0])
699    {
700        p = d->c;
701        d = (const domainname*)(d->c + 1 + d->c[0]);
702    }
703    return(p);
704}
705
706// Returns length of a domain name INCLUDING the byte for the final null label
707// e.g. for the root label "." it returns one
708// For the FQDN "com." it returns 5 (length byte, three data bytes, final zero)
709// Legal results are 1 (just root label) to 256 (MAX_DOMAIN_NAME)
710// If the given domainname is invalid, result is 257 (MAX_DOMAIN_NAME+1)
711mDNSexport mDNSu16 DomainNameLengthLimit(const domainname *const name, const mDNSu8 *limit)
712{
713    const mDNSu8 *src = name->c;
714    while (src < limit && *src <= MAX_DOMAIN_LABEL)
715    {
716        if (*src == 0) return((mDNSu16)(src - name->c + 1));
717        src += 1 + *src;
718    }
719    return(MAX_DOMAIN_NAME+1);
720}
721
722// CompressedDomainNameLength returns the length of a domain name INCLUDING the byte
723// for the final null label, e.g. for the root label "." it returns one.
724// E.g. for the FQDN "foo.com." it returns 9
725// (length, three data bytes, length, three more data bytes, final zero).
726// In the case where a parent domain name is provided, and the given name is a child
727// of that parent, CompressedDomainNameLength returns the length of the prefix portion
728// of the child name, plus TWO bytes for the compression pointer.
729// E.g. for the name "foo.com." with parent "com.", it returns 6
730// (length, three data bytes, two-byte compression pointer).
731mDNSexport mDNSu16 CompressedDomainNameLength(const domainname *const name, const domainname *parent)
732{
733    const mDNSu8 *src = name->c;
734    if (parent && parent->c[0] == 0) parent = mDNSNULL;
735    while (*src)
736    {
737        if (*src > MAX_DOMAIN_LABEL) return(MAX_DOMAIN_NAME+1);
738        if (parent && SameDomainName((const domainname *)src, parent)) return((mDNSu16)(src - name->c + 2));
739        src += 1 + *src;
740        if (src - name->c >= MAX_DOMAIN_NAME) return(MAX_DOMAIN_NAME+1);
741    }
742    return((mDNSu16)(src - name->c + 1));
743}
744
745// CountLabels() returns number of labels in name, excluding final root label
746// (e.g. for "apple.com." CountLabels returns 2.)
747mDNSexport int CountLabels(const domainname *d)
748{
749    int count = 0;
750    const mDNSu8 *ptr;
751    for (ptr = d->c; *ptr; ptr = ptr + ptr[0] + 1) count++;
752    return count;
753}
754
755// SkipLeadingLabels skips over the first 'skip' labels in the domainname,
756// returning a pointer to the suffix with 'skip' labels removed.
757mDNSexport const domainname *SkipLeadingLabels(const domainname *d, int skip)
758{
759    while (skip > 0 && d->c[0]) { d = (const domainname *)(d->c + 1 + d->c[0]); skip--; }
760    return(d);
761}
762
763// AppendLiteralLabelString appends a single label to an existing (possibly empty) domainname.
764// The C string contains the label as-is, with no escaping, etc.
765// Any dots in the name are literal dots, not label separators
766// If successful, AppendLiteralLabelString returns a pointer to the next unused byte
767// in the domainname bufer (i.e. the next byte after the terminating zero).
768// If unable to construct a legal domain name (i.e. label more than 63 bytes, or total more than 256 bytes)
769// AppendLiteralLabelString returns mDNSNULL.
770mDNSexport mDNSu8 *AppendLiteralLabelString(domainname *const name, const char *cstr)
771{
772    mDNSu8       *      ptr  = name->c + DomainNameLength(name) - 1;    // Find end of current name
773    const mDNSu8 *const lim1 = name->c + MAX_DOMAIN_NAME - 1;           // Limit of how much we can add (not counting final zero)
774    const mDNSu8 *const lim2 = ptr + 1 + MAX_DOMAIN_LABEL;
775    const mDNSu8 *const lim  = (lim1 < lim2) ? lim1 : lim2;
776    mDNSu8       *lengthbyte = ptr++;                                   // Record where the length is going to go
777
778    while (*cstr && ptr < lim) *ptr++ = (mDNSu8)*cstr++;    // Copy the data
779    *lengthbyte = (mDNSu8)(ptr - lengthbyte - 1);           // Fill in the length byte
780    *ptr++ = 0;                                             // Put the null root label on the end
781    if (*cstr) return(mDNSNULL);                            // Failure: We didn't successfully consume all input
782    else return(ptr);                                       // Success: return new value of ptr
783}
784
785// AppendDNSNameString appends zero or more labels to an existing (possibly empty) domainname.
786// The C string is in conventional DNS syntax:
787// Textual labels, escaped as necessary using the usual DNS '\' notation, separated by dots.
788// If successful, AppendDNSNameString returns a pointer to the next unused byte
789// in the domainname bufer (i.e. the next byte after the terminating zero).
790// If unable to construct a legal domain name (i.e. label more than 63 bytes, or total more than 256 bytes)
791// AppendDNSNameString returns mDNSNULL.
792mDNSexport mDNSu8 *AppendDNSNameString(domainname *const name, const char *cstring)
793{
794    const char   *cstr      = cstring;
795    mDNSu8       *      ptr = name->c + DomainNameLength(name) - 1; // Find end of current name
796    const mDNSu8 *const lim = name->c + MAX_DOMAIN_NAME - 1;        // Limit of how much we can add (not counting final zero)
797    while (*cstr && ptr < lim)                                      // While more characters, and space to put them...
798    {
799        mDNSu8 *lengthbyte = ptr++;                                 // Record where the length is going to go
800        if (*cstr == '.') { LogMsg("AppendDNSNameString: Illegal empty label in name \"%s\"", cstring); return(mDNSNULL); }
801        while (*cstr && *cstr != '.' && ptr < lim)                  // While we have characters in the label...
802        {
803            mDNSu8 c = (mDNSu8)*cstr++;                             // Read the character
804            if (c == '\\')                                          // If escape character, check next character
805            {
806                c = (mDNSu8)*cstr++;                                // Assume we'll just take the next character
807                if (mDNSIsDigit(cstr[-1]) && mDNSIsDigit(cstr[0]) && mDNSIsDigit(cstr[1]))
808                {                                                   // If three decimal digits,
809                    int v0 = cstr[-1] - '0';                        // then interpret as three-digit decimal
810                    int v1 = cstr[ 0] - '0';
811                    int v2 = cstr[ 1] - '0';
812                    int val = v0 * 100 + v1 * 10 + v2;
813                    if (val <= 255) { c = (mDNSu8)val; cstr += 2; } // If valid three-digit decimal value, use it
814                }
815            }
816            *ptr++ = c;                                             // Write the character
817        }
818        if (*cstr) cstr++;                                          // Skip over the trailing dot (if present)
819        if (ptr - lengthbyte - 1 > MAX_DOMAIN_LABEL)                // If illegal label, abort
820            return(mDNSNULL);
821        *lengthbyte = (mDNSu8)(ptr - lengthbyte - 1);               // Fill in the length byte
822    }
823
824    *ptr++ = 0;                                                     // Put the null root label on the end
825    if (*cstr) return(mDNSNULL);                                    // Failure: We didn't successfully consume all input
826    else return(ptr);                                               // Success: return new value of ptr
827}
828
829// AppendDomainLabel appends a single label to a name.
830// If successful, AppendDomainLabel returns a pointer to the next unused byte
831// in the domainname bufer (i.e. the next byte after the terminating zero).
832// If unable to construct a legal domain name (i.e. label more than 63 bytes, or total more than 256 bytes)
833// AppendDomainLabel returns mDNSNULL.
834mDNSexport mDNSu8 *AppendDomainLabel(domainname *const name, const domainlabel *const label)
835{
836    int i;
837    mDNSu8 *ptr = name->c + DomainNameLength(name) - 1;
838
839    // Check label is legal
840    if (label->c[0] > MAX_DOMAIN_LABEL) return(mDNSNULL);
841
842    // Check that ptr + length byte + data bytes + final zero does not exceed our limit
843    if (ptr + 1 + label->c[0] + 1 > name->c + MAX_DOMAIN_NAME) return(mDNSNULL);
844
845    for (i=0; i<=label->c[0]; i++) *ptr++ = label->c[i];    // Copy the label data
846    *ptr++ = 0;                             // Put the null root label on the end
847    return(ptr);
848}
849
850mDNSexport mDNSu8 *AppendDomainName(domainname *const name, const domainname *const append)
851{
852    mDNSu8       *      ptr = name->c + DomainNameLength(name) - 1; // Find end of current name
853    const mDNSu8 *const lim = name->c + MAX_DOMAIN_NAME - 1;        // Limit of how much we can add (not counting final zero)
854    const mDNSu8 *      src = append->c;
855    while (src[0])
856    {
857        int i;
858        if (ptr + 1 + src[0] > lim) return(mDNSNULL);
859        for (i=0; i<=src[0]; i++) *ptr++ = src[i];
860        *ptr = 0;   // Put the null root label on the end
861        src += i;
862    }
863    return(ptr);
864}
865
866// MakeDomainLabelFromLiteralString makes a single domain label from a single literal C string (with no escaping).
867// If successful, MakeDomainLabelFromLiteralString returns mDNStrue.
868// If unable to convert the whole string to a legal domain label (i.e. because length is more than 63 bytes) then
869// MakeDomainLabelFromLiteralString makes a legal domain label from the first 63 bytes of the string and returns mDNSfalse.
870// In some cases silently truncated oversized names to 63 bytes is acceptable, so the return result may be ignored.
871// In other cases silent truncation may not be acceptable, so in those cases the calling function needs to check the return result.
872mDNSexport mDNSBool MakeDomainLabelFromLiteralString(domainlabel *const label, const char *cstr)
873{
874    mDNSu8       *      ptr   = label->c + 1;                       // Where we're putting it
875    const mDNSu8 *const limit = label->c + 1 + MAX_DOMAIN_LABEL;    // The maximum we can put
876    while (*cstr && ptr < limit) *ptr++ = (mDNSu8)*cstr++;          // Copy the label
877    label->c[0] = (mDNSu8)(ptr - label->c - 1);                     // Set the length byte
878    return(*cstr == 0);                                             // Return mDNStrue if we successfully consumed all input
879}
880
881// MakeDomainNameFromDNSNameString makes a native DNS-format domainname from a C string.
882// The C string is in conventional DNS syntax:
883// Textual labels, escaped as necessary using the usual DNS '\' notation, separated by dots.
884// If successful, MakeDomainNameFromDNSNameString returns a pointer to the next unused byte
885// in the domainname bufer (i.e. the next byte after the terminating zero).
886// If unable to construct a legal domain name (i.e. label more than 63 bytes, or total more than 256 bytes)
887// MakeDomainNameFromDNSNameString returns mDNSNULL.
888mDNSexport mDNSu8 *MakeDomainNameFromDNSNameString(domainname *const name, const char *cstr)
889{
890    name->c[0] = 0;                                 // Make an empty domain name
891    return(AppendDNSNameString(name, cstr));        // And then add this string to it
892}
893
894mDNSexport char *ConvertDomainLabelToCString_withescape(const domainlabel *const label, char *ptr, char esc)
895{
896    const mDNSu8 *      src = label->c;                         // Domain label we're reading
897    const mDNSu8 len = *src++;                                  // Read length of this (non-null) label
898    const mDNSu8 *const end = src + len;                        // Work out where the label ends
899    if (len > MAX_DOMAIN_LABEL) return(mDNSNULL);               // If illegal label, abort
900    while (src < end)                                           // While we have characters in the label
901    {
902        mDNSu8 c = *src++;
903        if (esc)
904        {
905            if (c == '.' || c == esc)                           // If character is a dot or the escape character
906                *ptr++ = esc;                                   // Output escape character
907            else if (c <= ' ')                                  // If non-printing ascii,
908            {                                                   // Output decimal escape sequence
909                *ptr++ = esc;
910                *ptr++ = (char)  ('0' + (c / 100)     );
911                *ptr++ = (char)  ('0' + (c /  10) % 10);
912                c      = (mDNSu8)('0' + (c      ) % 10);
913            }
914        }
915        *ptr++ = (char)c;                                       // Copy the character
916    }
917    *ptr = 0;                                                   // Null-terminate the string
918    return(ptr);                                                // and return
919}
920
921// Note: To guarantee that there will be no possible overrun, cstr must be at least MAX_ESCAPED_DOMAIN_NAME (1009 bytes)
922mDNSexport char *ConvertDomainNameToCString_withescape(const domainname *const name, char *ptr, char esc)
923{
924    const mDNSu8 *src         = name->c;                            // Domain name we're reading
925    const mDNSu8 *const max   = name->c + MAX_DOMAIN_NAME;          // Maximum that's valid
926
927    if (*src == 0) *ptr++ = '.';                                    // Special case: For root, just write a dot
928
929    while (*src)                                                    // While more characters in the domain name
930    {
931        if (src + 1 + *src >= max) return(mDNSNULL);
932        ptr = ConvertDomainLabelToCString_withescape((const domainlabel *)src, ptr, esc);
933        if (!ptr) return(mDNSNULL);
934        src += 1 + *src;
935        *ptr++ = '.';                                               // Write the dot after the label
936    }
937
938    *ptr++ = 0;                                                     // Null-terminate the string
939    return(ptr);                                                    // and return
940}
941
942// RFC 1034 rules:
943// Host names must start with a letter, end with a letter or digit,
944// and have as interior characters only letters, digits, and hyphen.
945// This was subsequently modified in RFC 1123 to allow the first character to be either a letter or a digit
946
947mDNSexport void ConvertUTF8PstringToRFC1034HostLabel(const mDNSu8 UTF8Name[], domainlabel *const hostlabel)
948{
949    const mDNSu8 *      src  = &UTF8Name[1];
950    const mDNSu8 *const end  = &UTF8Name[1] + UTF8Name[0];
951    mDNSu8 *      ptr  = &hostlabel->c[1];
952    const mDNSu8 *const lim  = &hostlabel->c[1] + MAX_DOMAIN_LABEL;
953    while (src < end)
954    {
955        // Delete apostrophes from source name
956        if (src[0] == '\'') { src++; continue; }        // Standard straight single quote
957        if (src + 2 < end && src[0] == 0xE2 && src[1] == 0x80 && src[2] == 0x99)
958        { src += 3; continue; }     // Unicode curly apostrophe
959        if (ptr < lim)
960        {
961            if (mDNSValidHostChar(*src, (ptr > &hostlabel->c[1]), (src < end-1))) *ptr++ = *src;
962            else if (ptr > &hostlabel->c[1] && ptr[-1] != '-') *ptr++ = '-';
963        }
964        src++;
965    }
966    while (ptr > &hostlabel->c[1] && ptr[-1] == '-') ptr--; // Truncate trailing '-' marks
967    hostlabel->c[0] = (mDNSu8)(ptr - &hostlabel->c[1]);
968}
969
970#define ValidTransportProtocol(X) ( (X)[0] == 4 && (X)[1] == '_' && \
971                                    ((((X)[2] | 0x20) == 'u' && ((X)[3] | 0x20) == 'd') || (((X)[2] | 0x20) == 't' && ((X)[3] | 0x20) == 'c')) && \
972                                    ((X)[4] | 0x20) == 'p')
973
974mDNSexport mDNSu8 *ConstructServiceName(domainname *const fqdn,
975                                        const domainlabel *name, const domainname *type, const domainname *const domain)
976{
977    int i, len;
978    mDNSu8 *dst = fqdn->c;
979    const mDNSu8 *src;
980    const char *errormsg;
981#if APPLE_OSX_mDNSResponder
982    mDNSBool loggedUnderscore = mDNSfalse;
983    static char typeBuf[MAX_ESCAPED_DOMAIN_NAME];
984#endif
985
986    // In the case where there is no name (and ONLY in that case),
987    // a single-label subtype is allowed as the first label of a three-part "type"
988    if (!name && type)
989    {
990        const mDNSu8 *s0 = type->c;
991        if (s0[0] && s0[0] < 0x40)      // If legal first label (at least one character, and no more than 63)
992        {
993            const mDNSu8 * s1 = s0 + 1 + s0[0];
994            if (s1[0] && s1[0] < 0x40)  // and legal second label (at least one character, and no more than 63)
995            {
996                const mDNSu8 *s2 = s1 + 1 + s1[0];
997                if (s2[0] && s2[0] < 0x40 && s2[1+s2[0]] == 0)  // and we have three and only three labels
998                {
999                    static const mDNSu8 SubTypeLabel[5] = mDNSSubTypeLabel;
1000                    src = s0;                                   // Copy the first label
1001                    len = *src;
1002                    for (i=0; i <= len;                      i++) *dst++ = *src++;
1003                    for (i=0; i < (int)sizeof(SubTypeLabel); i++) *dst++ = SubTypeLabel[i];
1004                    type = (const domainname *)s1;
1005
1006                    // Special support to enable the DNSServiceBrowse call made by Bonjour Browser
1007                    // For these queries, we retract the "._sub" we just added between the subtype and the main type
1008                    // Remove after Bonjour Browser is updated to use DNSServiceQueryRecord instead of DNSServiceBrowse
1009                    if (SameDomainName((domainname*)s0, (const domainname*)"\x09_services\x07_dns-sd\x04_udp"))
1010                        dst -= sizeof(SubTypeLabel);
1011                }
1012            }
1013        }
1014    }
1015
1016    if (name && name->c[0])
1017    {
1018        src = name->c;                                  // Put the service name into the domain name
1019        len = *src;
1020        if (len >= 0x40) { errormsg = "Service instance name too long"; goto fail; }
1021        for (i=0; i<=len; i++) *dst++ = *src++;
1022    }
1023    else
1024        name = (domainlabel*)"";    // Set this up to be non-null, to avoid errors if we have to call LogMsg() below
1025
1026    src = type->c;                                      // Put the service type into the domain name
1027    len = *src;
1028    if (len < 2 || len > 16)
1029    {
1030        LogMsg("Bad service type in %#s.%##s%##s Application protocol name must be underscore plus 1-15 characters. "
1031               "See <http://www.dns-sd.org/ServiceTypes.html>", name->c, type->c, domain->c);
1032#if APPLE_OSX_mDNSResponder
1033        ConvertDomainNameToCString(type, typeBuf);
1034        mDNSASLLog(mDNSNULL, "serviceType.nameTooLong", "noop", typeBuf, "");
1035#endif
1036    }
1037    if (len < 2 || len >= 0x40 || (len > 16 && !SameDomainName(domain, &localdomain))) return(mDNSNULL);
1038    if (src[1] != '_') { errormsg = "Application protocol name must begin with underscore"; goto fail; }
1039    for (i=2; i<=len; i++)
1040    {
1041        // Letters and digits are allowed anywhere
1042        if (mDNSIsLetter(src[i]) || mDNSIsDigit(src[i])) continue;
1043        // Hyphens are only allowed as interior characters
1044        // Underscores are not supposed to be allowed at all, but for backwards compatibility with some old products we do allow them,
1045        // with the same rule as hyphens
1046        if ((src[i] == '-' || src[i] == '_') && i > 2 && i < len)
1047        {
1048#if APPLE_OSX_mDNSResponder
1049            if (src[i] == '_' && loggedUnderscore == mDNSfalse)
1050            {
1051                ConvertDomainNameToCString(type, typeBuf);
1052                mDNSASLLog(mDNSNULL, "serviceType.nameWithUnderscore", "noop", typeBuf, "");
1053                loggedUnderscore = mDNStrue;
1054            }
1055#endif
1056            continue;
1057        }
1058        errormsg = "Application protocol name must contain only letters, digits, and hyphens";
1059#if APPLE_OSX_mDNSResponder
1060        {
1061            ConvertDomainNameToCString(type, typeBuf);
1062            mDNSASLLog(mDNSNULL, "serviceType.nameWithIllegalCharacters", "noop", typeBuf, "");
1063        }
1064#endif
1065        goto fail;
1066    }
1067    for (i=0; i<=len; i++) *dst++ = *src++;
1068
1069    len = *src;
1070    if (!ValidTransportProtocol(src)) { errormsg = "Transport protocol name must be _udp or _tcp"; goto fail; }
1071    for (i=0; i<=len; i++) *dst++ = *src++;
1072
1073    if (*src) { errormsg = "Service type must have only two labels"; goto fail; }
1074
1075    *dst = 0;
1076    if (!domain->c[0]) { errormsg = "Service domain must be non-empty"; goto fail; }
1077    if (SameDomainName(domain, (const domainname*)"\x05" "local" "\x04" "arpa"))
1078    { errormsg = "Illegal domain \"local.arpa.\" Use \"local.\" (or empty string)"; goto fail; }
1079    dst = AppendDomainName(fqdn, domain);
1080    if (!dst) { errormsg = "Service domain too long"; goto fail; }
1081    return(dst);
1082
1083fail:
1084    LogMsg("ConstructServiceName: %s: %#s.%##s%##s", errormsg, name->c, type->c, domain->c);
1085    return(mDNSNULL);
1086}
1087
1088// A service name has the form: instance.application-protocol.transport-protocol.domain
1089// DeconstructServiceName is currently fairly forgiving: It doesn't try to enforce character
1090// set or length limits for the protocol names, and the final domain is allowed to be empty.
1091// However, if the given FQDN doesn't contain at least three labels,
1092// DeconstructServiceName will reject it and return mDNSfalse.
1093mDNSexport mDNSBool DeconstructServiceName(const domainname *const fqdn,
1094                                           domainlabel *const name, domainname *const type, domainname *const domain)
1095{
1096    int i, len;
1097    const mDNSu8 *src = fqdn->c;
1098    const mDNSu8 *max = fqdn->c + MAX_DOMAIN_NAME;
1099    mDNSu8 *dst;
1100
1101    dst = name->c;                                      // Extract the service name
1102    len = *src;
1103    if (!len)         { debugf("DeconstructServiceName: FQDN empty!");                             return(mDNSfalse); }
1104    if (len >= 0x40)  { debugf("DeconstructServiceName: Instance name too long");                  return(mDNSfalse); }
1105    for (i=0; i<=len; i++) *dst++ = *src++;
1106
1107    dst = type->c;                                      // Extract the service type
1108    len = *src;
1109    if (!len)         { debugf("DeconstructServiceName: FQDN contains only one label!");           return(mDNSfalse); }
1110    if (len >= 0x40)  { debugf("DeconstructServiceName: Application protocol name too long");      return(mDNSfalse); }
1111    if (src[1] != '_') { debugf("DeconstructServiceName: No _ at start of application protocol");   return(mDNSfalse); }
1112    for (i=0; i<=len; i++) *dst++ = *src++;
1113
1114    len = *src;
1115    if (!len)         { debugf("DeconstructServiceName: FQDN contains only two labels!");          return(mDNSfalse); }
1116    if (!ValidTransportProtocol(src))
1117    { debugf("DeconstructServiceName: Transport protocol must be _udp or _tcp"); return(mDNSfalse); }
1118    for (i=0; i<=len; i++) *dst++ = *src++;
1119    *dst++ = 0;                                         // Put terminator on the end of service type
1120
1121    dst = domain->c;                                    // Extract the service domain
1122    while (*src)
1123    {
1124        len = *src;
1125        if (len >= 0x40)
1126        { debugf("DeconstructServiceName: Label in service domain too long"); return(mDNSfalse); }
1127        if (src + 1 + len + 1 >= max)
1128        { debugf("DeconstructServiceName: Total service domain too long"); return(mDNSfalse); }
1129        for (i=0; i<=len; i++) *dst++ = *src++;
1130    }
1131    *dst++ = 0;     // Put the null root label on the end
1132
1133    return(mDNStrue);
1134}
1135
1136mDNSexport mStatus DNSNameToLowerCase(domainname *d, domainname *result)
1137{
1138    const mDNSu8 *a = d->c;
1139    mDNSu8 *b = result->c;
1140    const mDNSu8 *const max = d->c + MAX_DOMAIN_NAME;
1141    int i, len;
1142
1143    while (*a)
1144    {
1145        if (a + 1 + *a >= max)
1146        {
1147            LogMsg("DNSNameToLowerCase: ERROR!! Malformed Domain name");
1148            return mStatus_BadParamErr;
1149        }
1150        len = *a++;
1151        *b++ = len;
1152        for (i = 0; i < len; i++)
1153        {
1154            mDNSu8 ac = *a++;
1155            if (mDNSIsUpperCase(ac)) ac += 'a' - 'A';
1156            *b++ = ac;
1157        }
1158    }
1159    *b = 0;
1160
1161    return mStatus_NoError;
1162}
1163
1164mDNSexport const mDNSu8 *NSEC3HashName(const domainname *name, rdataNSEC3 *nsec3, const mDNSu8 *AnonData, int AnonDataLen,
1165    const mDNSu8 hash[NSEC3_MAX_HASH_LEN], int *dlen)
1166{
1167    AlgContext *ctx;
1168    int i;
1169    domainname lname;
1170    mDNSu8 *p = (mDNSu8 *)&nsec3->salt;
1171    const mDNSu8 *digest;
1172    int digestlen;
1173    mDNSBool first = mDNStrue;
1174
1175    if (DNSNameToLowerCase((domainname *)name, &lname) != mStatus_NoError)
1176    {
1177        LogMsg("NSEC3HashName: ERROR!! DNSNameToLowerCase failed");
1178        return mDNSNULL;
1179    }
1180
1181    digest = lname.c;
1182    digestlen = DomainNameLength(&lname);
1183
1184    // Note that it is "i <=". The first iteration is for digesting the name and salt.
1185    // The iteration count does not include that.
1186    for (i = 0; i <= swap16(nsec3->iterations); i++)
1187    {
1188        ctx = AlgCreate(DIGEST_ALG, nsec3->alg);
1189        if (!ctx)
1190        {
1191            LogMsg("NSEC3HashName: ERROR!! Cannot allocate context");
1192            return mDNSNULL;
1193        }
1194
1195        AlgAdd(ctx, digest, digestlen);
1196        if (nsec3->saltLength)
1197            AlgAdd(ctx, p, nsec3->saltLength);
1198        if (AnonDataLen)
1199            AlgAdd(ctx, AnonData, AnonDataLen);
1200        if (first)
1201        {
1202            first = mDNSfalse;
1203            digest = hash;
1204            digestlen = AlgLength(ctx);
1205        }
1206        AlgFinal(ctx, (void *)digest, digestlen);
1207        AlgDestroy(ctx);
1208    }
1209    *dlen = digestlen;
1210    return digest;
1211}
1212
1213// Notes on UTF-8:
1214// 0xxxxxxx represents a 7-bit ASCII value from 0x00 to 0x7F
1215// 10xxxxxx is a continuation byte of a multi-byte character
1216// 110xxxxx is the first byte of a 2-byte character (11 effective bits; values 0x     80 - 0x     800-1)
1217// 1110xxxx is the first byte of a 3-byte character (16 effective bits; values 0x    800 - 0x   10000-1)
1218// 11110xxx is the first byte of a 4-byte character (21 effective bits; values 0x  10000 - 0x  200000-1)
1219// 111110xx is the first byte of a 5-byte character (26 effective bits; values 0x 200000 - 0x 4000000-1)
1220// 1111110x is the first byte of a 6-byte character (31 effective bits; values 0x4000000 - 0x80000000-1)
1221//
1222// UTF-16 surrogate pairs are used in UTF-16 to encode values larger than 0xFFFF.
1223// Although UTF-16 surrogate pairs are not supposed to appear in legal UTF-8, we want to be defensive
1224// about that too. (See <http://www.unicode.org/faq/utf_bom.html#34>, "What are surrogates?")
1225// The first of pair is a UTF-16 value in the range 0xD800-0xDBFF (11101101 1010xxxx 10xxxxxx in UTF-8),
1226// and the second    is a UTF-16 value in the range 0xDC00-0xDFFF (11101101 1011xxxx 10xxxxxx in UTF-8).
1227
1228mDNSexport mDNSu32 TruncateUTF8ToLength(mDNSu8 *string, mDNSu32 length, mDNSu32 max)
1229{
1230    if (length > max)
1231    {
1232        mDNSu8 c1 = string[max];                                        // First byte after cut point
1233        mDNSu8 c2 = (max+1 < length) ? string[max+1] : (mDNSu8)0xB0;    // Second byte after cut point
1234        length = max;   // Trim length down
1235        while (length > 0)
1236        {
1237            // Check if the byte right after the chop point is a UTF-8 continuation byte,
1238            // or if the character right after the chop point is the second of a UTF-16 surrogate pair.
1239            // If so, then we continue to chop more bytes until we get to a legal chop point.
1240            mDNSBool continuation    = ((c1 & 0xC0) == 0x80);
1241            mDNSBool secondsurrogate = (c1 == 0xED && (c2 & 0xF0) == 0xB0);
1242            if (!continuation && !secondsurrogate) break;
1243            c2 = c1;
1244            c1 = string[--length];
1245        }
1246        // Having truncated characters off the end of our string, also cut off any residual white space
1247        while (length > 0 && string[length-1] <= ' ') length--;
1248    }
1249    return(length);
1250}
1251
1252// Returns true if a rich text label ends in " (nnn)", or if an RFC 1034
1253// name ends in "-nnn", where n is some decimal number.
1254mDNSexport mDNSBool LabelContainsSuffix(const domainlabel *const name, const mDNSBool RichText)
1255{
1256    mDNSu16 l = name->c[0];
1257
1258    if (RichText)
1259    {
1260        if (l < 4) return mDNSfalse;                            // Need at least " (2)"
1261        if (name->c[l--] != ')') return mDNSfalse;              // Last char must be ')'
1262        if (!mDNSIsDigit(name->c[l])) return mDNSfalse;         // Preceeded by a digit
1263        l--;
1264        while (l > 2 && mDNSIsDigit(name->c[l])) l--;           // Strip off digits
1265        return (name->c[l] == '(' && name->c[l - 1] == ' ');
1266    }
1267    else
1268    {
1269        if (l < 2) return mDNSfalse;                            // Need at least "-2"
1270        if (!mDNSIsDigit(name->c[l])) return mDNSfalse;         // Last char must be a digit
1271        l--;
1272        while (l > 2 && mDNSIsDigit(name->c[l])) l--;           // Strip off digits
1273        return (name->c[l] == '-');
1274    }
1275}
1276
1277// removes an auto-generated suffix (appended on a name collision) from a label.  caller is
1278// responsible for ensuring that the label does indeed contain a suffix.  returns the number
1279// from the suffix that was removed.
1280mDNSexport mDNSu32 RemoveLabelSuffix(domainlabel *name, mDNSBool RichText)
1281{
1282    mDNSu32 val = 0, multiplier = 1;
1283
1284    // Chop closing parentheses from RichText suffix
1285    if (RichText && name->c[0] >= 1 && name->c[name->c[0]] == ')') name->c[0]--;
1286
1287    // Get any existing numerical suffix off the name
1288    while (mDNSIsDigit(name->c[name->c[0]]))
1289    { val += (name->c[name->c[0]] - '0') * multiplier; multiplier *= 10; name->c[0]--; }
1290
1291    // Chop opening parentheses or dash from suffix
1292    if (RichText)
1293    {
1294        if (name->c[0] >= 2 && name->c[name->c[0]] == '(' && name->c[name->c[0]-1] == ' ') name->c[0] -= 2;
1295    }
1296    else
1297    {
1298        if (name->c[0] >= 1 && name->c[name->c[0]] == '-') name->c[0] -= 1;
1299    }
1300
1301    return(val);
1302}
1303
1304// appends a numerical suffix to a label, with the number following a whitespace and enclosed
1305// in parentheses (rich text) or following two consecutive hyphens (RFC 1034 domain label).
1306mDNSexport void AppendLabelSuffix(domainlabel *const name, mDNSu32 val, const mDNSBool RichText)
1307{
1308    mDNSu32 divisor = 1, chars = 2; // Shortest possible RFC1034 name suffix is 2 characters ("-2")
1309    if (RichText) chars = 4;        // Shortest possible RichText suffix is 4 characters (" (2)")
1310
1311    // Truncate trailing spaces from RichText names
1312    if (RichText) while (name->c[name->c[0]] == ' ') name->c[0]--;
1313
1314    while (divisor < 0xFFFFFFFFUL/10 && val >= divisor * 10) { divisor *= 10; chars++; }
1315
1316    name->c[0] = (mDNSu8) TruncateUTF8ToLength(name->c+1, name->c[0], MAX_DOMAIN_LABEL - chars);
1317
1318    if (RichText) { name->c[++name->c[0]] = ' '; name->c[++name->c[0]] = '('; }
1319    else          { name->c[++name->c[0]] = '-'; }
1320
1321    while (divisor)
1322    {
1323        name->c[++name->c[0]] = (mDNSu8)('0' + val / divisor);
1324        val     %= divisor;
1325        divisor /= 10;
1326    }
1327
1328    if (RichText) name->c[++name->c[0]] = ')';
1329}
1330
1331mDNSexport void IncrementLabelSuffix(domainlabel *name, mDNSBool RichText)
1332{
1333    mDNSu32 val = 0;
1334
1335    if (LabelContainsSuffix(name, RichText))
1336        val = RemoveLabelSuffix(name, RichText);
1337
1338    // If no existing suffix, start by renaming "Foo" as "Foo (2)" or "Foo-2" as appropriate.
1339    // If existing suffix in the range 2-9, increment it.
1340    // If we've had ten conflicts already, there are probably too many hosts trying to use the same name,
1341    // so add a random increment to improve the chances of finding an available name next time.
1342    if      (val == 0) val = 2;
1343    else if (val < 10) val++;
1344    else val += 1 + mDNSRandom(99);
1345
1346    AppendLabelSuffix(name, val, RichText);
1347}
1348
1349// ***************************************************************************
1350#if COMPILER_LIKES_PRAGMA_MARK
1351#pragma mark -
1352#pragma mark - Resource Record Utility Functions
1353#endif
1354
1355// Set up a AuthRecord with sensible default values.
1356// These defaults may be overwritten with new values before mDNS_Register is called
1357mDNSexport void mDNS_SetupResourceRecord(AuthRecord *rr, RData *RDataStorage, mDNSInterfaceID InterfaceID,
1358                                         mDNSu16 rrtype, mDNSu32 ttl, mDNSu8 RecordType, AuthRecType artype, mDNSRecordCallback Callback, void *Context)
1359{
1360    //
1361    // LocalOnly auth record can be created with LocalOnly InterfaceID or a valid InterfaceID.
1362    // Most of the applications normally create with LocalOnly InterfaceID and we store them as
1363    // such, so that we can deliver the response to questions that specify LocalOnly InterfaceID.
1364    // LocalOnly resource records can also be created with valid InterfaceID which happens today
1365    // when we create LocalOnly records for /etc/hosts.
1366
1367    if (InterfaceID == mDNSInterface_LocalOnly && artype != AuthRecordLocalOnly)
1368    {
1369        LogMsg("mDNS_SetupResourceRecord: ERROR!! Mismatch LocalOnly record InterfaceID %p called with artype %d", InterfaceID, artype);
1370        return;
1371    }
1372    else if (InterfaceID == mDNSInterface_P2P && artype != AuthRecordP2P)
1373    {
1374        LogMsg("mDNS_SetupResourceRecord: ERROR!! Mismatch P2P record InterfaceID %p called with artype %d", InterfaceID, artype);
1375        return;
1376    }
1377    else if (!InterfaceID && (artype == AuthRecordP2P || artype == AuthRecordLocalOnly))
1378    {
1379        LogMsg("mDNS_SetupResourceRecord: ERROR!! Mismatch InterfaceAny record InterfaceID %p called with artype %d", InterfaceID, artype);
1380        return;
1381    }
1382
1383    // Don't try to store a TTL bigger than we can represent in platform time units
1384    if (ttl > 0x7FFFFFFFUL / mDNSPlatformOneSecond)
1385        ttl = 0x7FFFFFFFUL / mDNSPlatformOneSecond;
1386    else if (ttl == 0)      // And Zero TTL is illegal
1387        ttl = DefaultTTLforRRType(rrtype);
1388
1389    // Field Group 1: The actual information pertaining to this resource record
1390    rr->resrec.RecordType        = RecordType;
1391    rr->resrec.InterfaceID       = InterfaceID;
1392    rr->resrec.name              = &rr->namestorage;
1393    rr->resrec.rrtype            = rrtype;
1394    rr->resrec.rrclass           = kDNSClass_IN;
1395    rr->resrec.rroriginalttl     = ttl;
1396    rr->resrec.rDNSServer        = mDNSNULL;
1397    rr->resrec.AnonInfo          = mDNSNULL;
1398//      rr->resrec.rdlength          = MUST set by client and/or in mDNS_Register_internal
1399//      rr->resrec.rdestimate        = set in mDNS_Register_internal
1400//      rr->resrec.rdata             = MUST be set by client
1401
1402    if (RDataStorage)
1403        rr->resrec.rdata = RDataStorage;
1404    else
1405    {
1406        rr->resrec.rdata = &rr->rdatastorage;
1407        rr->resrec.rdata->MaxRDLength = sizeof(RDataBody);
1408    }
1409
1410    // Field Group 2: Persistent metadata for Authoritative Records
1411    rr->Additional1       = mDNSNULL;
1412    rr->Additional2       = mDNSNULL;
1413    rr->DependentOn       = mDNSNULL;
1414    rr->RRSet             = mDNSNULL;
1415    rr->RecordCallback    = Callback;
1416    rr->RecordContext     = Context;
1417
1418    rr->AutoTarget        = Target_Manual;
1419    rr->AllowRemoteQuery  = mDNSfalse;
1420    rr->ForceMCast        = mDNSfalse;
1421
1422    rr->WakeUp            = zeroOwner;
1423    rr->AddressProxy      = zeroAddr;
1424    rr->TimeRcvd          = 0;
1425    rr->TimeExpire        = 0;
1426    rr->ARType            = artype;
1427    rr->AuthFlags         = 0;
1428
1429    // Field Group 3: Transient state for Authoritative Records (set in mDNS_Register_internal)
1430    // Field Group 4: Transient uDNS state for Authoritative Records (set in mDNS_Register_internal)
1431
1432    // For now, until the uDNS code is fully integrated, it's helpful to zero the uDNS state fields here too, just in case
1433    // (e.g. uDNS_RegisterService short-circuits the usual mDNS_Register_internal record registration calls, so a bunch
1434    // of fields don't get set up properly. In particular, if we don't zero rr->QueuedRData then the uDNS code crashes.)
1435    rr->state             = regState_Zero;
1436    rr->uselease          = 0;
1437    rr->expire            = 0;
1438    rr->Private           = 0;
1439    rr->updateid          = zeroID;
1440    rr->zone              = rr->resrec.name;
1441    rr->nta               = mDNSNULL;
1442    rr->tcp               = mDNSNULL;
1443    rr->OrigRData         = 0;
1444    rr->OrigRDLen         = 0;
1445    rr->InFlightRData     = 0;
1446    rr->InFlightRDLen     = 0;
1447    rr->QueuedRData       = 0;
1448    rr->QueuedRDLen       = 0;
1449    mDNSPlatformMemZero(&rr->NATinfo, sizeof(rr->NATinfo));
1450    rr->SRVChanged = mDNSfalse;
1451    rr->mState = mergeState_Zero;
1452
1453    rr->namestorage.c[0]  = 0;      // MUST be set by client before calling mDNS_Register()
1454}
1455
1456mDNSexport void mDNS_SetupQuestion(DNSQuestion *const q, const mDNSInterfaceID InterfaceID, const domainname *const name,
1457                                   const mDNSu16 qtype, mDNSQuestionCallback *const callback, void *const context)
1458{
1459    q->InterfaceID         = InterfaceID;
1460    q->flags               = 0;
1461    q->Target              = zeroAddr;
1462    AssignDomainName(&q->qname, name);
1463    q->qtype               = qtype;
1464    q->qclass              = kDNSClass_IN;
1465    q->LongLived           = (qtype == kDNSType_PTR);
1466    q->ExpectUnique        = (qtype != kDNSType_PTR);
1467    q->ForceMCast          = mDNSfalse;
1468    q->ReturnIntermed      = mDNSfalse;
1469    q->SuppressUnusable    = mDNSfalse;
1470    q->DenyOnCellInterface = mDNSfalse;
1471    q->DenyOnExpInterface  = mDNSfalse;
1472    q->SearchListIndex     = 0;
1473    q->AppendSearchDomains = 0;
1474    q->RetryWithSearchDomains = mDNSfalse;
1475    q->TimeoutQuestion     = 0;
1476    q->WakeOnResolve       = 0;
1477    q->UseBackgroundTrafficClass = mDNSfalse;
1478    q->ValidationRequired  = 0;
1479    q->ValidatingResponse  = 0;
1480    q->ProxyQuestion       = 0;
1481    q->qnameOrig           = mDNSNULL;
1482    q->AnonInfo            = mDNSNULL;
1483    q->pid                 = mDNSPlatformGetPID();
1484    q->euid                = 0;
1485    q->DisallowPID         = mDNSfalse;
1486    q->ServiceID           = -1;
1487    q->QuestionCallback    = callback;
1488    q->QuestionContext     = context;
1489}
1490
1491mDNSexport mDNSu32 RDataHashValue(const ResourceRecord *const rr)
1492{
1493    int len = rr->rdlength;
1494    const RDataBody2 *const rdb = (RDataBody2 *)rr->rdata->u.data;
1495    const mDNSu8 *ptr = rdb->data;
1496    mDNSu32 sum = 0;
1497
1498    switch(rr->rrtype)
1499    {
1500    case kDNSType_NS:
1501    case kDNSType_MD:
1502    case kDNSType_MF:
1503    case kDNSType_CNAME:
1504    case kDNSType_MB:
1505    case kDNSType_MG:
1506    case kDNSType_MR:
1507    case kDNSType_PTR:
1508    case kDNSType_NSAP_PTR:
1509    case kDNSType_DNAME: return DomainNameHashValue(&rdb->name);
1510
1511    case kDNSType_SOA:   return rdb->soa.serial  +
1512               rdb->soa.refresh +
1513               rdb->soa.retry   +
1514               rdb->soa.expire  +
1515               rdb->soa.min     +
1516               DomainNameHashValue(&rdb->soa.mname) +
1517               DomainNameHashValue(&rdb->soa.rname);
1518
1519    case kDNSType_MX:
1520    case kDNSType_AFSDB:
1521    case kDNSType_RT:
1522    case kDNSType_KX:    return DomainNameHashValue(&rdb->mx.exchange);
1523
1524    case kDNSType_MINFO:
1525    case kDNSType_RP:    return DomainNameHashValue(&rdb->rp.mbox)   + DomainNameHashValue(&rdb->rp.txt);
1526
1527    case kDNSType_PX:    return DomainNameHashValue(&rdb->px.map822) + DomainNameHashValue(&rdb->px.mapx400);
1528
1529    case kDNSType_SRV:   return DomainNameHashValue(&rdb->srv.target);
1530
1531    case kDNSType_OPT:   return 0;      // OPT is a pseudo-RR container structure; makes no sense to compare
1532
1533    case kDNSType_NSEC: {
1534        int dlen;
1535        dlen = DomainNameLength((domainname *)rdb->data);
1536        sum = DomainNameHashValue((domainname *)rdb->data);
1537        ptr += dlen;
1538        len -= dlen;
1539        /* FALLTHROUGH */
1540    }
1541
1542    default:
1543    {
1544        int i;
1545        for (i=0; i+1 < len; i+=2)
1546        {
1547            sum += (((mDNSu32)(ptr[i])) << 8) | ptr[i+1];
1548            sum = (sum<<3) | (sum>>29);
1549        }
1550        if (i < len)
1551        {
1552            sum += ((mDNSu32)(ptr[i])) << 8;
1553        }
1554        return(sum);
1555    }
1556    }
1557}
1558
1559// r1 has to be a full ResourceRecord including rrtype and rdlength
1560// r2 is just a bare RDataBody, which MUST be the same rrtype and rdlength as r1
1561mDNSexport mDNSBool SameRDataBody(const ResourceRecord *const r1, const RDataBody *const r2, DomainNameComparisonFn *samename)
1562{
1563    const RDataBody2 *const b1 = (RDataBody2 *)r1->rdata->u.data;
1564    const RDataBody2 *const b2 = (RDataBody2 *)r2;
1565    switch(r1->rrtype)
1566    {
1567    case kDNSType_NS:
1568    case kDNSType_MD:
1569    case kDNSType_MF:
1570    case kDNSType_CNAME:
1571    case kDNSType_MB:
1572    case kDNSType_MG:
1573    case kDNSType_MR:
1574    case kDNSType_PTR:
1575    case kDNSType_NSAP_PTR:
1576    case kDNSType_DNAME: return(SameDomainName(&b1->name, &b2->name));
1577
1578    case kDNSType_SOA:  return (mDNSBool)(   b1->soa.serial   == b2->soa.serial             &&
1579                                             b1->soa.refresh  == b2->soa.refresh            &&
1580                                             b1->soa.retry    == b2->soa.retry              &&
1581                                             b1->soa.expire   == b2->soa.expire             &&
1582                                             b1->soa.min      == b2->soa.min                &&
1583                                             samename(&b1->soa.mname, &b2->soa.mname) &&
1584                                             samename(&b1->soa.rname, &b2->soa.rname));
1585
1586    case kDNSType_MX:
1587    case kDNSType_AFSDB:
1588    case kDNSType_RT:
1589    case kDNSType_KX:   return (mDNSBool)(   b1->mx.preference == b2->mx.preference &&
1590                                             samename(&b1->mx.exchange, &b2->mx.exchange));
1591
1592    case kDNSType_MINFO:
1593    case kDNSType_RP:   return (mDNSBool)(   samename(&b1->rp.mbox, &b2->rp.mbox) &&
1594                                             samename(&b1->rp.txt,  &b2->rp.txt));
1595
1596    case kDNSType_PX:   return (mDNSBool)(   b1->px.preference == b2->px.preference          &&
1597                                             samename(&b1->px.map822,  &b2->px.map822) &&
1598                                             samename(&b1->px.mapx400, &b2->px.mapx400));
1599
1600    case kDNSType_SRV:  return (mDNSBool)(   b1->srv.priority == b2->srv.priority       &&
1601                                             b1->srv.weight   == b2->srv.weight         &&
1602                                             mDNSSameIPPort(b1->srv.port, b2->srv.port) &&
1603                                             samename(&b1->srv.target, &b2->srv.target));
1604
1605    case kDNSType_OPT:  return mDNSfalse;       // OPT is a pseudo-RR container structure; makes no sense to compare
1606    case kDNSType_NSEC: {
1607        // If the "nxt" name changes in case, we want to delete the old
1608        // and store just the new one. If the caller passes in SameDomainCS for "samename",
1609        // we would return "false" when the only change between the two rdata is the case
1610        // change in "nxt".
1611        //
1612        // Note: rdlength of both the RData are same (ensured by the caller) and hence we can
1613        // use just r1->rdlength below
1614
1615        int dlen1 = DomainNameLength((domainname *)b1->data);
1616        int dlen2 = DomainNameLength((domainname *)b2->data);
1617        return (mDNSBool)(dlen1 == dlen2 &&
1618                          samename((domainname *)b1->data, (domainname *)b2->data) &&
1619                          mDNSPlatformMemSame(b1->data + dlen1, b2->data + dlen2, r1->rdlength - dlen1));
1620    }
1621
1622    default:            return(mDNSPlatformMemSame(b1->data, b2->data, r1->rdlength));
1623    }
1624}
1625
1626mDNSexport mDNSBool BitmapTypeCheck(mDNSu8 *bmap, int bitmaplen, mDNSu16 type)
1627{
1628    int win, wlen;
1629    int wintype;
1630
1631    // The window that this type belongs to. NSEC has 256 windows that
1632    // comprises of 256 types.
1633    wintype = type >> 8;
1634
1635    while (bitmaplen > 0)
1636    {
1637        if (bitmaplen < 3)
1638        {
1639            LogInfo("BitmapTypeCheck: malformed nsec, bitmaplen %d short", bitmaplen);
1640            return mDNSfalse;
1641        }
1642
1643        win = *bmap++;
1644        wlen = *bmap++;
1645        bitmaplen -= 2;
1646        if (bitmaplen < wlen || wlen < 1 || wlen > 32)
1647        {
1648            LogInfo("BitmapTypeCheck: malformed nsec, bitmaplen %d wlen %d, win %d", bitmaplen, wlen, win);
1649            return mDNSfalse;
1650        }
1651        if (win < 0 || win >= 256)
1652        {
1653            LogInfo("BitmapTypeCheck: malformed nsec, wlen %d", wlen);
1654            return mDNSfalse;
1655        }
1656        if (win == wintype)
1657        {
1658            // First byte in the window serves 0 to 7, the next one serves 8 to 15 and so on.
1659            // Calculate the right byte offset first.
1660            int boff = (type & 0xff ) >> 3;
1661            if (wlen <= boff)
1662                return mDNSfalse;
1663            // The last three bits values 0 to 7 corresponds to bit positions
1664            // within the byte.
1665            return (bmap[boff] & (0x80 >> (type & 7)));
1666        }
1667        else
1668        {
1669            // If the windows are ordered, then we could check to see
1670            // if wintype > win and then return early.
1671            bmap += wlen;
1672            bitmaplen -= wlen;
1673        }
1674    }
1675    return mDNSfalse;
1676}
1677
1678// Don't call this function if the resource record is not NSEC. It will return false
1679// which means that the type does not exist.
1680mDNSexport mDNSBool RRAssertsExistence(const ResourceRecord *const rr, mDNSu16 type)
1681{
1682    const RDataBody2 *const rdb = (RDataBody2 *)rr->rdata->u.data;
1683    mDNSu8 *nsec = (mDNSu8 *)rdb->data;
1684    int len, bitmaplen;
1685    mDNSu8 *bmap;
1686
1687    if (rr->rrtype != kDNSType_NSEC) return mDNSfalse;
1688
1689    len = DomainNameLength((domainname *)nsec);
1690
1691    bitmaplen = rr->rdlength - len;
1692    bmap = nsec + len;
1693    return (BitmapTypeCheck(bmap, bitmaplen, type));
1694}
1695
1696// Don't call this function if the resource record is not NSEC. It will return false
1697// which means that the type exists.
1698mDNSexport mDNSBool RRAssertsNonexistence(const ResourceRecord *const rr, mDNSu16 type)
1699{
1700    if (rr->rrtype != kDNSType_NSEC) return mDNSfalse;
1701
1702    return !RRAssertsExistence(rr, type);
1703}
1704
1705// Checks whether the RRSIG or NSEC record answers the question "q".
1706mDNSlocal mDNSBool DNSSECRecordAnswersQuestion(const ResourceRecord *const rr, const DNSQuestion *const q, mDNSBool *checkType)
1707{
1708    *checkType = mDNStrue;
1709
1710    // This function is called for all questions and as long as the type matches,
1711    // return true. For the types (RRSIG and NSEC) that are specifically checked in
1712    // this function, returning true still holds good.
1713    if (q->qtype == rr->rrtype)
1714        return mDNStrue;
1715
1716    // For DS and DNSKEY questions, the types should match i.e., don't answer using CNAME
1717    // records as it answers any question type.
1718    //
1719    // - DS record comes from the parent zone where CNAME record cannot coexist and hence
1720    //  cannot possibly answer it.
1721    //
1722    // - For DNSKEY, one could potentially follow CNAME but there could be a DNSKEY at
1723    //   the "qname" itself. To keep it simple, we don't follow CNAME.
1724
1725    if ((q->qtype == kDNSType_DS || q->qtype == kDNSType_DNSKEY) && (q->qtype != rr->rrtype))
1726    {
1727        debugf("DNSSECRecordAnswersQuestion: %d type resource record matched question %##s (%s), ignoring", rr->rrtype,
1728            q->qname.c, DNSTypeName(q->qtype));
1729        return mDNSfalse;
1730    }
1731
1732    // If we are validating a response using DNSSEC, we might already have the records
1733    // for the "q->qtype" in the cache but we issued a query with DO bit set
1734    // to get the RRSIGs e.g., if you have two questions one of which does not require
1735    // DNSSEC validation. When the RRSIG is added to the cache, we need to deliver
1736    // the response to the question. The RRSIG type won't match the q->qtype and hence
1737    // we need to bypass the check in that case.
1738    if (rr->rrtype == kDNSType_RRSIG && q->ValidatingResponse)
1739    {
1740        const RDataBody2 *const rdb = (RDataBody2 *)rr->rdata->u.data;
1741        rdataRRSig *rrsig = (rdataRRSig *)rdb->data;
1742        mDNSu16 typeCovered = swap16(rrsig->typeCovered);
1743        debugf("DNSSECRecordAnswersQuestion: Matching RRSIG typeCovered %s", DNSTypeName(typeCovered));
1744        if (typeCovered != kDNSType_CNAME && typeCovered != q->qtype)
1745        {
1746            debugf("DNSSECRecordAnswersQuestion: RRSIG did not match question %##s (%s)", q->qname.c,
1747                    DNSTypeName(q->qtype));
1748            return mDNSfalse;
1749        }
1750        LogInfo("DNSSECRecordAnswersQuestion: RRSIG matched question %##s (%s)", q->qname.c,
1751                DNSTypeName(q->qtype));
1752        *checkType = mDNSfalse;
1753        return mDNStrue;
1754    }
1755    // If the NSEC record asserts the non-existence of a name looked up by the question, we would
1756    // typically answer that e.g., the bitmap asserts that q->qtype does not exist. If we have
1757    // to prove the non-existence as required by ValidatingResponse and ValidationRequired question,
1758    // then we should not answer that as it may not be the right one always. We may need more than
1759    // one NSEC to prove the non-existence.
1760    if (rr->rrtype == kDNSType_NSEC && DNSSECQuestion(q))
1761    {
1762        debugf("DNSSECRecordAnswersQuestion: Question %##s (%s) matched record %##s (NSEC)", q->qname.c,
1763                DNSTypeName(q->qtype), rr->name->c);
1764        return mDNSfalse;
1765    }
1766    return mDNStrue;
1767}
1768
1769// ResourceRecordAnswersQuestion returns mDNStrue if the given resource record is a valid answer to the given question.
1770// SameNameRecordAnswersQuestion is the same, except it skips the expensive SameDomainName() call.
1771// SameDomainName() is generally cheap when the names don't match, but expensive when they do match,
1772// because it has to check all the way to the end of the names to be sure.
1773// In cases where we know in advance that the names match it's especially advantageous to skip the
1774// SameDomainName() call because that's precisely the time when it's most expensive and least useful.
1775
1776mDNSexport mDNSBool SameNameRecordAnswersQuestion(const ResourceRecord *const rr, const DNSQuestion *const q)
1777{
1778    mDNSBool checkType = mDNStrue;
1779
1780    // LocalOnly/P2P questions can be answered with AuthRecordAny in this function. LocalOnly/P2P records
1781    // are handled in LocalOnlyRecordAnswersQuestion
1782    if ((rr->InterfaceID == mDNSInterface_LocalOnly) || (rr->InterfaceID == mDNSInterface_P2P))
1783    {
1784        LogMsg("SameNameRecordAnswersQuestion: ERROR!! called with LocalOnly ResourceRecord %p, Question %p", rr->InterfaceID, q->InterfaceID);
1785        return mDNSfalse;
1786    }
1787    if (QuerySuppressed(q))
1788        return mDNSfalse;
1789
1790    if (rr->InterfaceID &&
1791        q->InterfaceID && q->InterfaceID != mDNSInterface_LocalOnly &&
1792        rr->InterfaceID != q->InterfaceID) return(mDNSfalse);
1793
1794    // Resource record received via unicast, the resolver group ID should match ?
1795    if (!rr->InterfaceID)
1796    {
1797        mDNSu16 idr = (rr->rDNSServer ? rr->rDNSServer->resGroupID : 0);
1798        mDNSu16 idq = (q->qDNSServer ? q->qDNSServer->resGroupID : 0);
1799        if (idr != idq) return(mDNSfalse);
1800        if (!DNSSECRecordAnswersQuestion(rr, q, &checkType)) return mDNSfalse;
1801    }
1802
1803    // If ResourceRecord received via multicast, but question was unicast, then shouldn't use record to answer this question
1804    if (rr->InterfaceID && !mDNSOpaque16IsZero(q->TargetQID)) return(mDNSfalse);
1805
1806    // CNAME answers question of any type and a negative cache record should not prevent us from querying other
1807    // valid types at the same name.
1808    if (rr->rrtype == kDNSType_CNAME && rr->RecordType == kDNSRecordTypePacketNegative && rr->rrtype != q->qtype)
1809        return mDNSfalse;
1810
1811    // RR type CNAME matches any query type. QTYPE ANY matches any RR type. QCLASS ANY matches any RR class.
1812    if (checkType && !RRTypeAnswersQuestionType(rr,q->qtype)) return(mDNSfalse);
1813    if (rr->rrclass != q->qclass && q->qclass != kDNSQClass_ANY) return(mDNSfalse);
1814
1815#if APPLE_OSX_mDNSResponder
1816    if (!mDNSPlatformValidRecordForQuestion(rr, q))
1817        return mDNSfalse;
1818#endif // APPLE_OSX_mDNSResponder
1819
1820    if (!AnonInfoAnswersQuestion(rr, q))
1821        return mDNSfalse;
1822
1823    return(mDNStrue);
1824}
1825
1826mDNSexport mDNSBool ResourceRecordAnswersQuestion(const ResourceRecord *const rr, const DNSQuestion *const q)
1827{
1828    if (!SameNameRecordAnswersQuestion(rr, q))
1829        return mDNSfalse;
1830
1831    return(rr->namehash == q->qnamehash && SameDomainName(rr->name, &q->qname));
1832}
1833
1834// We have a separate function to handle LocalOnly AuthRecords because they can be created with
1835// a valid InterfaceID (e.g., scoped /etc/hosts) and can be used to answer unicast questions unlike
1836// multicast resource records (which has a valid InterfaceID) which can't be used to answer
1837// unicast questions. ResourceRecordAnswersQuestion/SameNameRecordAnswersQuestion can't tell whether
1838// a resource record is multicast or LocalOnly by just looking at the ResourceRecord because
1839// LocalOnly records are truly identified by ARType in the AuthRecord.  As P2P and LocalOnly record
1840// are kept in the same hash table, we use the same function to make it easy for the callers when
1841// they walk the hash table to answer LocalOnly/P2P questions
1842//
1843mDNSexport mDNSBool LocalOnlyRecordAnswersQuestion(AuthRecord *const ar, const DNSQuestion *const q)
1844{
1845    ResourceRecord *rr = &ar->resrec;
1846
1847    // mDNSInterface_Any questions can be answered with LocalOnly/P2P records in this function. AuthRecord_Any
1848    // records are handled in ResourceRecordAnswersQuestion/SameNameRecordAnswersQuestion
1849    if (RRAny(ar))
1850    {
1851        LogMsg("LocalOnlyRecordAnswersQuestion: ERROR!! called with regular AuthRecordAny %##s", rr->name->c);
1852        return mDNSfalse;
1853    }
1854
1855    // Questions with mDNSInterface_LocalOnly InterfaceID should be answered with all resource records that are
1856    // *local* to the machine. These include resource records that have InterfaceID set to mDNSInterface_LocalOnly,
1857    // mDNSInterface_Any and any other real InterfaceID. Hence, LocalOnly questions should not be checked against
1858    // the InterfaceID in the resource record.
1859    //
1860    // mDNSInterface_Unicast does not indicate any scope and hence treat them like mDNSInterface_Any.
1861
1862    if (rr->InterfaceID &&
1863        q->InterfaceID && q->InterfaceID != mDNSInterface_LocalOnly && q->InterfaceID != mDNSInterface_Unicast &&
1864        rr->InterfaceID != q->InterfaceID) return(mDNSfalse);
1865
1866    // Entries in /etc/hosts are added as LocalOnly resource records. The LocalOnly resource records
1867    // may have a scope e.g., fe80::1%en0. The question may be scoped or not: the InterfaceID may be set
1868    // to mDNSInterface_Any, mDNSInterface_LocalOnly or a real InterfaceID (scoped).
1869    //
1870    // 1) Question: Any, LocalOnly Record: no scope. This question should be answered with this record.
1871    //
1872    // 2) Question: Any, LocalOnly Record: scoped.  This question should be answered with the record because
1873    //    traditionally applications never specify scope e.g., getaddrinfo, but need to be able
1874    //    to get to /etc/hosts entries.
1875    //
1876    // 3) Question: Scoped (LocalOnly or InterfaceID), LocalOnly Record: no scope. This is the inverse of (2).
1877    //    If we register a LocalOnly record, we need to answer a LocalOnly question. If the /etc/hosts has a
1878    //    non scoped entry, it may not make sense to answer a scoped question. But we can't tell these two
1879    //    cases apart. As we currently answer LocalOnly question with LocalOnly record, we continue to do so.
1880    //
1881    // 4) Question: Scoped (LocalOnly or InterfaceID), LocalOnly Record: scoped. LocalOnly questions should be
1882    //    answered with any resource record where as if it has a valid InterfaceID, the scope should match.
1883    //
1884    // (1) and (2) is bypassed because we check for a non-NULL InterfaceID above. For (3), the InterfaceID is NULL
1885    // and hence bypassed above. For (4) we bypassed LocalOnly questions and checked the scope of the record
1886    // against the question.
1887    //
1888    // For P2P, InterfaceIDs of the question and the record should match.
1889
1890    // If ResourceRecord received via multicast, but question was unicast, then shouldn't use record to answer this question.
1891    // LocalOnly authoritative answers are exempt. LocalOnly authoritative answers are used for /etc/host entries.
1892    // We don't want a local process to be able to create a fake LocalOnly address record for "www.bigbank.com" which would then
1893    // cause other applications (e.g. Safari) to connect to the wrong address. The rpc to register records filters out records
1894    // with names that don't end in local and have mDNSInterface_LocalOnly set.
1895    //
1896    // Note: The check is bypassed for LocalOnly and for P2P it is not needed as only .local records are registered and for
1897    // a question to match its names, it also has to end in .local and that question can't be a unicast question (See
1898    // Question_uDNS macro and its usage). As P2P does not enforce .local only registrations we still make this check
1899    // and also makes it future proof.
1900
1901    if (ar->ARType != AuthRecordLocalOnly && rr->InterfaceID && !mDNSOpaque16IsZero(q->TargetQID)) return(mDNSfalse);
1902
1903    // RR type CNAME matches any query type. QTYPE ANY matches any RR type. QCLASS ANY matches any RR class.
1904    if (!RRTypeAnswersQuestionType(rr,q->qtype)) return(mDNSfalse);
1905    if (rr->rrclass != q->qclass && q->qclass != kDNSQClass_ANY) return(mDNSfalse);
1906
1907    if (!AnonInfoAnswersQuestion(rr, q))
1908        return mDNSfalse;
1909
1910    return(rr->namehash == q->qnamehash && SameDomainName(rr->name, &q->qname));
1911}
1912
1913mDNSexport mDNSBool AnyTypeRecordAnswersQuestion(const ResourceRecord *const rr, const DNSQuestion *const q)
1914{
1915    // LocalOnly/P2P questions can be answered with AuthRecordAny in this function. LocalOnly/P2P records
1916    // are handled in LocalOnlyRecordAnswersQuestion
1917    if ((rr->InterfaceID == mDNSInterface_LocalOnly) || (rr->InterfaceID == mDNSInterface_P2P))
1918    {
1919        LogMsg("AnyTypeRecordAnswersQuestion: ERROR!! called with LocalOnly ResourceRecord %p, Question %p", rr->InterfaceID, q->InterfaceID);
1920        return mDNSfalse;
1921    }
1922    if (rr->InterfaceID &&
1923        q->InterfaceID && q->InterfaceID != mDNSInterface_LocalOnly &&
1924        rr->InterfaceID != q->InterfaceID) return(mDNSfalse);
1925
1926    // Resource record received via unicast, the resolver group ID should match ?
1927    // Note that Auth Records are normally setup with NULL InterfaceID and
1928    // both the DNSServers are assumed to be NULL in that case
1929    if (!rr->InterfaceID)
1930    {
1931        mDNSu16 idr = (rr->rDNSServer ? rr->rDNSServer->resGroupID : 0);
1932        mDNSu16 idq = (q->qDNSServer ? q->qDNSServer->resGroupID : 0);
1933        if (idr != idq) return(mDNSfalse);
1934    }
1935
1936    // If ResourceRecord received via multicast, but question was unicast, then shouldn't use record to answer this question
1937    if (rr->InterfaceID && !mDNSOpaque16IsZero(q->TargetQID)) return(mDNSfalse);
1938
1939    if (rr->rrclass != q->qclass && q->qclass != kDNSQClass_ANY) return(mDNSfalse);
1940
1941    if (!AnonInfoAnswersQuestion(rr, q))
1942        return mDNSfalse;
1943
1944    return(rr->namehash == q->qnamehash && SameDomainName(rr->name, &q->qname));
1945}
1946
1947// This is called with both unicast resource record and multicast resource record. The question that
1948// received the unicast response could be the regular unicast response from a DNS server or a response
1949// to a mDNS QU query. The main reason we need this function is that we can't compare DNSServers between the
1950// question and the resource record because the resource record is not completely initialized in
1951// mDNSCoreReceiveResponse when this function is called.
1952mDNSexport mDNSBool ResourceRecordAnswersUnicastResponse(const ResourceRecord *const rr, const DNSQuestion *const q)
1953{
1954    mDNSBool checkType = mDNStrue;
1955
1956    if (QuerySuppressed(q))
1957        return mDNSfalse;
1958
1959    // For resource records created using multicast, the InterfaceIDs have to match
1960    if (rr->InterfaceID &&
1961        q->InterfaceID && rr->InterfaceID != q->InterfaceID) return(mDNSfalse);
1962
1963    // If ResourceRecord received via multicast, but question was unicast, then shouldn't use record to answer this question.
1964    if (rr->InterfaceID && !mDNSOpaque16IsZero(q->TargetQID)) return(mDNSfalse);
1965
1966    if (!DNSSECRecordAnswersQuestion(rr, q, &checkType)) return mDNSfalse;
1967
1968    // RR type CNAME matches any query type. QTYPE ANY matches any RR type. QCLASS ANY matches any RR class.
1969    if (checkType && !RRTypeAnswersQuestionType(rr,q->qtype)) return(mDNSfalse);
1970
1971    if (rr->rrclass != q->qclass && q->qclass != kDNSQClass_ANY) return(mDNSfalse);
1972
1973    return(rr->namehash == q->qnamehash && SameDomainName(rr->name, &q->qname));
1974}
1975
1976mDNSexport mDNSu16 GetRDLength(const ResourceRecord *const rr, mDNSBool estimate)
1977{
1978    const RDataBody2 *const rd = (RDataBody2 *)rr->rdata->u.data;
1979    const domainname *const name = estimate ? rr->name : mDNSNULL;
1980    if (rr->rrclass == kDNSQClass_ANY) return(rr->rdlength);    // Used in update packets to mean "Delete An RRset" (RFC 2136)
1981    else switch (rr->rrtype)
1982        {
1983        case kDNSType_A:    return(sizeof(rd->ipv4));
1984
1985        case kDNSType_NS:
1986        case kDNSType_CNAME:
1987        case kDNSType_PTR:
1988        case kDNSType_DNAME: return(CompressedDomainNameLength(&rd->name, name));
1989
1990        case kDNSType_SOA:  return (mDNSu16)(CompressedDomainNameLength(&rd->soa.mname, name) +
1991                                             CompressedDomainNameLength(&rd->soa.rname, name) +
1992                                             5 * sizeof(mDNSOpaque32));
1993
1994        case kDNSType_NULL:
1995        case kDNSType_TSIG:
1996        case kDNSType_TXT:
1997        case kDNSType_X25:
1998        case kDNSType_ISDN:
1999        case kDNSType_LOC:
2000        case kDNSType_DHCID: return(rr->rdlength); // Not self-describing, so have to just trust rdlength
2001
2002        case kDNSType_HINFO: return (mDNSu16)(2 + (int)rd->data[0] + (int)rd->data[1 + (int)rd->data[0]]);
2003
2004        case kDNSType_MX:
2005        case kDNSType_AFSDB:
2006        case kDNSType_RT:
2007        case kDNSType_KX:   return (mDNSu16)(2 + CompressedDomainNameLength(&rd->mx.exchange, name));
2008
2009        case kDNSType_RP:   return (mDNSu16)(CompressedDomainNameLength(&rd->rp.mbox, name) +
2010                                             CompressedDomainNameLength(&rd->rp.txt, name));
2011
2012        case kDNSType_PX:   return (mDNSu16)(2 + CompressedDomainNameLength(&rd->px.map822, name) +
2013                                             CompressedDomainNameLength(&rd->px.mapx400, name));
2014
2015        case kDNSType_AAAA: return(sizeof(rd->ipv6));
2016
2017        case kDNSType_SRV:  return (mDNSu16)(6 + CompressedDomainNameLength(&rd->srv.target, name));
2018
2019        case kDNSType_OPT:  return(rr->rdlength);
2020
2021        case kDNSType_NSEC: {
2022            domainname *next = (domainname *)rd->data;
2023            int dlen = DomainNameLength(next);
2024            //
2025            if (UNICAST_NSEC(rr))
2026                return (mDNSu16)(CompressedDomainNameLength(next, name) + rr->rdlength - dlen);
2027            else
2028                return (mDNSu16)((estimate ? 2 : dlen) + rr->rdlength - dlen);
2029        }
2030
2031        default:            debugf("Warning! Don't know how to get length of resource type %d", rr->rrtype);
2032            return(rr->rdlength);
2033        }
2034}
2035
2036// When a local client registers (or updates) a record, we use this routine to do some simple validation checks
2037// to help reduce the risk of bogus malformed data on the network
2038mDNSexport mDNSBool ValidateRData(const mDNSu16 rrtype, const mDNSu16 rdlength, const RData *const rd)
2039{
2040    mDNSu16 len;
2041
2042    switch(rrtype)
2043    {
2044    case kDNSType_A:    return(rdlength == sizeof(mDNSv4Addr));
2045
2046    case kDNSType_NS:       // Same as PTR
2047    case kDNSType_MD:       // Same as PTR
2048    case kDNSType_MF:       // Same as PTR
2049    case kDNSType_CNAME:    // Same as PTR
2050    //case kDNSType_SOA not checked
2051    case kDNSType_MB:       // Same as PTR
2052    case kDNSType_MG:       // Same as PTR
2053    case kDNSType_MR:       // Same as PTR
2054    //case kDNSType_NULL not checked (no specified format, so always valid)
2055    //case kDNSType_WKS not checked
2056    case kDNSType_PTR:  len = DomainNameLengthLimit(&rd->u.name, rd->u.data + rdlength);
2057        return(len <= MAX_DOMAIN_NAME && rdlength == len);
2058
2059    case kDNSType_HINFO:    // Same as TXT (roughly)
2060    case kDNSType_MINFO:    // Same as TXT (roughly)
2061    case kDNSType_TXT:  if (!rdlength) return(mDNSfalse);     // TXT record has to be at least one byte (RFC 1035)
2062        {
2063            const mDNSu8 *ptr = rd->u.txt.c;
2064            const mDNSu8 *end = rd->u.txt.c + rdlength;
2065            while (ptr < end) ptr += 1 + ptr[0];
2066            return (ptr == end);
2067        }
2068
2069    case kDNSType_AAAA: return(rdlength == sizeof(mDNSv6Addr));
2070
2071    case kDNSType_MX:       // Must be at least two-byte preference, plus domainname
2072                            // Call to DomainNameLengthLimit() implicitly enforces both requirements for us
2073        len = DomainNameLengthLimit(&rd->u.mx.exchange, rd->u.data + rdlength);
2074        return(len <= MAX_DOMAIN_NAME && rdlength == 2+len);
2075
2076    case kDNSType_SRV:      // Must be at least priority+weight+port, plus domainname
2077                            // Call to DomainNameLengthLimit() implicitly enforces both requirements for us
2078        len = DomainNameLengthLimit(&rd->u.srv.target, rd->u.data + rdlength);
2079        return(len <= MAX_DOMAIN_NAME && rdlength == 6+len);
2080
2081    //case kDNSType_NSEC not checked
2082
2083    default:            return(mDNStrue);       // Allow all other types without checking
2084    }
2085}
2086
2087// ***************************************************************************
2088#if COMPILER_LIKES_PRAGMA_MARK
2089#pragma mark -
2090#pragma mark - DNS Message Creation Functions
2091#endif
2092
2093mDNSexport void InitializeDNSMessage(DNSMessageHeader *h, mDNSOpaque16 id, mDNSOpaque16 flags)
2094{
2095    h->id             = id;
2096    h->flags          = flags;
2097    h->numQuestions   = 0;
2098    h->numAnswers     = 0;
2099    h->numAuthorities = 0;
2100    h->numAdditionals = 0;
2101}
2102
2103mDNSexport const mDNSu8 *FindCompressionPointer(const mDNSu8 *const base, const mDNSu8 *const end, const mDNSu8 *const domname)
2104{
2105    const mDNSu8 *result = end - *domname - 1;
2106
2107    if (*domname == 0) return(mDNSNULL);    // There's no point trying to match just the root label
2108
2109    // This loop examines each possible starting position in packet, starting end of the packet and working backwards
2110    while (result >= base)
2111    {
2112        // If the length byte and first character of the label match, then check further to see
2113        // if this location in the packet will yield a useful name compression pointer.
2114        if (result[0] == domname[0] && result[1] == domname[1])
2115        {
2116            const mDNSu8 *name = domname;
2117            const mDNSu8 *targ = result;
2118            while (targ + *name < end)
2119            {
2120                // First see if this label matches
2121                int i;
2122                const mDNSu8 *pointertarget;
2123                for (i=0; i <= *name; i++) if (targ[i] != name[i]) break;
2124                if (i <= *name) break;                          // If label did not match, bail out
2125                targ += 1 + *name;                              // Else, did match, so advance target pointer
2126                name += 1 + *name;                              // and proceed to check next label
2127                if (*name == 0 && *targ == 0) return(result);   // If no more labels, we found a match!
2128                if (*name == 0) break;                          // If no more labels to match, we failed, so bail out
2129
2130                // The label matched, so now follow the pointer (if appropriate) and then see if the next label matches
2131                if (targ[0] < 0x40) continue;                   // If length value, continue to check next label
2132                if (targ[0] < 0xC0) break;                      // If 40-BF, not valid
2133                if (targ+1 >= end) break;                       // Second byte not present!
2134                pointertarget = base + (((mDNSu16)(targ[0] & 0x3F)) << 8) + targ[1];
2135                if (targ < pointertarget) break;                // Pointertarget must point *backwards* in the packet
2136                if (pointertarget[0] >= 0x40) break;            // Pointertarget must point to a valid length byte
2137                targ = pointertarget;
2138            }
2139        }
2140        result--;   // We failed to match at this search position, so back up the tentative result pointer and try again
2141    }
2142    return(mDNSNULL);
2143}
2144
2145// Put a string of dot-separated labels as length-prefixed labels
2146// domainname is a fully-qualified name (i.e. assumed to be ending in a dot, even if it doesn't)
2147// msg points to the message we're building (pass mDNSNULL if we don't want to use compression pointers)
2148// end points to the end of the message so far
2149// ptr points to where we want to put the name
2150// limit points to one byte past the end of the buffer that we must not overrun
2151// domainname is the name to put
2152mDNSexport mDNSu8 *putDomainNameAsLabels(const DNSMessage *const msg,
2153                                         mDNSu8 *ptr, const mDNSu8 *const limit, const domainname *const name)
2154{
2155    const mDNSu8 *const base        = (const mDNSu8 *)msg;
2156    const mDNSu8 *      np          = name->c;
2157    const mDNSu8 *const max         = name->c + MAX_DOMAIN_NAME;    // Maximum that's valid
2158    const mDNSu8 *      pointer     = mDNSNULL;
2159    const mDNSu8 *const searchlimit = ptr;
2160
2161    if (!ptr) { LogMsg("putDomainNameAsLabels %##s ptr is null", name->c); return(mDNSNULL); }
2162
2163    if (!*np)       // If just writing one-byte root label, make sure we have space for that
2164    {
2165        if (ptr >= limit) return(mDNSNULL);
2166    }
2167    else            // else, loop through writing labels and/or a compression offset
2168    {
2169        do  {
2170            if (*np > MAX_DOMAIN_LABEL)
2171            { LogMsg("Malformed domain name %##s (label more than 63 bytes)", name->c); return(mDNSNULL); }
2172
2173            // This check correctly allows for the final trailing root label:
2174            // e.g.
2175            // Suppose our domain name is exactly 256 bytes long, including the final trailing root label.
2176            // Suppose np is now at name->c[249], and we're about to write our last non-null label ("local").
2177            // We know that max will be at name->c[256]
2178            // That means that np + 1 + 5 == max - 1, so we (just) pass the "if" test below, write our
2179            // six bytes, then exit the loop, write the final terminating root label, and the domain
2180            // name we've written is exactly 256 bytes long, exactly at the correct legal limit.
2181            // If the name is one byte longer, then we fail the "if" test below, and correctly bail out.
2182            if (np + 1 + *np >= max)
2183            { LogMsg("Malformed domain name %##s (more than 256 bytes)", name->c); return(mDNSNULL); }
2184
2185            if (base) pointer = FindCompressionPointer(base, searchlimit, np);
2186            if (pointer)                    // Use a compression pointer if we can
2187            {
2188                const mDNSu16 offset = (mDNSu16)(pointer - base);
2189                if (ptr+2 > limit) return(mDNSNULL);    // If we don't have two bytes of space left, give up
2190                *ptr++ = (mDNSu8)(0xC0 | (offset >> 8));
2191                *ptr++ = (mDNSu8)(        offset &  0xFF);
2192                return(ptr);
2193            }
2194            else                            // Else copy one label and try again
2195            {
2196                int i;
2197                mDNSu8 len = *np++;
2198                // If we don't at least have enough space for this label *plus* a terminating zero on the end, give up
2199                if (ptr + 1 + len >= limit) return(mDNSNULL);
2200                *ptr++ = len;
2201                for (i=0; i<len; i++) *ptr++ = *np++;
2202            }
2203        } while (*np);                      // While we've got characters remaining in the name, continue
2204    }
2205
2206    *ptr++ = 0;     // Put the final root label
2207    return(ptr);
2208}
2209
2210mDNSlocal mDNSu8 *putVal16(mDNSu8 *ptr, mDNSu16 val)
2211{
2212    ptr[0] = (mDNSu8)((val >> 8 ) & 0xFF);
2213    ptr[1] = (mDNSu8)((val      ) & 0xFF);
2214    return ptr + sizeof(mDNSOpaque16);
2215}
2216
2217mDNSlocal mDNSu8 *putVal32(mDNSu8 *ptr, mDNSu32 val)
2218{
2219    ptr[0] = (mDNSu8)((val >> 24) & 0xFF);
2220    ptr[1] = (mDNSu8)((val >> 16) & 0xFF);
2221    ptr[2] = (mDNSu8)((val >>  8) & 0xFF);
2222    ptr[3] = (mDNSu8)((val      ) & 0xFF);
2223    return ptr + sizeof(mDNSu32);
2224}
2225
2226// Copy the RDATA information. The actual in memory storage for the data might be bigger than what the rdlength
2227// says. Hence, the only way to copy out the data from a resource record is to use putRData.
2228// msg points to the message we're building (pass mDNSNULL for "msg" if we don't want to use compression pointers)
2229mDNSexport mDNSu8 *putRData(const DNSMessage *const msg, mDNSu8 *ptr, const mDNSu8 *const limit, const ResourceRecord *const rr)
2230{
2231    const RDataBody2 *const rdb = (RDataBody2 *)rr->rdata->u.data;
2232    switch (rr->rrtype)
2233    {
2234    case kDNSType_A:    if (rr->rdlength != 4)
2235        { debugf("putRData: Illegal length %d for kDNSType_A", rr->rdlength); return(mDNSNULL); }
2236        if (ptr + 4 > limit) return(mDNSNULL);
2237        *ptr++ = rdb->ipv4.b[0];
2238        *ptr++ = rdb->ipv4.b[1];
2239        *ptr++ = rdb->ipv4.b[2];
2240        *ptr++ = rdb->ipv4.b[3];
2241        return(ptr);
2242
2243    case kDNSType_NS:
2244    case kDNSType_CNAME:
2245    case kDNSType_PTR:
2246    case kDNSType_DNAME: return(putDomainNameAsLabels(msg, ptr, limit, &rdb->name));
2247
2248    case kDNSType_SOA:  ptr = putDomainNameAsLabels(msg, ptr, limit, &rdb->soa.mname);
2249        if (!ptr) return(mDNSNULL);
2250        ptr = putDomainNameAsLabels(msg, ptr, limit, &rdb->soa.rname);
2251        if (!ptr || ptr + 20 > limit) return(mDNSNULL);
2252        ptr = putVal32(ptr, rdb->soa.serial);
2253        ptr = putVal32(ptr, rdb->soa.refresh);
2254        ptr = putVal32(ptr, rdb->soa.retry);
2255        ptr = putVal32(ptr, rdb->soa.expire);
2256        ptr = putVal32(ptr, rdb->soa.min);
2257        return(ptr);
2258
2259    case kDNSType_NULL:
2260    case kDNSType_HINFO:
2261    case kDNSType_TSIG:
2262    case kDNSType_TXT:
2263    case kDNSType_X25:
2264    case kDNSType_ISDN:
2265    case kDNSType_LOC:
2266    case kDNSType_DHCID: if (ptr + rr->rdlength > limit) return(mDNSNULL);
2267        mDNSPlatformMemCopy(ptr, rdb->data, rr->rdlength);
2268        return(ptr + rr->rdlength);
2269
2270    case kDNSType_MX:
2271    case kDNSType_AFSDB:
2272    case kDNSType_RT:
2273    case kDNSType_KX:   if (ptr + 3 > limit) return(mDNSNULL);
2274        ptr = putVal16(ptr, rdb->mx.preference);
2275        return(putDomainNameAsLabels(msg, ptr, limit, &rdb->mx.exchange));
2276
2277    case kDNSType_RP:   ptr = putDomainNameAsLabels(msg, ptr, limit, &rdb->rp.mbox);
2278        if (!ptr) return(mDNSNULL);
2279        ptr = putDomainNameAsLabels(msg, ptr, limit, &rdb->rp.txt);
2280        return(ptr);
2281
2282    case kDNSType_PX:   if (ptr + 5 > limit) return(mDNSNULL);
2283        ptr = putVal16(ptr, rdb->px.preference);
2284        ptr = putDomainNameAsLabels(msg, ptr, limit, &rdb->px.map822);
2285        if (!ptr) return(mDNSNULL);
2286        ptr = putDomainNameAsLabels(msg, ptr, limit, &rdb->px.mapx400);
2287        return(ptr);
2288
2289    case kDNSType_AAAA: if (rr->rdlength != sizeof(rdb->ipv6))
2290        { debugf("putRData: Illegal length %d for kDNSType_AAAA", rr->rdlength); return(mDNSNULL); }
2291        if (ptr + sizeof(rdb->ipv6) > limit) return(mDNSNULL);
2292        mDNSPlatformMemCopy(ptr, &rdb->ipv6, sizeof(rdb->ipv6));
2293        return(ptr + sizeof(rdb->ipv6));
2294
2295    case kDNSType_SRV:  if (ptr + 7 > limit) return(mDNSNULL);
2296        *ptr++ = (mDNSu8)(rdb->srv.priority >> 8);
2297        *ptr++ = (mDNSu8)(rdb->srv.priority &  0xFF);
2298        *ptr++ = (mDNSu8)(rdb->srv.weight   >> 8);
2299        *ptr++ = (mDNSu8)(rdb->srv.weight   &  0xFF);
2300        *ptr++ = rdb->srv.port.b[0];
2301        *ptr++ = rdb->srv.port.b[1];
2302        return(putDomainNameAsLabels(msg, ptr, limit, &rdb->srv.target));
2303
2304    case kDNSType_OPT:  {
2305        int len = 0;
2306        const rdataOPT *opt;
2307        const rdataOPT *const end = (const rdataOPT *)&rr->rdata->u.data[rr->rdlength];
2308        for (opt = &rr->rdata->u.opt[0]; opt < end; opt++)
2309            len += DNSOpt_Data_Space(opt);
2310        if (ptr + len > limit)
2311        {
2312            LogMsg("ERROR: putOptRData - out of space");
2313            return mDNSNULL;
2314        }
2315        for (opt = &rr->rdata->u.opt[0]; opt < end; opt++)
2316        {
2317            const int space = DNSOpt_Data_Space(opt);
2318            ptr = putVal16(ptr, opt->opt);
2319            ptr = putVal16(ptr, (mDNSu16)space - 4);
2320            switch (opt->opt)
2321            {
2322            case kDNSOpt_LLQ:
2323                ptr = putVal16(ptr, opt->u.llq.vers);
2324                ptr = putVal16(ptr, opt->u.llq.llqOp);
2325                ptr = putVal16(ptr, opt->u.llq.err);
2326                mDNSPlatformMemCopy(ptr, opt->u.llq.id.b, 8);                          // 8-byte id
2327                ptr += 8;
2328                ptr = putVal32(ptr, opt->u.llq.llqlease);
2329                break;
2330            case kDNSOpt_Lease:
2331                ptr = putVal32(ptr, opt->u.updatelease);
2332                break;
2333            case kDNSOpt_Owner:
2334                *ptr++ = opt->u.owner.vers;
2335                *ptr++ = opt->u.owner.seq;
2336                mDNSPlatformMemCopy(ptr, opt->u.owner.HMAC.b, 6);                          // 6-byte Host identifier
2337                ptr += 6;
2338                if (space >= DNSOpt_OwnerData_ID_Wake_Space)
2339                {
2340                    mDNSPlatformMemCopy(ptr, opt->u.owner.IMAC.b, 6);                           // 6-byte interface MAC
2341                    ptr += 6;
2342                    if (space > DNSOpt_OwnerData_ID_Wake_Space)
2343                    {
2344                        mDNSPlatformMemCopy(ptr, opt->u.owner.password.b, space - DNSOpt_OwnerData_ID_Wake_Space);
2345                        ptr += space - DNSOpt_OwnerData_ID_Wake_Space;
2346                    }
2347                }
2348                break;
2349            case kDNSOpt_Trace:
2350                *ptr++ = opt->u.tracer.platf;
2351                ptr    = putVal32(ptr, opt->u.tracer.mDNSv);
2352                break;
2353            }
2354        }
2355        return ptr;
2356    }
2357
2358    case kDNSType_NSEC: {
2359        // For NSEC records, rdlength represents the exact number of bytes
2360        // of in memory storage.
2361        mDNSu8 *nsec = (mDNSu8 *)rdb->data;
2362        domainname *name = (domainname *)nsec;
2363        const int dlen = DomainNameLength(name);
2364        nsec += dlen;
2365        // This function is called when we are sending a NSEC record as part of mDNS,
2366        // or to copy the data to any other buffer needed which could be a mDNS or uDNS
2367        // NSEC record. The only time compression is used that when we are sending it
2368        // in mDNS (indicated by non-NULL "msg") and hence we handle mDNS case
2369        // separately.
2370        if (!UNICAST_NSEC(rr))
2371        {
2372            mDNSu8 *save = ptr;
2373            int i, j, wlen;
2374            wlen = *(nsec + 1);
2375            nsec += 2;                     // Skip the window number and len
2376
2377            // For our simplified use of NSEC synthetic records:
2378            //
2379            // nextname is always the record's own name,
2380            // the block number is always 0,
2381            // the count byte is a value in the range 1-32,
2382            // followed by the 1-32 data bytes
2383            //
2384            // Note: When we send the NSEC record in mDNS, the window size is set to 32.
2385            // We need to find out what the last non-NULL byte is.  If we are copying out
2386            // from an RDATA, we have the right length. As we need to handle both the case,
2387            // we loop to find the right value instead of blindly using len to copy.
2388
2389            for (i=wlen; i>0; i--) if (nsec[i-1]) break;
2390
2391            ptr = putDomainNameAsLabels(msg, ptr, limit, rr->name);
2392            if (!ptr) { LogInfo("putRData: Can't put name, Length %d, record %##s", limit - save, rr->name->c); return(mDNSNULL); }
2393            if (i)                          // Only put a block if at least one type exists for this name
2394            {
2395                if (ptr + 2 + i > limit) { LogInfo("putRData: Can't put window, Length %d, i %d, record %##s", limit - ptr, i, rr->name->c); return(mDNSNULL); }
2396                *ptr++ = 0;
2397                *ptr++ = (mDNSu8)i;
2398                for (j=0; j<i; j++) *ptr++ = nsec[j];
2399            }
2400            return ptr;
2401        }
2402        else
2403        {
2404            int win, wlen;
2405            int len = rr->rdlength - dlen;
2406
2407            // Sanity check whether the bitmap is good
2408            while (len)
2409            {
2410                if (len < 3)
2411                { LogMsg("putRData: invalid length %d", len); return mDNSNULL; }
2412
2413                win = *nsec++;
2414                wlen = *nsec++;
2415                len -= 2;
2416                if (len < wlen || wlen < 1 || wlen > 32)
2417                { LogMsg("putRData: invalid window length %d", wlen); return mDNSNULL; }
2418                if (win < 0 || win >= 256)
2419                { LogMsg("putRData: invalid window %d", win); return mDNSNULL; }
2420
2421                nsec += wlen;
2422                len -= wlen;
2423            }
2424            if (ptr + rr->rdlength > limit) { LogMsg("putRData: NSEC rdlength beyond limit %##s (%s), ptr %p, rdlength %d, limit %p", rr->name->c, DNSTypeName(rr->rrtype), ptr, rr->rdlength, limit); return(mDNSNULL);}
2425
2426            // No compression allowed for "nxt", just copy the data.
2427            mDNSPlatformMemCopy(ptr, rdb->data, rr->rdlength);
2428            return(ptr + rr->rdlength);
2429        }
2430    }
2431
2432    default:            debugf("putRData: Warning! Writing unknown resource type %d as raw data", rr->rrtype);
2433        if (ptr + rr->rdlength > limit) return(mDNSNULL);
2434        mDNSPlatformMemCopy(ptr, rdb->data, rr->rdlength);
2435        return(ptr + rr->rdlength);
2436    }
2437}
2438
2439#define IsUnicastUpdate(X) (!mDNSOpaque16IsZero((X)->h.id) && ((X)->h.flags.b[0] & kDNSFlag0_OP_Mask) == kDNSFlag0_OP_Update)
2440
2441mDNSexport mDNSu8 *PutResourceRecordTTLWithLimit(DNSMessage *const msg, mDNSu8 *ptr, mDNSu16 *count, ResourceRecord *rr, mDNSu32 ttl, const mDNSu8 *limit)
2442{
2443    mDNSu8 *endofrdata;
2444    mDNSu16 actualLength;
2445    // When sending SRV to conventional DNS server (i.e. in DNS update requests) we should not do name compression on the rdata (RFC 2782)
2446    const DNSMessage *const rdatacompressionbase = (IsUnicastUpdate(msg) && rr->rrtype == kDNSType_SRV) ? mDNSNULL : msg;
2447
2448    if (rr->RecordType == kDNSRecordTypeUnregistered)
2449    {
2450        LogMsg("PutResourceRecordTTLWithLimit ERROR! Attempt to put kDNSRecordTypeUnregistered %##s (%s)", rr->name->c, DNSTypeName(rr->rrtype));
2451        return(ptr);
2452    }
2453
2454    if (!ptr)
2455    {
2456        LogMsg("PutResourceRecordTTLWithLimit ptr is null %##s (%s)", rr->name->c, DNSTypeName(rr->rrtype));
2457        return(mDNSNULL);
2458    }
2459
2460    ptr = putDomainNameAsLabels(msg, ptr, limit, rr->name);
2461    // If we're out-of-space, return mDNSNULL
2462    if (!ptr || ptr + 10 >= limit)
2463    {
2464        LogInfo("PutResourceRecordTTLWithLimit: can't put name, out of space %##s (%s), ptr %p, limit %p", rr->name->c,
2465            DNSTypeName(rr->rrtype), ptr, limit);
2466        return(mDNSNULL);
2467    }
2468    ptr[0] = (mDNSu8)(rr->rrtype  >> 8);
2469    ptr[1] = (mDNSu8)(rr->rrtype  &  0xFF);
2470    ptr[2] = (mDNSu8)(rr->rrclass >> 8);
2471    ptr[3] = (mDNSu8)(rr->rrclass &  0xFF);
2472    ptr[4] = (mDNSu8)((ttl >> 24) &  0xFF);
2473    ptr[5] = (mDNSu8)((ttl >> 16) &  0xFF);
2474    ptr[6] = (mDNSu8)((ttl >>  8) &  0xFF);
2475    ptr[7] = (mDNSu8)( ttl        &  0xFF);
2476    // ptr[8] and ptr[9] filled in *after* we find out how much space the rdata takes
2477
2478    endofrdata = putRData(rdatacompressionbase, ptr+10, limit, rr);
2479    if (!endofrdata)
2480    {
2481        LogInfo("PutResourceRecordTTLWithLimit: Ran out of space in PutResourceRecord for %##s (%s), ptr %p, limit %p", rr->name->c,
2482            DNSTypeName(rr->rrtype), ptr+10, limit);
2483        return(mDNSNULL);
2484    }
2485
2486    // Go back and fill in the actual number of data bytes we wrote
2487    // (actualLength can be less than rdlength when domain name compression is used)
2488    actualLength = (mDNSu16)(endofrdata - ptr - 10);
2489    ptr[8] = (mDNSu8)(actualLength >> 8);
2490    ptr[9] = (mDNSu8)(actualLength &  0xFF);
2491
2492    if (count) (*count)++;
2493    else LogMsg("PutResourceRecordTTL: ERROR: No target count to update for %##s (%s)", rr->name->c, DNSTypeName(rr->rrtype));
2494    return(endofrdata);
2495}
2496
2497mDNSlocal mDNSu8 *putEmptyResourceRecord(DNSMessage *const msg, mDNSu8 *ptr, const mDNSu8 *const limit, mDNSu16 *count, const AuthRecord *rr)
2498{
2499    ptr = putDomainNameAsLabels(msg, ptr, limit, rr->resrec.name);
2500    if (!ptr || ptr + 10 > limit) return(mDNSNULL);     // If we're out-of-space, return mDNSNULL
2501    ptr[0] = (mDNSu8)(rr->resrec.rrtype  >> 8);             // Put type
2502    ptr[1] = (mDNSu8)(rr->resrec.rrtype  &  0xFF);
2503    ptr[2] = (mDNSu8)(rr->resrec.rrclass >> 8);             // Put class
2504    ptr[3] = (mDNSu8)(rr->resrec.rrclass &  0xFF);
2505    ptr[4] = ptr[5] = ptr[6] = ptr[7] = 0;              // TTL is zero
2506    ptr[8] = ptr[9] = 0;                                // RDATA length is zero
2507    (*count)++;
2508    return(ptr + 10);
2509}
2510
2511mDNSexport mDNSu8 *putQuestion(DNSMessage *const msg, mDNSu8 *ptr, const mDNSu8 *const limit, const domainname *const name, mDNSu16 rrtype, mDNSu16 rrclass)
2512{
2513    ptr = putDomainNameAsLabels(msg, ptr, limit, name);
2514    if (!ptr || ptr+4 >= limit) return(mDNSNULL);           // If we're out-of-space, return mDNSNULL
2515    ptr[0] = (mDNSu8)(rrtype  >> 8);
2516    ptr[1] = (mDNSu8)(rrtype  &  0xFF);
2517    ptr[2] = (mDNSu8)(rrclass >> 8);
2518    ptr[3] = (mDNSu8)(rrclass &  0xFF);
2519    msg->h.numQuestions++;
2520    return(ptr+4);
2521}
2522
2523// for dynamic updates
2524mDNSexport mDNSu8 *putZone(DNSMessage *const msg, mDNSu8 *ptr, mDNSu8 *limit, const domainname *zone, mDNSOpaque16 zoneClass)
2525{
2526    ptr = putDomainNameAsLabels(msg, ptr, limit, zone);
2527    if (!ptr || ptr + 4 > limit) return mDNSNULL;       // If we're out-of-space, return NULL
2528    *ptr++ = (mDNSu8)(kDNSType_SOA  >> 8);
2529    *ptr++ = (mDNSu8)(kDNSType_SOA  &  0xFF);
2530    *ptr++ = zoneClass.b[0];
2531    *ptr++ = zoneClass.b[1];
2532    msg->h.mDNS_numZones++;
2533    return ptr;
2534}
2535
2536// for dynamic updates
2537mDNSexport mDNSu8 *putPrereqNameNotInUse(const domainname *const name, DNSMessage *const msg, mDNSu8 *const ptr, mDNSu8 *const end)
2538{
2539    AuthRecord prereq;
2540    mDNS_SetupResourceRecord(&prereq, mDNSNULL, mDNSInterface_Any, kDNSQType_ANY, kStandardTTL, 0, AuthRecordAny, mDNSNULL, mDNSNULL);
2541    AssignDomainName(&prereq.namestorage, name);
2542    prereq.resrec.rrtype = kDNSQType_ANY;
2543    prereq.resrec.rrclass = kDNSClass_NONE;
2544    return putEmptyResourceRecord(msg, ptr, end, &msg->h.mDNS_numPrereqs, &prereq);
2545}
2546
2547// for dynamic updates
2548mDNSexport mDNSu8 *putDeletionRecord(DNSMessage *msg, mDNSu8 *ptr, ResourceRecord *rr)
2549{
2550    // deletion: specify record w/ TTL 0, class NONE
2551    const mDNSu16 origclass = rr->rrclass;
2552    rr->rrclass = kDNSClass_NONE;
2553    ptr = PutResourceRecordTTLJumbo(msg, ptr, &msg->h.mDNS_numUpdates, rr, 0);
2554    rr->rrclass = origclass;
2555    return ptr;
2556}
2557
2558// for dynamic updates
2559mDNSexport mDNSu8 *putDeletionRecordWithLimit(DNSMessage *msg, mDNSu8 *ptr, ResourceRecord *rr, mDNSu8 *limit)
2560{
2561    // deletion: specify record w/ TTL 0, class NONE
2562    const mDNSu16 origclass = rr->rrclass;
2563    rr->rrclass = kDNSClass_NONE;
2564    ptr = PutResourceRecordTTLWithLimit(msg, ptr, &msg->h.mDNS_numUpdates, rr, 0, limit);
2565    rr->rrclass = origclass;
2566    return ptr;
2567}
2568
2569mDNSexport mDNSu8 *putDeleteRRSetWithLimit(DNSMessage *msg, mDNSu8 *ptr, const domainname *name, mDNSu16 rrtype, mDNSu8 *limit)
2570{
2571    mDNSu16 class = kDNSQClass_ANY;
2572
2573    ptr = putDomainNameAsLabels(msg, ptr, limit, name);
2574    if (!ptr || ptr + 10 >= limit) return mDNSNULL; // If we're out-of-space, return mDNSNULL
2575    ptr[0] = (mDNSu8)(rrtype  >> 8);
2576    ptr[1] = (mDNSu8)(rrtype  &  0xFF);
2577    ptr[2] = (mDNSu8)(class >> 8);
2578    ptr[3] = (mDNSu8)(class &  0xFF);
2579    ptr[4] = ptr[5] = ptr[6] = ptr[7] = 0; // zero ttl
2580    ptr[8] = ptr[9] = 0; // zero rdlength/rdata
2581
2582    msg->h.mDNS_numUpdates++;
2583    return ptr + 10;
2584}
2585
2586// for dynamic updates
2587mDNSexport mDNSu8 *putDeleteAllRRSets(DNSMessage *msg, mDNSu8 *ptr, const domainname *name)
2588{
2589    const mDNSu8 *limit = msg->data + AbsoluteMaxDNSMessageData;
2590    mDNSu16 class = kDNSQClass_ANY;
2591    mDNSu16 rrtype = kDNSQType_ANY;
2592
2593    ptr = putDomainNameAsLabels(msg, ptr, limit, name);
2594    if (!ptr || ptr + 10 >= limit) return mDNSNULL; // If we're out-of-space, return mDNSNULL
2595    ptr[0] = (mDNSu8)(rrtype >> 8);
2596    ptr[1] = (mDNSu8)(rrtype &  0xFF);
2597    ptr[2] = (mDNSu8)(class >> 8);
2598    ptr[3] = (mDNSu8)(class &  0xFF);
2599    ptr[4] = ptr[5] = ptr[6] = ptr[7] = 0; // zero ttl
2600    ptr[8] = ptr[9] = 0; // zero rdlength/rdata
2601
2602    msg->h.mDNS_numUpdates++;
2603    return ptr + 10;
2604}
2605
2606// for dynamic updates
2607mDNSexport mDNSu8 *putUpdateLease(DNSMessage *msg, mDNSu8 *ptr, mDNSu32 lease)
2608{
2609    AuthRecord rr;
2610    mDNS_SetupResourceRecord(&rr, mDNSNULL, mDNSInterface_Any, kDNSType_OPT, kStandardTTL, kDNSRecordTypeKnownUnique, AuthRecordAny, mDNSNULL, mDNSNULL);
2611    rr.resrec.rrclass    = NormalMaxDNSMessageData;
2612    rr.resrec.rdlength   = sizeof(rdataOPT);    // One option in this OPT record
2613    rr.resrec.rdestimate = sizeof(rdataOPT);
2614    rr.resrec.rdata->u.opt[0].opt           = kDNSOpt_Lease;
2615    rr.resrec.rdata->u.opt[0].u.updatelease = lease;
2616    ptr = PutResourceRecordTTLJumbo(msg, ptr, &msg->h.numAdditionals, &rr.resrec, 0);
2617    if (!ptr) { LogMsg("ERROR: putUpdateLease - PutResourceRecordTTL"); return mDNSNULL; }
2618    return ptr;
2619}
2620
2621// for dynamic updates
2622mDNSexport mDNSu8 *putUpdateLeaseWithLimit(DNSMessage *msg, mDNSu8 *ptr, mDNSu32 lease, mDNSu8 *limit)
2623{
2624    AuthRecord rr;
2625    mDNS_SetupResourceRecord(&rr, mDNSNULL, mDNSInterface_Any, kDNSType_OPT, kStandardTTL, kDNSRecordTypeKnownUnique, AuthRecordAny, mDNSNULL, mDNSNULL);
2626    rr.resrec.rrclass    = NormalMaxDNSMessageData;
2627    rr.resrec.rdlength   = sizeof(rdataOPT);    // One option in this OPT record
2628    rr.resrec.rdestimate = sizeof(rdataOPT);
2629    rr.resrec.rdata->u.opt[0].opt           = kDNSOpt_Lease;
2630    rr.resrec.rdata->u.opt[0].u.updatelease = lease;
2631    ptr = PutResourceRecordTTLWithLimit(msg, ptr, &msg->h.numAdditionals, &rr.resrec, 0, limit);
2632    if (!ptr) { LogMsg("ERROR: putUpdateLeaseWithLimit - PutResourceRecordTTLWithLimit"); return mDNSNULL; }
2633    return ptr;
2634}
2635
2636mDNSexport mDNSu8 *putDNSSECOption(DNSMessage *msg, mDNSu8 *end, mDNSu8 *limit)
2637{
2638    AuthRecord rr;
2639    mDNSu32 ttl = 0;
2640
2641    mDNS_SetupResourceRecord(&rr, mDNSNULL, mDNSInterface_Any, kDNSType_OPT, kStandardTTL, kDNSRecordTypeKnownUnique, AuthRecordAny, mDNSNULL, mDNSNULL);
2642    // It is still not clear what the right size is. We will have to fine tune this once we do
2643    // a lot of testing with DNSSEC.
2644    rr.resrec.rrclass    = 4096;
2645    rr.resrec.rdlength   = 0;
2646    rr.resrec.rdestimate = 0;
2647    // set the DO bit
2648    ttl |= 0x8000;
2649    end = PutResourceRecordTTLWithLimit(msg, end, &msg->h.numAdditionals, &rr.resrec, ttl, limit);
2650    if (!end) { LogMsg("ERROR: putDNSSECOption - PutResourceRecordTTLWithLimit"); return mDNSNULL; }
2651    return end;
2652}
2653
2654mDNSexport mDNSu8 *putHINFO(const mDNS *const m, DNSMessage *const msg, mDNSu8 *end, DomainAuthInfo *authInfo, mDNSu8 *limit)
2655{
2656    if (authInfo && authInfo->AutoTunnel)
2657    {
2658        AuthRecord hinfo;
2659        mDNSu8 *h = hinfo.rdatastorage.u.data;
2660        mDNSu16 len = 2 + m->HIHardware.c[0] + m->HISoftware.c[0];
2661        mDNSu8 *newptr;
2662        mDNS_SetupResourceRecord(&hinfo, mDNSNULL, mDNSInterface_Any, kDNSType_HINFO, 0, kDNSRecordTypeUnique, AuthRecordAny, mDNSNULL, mDNSNULL);
2663        AppendDomainLabel(&hinfo.namestorage, &m->hostlabel);
2664        AppendDomainName (&hinfo.namestorage, &authInfo->domain);
2665        hinfo.resrec.rroriginalttl = 0;
2666        mDNSPlatformMemCopy(h, &m->HIHardware, 1 + (mDNSu32)m->HIHardware.c[0]);
2667        h += 1 + (int)h[0];
2668        mDNSPlatformMemCopy(h, &m->HISoftware, 1 + (mDNSu32)m->HISoftware.c[0]);
2669        hinfo.resrec.rdlength   = len;
2670        hinfo.resrec.rdestimate = len;
2671        newptr = PutResourceRecordTTLWithLimit(msg, end, &msg->h.numAdditionals, &hinfo.resrec, 0, limit);
2672        return newptr;
2673    }
2674    else
2675        return end;
2676}
2677
2678// ***************************************************************************
2679#if COMPILER_LIKES_PRAGMA_MARK
2680#pragma mark -
2681#pragma mark - DNS Message Parsing Functions
2682#endif
2683
2684mDNSexport mDNSu32 DomainNameHashValue(const domainname *const name)
2685{
2686    mDNSu32 sum = 0;
2687    const mDNSu8 *c;
2688
2689    for (c = name->c; c[0] != 0 && c[1] != 0; c += 2)
2690    {
2691        sum += ((mDNSIsUpperCase(c[0]) ? c[0] + 'a' - 'A' : c[0]) << 8) |
2692               (mDNSIsUpperCase(c[1]) ? c[1] + 'a' - 'A' : c[1]);
2693        sum = (sum<<3) | (sum>>29);
2694    }
2695    if (c[0]) sum += ((mDNSIsUpperCase(c[0]) ? c[0] + 'a' - 'A' : c[0]) << 8);
2696    return(sum);
2697}
2698
2699mDNSexport void SetNewRData(ResourceRecord *const rr, RData *NewRData, mDNSu16 rdlength)
2700{
2701    domainname *target;
2702    if (NewRData)
2703    {
2704        rr->rdata    = NewRData;
2705        rr->rdlength = rdlength;
2706    }
2707    // Must not try to get target pointer until after updating rr->rdata
2708    target = GetRRDomainNameTarget(rr);
2709    rr->rdlength   = GetRDLength(rr, mDNSfalse);
2710    rr->rdestimate = GetRDLength(rr, mDNStrue);
2711    rr->rdatahash  = target ? DomainNameHashValue(target) : RDataHashValue(rr);
2712}
2713
2714mDNSexport const mDNSu8 *skipDomainName(const DNSMessage *const msg, const mDNSu8 *ptr, const mDNSu8 *const end)
2715{
2716    mDNSu16 total = 0;
2717
2718    if (ptr < (mDNSu8*)msg || ptr >= end)
2719    { debugf("skipDomainName: Illegal ptr not within packet boundaries"); return(mDNSNULL); }
2720
2721    while (1)                       // Read sequence of labels
2722    {
2723        const mDNSu8 len = *ptr++;  // Read length of this label
2724        if (len == 0) return(ptr);  // If length is zero, that means this name is complete
2725        switch (len & 0xC0)
2726        {
2727        case 0x00:  if (ptr + len >= end)                       // Remember: expect at least one more byte for the root label
2728            { debugf("skipDomainName: Malformed domain name (overruns packet end)"); return(mDNSNULL); }
2729            if (total + 1 + len >= MAX_DOMAIN_NAME)             // Remember: expect at least one more byte for the root label
2730            { debugf("skipDomainName: Malformed domain name (more than 256 characters)"); return(mDNSNULL); }
2731            ptr += len;
2732            total += 1 + len;
2733            break;
2734
2735        case 0x40:  debugf("skipDomainName: Extended EDNS0 label types 0x%X not supported", len); return(mDNSNULL);
2736        case 0x80:  debugf("skipDomainName: Illegal label length 0x%X", len); return(mDNSNULL);
2737        case 0xC0:  return(ptr+1);
2738        }
2739    }
2740}
2741
2742// Routine to fetch an FQDN from the DNS message, following compression pointers if necessary.
2743mDNSexport const mDNSu8 *getDomainName(const DNSMessage *const msg, const mDNSu8 *ptr, const mDNSu8 *const end,
2744                                       domainname *const name)
2745{
2746    const mDNSu8 *nextbyte = mDNSNULL;                  // Record where we got to before we started following pointers
2747    mDNSu8       *np = name->c;                         // Name pointer
2748    const mDNSu8 *const limit = np + MAX_DOMAIN_NAME;   // Limit so we don't overrun buffer
2749
2750    if (ptr < (mDNSu8*)msg || ptr >= end)
2751    { debugf("getDomainName: Illegal ptr not within packet boundaries"); return(mDNSNULL); }
2752
2753    *np = 0;                        // Tentatively place the root label here (may be overwritten if we have more labels)
2754
2755    while (1)                       // Read sequence of labels
2756    {
2757        const mDNSu8 len = *ptr++;  // Read length of this label
2758        if (len == 0) break;        // If length is zero, that means this name is complete
2759        switch (len & 0xC0)
2760        {
2761            int i;
2762            mDNSu16 offset;
2763
2764        case 0x00:  if (ptr + len >= end)           // Remember: expect at least one more byte for the root label
2765            { debugf("getDomainName: Malformed domain name (overruns packet end)"); return(mDNSNULL); }
2766            if (np + 1 + len >= limit)              // Remember: expect at least one more byte for the root label
2767            { debugf("getDomainName: Malformed domain name (more than 256 characters)"); return(mDNSNULL); }
2768            *np++ = len;
2769            for (i=0; i<len; i++) *np++ = *ptr++;
2770            *np = 0;                // Tentatively place the root label here (may be overwritten if we have more labels)
2771            break;
2772
2773        case 0x40:  debugf("getDomainName: Extended EDNS0 label types 0x%X not supported in name %##s", len, name->c);
2774            return(mDNSNULL);
2775
2776        case 0x80:  debugf("getDomainName: Illegal label length 0x%X in domain name %##s", len, name->c); return(mDNSNULL);
2777
2778        case 0xC0:  offset = (mDNSu16)((((mDNSu16)(len & 0x3F)) << 8) | *ptr++);
2779            if (!nextbyte) nextbyte = ptr;              // Record where we got to before we started following pointers
2780            ptr = (mDNSu8 *)msg + offset;
2781            if (ptr < (mDNSu8*)msg || ptr >= end)
2782            { debugf("getDomainName: Illegal compression pointer not within packet boundaries"); return(mDNSNULL); }
2783            if (*ptr & 0xC0)
2784            { debugf("getDomainName: Compression pointer must point to real label"); return(mDNSNULL); }
2785            break;
2786        }
2787    }
2788
2789    if (nextbyte) return(nextbyte);
2790    else return(ptr);
2791}
2792
2793mDNSexport const mDNSu8 *skipResourceRecord(const DNSMessage *msg, const mDNSu8 *ptr, const mDNSu8 *end)
2794{
2795    mDNSu16 pktrdlength;
2796
2797    ptr = skipDomainName(msg, ptr, end);
2798    if (!ptr) { debugf("skipResourceRecord: Malformed RR name"); return(mDNSNULL); }
2799
2800    if (ptr + 10 > end) { debugf("skipResourceRecord: Malformed RR -- no type/class/ttl/len!"); return(mDNSNULL); }
2801    pktrdlength = (mDNSu16)((mDNSu16)ptr[8] <<  8 | ptr[9]);
2802    ptr += 10;
2803    if (ptr + pktrdlength > end) { debugf("skipResourceRecord: RDATA exceeds end of packet"); return(mDNSNULL); }
2804
2805    return(ptr + pktrdlength);
2806}
2807
2808// Sanity check whether the NSEC/NSEC3 bitmap is good
2809mDNSlocal mDNSu8 *SanityCheckBitMap(const mDNSu8 *bmap, const mDNSu8 *end, int len)
2810{
2811    int win, wlen;
2812
2813    while (bmap < end)
2814    {
2815        if (len < 3)
2816        {
2817            LogInfo("SanityCheckBitMap: invalid length %d", len);
2818            return mDNSNULL;
2819        }
2820
2821        win = *bmap++;
2822        wlen = *bmap++;
2823        len -= 2;
2824        if (len < wlen || wlen < 1 || wlen > 32)
2825        {
2826            LogInfo("SanityCheckBitMap: invalid window length %d", wlen);
2827            return mDNSNULL;
2828        }
2829        if (win < 0 || win >= 256)
2830        {
2831            LogInfo("SanityCheckBitMap: invalid window %d", win);
2832            return mDNSNULL;
2833        }
2834
2835        bmap += wlen;
2836        len -= wlen;
2837    }
2838    return (mDNSu8 *)bmap;
2839}
2840
2841// This function is called with "msg" when we receive a DNS message and needs to parse a single resource record
2842// pointed to by "ptr". Some resource records like SOA, SRV are converted to host order and also expanded
2843// (domainnames are expanded to 255 bytes) when stored in memory.
2844//
2845// This function can also be called with "NULL" msg to parse a single resource record pointed to by ptr.
2846// The caller can do this only if the names in the resource records are compressed and validity of the
2847// resource record has already been done before. DNSSEC currently uses it this way.
2848mDNSexport mDNSBool SetRData(const DNSMessage *const msg, const mDNSu8 *ptr, const mDNSu8 *end,
2849    LargeCacheRecord *const largecr, mDNSu16 rdlength)
2850{
2851    CacheRecord *const rr = &largecr->r;
2852    RDataBody2 *const rdb = (RDataBody2 *)rr->smallrdatastorage.data;
2853
2854    switch (rr->resrec.rrtype)
2855    {
2856    case kDNSType_A:
2857        if (rdlength != sizeof(mDNSv4Addr))
2858            goto fail;
2859        rdb->ipv4.b[0] = ptr[0];
2860        rdb->ipv4.b[1] = ptr[1];
2861        rdb->ipv4.b[2] = ptr[2];
2862        rdb->ipv4.b[3] = ptr[3];
2863        break;
2864
2865    case kDNSType_NS:
2866    case kDNSType_MD:
2867    case kDNSType_MF:
2868    case kDNSType_CNAME:
2869    case kDNSType_MB:
2870    case kDNSType_MG:
2871    case kDNSType_MR:
2872    case kDNSType_PTR:
2873    case kDNSType_NSAP_PTR:
2874    case kDNSType_DNAME:
2875        if (msg)
2876        {
2877            ptr = getDomainName(msg, ptr, end, &rdb->name);
2878        }
2879        else
2880        {
2881            AssignDomainName(&rdb->name, (domainname *)ptr);
2882            ptr += DomainNameLength(&rdb->name);
2883        }
2884        if (ptr != end)
2885        {
2886            debugf("SetRData: Malformed CNAME/PTR RDATA name");
2887            goto fail;
2888        }
2889        break;
2890
2891    case kDNSType_SOA:
2892        if (msg)
2893        {
2894            ptr = getDomainName(msg, ptr, end, &rdb->soa.mname);
2895        }
2896        else
2897        {
2898            AssignDomainName(&rdb->soa.mname, (domainname *)ptr);
2899            ptr += DomainNameLength(&rdb->soa.mname);
2900        }
2901        if (!ptr)
2902        {
2903            debugf("SetRData: Malformed SOA RDATA mname");
2904            goto fail;
2905        }
2906        if (msg)
2907        {
2908            ptr = getDomainName(msg, ptr, end, &rdb->soa.rname);
2909        }
2910        else
2911        {
2912            AssignDomainName(&rdb->soa.rname, (domainname *)ptr);
2913            ptr += DomainNameLength(&rdb->soa.rname);
2914        }
2915        if (!ptr)
2916        {
2917            debugf("SetRData: Malformed SOA RDATA rname");
2918            goto fail;
2919        }
2920        if (ptr + 0x14 != end)
2921        {
2922            debugf("SetRData: Malformed SOA RDATA");
2923            goto fail;
2924        }
2925        rdb->soa.serial  = (mDNSs32) ((mDNSs32)ptr[0x00] << 24 | (mDNSs32)ptr[0x01] << 16 | (mDNSs32)ptr[0x02] << 8 | ptr[0x03]);
2926        rdb->soa.refresh = (mDNSu32) ((mDNSu32)ptr[0x04] << 24 | (mDNSu32)ptr[0x05] << 16 | (mDNSu32)ptr[0x06] << 8 | ptr[0x07]);
2927        rdb->soa.retry   = (mDNSu32) ((mDNSu32)ptr[0x08] << 24 | (mDNSu32)ptr[0x09] << 16 | (mDNSu32)ptr[0x0A] << 8 | ptr[0x0B]);
2928        rdb->soa.expire  = (mDNSu32) ((mDNSu32)ptr[0x0C] << 24 | (mDNSu32)ptr[0x0D] << 16 | (mDNSu32)ptr[0x0E] << 8 | ptr[0x0F]);
2929        rdb->soa.min     = (mDNSu32) ((mDNSu32)ptr[0x10] << 24 | (mDNSu32)ptr[0x11] << 16 | (mDNSu32)ptr[0x12] << 8 | ptr[0x13]);
2930        break;
2931
2932    case kDNSType_NULL:
2933    case kDNSType_HINFO:
2934    case kDNSType_TXT:
2935    case kDNSType_X25:
2936    case kDNSType_ISDN:
2937    case kDNSType_LOC:
2938    case kDNSType_DHCID:
2939        rr->resrec.rdlength = rdlength;
2940        mDNSPlatformMemCopy(rdb->data, ptr, rdlength);
2941        break;
2942
2943    case kDNSType_MX:
2944    case kDNSType_AFSDB:
2945    case kDNSType_RT:
2946    case kDNSType_KX:
2947        // Preference + domainname
2948        if (rdlength < 3)
2949            goto fail;
2950        rdb->mx.preference = (mDNSu16)((mDNSu16)ptr[0] <<  8 | ptr[1]);
2951        ptr += 2;
2952        if (msg)
2953        {
2954            ptr = getDomainName(msg, ptr, end, &rdb->mx.exchange);
2955        }
2956        else
2957        {
2958            AssignDomainName(&rdb->mx.exchange, (domainname *)ptr);
2959            ptr += DomainNameLength(&rdb->mx.exchange);
2960        }
2961        if (ptr != end)
2962        {
2963            debugf("SetRData: Malformed MX name");
2964            goto fail;
2965        }
2966        break;
2967
2968    case kDNSType_MINFO:
2969    case kDNSType_RP:
2970        // Domainname + domainname
2971        if (msg)
2972        {
2973            ptr = getDomainName(msg, ptr, end, &rdb->rp.mbox);
2974        }
2975        else
2976        {
2977            AssignDomainName(&rdb->rp.mbox, (domainname *)ptr);
2978            ptr += DomainNameLength(&rdb->rp.mbox);
2979        }
2980        if (!ptr)
2981        {
2982            debugf("SetRData: Malformed RP mbox");
2983            goto fail;
2984        }
2985        if (msg)
2986        {
2987            ptr = getDomainName(msg, ptr, end, &rdb->rp.txt);
2988        }
2989        else
2990        {
2991            AssignDomainName(&rdb->rp.txt, (domainname *)ptr);
2992            ptr += DomainNameLength(&rdb->rp.txt);
2993        }
2994        if (ptr != end)
2995        {
2996            debugf("SetRData: Malformed RP txt");
2997            goto fail;
2998        }
2999        break;
3000
3001    case kDNSType_PX:
3002        // Preference + domainname + domainname
3003        if (rdlength < 4)
3004            goto fail;
3005        rdb->px.preference = (mDNSu16)((mDNSu16)ptr[0] <<  8 | ptr[1]);
3006        ptr += 2;
3007        if (msg)
3008        {
3009            ptr = getDomainName(msg, ptr, end, &rdb->px.map822);
3010        }
3011        else
3012        {
3013            AssignDomainName(&rdb->px.map822, (domainname *)ptr);
3014            ptr += DomainNameLength(&rdb->px.map822);
3015        }
3016        if (!ptr)
3017        {
3018            debugf("SetRData: Malformed PX map822");
3019            goto fail;
3020        }
3021        if (msg)
3022        {
3023            ptr = getDomainName(msg, ptr, end, &rdb->px.mapx400);
3024        }
3025        else
3026        {
3027            AssignDomainName(&rdb->px.mapx400, (domainname *)ptr);
3028            ptr += DomainNameLength(&rdb->px.mapx400);
3029        }
3030        if (ptr != end)
3031        {
3032            debugf("SetRData: Malformed PX mapx400");
3033            goto fail;
3034        }
3035        break;
3036
3037    case kDNSType_AAAA:
3038        if (rdlength != sizeof(mDNSv6Addr))
3039            goto fail;
3040        mDNSPlatformMemCopy(&rdb->ipv6, ptr, sizeof(rdb->ipv6));
3041        break;
3042
3043    case kDNSType_SRV:
3044        // Priority + weight + port + domainname
3045        if (rdlength < 7)
3046            goto fail;
3047        rdb->srv.priority = (mDNSu16)((mDNSu16)ptr[0] <<  8 | ptr[1]);
3048        rdb->srv.weight   = (mDNSu16)((mDNSu16)ptr[2] <<  8 | ptr[3]);
3049        rdb->srv.port.b[0] = ptr[4];
3050        rdb->srv.port.b[1] = ptr[5];
3051        ptr += 6;
3052        if (msg)
3053        {
3054            ptr = getDomainName(msg, ptr, end, &rdb->srv.target);
3055        }
3056        else
3057        {
3058            AssignDomainName(&rdb->srv.target, (domainname *)ptr);
3059            ptr += DomainNameLength(&rdb->srv.target);
3060        }
3061        if (ptr != end)
3062        {
3063            debugf("SetRData: Malformed SRV RDATA name");
3064            goto fail;
3065        }
3066        break;
3067
3068    case kDNSType_NAPTR:
3069    {
3070        int savelen, len;
3071        domainname name;
3072        const mDNSu8 *orig = ptr;
3073
3074        // Make sure the data is parseable and within the limits. DNSSEC code looks at
3075        // the domain name in the end for a valid domainname.
3076        //
3077        // Fixed length: Order, preference (4 bytes)
3078        // Variable length: flags, service, regexp, domainname
3079
3080        if (rdlength < 8)
3081            goto fail;
3082        // Order, preference.
3083        ptr += 4;
3084        // Parse flags, Service and Regexp
3085        // length in the first byte does not include the length byte itself
3086        len = *ptr + 1;
3087        ptr += len;
3088        if (ptr >= end)
3089        {
3090            LogInfo("SetRData: Malformed NAPTR flags");
3091            goto fail;
3092        }
3093
3094        // Service
3095        len = *ptr + 1;
3096        ptr += len;
3097        if (ptr >= end)
3098        {
3099            LogInfo("SetRData: Malformed NAPTR service");
3100            goto fail;
3101        }
3102
3103        // Regexp
3104        len = *ptr + 1;
3105        ptr += len;
3106        if (ptr >= end)
3107        {
3108            LogInfo("SetRData: Malformed NAPTR regexp");
3109            goto fail;
3110        }
3111
3112        savelen = ptr - orig;
3113
3114        // RFC 2915 states that name compression is not allowed for this field. But RFC 3597
3115        // states that for NAPTR we should decompress. We make sure that we store the full
3116        // name rather than the compressed name
3117        if (msg)
3118        {
3119            ptr = getDomainName(msg, ptr, end, &name);
3120        }
3121        else
3122        {
3123            AssignDomainName(&name, (domainname *)ptr);
3124            ptr += DomainNameLength(&name);
3125        }
3126        if (ptr != end)
3127        {
3128            LogInfo("SetRData: Malformed NAPTR RDATA name");
3129            goto fail;
3130        }
3131
3132        rr->resrec.rdlength = savelen + DomainNameLength(&name);
3133        // The uncompressed size should not exceed the limits
3134        if (rr->resrec.rdlength > MaximumRDSize)
3135        {
3136            LogInfo("SetRData: Malformed NAPTR rdlength %d, rr->resrec.rdlength %d, "
3137                    "bmaplen %d, name %##s", rdlength, rr->resrec.rdlength, name.c);
3138            goto fail;
3139        }
3140        mDNSPlatformMemCopy(rdb->data, orig, savelen);
3141        AssignDomainName((domainname *)(rdb->data + savelen), &name);
3142        break;
3143    }
3144    case kDNSType_OPT:  {
3145        mDNSu8 *dataend     = rr->resrec.rdata->u.data;
3146        rdataOPT *opt = rr->resrec.rdata->u.opt;
3147        rr->resrec.rdlength = 0;
3148        while (ptr < end && (mDNSu8 *)(opt+1) < &dataend[MaximumRDSize])
3149        {
3150            const rdataOPT *const currentopt = opt;
3151            if (ptr + 4 > end) { LogInfo("SetRData: OPT RDATA ptr + 4 > end"); goto fail; }
3152            opt->opt    = (mDNSu16)((mDNSu16)ptr[0] <<  8 | ptr[1]);
3153            opt->optlen = (mDNSu16)((mDNSu16)ptr[2] <<  8 | ptr[3]);
3154            ptr += 4;
3155            if (ptr + opt->optlen > end) { LogInfo("SetRData: ptr + opt->optlen > end"); goto fail; }
3156            switch (opt->opt)
3157            {
3158            case kDNSOpt_LLQ:
3159                if (opt->optlen == DNSOpt_LLQData_Space - 4)
3160                {
3161                    opt->u.llq.vers  = (mDNSu16)((mDNSu16)ptr[0] <<  8 | ptr[1]);
3162                    opt->u.llq.llqOp = (mDNSu16)((mDNSu16)ptr[2] <<  8 | ptr[3]);
3163                    opt->u.llq.err   = (mDNSu16)((mDNSu16)ptr[4] <<  8 | ptr[5]);
3164                    mDNSPlatformMemCopy(opt->u.llq.id.b, ptr+6, 8);
3165                    opt->u.llq.llqlease = (mDNSu32) ((mDNSu32)ptr[14] << 24 | (mDNSu32)ptr[15] << 16 | (mDNSu32)ptr[16] << 8 | ptr[17]);
3166                    if (opt->u.llq.llqlease > 0x70000000UL / mDNSPlatformOneSecond)
3167                        opt->u.llq.llqlease = 0x70000000UL / mDNSPlatformOneSecond;
3168                    opt++;
3169                }
3170                break;
3171            case kDNSOpt_Lease:
3172                if (opt->optlen == DNSOpt_LeaseData_Space - 4)
3173                {
3174                    opt->u.updatelease = (mDNSu32) ((mDNSu32)ptr[0] << 24 | (mDNSu32)ptr[1] << 16 | (mDNSu32)ptr[2] << 8 | ptr[3]);
3175                    if (opt->u.updatelease > 0x70000000UL / mDNSPlatformOneSecond)
3176                        opt->u.updatelease = 0x70000000UL / mDNSPlatformOneSecond;
3177                    opt++;
3178                }
3179                break;
3180            case kDNSOpt_Owner:
3181                if (ValidOwnerLength(opt->optlen))
3182                {
3183                    opt->u.owner.vers = ptr[0];
3184                    opt->u.owner.seq  = ptr[1];
3185                    mDNSPlatformMemCopy(opt->u.owner.HMAC.b, ptr+2, 6);                         // 6-byte MAC address
3186                    mDNSPlatformMemCopy(opt->u.owner.IMAC.b, ptr+2, 6);                         // 6-byte MAC address
3187                    opt->u.owner.password = zeroEthAddr;
3188                    if (opt->optlen >= DNSOpt_OwnerData_ID_Wake_Space-4)
3189                    {
3190                        mDNSPlatformMemCopy(opt->u.owner.IMAC.b, ptr+8, 6);                     // 6-byte MAC address
3191                        // This mDNSPlatformMemCopy is safe because the ValidOwnerLength(opt->optlen) check above
3192                        // ensures that opt->optlen is no more than DNSOpt_OwnerData_ID_Wake_PW6_Space - 4
3193                        if (opt->optlen > DNSOpt_OwnerData_ID_Wake_Space-4)
3194                            mDNSPlatformMemCopy(opt->u.owner.password.b, ptr+14, opt->optlen - (DNSOpt_OwnerData_ID_Wake_Space-4));
3195                    }
3196                    opt++;
3197                }
3198                break;
3199            case kDNSOpt_Trace:
3200                if (opt->optlen == DNSOpt_TraceData_Space - 4)
3201                {
3202                    opt->u.tracer.platf   = ptr[0];
3203                    opt->u.tracer.mDNSv   = (mDNSu32) ((mDNSu32)ptr[1] << 24 | (mDNSu32)ptr[2] << 16 | (mDNSu32)ptr[3] << 8 | ptr[4]);
3204                    opt++;
3205                }
3206                else
3207                {
3208                    opt->u.tracer.platf   = 0xFF;
3209                    opt->u.tracer.mDNSv   = 0xFFFFFFFF;
3210                    opt++;
3211                }
3212                break;
3213            }
3214            ptr += currentopt->optlen;
3215        }
3216        rr->resrec.rdlength = (mDNSu16)((mDNSu8*)opt - rr->resrec.rdata->u.data);
3217        if (ptr != end) { LogInfo("SetRData: Malformed OptRdata"); goto fail; }
3218        break;
3219    }
3220
3221    case kDNSType_NSEC: {
3222        domainname name;
3223        int len = rdlength;
3224        int bmaplen, dlen;
3225        const mDNSu8 *orig = ptr;
3226        const mDNSu8 *bmap;
3227
3228        if (msg)
3229        {
3230            ptr = getDomainName(msg, ptr, end, &name);
3231        }
3232        else
3233        {
3234            AssignDomainName(&name, (domainname *)ptr);
3235            ptr += DomainNameLength(&name);
3236        }
3237        if (!ptr)
3238        {
3239            LogInfo("SetRData: Malformed NSEC nextname");
3240            goto fail;
3241        }
3242
3243        dlen = DomainNameLength(&name);
3244
3245        // Multicast NSECs use name compression for this field unlike the unicast case which
3246        // does not use compression. And multicast case always succeeds in compression. So,
3247        // the rdlength includes only the compressed space in that case. So, can't
3248        // use the DomainNameLength of name to reduce the length here.
3249        len -= (ptr - orig);
3250        bmaplen = len;                  // Save the length of the bitmap
3251        bmap = ptr;
3252        ptr = SanityCheckBitMap(bmap, end, len);
3253        if (!ptr)
3254            goto fail;
3255        if (ptr != end)
3256        {
3257            LogInfo("SetRData: Malformed NSEC length not right");
3258            goto fail;
3259        }
3260
3261        // Initialize the right length here. When we call SetNewRData below which in turn calls
3262        // GetRDLength and for NSEC case, it assumes that rdlength is intitialized
3263        rr->resrec.rdlength = DomainNameLength(&name) + bmaplen;
3264
3265        // Do we have space after the name expansion ?
3266        if (rr->resrec.rdlength > MaximumRDSize)
3267        {
3268            LogInfo("SetRData: Malformed NSEC rdlength %d, rr->resrec.rdlength %d, "
3269                    "bmaplen %d, name %##s", rdlength, rr->resrec.rdlength, name.c);
3270            goto fail;
3271        }
3272        AssignDomainName((domainname *)rdb->data, &name);
3273        mDNSPlatformMemCopy(rdb->data + dlen, bmap, bmaplen);
3274        break;
3275    }
3276    case kDNSType_NSEC3:
3277    {
3278        rdataNSEC3 *nsec3 = (rdataNSEC3 *)ptr;
3279        mDNSu8 *p = (mDNSu8 *)&nsec3->salt;
3280        int hashLength, bitmaplen;
3281
3282        if (rdlength < NSEC3_FIXED_SIZE + 1)
3283        {
3284            LogInfo("SetRData: NSEC3 too small length %d", rdlength);
3285            goto fail;
3286        }
3287        if (nsec3->alg != SHA1_DIGEST_TYPE)
3288        {
3289            LogInfo("SetRData: nsec3 alg %d not supported", nsec3->alg);
3290            goto fail;
3291        }
3292        if (swap16(nsec3->iterations) > NSEC3_MAX_ITERATIONS)
3293        {
3294            LogInfo("SetRData: nsec3 iteration count %d too big", swap16(nsec3->iterations));
3295            goto fail;
3296        }
3297        p += nsec3->saltLength;
3298        // There should at least be one byte beyond saltLength
3299        if (p >= end)
3300        {
3301            LogInfo("SetRData: nsec3 too small, at saltlength %d, p %p, end %p", nsec3->saltLength, p, end);
3302            goto fail;
3303        }
3304        // p is pointing at hashLength
3305        hashLength = (int)*p++;
3306        if (!hashLength)
3307        {
3308            LogInfo("SetRData: hashLength zero");
3309            goto fail;
3310        }
3311        p += hashLength;
3312        if (p > end)
3313        {
3314            LogInfo("SetRData: nsec3 too small, at hashLength %d, p %p, end %p", hashLength, p, end);
3315            goto fail;
3316        }
3317
3318        bitmaplen = rdlength - (int)(p - ptr);
3319        p = SanityCheckBitMap(p, end, bitmaplen);
3320        if (!p)
3321            goto fail;
3322        rr->resrec.rdlength = rdlength;
3323        mDNSPlatformMemCopy(rdb->data, ptr, rdlength);
3324        break;
3325    }
3326    case kDNSType_TKEY:
3327    case kDNSType_TSIG:
3328    {
3329        domainname name;
3330        int dlen, rlen;
3331
3332        // The name should not be compressed. But we take the conservative approach
3333        // and uncompress the name before we store it.
3334        if (msg)
3335        {
3336            ptr = getDomainName(msg, ptr, end, &name);
3337        }
3338        else
3339        {
3340            AssignDomainName(&name, (domainname *)ptr);
3341            ptr += DomainNameLength(&name);
3342        }
3343        if (!ptr)
3344        {
3345            LogInfo("SetRData: Malformed name for TSIG/TKEY type %d", rr->resrec.rrtype);
3346            goto fail;
3347        }
3348        dlen = DomainNameLength(&name);
3349        rlen = end - ptr;
3350        rr->resrec.rdlength = dlen + rlen;
3351        AssignDomainName((domainname *)rdb->data, &name);
3352        mDNSPlatformMemCopy(rdb->data + dlen, ptr, rlen);
3353        break;
3354    }
3355    case kDNSType_RRSIG:
3356    {
3357        const mDNSu8 *sig = ptr + RRSIG_FIXED_SIZE;
3358        const mDNSu8 *orig = sig;
3359        domainname name;
3360        if (rdlength < RRSIG_FIXED_SIZE + 1)
3361        {
3362            LogInfo("SetRData: RRSIG too small length %d", rdlength);
3363            goto fail;
3364        }
3365        if (msg)
3366        {
3367            sig = getDomainName(msg, sig, end, &name);
3368        }
3369        else
3370        {
3371            AssignDomainName(&name, (domainname *)sig);
3372            sig += DomainNameLength(&name);
3373        }
3374        if (!sig)
3375        {
3376            LogInfo("SetRData: Malformed RRSIG record");
3377            goto fail;
3378        }
3379
3380        if ((sig - orig) != DomainNameLength(&name))
3381        {
3382            LogInfo("SetRData: Malformed RRSIG record, signer name compression");
3383            goto fail;
3384        }
3385        // Just ensure that we have at least one byte of the signature
3386        if (sig + 1 >= end)
3387        {
3388            LogInfo("SetRData: Not enough bytes for signature type %d", rr->resrec.rrtype);
3389            goto fail;
3390        }
3391        rr->resrec.rdlength = rdlength;
3392        mDNSPlatformMemCopy(rdb->data, ptr, rdlength);
3393        break;
3394    }
3395    case kDNSType_DNSKEY:
3396    {
3397        if (rdlength < DNSKEY_FIXED_SIZE + 1)
3398        {
3399            LogInfo("SetRData: DNSKEY too small length %d", rdlength);
3400            goto fail;
3401        }
3402        rr->resrec.rdlength = rdlength;
3403        mDNSPlatformMemCopy(rdb->data, ptr, rdlength);
3404        break;
3405    }
3406    case kDNSType_DS:
3407    {
3408        if (rdlength < DS_FIXED_SIZE + 1)
3409        {
3410            LogInfo("SetRData: DS too small length %d", rdlength);
3411            goto fail;
3412        }
3413        rr->resrec.rdlength = rdlength;
3414        mDNSPlatformMemCopy(rdb->data, ptr, rdlength);
3415        break;
3416    }
3417    default:
3418        debugf("SetRData: Warning! Reading resource type %d (%s) as opaque data",
3419               rr->resrec.rrtype, DNSTypeName(rr->resrec.rrtype));
3420        // Note: Just because we don't understand the record type, that doesn't
3421        // mean we fail. The DNS protocol specifies rdlength, so we can
3422        // safely skip over unknown records and ignore them.
3423        // We also grab a binary copy of the rdata anyway, since the caller
3424        // might know how to interpret it even if we don't.
3425        rr->resrec.rdlength = rdlength;
3426        mDNSPlatformMemCopy(rdb->data, ptr, rdlength);
3427        break;
3428    }
3429    return mDNStrue;
3430fail:
3431    return mDNSfalse;
3432}
3433
3434mDNSexport const mDNSu8 *GetLargeResourceRecord(mDNS *const m, const DNSMessage *const msg, const mDNSu8 *ptr,
3435                                                const mDNSu8 *end, const mDNSInterfaceID InterfaceID, mDNSu8 RecordType, LargeCacheRecord *const largecr)
3436{
3437    CacheRecord *const rr = &largecr->r;
3438    mDNSu16 pktrdlength;
3439
3440    if (largecr == &m->rec && m->rec.r.resrec.RecordType)
3441        LogFatalError("GetLargeResourceRecord: m->rec appears to be already in use for %s", CRDisplayString(m, &m->rec.r));
3442
3443    rr->next              = mDNSNULL;
3444    rr->resrec.name       = &largecr->namestorage;
3445
3446    rr->NextInKAList      = mDNSNULL;
3447    rr->TimeRcvd          = m ? m->timenow : 0;
3448    rr->DelayDelivery     = 0;
3449    rr->NextRequiredQuery = m ? m->timenow : 0;     // Will be updated to the real value when we call SetNextCacheCheckTimeForRecord()
3450    rr->LastUsed          = m ? m->timenow : 0;
3451    rr->CRActiveQuestion  = mDNSNULL;
3452    rr->UnansweredQueries = 0;
3453    rr->LastUnansweredTime= 0;
3454#if ENABLE_MULTI_PACKET_QUERY_SNOOPING
3455    rr->MPUnansweredQ     = 0;
3456    rr->MPLastUnansweredQT= 0;
3457    rr->MPUnansweredKA    = 0;
3458    rr->MPExpectingKA     = mDNSfalse;
3459#endif
3460    rr->NextInCFList      = mDNSNULL;
3461
3462    rr->resrec.InterfaceID       = InterfaceID;
3463    rr->resrec.rDNSServer = mDNSNULL;
3464
3465    ptr = getDomainName(msg, ptr, end, &largecr->namestorage);      // Will bail out correctly if ptr is NULL
3466    if (!ptr) { debugf("GetLargeResourceRecord: Malformed RR name"); return(mDNSNULL); }
3467    rr->resrec.namehash = DomainNameHashValue(rr->resrec.name);
3468
3469    if (ptr + 10 > end) { debugf("GetLargeResourceRecord: Malformed RR -- no type/class/ttl/len!"); return(mDNSNULL); }
3470
3471    rr->resrec.rrtype            = (mDNSu16) ((mDNSu16)ptr[0] <<  8 | ptr[1]);
3472    rr->resrec.rrclass           = (mDNSu16)(((mDNSu16)ptr[2] <<  8 | ptr[3]) & kDNSClass_Mask);
3473    rr->resrec.rroriginalttl     = (mDNSu32) ((mDNSu32)ptr[4] << 24 | (mDNSu32)ptr[5] << 16 | (mDNSu32)ptr[6] << 8 | ptr[7]);
3474    if (rr->resrec.rroriginalttl > 0x70000000UL / mDNSPlatformOneSecond && (mDNSs32)rr->resrec.rroriginalttl != -1)
3475        rr->resrec.rroriginalttl = 0x70000000UL / mDNSPlatformOneSecond;
3476    // Note: We don't have to adjust m->NextCacheCheck here -- this is just getting a record into memory for
3477    // us to look at. If we decide to copy it into the cache, then we'll update m->NextCacheCheck accordingly.
3478    pktrdlength           = (mDNSu16)((mDNSu16)ptr[8] <<  8 | ptr[9]);
3479
3480    // If mDNS record has cache-flush bit set, we mark it unique
3481    // For uDNS records, all are implicitly deemed unique (a single DNS server is always
3482    // authoritative for the entire RRSet), unless this is a truncated response
3483    if (ptr[2] & (kDNSClass_UniqueRRSet >> 8) || (!InterfaceID && !(msg->h.flags.b[0] & kDNSFlag0_TC)))
3484        RecordType |= kDNSRecordTypePacketUniqueMask;
3485    ptr += 10;
3486    if (ptr + pktrdlength > end) { debugf("GetLargeResourceRecord: RDATA exceeds end of packet"); return(mDNSNULL); }
3487    end = ptr + pktrdlength;        // Adjust end to indicate the end of the rdata for this resource record
3488
3489    rr->resrec.rdata = (RData*)&rr->smallrdatastorage;
3490    rr->resrec.rdata->MaxRDLength = MaximumRDSize;
3491
3492    if (pktrdlength > MaximumRDSize)
3493    {
3494        LogInfo("GetLargeResourceRecord: %s rdata size (%d) exceeds storage (%d)",
3495                DNSTypeName(rr->resrec.rrtype), pktrdlength, rr->resrec.rdata->MaxRDLength);
3496        goto fail;
3497    }
3498
3499    if (!RecordType) LogMsg("GetLargeResourceRecord: No RecordType for %##s", rr->resrec.name->c);
3500
3501    // IMPORTANT: Any record type we understand and unpack into a structure containing domainnames needs to have corresponding
3502    // cases in SameRDataBody() and RDataHashValue() to do a semantic comparison (or checksum) of the structure instead of a blind
3503    // bitwise memory compare (or sum). This is because a domainname is a fixed size structure holding variable-length data.
3504    // Any bytes past the logical end of the name are undefined, and a blind bitwise memory compare may indicate that
3505    // two domainnames are different when semantically they are the same name and it's only the unused bytes that differ.
3506    if (rr->resrec.rrclass == kDNSQClass_ANY && pktrdlength == 0)   // Used in update packets to mean "Delete An RRset" (RFC 2136)
3507        rr->resrec.rdlength = 0;
3508    else if (!SetRData(msg, ptr, end, largecr, pktrdlength))
3509        goto fail;
3510
3511    SetNewRData(&rr->resrec, mDNSNULL, 0);      // Sets rdlength, rdestimate, rdatahash for us
3512
3513    // Success! Now fill in RecordType to show this record contains valid data
3514    rr->resrec.RecordType = RecordType;
3515    return(end);
3516
3517fail:
3518    // If we were unable to parse the rdata in this record, we indicate that by
3519    // returing a 'kDNSRecordTypePacketNegative' record with rdlength set to zero
3520    rr->resrec.RecordType = kDNSRecordTypePacketNegative;
3521    rr->resrec.rdlength   = 0;
3522    rr->resrec.rdestimate = 0;
3523    rr->resrec.rdatahash  = 0;
3524    return(end);
3525}
3526
3527mDNSexport const mDNSu8 *skipQuestion(const DNSMessage *msg, const mDNSu8 *ptr, const mDNSu8 *end)
3528{
3529    ptr = skipDomainName(msg, ptr, end);
3530    if (!ptr) { debugf("skipQuestion: Malformed domain name in DNS question section"); return(mDNSNULL); }
3531    if (ptr+4 > end) { debugf("skipQuestion: Malformed DNS question section -- no query type and class!"); return(mDNSNULL); }
3532    return(ptr+4);
3533}
3534
3535mDNSexport const mDNSu8 *getQuestion(const DNSMessage *msg, const mDNSu8 *ptr, const mDNSu8 *end, const mDNSInterfaceID InterfaceID,
3536                                     DNSQuestion *question)
3537{
3538    mDNSPlatformMemZero(question, sizeof(*question));
3539    question->InterfaceID = InterfaceID;
3540    if (!InterfaceID) question->TargetQID = onesID; // In DNSQuestions we use TargetQID as the indicator of whether it's unicast or multicast
3541    ptr = getDomainName(msg, ptr, end, &question->qname);
3542    if (!ptr) { debugf("Malformed domain name in DNS question section"); return(mDNSNULL); }
3543    if (ptr+4 > end) { debugf("Malformed DNS question section -- no query type and class!"); return(mDNSNULL); }
3544
3545    question->qnamehash = DomainNameHashValue(&question->qname);
3546    question->qtype  = (mDNSu16)((mDNSu16)ptr[0] << 8 | ptr[1]);            // Get type
3547    question->qclass = (mDNSu16)((mDNSu16)ptr[2] << 8 | ptr[3]);            // and class
3548    return(ptr+4);
3549}
3550
3551mDNSexport const mDNSu8 *LocateAnswers(const DNSMessage *const msg, const mDNSu8 *const end)
3552{
3553    int i;
3554    const mDNSu8 *ptr = msg->data;
3555    for (i = 0; i < msg->h.numQuestions && ptr; i++) ptr = skipQuestion(msg, ptr, end);
3556    return(ptr);
3557}
3558
3559mDNSexport const mDNSu8 *LocateAuthorities(const DNSMessage *const msg, const mDNSu8 *const end)
3560{
3561    int i;
3562    const mDNSu8 *ptr = LocateAnswers(msg, end);
3563    for (i = 0; i < msg->h.numAnswers && ptr; i++) ptr = skipResourceRecord(msg, ptr, end);
3564    return(ptr);
3565}
3566
3567mDNSexport const mDNSu8 *LocateAdditionals(const DNSMessage *const msg, const mDNSu8 *const end)
3568{
3569    int i;
3570    const mDNSu8 *ptr = LocateAuthorities(msg, end);
3571    for (i = 0; i < msg->h.numAuthorities; i++) ptr = skipResourceRecord(msg, ptr, end);
3572    return (ptr);
3573}
3574
3575mDNSexport const mDNSu8 *LocateOptRR(const DNSMessage *const msg, const mDNSu8 *const end, int minsize)
3576{
3577    int i;
3578    const mDNSu8 *ptr = LocateAdditionals(msg, end);
3579
3580    // Locate the OPT record.
3581    // According to RFC 2671, "One OPT pseudo-RR can be added to the additional data section of either a request or a response."
3582    // This implies that there may be *at most* one OPT record per DNS message, in the Additional Section,
3583    // but not necessarily the *last* entry in the Additional Section.
3584    for (i = 0; ptr && i < msg->h.numAdditionals; i++)
3585    {
3586        if (ptr + DNSOpt_Header_Space + minsize <= end &&   // Make sure we have 11+minsize bytes of data
3587            ptr[0] == 0                                &&   // Name must be root label
3588            ptr[1] == (kDNSType_OPT >> 8  )            &&   // rrtype OPT
3589            ptr[2] == (kDNSType_OPT & 0xFF)            &&
3590            ((mDNSu16)ptr[9] << 8 | (mDNSu16)ptr[10]) >= (mDNSu16)minsize)
3591            return(ptr);
3592        else
3593            ptr = skipResourceRecord(msg, ptr, end);
3594    }
3595    return(mDNSNULL);
3596}
3597
3598// On success, GetLLQOptData returns pointer to storage within shared "m->rec";
3599// it is caller's responsibilty to clear m->rec.r.resrec.RecordType after use
3600// Note: An OPT RDataBody actually contains one or more variable-length rdataOPT objects packed together
3601// The code that currently calls this assumes there's only one, instead of iterating through the set
3602mDNSexport const rdataOPT *GetLLQOptData(mDNS *const m, const DNSMessage *const msg, const mDNSu8 *const end)
3603{
3604    const mDNSu8 *ptr = LocateOptRR(msg, end, DNSOpt_LLQData_Space);
3605    if (ptr)
3606    {
3607        ptr = GetLargeResourceRecord(m, msg, ptr, end, 0, kDNSRecordTypePacketAdd, &m->rec);
3608        if (ptr && m->rec.r.resrec.RecordType != kDNSRecordTypePacketNegative) return(&m->rec.r.resrec.rdata->u.opt[0]);
3609    }
3610    return(mDNSNULL);
3611}
3612
3613// Get the lease life of records in a dynamic update
3614// returns 0 on error or if no lease present
3615mDNSexport mDNSu32 GetPktLease(mDNS *m, DNSMessage *msg, const mDNSu8 *end)
3616{
3617    mDNSu32 result = 0;
3618    const mDNSu8 *ptr = LocateOptRR(msg, end, DNSOpt_LeaseData_Space);
3619    if (ptr) ptr = GetLargeResourceRecord(m, msg, ptr, end, 0, kDNSRecordTypePacketAdd, &m->rec);
3620    if (ptr && m->rec.r.resrec.rdlength >= DNSOpt_LeaseData_Space && m->rec.r.resrec.rdata->u.opt[0].opt == kDNSOpt_Lease)
3621        result = m->rec.r.resrec.rdata->u.opt[0].u.updatelease;
3622    m->rec.r.resrec.RecordType = 0;     // Clear RecordType to show we're not still using it
3623    return(result);
3624}
3625
3626mDNSlocal const mDNSu8 *DumpRecords(mDNS *const m, const DNSMessage *const msg, const mDNSu8 *ptr, const mDNSu8 *const end, int count, char *label)
3627{
3628    int i;
3629    LogMsg("%2d %s", count, label);
3630    for (i = 0; i < count && ptr; i++)
3631    {
3632        // This puts a LargeCacheRecord on the stack instead of using the shared m->rec storage,
3633        // but since it's only used for debugging (and probably only on OS X, not on
3634        // embedded systems) putting a 9kB object on the stack isn't a big problem.
3635        LargeCacheRecord largecr;
3636        ptr = GetLargeResourceRecord(m, msg, ptr, end, mDNSInterface_Any, kDNSRecordTypePacketAns, &largecr);
3637        if (ptr) LogMsg("%2d TTL%8d %s", i, largecr.r.resrec.rroriginalttl, CRDisplayString(m, &largecr.r));
3638    }
3639    if (!ptr) LogMsg("DumpRecords: ERROR: Premature end of packet data");
3640    return(ptr);
3641}
3642
3643#define DNS_OP_Name(X) (                              \
3644        (X) == kDNSFlag0_OP_StdQuery ? ""         :       \
3645        (X) == kDNSFlag0_OP_Iquery   ? "Iquery "  :       \
3646        (X) == kDNSFlag0_OP_Status   ? "Status "  :       \
3647        (X) == kDNSFlag0_OP_Unused3  ? "Unused3 " :       \
3648        (X) == kDNSFlag0_OP_Notify   ? "Notify "  :       \
3649        (X) == kDNSFlag0_OP_Update   ? "Update "  : "?? " )
3650
3651#define DNS_RC_Name(X) (                             \
3652        (X) == kDNSFlag1_RC_NoErr    ? "NoErr"    :      \
3653        (X) == kDNSFlag1_RC_FormErr  ? "FormErr"  :      \
3654        (X) == kDNSFlag1_RC_ServFail ? "ServFail" :      \
3655        (X) == kDNSFlag1_RC_NXDomain ? "NXDomain" :      \
3656        (X) == kDNSFlag1_RC_NotImpl  ? "NotImpl"  :      \
3657        (X) == kDNSFlag1_RC_Refused  ? "Refused"  :      \
3658        (X) == kDNSFlag1_RC_YXDomain ? "YXDomain" :      \
3659        (X) == kDNSFlag1_RC_YXRRSet  ? "YXRRSet"  :      \
3660        (X) == kDNSFlag1_RC_NXRRSet  ? "NXRRSet"  :      \
3661        (X) == kDNSFlag1_RC_NotAuth  ? "NotAuth"  :      \
3662        (X) == kDNSFlag1_RC_NotZone  ? "NotZone"  : "??" )
3663
3664// Note: DumpPacket expects the packet header fields in host byte order, not network byte order
3665mDNSexport void DumpPacket(mDNS *const m, mStatus status, mDNSBool sent, char *transport,
3666                           const mDNSAddr *srcaddr, mDNSIPPort srcport,
3667                           const mDNSAddr *dstaddr, mDNSIPPort dstport, const DNSMessage *const msg, const mDNSu8 *const end)
3668{
3669    mDNSBool IsUpdate = ((msg->h.flags.b[0] & kDNSFlag0_OP_Mask) == kDNSFlag0_OP_Update);
3670    const mDNSu8 *ptr = msg->data;
3671    int i;
3672    DNSQuestion q;
3673    char tbuffer[64], sbuffer[64], dbuffer[64] = "";
3674    if (!status) tbuffer[mDNS_snprintf(tbuffer, sizeof(tbuffer), sent ? "Sent" : "Received"                        )] = 0;
3675    else tbuffer[mDNS_snprintf(tbuffer, sizeof(tbuffer), "ERROR %d %sing", status, sent ? "Send" : "Receive")] = 0;
3676    if (sent) sbuffer[mDNS_snprintf(sbuffer, sizeof(sbuffer), "port "        )] = 0;
3677    else sbuffer[mDNS_snprintf(sbuffer, sizeof(sbuffer), "%#a:", srcaddr)] = 0;
3678    if (dstaddr || !mDNSIPPortIsZero(dstport))
3679        dbuffer[mDNS_snprintf(dbuffer, sizeof(dbuffer), " to %#a:%d", dstaddr, mDNSVal16(dstport))] = 0;
3680
3681    LogMsg("-- %s %s DNS %s%s (flags %02X%02X) RCODE: %s (%d) %s%s%s%s%s%sID: %d %d bytes from %s%d%s%s --",
3682           tbuffer, transport,
3683           DNS_OP_Name(msg->h.flags.b[0] & kDNSFlag0_OP_Mask),
3684           msg->h.flags.b[0] & kDNSFlag0_QR_Response ? "Response" : "Query",
3685           msg->h.flags.b[0], msg->h.flags.b[1],
3686           DNS_RC_Name(msg->h.flags.b[1] & kDNSFlag1_RC_Mask),
3687           msg->h.flags.b[1] & kDNSFlag1_RC_Mask,
3688           msg->h.flags.b[0] & kDNSFlag0_AA ? "AA " : "",
3689           msg->h.flags.b[0] & kDNSFlag0_TC ? "TC " : "",
3690           msg->h.flags.b[0] & kDNSFlag0_RD ? "RD " : "",
3691           msg->h.flags.b[1] & kDNSFlag1_RA ? "RA " : "",
3692           msg->h.flags.b[1] & kDNSFlag1_AD ? "AD " : "",
3693           msg->h.flags.b[1] & kDNSFlag1_CD ? "CD " : "",
3694           mDNSVal16(msg->h.id),
3695           end - msg->data,
3696           sbuffer, mDNSVal16(srcport), dbuffer,
3697           (msg->h.flags.b[0] & kDNSFlag0_TC) ? " (truncated)" : ""
3698           );
3699
3700    LogMsg("%2d %s", msg->h.numQuestions, IsUpdate ? "Zone" : "Questions");
3701    for (i = 0; i < msg->h.numQuestions && ptr; i++)
3702    {
3703        ptr = getQuestion(msg, ptr, end, mDNSInterface_Any, &q);
3704        if (ptr) LogMsg("%2d %##s %s", i, q.qname.c, DNSTypeName(q.qtype));
3705    }
3706    ptr = DumpRecords(m, msg, ptr, end, msg->h.numAnswers,     IsUpdate ? "Prerequisites" : "Answers");
3707    ptr = DumpRecords(m, msg, ptr, end, msg->h.numAuthorities, IsUpdate ? "Updates"       : "Authorities");
3708          DumpRecords(m, msg, ptr, end, msg->h.numAdditionals, "Additionals");
3709    LogMsg("--------------");
3710}
3711
3712// ***************************************************************************
3713#if COMPILER_LIKES_PRAGMA_MARK
3714#pragma mark -
3715#pragma mark - Packet Sending Functions
3716#endif
3717
3718// Stub definition of TCPSocket_struct so we can access flags field. (Rest of TCPSocket_struct is platform-dependent.)
3719struct TCPSocket_struct { TCPSocketFlags flags; /* ... */ };
3720// Stub definition of UDPSocket_struct so we can access port field. (Rest of UDPSocket_struct is platform-dependent.)
3721struct UDPSocket_struct { mDNSIPPort     port;  /* ... */ };
3722
3723// Note: When we sign a DNS message using DNSDigest_SignMessage(), the current real-time clock value is used, which
3724// is why we generally defer signing until we send the message, to ensure the signature is as fresh as possible.
3725mDNSexport mStatus mDNSSendDNSMessage(mDNS *const m, DNSMessage *const msg, mDNSu8 *end,
3726                                      mDNSInterfaceID InterfaceID, UDPSocket *src, const mDNSAddr *dst,
3727                                      mDNSIPPort dstport, TCPSocket *sock, DomainAuthInfo *authInfo,
3728                                      mDNSBool useBackgroundTrafficClass)
3729{
3730    mStatus status = mStatus_NoError;
3731    const mDNSu16 numAdditionals = msg->h.numAdditionals;
3732    mDNSu8 *newend;
3733    mDNSu8 *limit = msg->data + AbsoluteMaxDNSMessageData;
3734
3735#if APPLE_OSX_mDNSResponder
3736    // maintain outbound packet statistics
3737    if (mDNSOpaque16IsZero(msg->h.id))
3738        m->MulticastPacketsSent++;
3739    else
3740        m->UnicastPacketsSent++;
3741#endif // APPLE_OSX_mDNSResponder
3742
3743    // Zero-length message data is okay (e.g. for a DNS Update ack, where all we need is an ID and an error code
3744    if (end < msg->data || end - msg->data > AbsoluteMaxDNSMessageData)
3745    {
3746        LogMsg("mDNSSendDNSMessage: invalid message %p %p %d", msg->data, end, end - msg->data);
3747        return mStatus_BadParamErr;
3748    }
3749
3750    newend = putHINFO(m, msg, end, authInfo, limit);
3751    if (!newend) LogMsg("mDNSSendDNSMessage: putHINFO failed msg %p end %p, limit %p", msg->data, end, limit); // Not fatal
3752    else end = newend;
3753
3754    // Put all the integer values in IETF byte-order (MSB first, LSB second)
3755    SwapDNSHeaderBytes(msg);
3756
3757    if (authInfo) DNSDigest_SignMessage(msg, &end, authInfo, 0);    // DNSDigest_SignMessage operates on message in network byte order
3758    if (!end) { LogMsg("mDNSSendDNSMessage: DNSDigest_SignMessage failed"); status = mStatus_NoMemoryErr; }
3759    else
3760    {
3761        // Send the packet on the wire
3762        if (!sock)
3763            status = mDNSPlatformSendUDP(m, msg, end, InterfaceID, src, dst, dstport, useBackgroundTrafficClass);
3764        else
3765        {
3766            mDNSu16 msglen = (mDNSu16)(end - (mDNSu8 *)msg);
3767            mDNSu8 lenbuf[2] = { (mDNSu8)(msglen >> 8), (mDNSu8)(msglen & 0xFF) };
3768            char *buf;
3769            long nsent;
3770
3771            // Try to send them in one packet if we can allocate enough memory
3772            buf = mDNSPlatformMemAllocate(msglen + 2);
3773            if (buf)
3774            {
3775                buf[0] = lenbuf[0];
3776                buf[1] = lenbuf[1];
3777                mDNSPlatformMemCopy(buf+2, msg, msglen);
3778                nsent = mDNSPlatformWriteTCP(sock, buf, msglen+2);
3779                if (nsent != (msglen + 2))
3780                {
3781                    LogMsg("mDNSSendDNSMessage: write message failed %d/%d", nsent, msglen);
3782                    status = mStatus_ConnFailed;
3783                }
3784                mDNSPlatformMemFree(buf);
3785            }
3786            else
3787            {
3788                nsent = mDNSPlatformWriteTCP(sock, (char*)lenbuf, 2);
3789                if (nsent != 2)
3790                {
3791                    LogMsg("mDNSSendDNSMessage: write msg length failed %d/%d", nsent, 2);
3792                    status = mStatus_ConnFailed;
3793                }
3794                else
3795                {
3796                    nsent = mDNSPlatformWriteTCP(sock, (char *)msg, msglen);
3797                    if (nsent != msglen)
3798                    {
3799                        LogMsg("mDNSSendDNSMessage: write msg body failed %d/%d", nsent, msglen);
3800                        status = mStatus_ConnFailed;
3801                    }
3802                }
3803            }
3804        }
3805    }
3806
3807    // Swap the integer values back the way they were (remember that numAdditionals may have been changed by putHINFO and/or SignMessage)
3808    SwapDNSHeaderBytes(msg);
3809
3810    // Dump the packet with the HINFO and TSIG
3811    if (mDNS_PacketLoggingEnabled && !mDNSOpaque16IsZero(msg->h.id))
3812        DumpPacket(m, status, mDNStrue, sock && (sock->flags & kTCPSocketFlags_UseTLS) ? "TLS" : sock ? "TCP" : "UDP", mDNSNULL, src ? src->port : MulticastDNSPort, dst, dstport, msg, end);
3813
3814    // put the number of additionals back the way it was
3815    msg->h.numAdditionals = numAdditionals;
3816
3817    return(status);
3818}
3819
3820// ***************************************************************************
3821#if COMPILER_LIKES_PRAGMA_MARK
3822#pragma mark -
3823#pragma mark - RR List Management & Task Management
3824#endif
3825
3826mDNSexport void mDNS_Lock_(mDNS *const m, const char * const functionname)
3827{
3828    // MUST grab the platform lock FIRST!
3829    mDNSPlatformLock(m);
3830
3831    // Normally, mDNS_reentrancy is zero and so is mDNS_busy
3832    // However, when we call a client callback mDNS_busy is one, and we increment mDNS_reentrancy too
3833    // If that client callback does mDNS API calls, mDNS_reentrancy and mDNS_busy will both be one
3834    // If mDNS_busy != mDNS_reentrancy that's a bad sign
3835    if (m->mDNS_busy != m->mDNS_reentrancy)
3836        LogFatalError("%s: mDNS_Lock: Locking failure! mDNS_busy (%ld) != mDNS_reentrancy (%ld)", functionname, m->mDNS_busy, m->mDNS_reentrancy);
3837
3838    // If this is an initial entry into the mDNSCore code, set m->timenow
3839    // else, if this is a re-entrant entry into the mDNSCore code, m->timenow should already be set
3840    if (m->mDNS_busy == 0)
3841    {
3842        if (m->timenow)
3843            LogMsg("%s: mDNS_Lock: m->timenow already set (%ld/%ld)", functionname, m->timenow, mDNS_TimeNow_NoLock(m));
3844        m->timenow = mDNS_TimeNow_NoLock(m);
3845        if (m->timenow == 0) m->timenow = 1;
3846    }
3847    else if (m->timenow == 0)
3848    {
3849        LogMsg("%s: mDNS_Lock: m->mDNS_busy is %ld but m->timenow not set", functionname, m->mDNS_busy);
3850        m->timenow = mDNS_TimeNow_NoLock(m);
3851        if (m->timenow == 0) m->timenow = 1;
3852    }
3853
3854    if (m->timenow_last - m->timenow > 0)
3855    {
3856        m->timenow_adjust += m->timenow_last - m->timenow;
3857        LogMsg("%s: mDNSPlatformRawTime went backwards by %ld ticks; setting correction factor to %ld", functionname, m->timenow_last - m->timenow, m->timenow_adjust);
3858        m->timenow = m->timenow_last;
3859    }
3860    m->timenow_last = m->timenow;
3861
3862    // Increment mDNS_busy so we'll recognise re-entrant calls
3863    m->mDNS_busy++;
3864}
3865
3866mDNSlocal AuthRecord *AnyLocalRecordReady(const mDNS *const m)
3867{
3868    AuthRecord *rr;
3869    for (rr = m->NewLocalRecords; rr; rr = rr->next)
3870        if (LocalRecordReady(rr)) return rr;
3871    return mDNSNULL;
3872}
3873
3874mDNSlocal mDNSs32 GetNextScheduledEvent(const mDNS *const m)
3875{
3876    mDNSs32 e = m->timenow + 0x78000000;
3877    if (m->mDNSPlatformStatus != mStatus_NoError) return(e);
3878    if (m->NewQuestions)
3879    {
3880        if (m->NewQuestions->DelayAnswering) e = m->NewQuestions->DelayAnswering;
3881        else return(m->timenow);
3882    }
3883    if (m->NewLocalOnlyQuestions) return(m->timenow);
3884    if (m->NewLocalRecords && AnyLocalRecordReady(m)) return(m->timenow);
3885    if (m->NewLocalOnlyRecords) return(m->timenow);
3886    if (m->SPSProxyListChanged) return(m->timenow);
3887    if (m->LocalRemoveEvents) return(m->timenow);
3888
3889#ifndef UNICAST_DISABLED
3890    if (e - m->NextuDNSEvent         > 0) e = m->NextuDNSEvent;
3891    if (e - m->NextScheduledNATOp    > 0) e = m->NextScheduledNATOp;
3892    if (m->NextSRVUpdate && e - m->NextSRVUpdate > 0) e = m->NextSRVUpdate;
3893#endif
3894
3895    if (e - m->NextCacheCheck        > 0) e = m->NextCacheCheck;
3896    if (e - m->NextScheduledSPS      > 0) e = m->NextScheduledSPS;
3897    if (e - m->NextScheduledKA       > 0) e = m->NextScheduledKA;
3898
3899    // NextScheduledSPRetry only valid when DelaySleep not set
3900    if (!m->DelaySleep && m->SleepLimit && e - m->NextScheduledSPRetry > 0) e = m->NextScheduledSPRetry;
3901    if (m->DelaySleep && e - m->DelaySleep > 0) e = m->DelaySleep;
3902
3903    if (m->SuppressSending)
3904    {
3905        if (e - m->SuppressSending       > 0) e = m->SuppressSending;
3906    }
3907    else
3908    {
3909        if (e - m->NextScheduledQuery    > 0) e = m->NextScheduledQuery;
3910        if (e - m->NextScheduledProbe    > 0) e = m->NextScheduledProbe;
3911        if (e - m->NextScheduledResponse > 0) e = m->NextScheduledResponse;
3912    }
3913    if (e - m->NextScheduledStopTime > 0) e = m->NextScheduledStopTime;
3914    return(e);
3915}
3916
3917#define LogTSE TSE++,LogMsg
3918
3919mDNSexport void ShowTaskSchedulingError(mDNS *const m)
3920{
3921    int TSE = 0;
3922    AuthRecord *rr;
3923    mDNS_Lock(m);
3924
3925    LogMsg("Task Scheduling Error: *** Continuously busy for more than a second");
3926
3927    // Note: To accurately diagnose *why* we're busy, the debugging code here needs to mirror the logic in GetNextScheduledEvent above
3928
3929    if (m->NewQuestions && (!m->NewQuestions->DelayAnswering || m->timenow - m->NewQuestions->DelayAnswering >= 0))
3930        LogTSE("Task Scheduling Error: NewQuestion %##s (%s)",
3931               m->NewQuestions->qname.c, DNSTypeName(m->NewQuestions->qtype));
3932
3933    if (m->NewLocalOnlyQuestions)
3934        LogTSE("Task Scheduling Error: NewLocalOnlyQuestions %##s (%s)",
3935               m->NewLocalOnlyQuestions->qname.c, DNSTypeName(m->NewLocalOnlyQuestions->qtype));
3936
3937    if (m->NewLocalRecords)
3938    {
3939        rr = AnyLocalRecordReady(m);
3940        if (rr) LogTSE("Task Scheduling Error: NewLocalRecords %s", ARDisplayString(m, rr));
3941    }
3942
3943    if (m->NewLocalOnlyRecords) LogTSE("Task Scheduling Error: NewLocalOnlyRecords");
3944
3945    if (m->SPSProxyListChanged) LogTSE("Task Scheduling Error: SPSProxyListChanged");
3946
3947    if (m->LocalRemoveEvents) LogTSE("Task Scheduling Error: LocalRemoveEvents");
3948
3949#ifndef UNICAST_DISABLED
3950    if (m->timenow - m->NextuDNSEvent         >= 0)
3951        LogTSE("Task Scheduling Error: m->NextuDNSEvent %d",         m->timenow - m->NextuDNSEvent);
3952    if (m->timenow - m->NextScheduledNATOp    >= 0)
3953        LogTSE("Task Scheduling Error: m->NextScheduledNATOp %d",    m->timenow - m->NextScheduledNATOp);
3954    if (m->NextSRVUpdate && m->timenow - m->NextSRVUpdate >= 0)
3955        LogTSE("Task Scheduling Error: m->NextSRVUpdate %d",         m->timenow - m->NextSRVUpdate);
3956#endif
3957
3958    if (m->timenow - m->NextCacheCheck        >= 0)
3959        LogTSE("Task Scheduling Error: m->NextCacheCheck %d",        m->timenow - m->NextCacheCheck);
3960    if (m->timenow - m->NextScheduledSPS      >= 0)
3961        LogTSE("Task Scheduling Error: m->NextScheduledSPS %d",      m->timenow - m->NextScheduledSPS);
3962    if (m->timenow - m->NextScheduledKA       >= 0)
3963        LogTSE("Task Scheduling Error: m->NextScheduledKA %d",      m->timenow - m->NextScheduledKA);
3964    if (!m->DelaySleep && m->SleepLimit && m->timenow - m->NextScheduledSPRetry >= 0)
3965        LogTSE("Task Scheduling Error: m->NextScheduledSPRetry %d",  m->timenow - m->NextScheduledSPRetry);
3966    if (m->DelaySleep && m->timenow - m->DelaySleep >= 0)
3967        LogTSE("Task Scheduling Error: m->DelaySleep %d",            m->timenow - m->DelaySleep);
3968
3969    if (m->SuppressSending && m->timenow - m->SuppressSending >= 0)
3970        LogTSE("Task Scheduling Error: m->SuppressSending %d",       m->timenow - m->SuppressSending);
3971    if (m->timenow - m->NextScheduledQuery    >= 0)
3972        LogTSE("Task Scheduling Error: m->NextScheduledQuery %d",    m->timenow - m->NextScheduledQuery);
3973    if (m->timenow - m->NextScheduledProbe    >= 0)
3974        LogTSE("Task Scheduling Error: m->NextScheduledProbe %d",    m->timenow - m->NextScheduledProbe);
3975    if (m->timenow - m->NextScheduledResponse >= 0)
3976        LogTSE("Task Scheduling Error: m->NextScheduledResponse %d", m->timenow - m->NextScheduledResponse);
3977    if (m->timenow - m->NextScheduledStopTime >= 0)
3978        LogTSE("Task Scheduling Error: m->NextScheduledStopTime %d", m->timenow - m->NextScheduledStopTime);
3979
3980    if (m->timenow - m->NextScheduledEvent    >= 0)
3981        LogTSE("Task Scheduling Error: m->NextScheduledEvent %d",    m->timenow - m->NextScheduledEvent);
3982
3983    if (m->NetworkChanged && m->timenow - m->NetworkChanged >= 0)
3984        LogTSE("Task Scheduling Error: NetworkChanged %d",           m->timenow - m->NetworkChanged);
3985
3986    if (!TSE) LogMsg("Task Scheduling Error: *** No likely causes identified");
3987    else LogMsg("Task Scheduling Error: *** %d potential cause%s identified (significant only if the same cause consistently appears)", TSE, TSE > 1 ? "s" : "");
3988
3989    mDNS_Unlock(m);
3990}
3991
3992mDNSexport void mDNS_Unlock_(mDNS *const m, const char *const functionname)
3993{
3994    // Decrement mDNS_busy
3995    m->mDNS_busy--;
3996
3997    // Check for locking failures
3998    if (m->mDNS_busy != m->mDNS_reentrancy)
3999        LogFatalError("%s: mDNS_Unlock: Locking failure! mDNS_busy (%ld) != mDNS_reentrancy (%ld)", functionname, m->mDNS_busy, m->mDNS_reentrancy);
4000
4001    // If this is a final exit from the mDNSCore code, set m->NextScheduledEvent and clear m->timenow
4002    if (m->mDNS_busy == 0)
4003    {
4004        m->NextScheduledEvent = GetNextScheduledEvent(m);
4005        if (m->timenow == 0) LogMsg("%s: mDNS_Unlock: ERROR! m->timenow aready zero", functionname);
4006        m->timenow = 0;
4007    }
4008
4009    // MUST release the platform lock LAST!
4010    mDNSPlatformUnlock(m);
4011}
4012
4013// ***************************************************************************
4014#if COMPILER_LIKES_PRAGMA_MARK
4015#pragma mark -
4016#pragma mark - Specialized mDNS version of vsnprintf
4017#endif
4018
4019static const struct mDNSprintf_format
4020{
4021    unsigned leftJustify : 1;
4022    unsigned forceSign : 1;
4023    unsigned zeroPad : 1;
4024    unsigned havePrecision : 1;
4025    unsigned hSize : 1;
4026    unsigned lSize : 1;
4027    char altForm;
4028    char sign;              // +, - or space
4029    unsigned int fieldWidth;
4030    unsigned int precision;
4031} mDNSprintf_format_default = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 };
4032
4033mDNSexport mDNSu32 mDNS_vsnprintf(char *sbuffer, mDNSu32 buflen, const char *fmt, va_list arg)
4034{
4035    mDNSu32 nwritten = 0;
4036    int c;
4037    if (buflen == 0) return(0);
4038    buflen--;       // Pre-reserve one space in the buffer for the terminating null
4039    if (buflen == 0) goto exit;
4040
4041    for (c = *fmt; c != 0; c = *++fmt)
4042    {
4043        if (c != '%')
4044        {
4045            *sbuffer++ = (char)c;
4046            if (++nwritten >= buflen) goto exit;
4047        }
4048        else
4049        {
4050            unsigned int i=0, j;
4051            // The mDNS Vsprintf Argument Conversion Buffer is used as a temporary holding area for
4052            // generating decimal numbers, hexdecimal numbers, IP addresses, domain name strings, etc.
4053            // The size needs to be enough for a 256-byte domain name plus some error text.
4054            #define mDNS_VACB_Size 300
4055            char mDNS_VACB[mDNS_VACB_Size];
4056            #define mDNS_VACB_Lim (&mDNS_VACB[mDNS_VACB_Size])
4057            #define mDNS_VACB_Remain(s) ((mDNSu32)(mDNS_VACB_Lim - s))
4058            char *s = mDNS_VACB_Lim, *digits;
4059            struct mDNSprintf_format F = mDNSprintf_format_default;
4060
4061            while (1)   //  decode flags
4062            {
4063                c = *++fmt;
4064                if      (c == '-') F.leftJustify = 1;
4065                else if (c == '+') F.forceSign = 1;
4066                else if (c == ' ') F.sign = ' ';
4067                else if (c == '#') F.altForm++;
4068                else if (c == '0') F.zeroPad = 1;
4069                else break;
4070            }
4071
4072            if (c == '*')   //  decode field width
4073            {
4074                int f = va_arg(arg, int);
4075                if (f < 0) { f = -f; F.leftJustify = 1; }
4076                F.fieldWidth = (unsigned int)f;
4077                c = *++fmt;
4078            }
4079            else
4080            {
4081                for (; c >= '0' && c <= '9'; c = *++fmt)
4082                    F.fieldWidth = (10 * F.fieldWidth) + (c - '0');
4083            }
4084
4085            if (c == '.')   //  decode precision
4086            {
4087                if ((c = *++fmt) == '*')
4088                { F.precision = va_arg(arg, unsigned int); c = *++fmt; }
4089                else for (; c >= '0' && c <= '9'; c = *++fmt)
4090                        F.precision = (10 * F.precision) + (c - '0');
4091                F.havePrecision = 1;
4092            }
4093
4094            if (F.leftJustify) F.zeroPad = 0;
4095
4096conv:
4097            switch (c)  //  perform appropriate conversion
4098            {
4099                unsigned long n;
4100            case 'h':  F.hSize = 1; c = *++fmt; goto conv;
4101            case 'l':       // fall through
4102            case 'L':  F.lSize = 1; c = *++fmt; goto conv;
4103            case 'd':
4104            case 'i':  if (F.lSize) n = (unsigned long)va_arg(arg, long);
4105                else n = (unsigned long)va_arg(arg, int);
4106                if (F.hSize) n = (short) n;
4107                if ((long) n < 0) { n = (unsigned long)-(long)n; F.sign = '-'; }
4108                else if (F.forceSign) F.sign = '+';
4109                goto decimal;
4110            case 'u':  if (F.lSize) n = va_arg(arg, unsigned long);
4111                else n = va_arg(arg, unsigned int);
4112                if (F.hSize) n = (unsigned short) n;
4113                F.sign = 0;
4114                goto decimal;
4115decimal:    if (!F.havePrecision)
4116                {
4117                    if (F.zeroPad)
4118                    {
4119                        F.precision = F.fieldWidth;
4120                        if (F.sign) --F.precision;
4121                    }
4122                    if (F.precision < 1) F.precision = 1;
4123                }
4124                if (F.precision > mDNS_VACB_Size - 1)
4125                    F.precision = mDNS_VACB_Size - 1;
4126                for (i = 0; n; n /= 10, i++) *--s = (char)(n % 10 + '0');
4127                for (; i < F.precision; i++) *--s = '0';
4128                if (F.sign) { *--s = F.sign; i++; }
4129                break;
4130
4131            case 'o':  if (F.lSize) n = va_arg(arg, unsigned long);
4132                else n = va_arg(arg, unsigned int);
4133                if (F.hSize) n = (unsigned short) n;
4134                if (!F.havePrecision)
4135                {
4136                    if (F.zeroPad) F.precision = F.fieldWidth;
4137                    if (F.precision < 1) F.precision = 1;
4138                }
4139                if (F.precision > mDNS_VACB_Size - 1)
4140                    F.precision = mDNS_VACB_Size - 1;
4141                for (i = 0; n; n /= 8, i++) *--s = (char)(n % 8 + '0');
4142                if (F.altForm && i && *s != '0') { *--s = '0'; i++; }
4143                for (; i < F.precision; i++) *--s = '0';
4144                break;
4145
4146            case 'a':  {
4147                unsigned char *a = va_arg(arg, unsigned char *);
4148                if (!a) { static char emsg[] = "<<NULL>>"; s = emsg; i = sizeof(emsg)-1; }
4149                else
4150                {
4151                    s = mDNS_VACB;              // Adjust s to point to the start of the buffer, not the end
4152                    if (F.altForm)
4153                    {
4154                        mDNSAddr *ip = (mDNSAddr*)a;
4155                        switch (ip->type)
4156                        {
4157                        case mDNSAddrType_IPv4: F.precision =  4; a = (unsigned char *)&ip->ip.v4; break;
4158                        case mDNSAddrType_IPv6: F.precision = 16; a = (unsigned char *)&ip->ip.v6; break;
4159                        default:                F.precision =  0; break;
4160                        }
4161                    }
4162                    if (F.altForm && !F.precision)
4163                        i = mDNS_snprintf(mDNS_VACB, sizeof(mDNS_VACB), "«ZERO ADDRESS»");
4164                    else switch (F.precision)
4165                        {
4166                        case  4: i = mDNS_snprintf(mDNS_VACB, sizeof(mDNS_VACB), "%d.%d.%d.%d",
4167                                                   a[0], a[1], a[2], a[3]); break;
4168                        case  6: i = mDNS_snprintf(mDNS_VACB, sizeof(mDNS_VACB), "%02X:%02X:%02X:%02X:%02X:%02X",
4169                                                   a[0], a[1], a[2], a[3], a[4], a[5]); break;
4170                        case 16: i = mDNS_snprintf(mDNS_VACB, sizeof(mDNS_VACB),
4171                                                   "%02X%02X:%02X%02X:%02X%02X:%02X%02X:%02X%02X:%02X%02X:%02X%02X:%02X%02X",
4172                                                   a[0x0], a[0x1], a[0x2], a[0x3], a[0x4], a[0x5], a[0x6], a[0x7],
4173                                                   a[0x8], a[0x9], a[0xA], a[0xB], a[0xC], a[0xD], a[0xE], a[0xF]); break;
4174                        default: i = mDNS_snprintf(mDNS_VACB, sizeof(mDNS_VACB), "%s", "<< ERROR: Must specify"
4175                                                   " address size (i.e. %.4a=IPv4, %.6a=Ethernet, %.16a=IPv6) >>"); break;
4176                        }
4177                }
4178            }
4179            break;
4180
4181            case 'p':  F.havePrecision = F.lSize = 1;
4182                F.precision = sizeof(void*) * 2;                // 8 characters on 32-bit; 16 characters on 64-bit
4183            case 'X':  digits = "0123456789ABCDEF";
4184                goto hexadecimal;
4185            case 'x':  digits = "0123456789abcdef";
4186hexadecimal: if (F.lSize) n = va_arg(arg, unsigned long);
4187                else n = va_arg(arg, unsigned int);
4188                if (F.hSize) n = (unsigned short) n;
4189                if (!F.havePrecision)
4190                {
4191                    if (F.zeroPad)
4192                    {
4193                        F.precision = F.fieldWidth;
4194                        if (F.altForm) F.precision -= 2;
4195                    }
4196                    if (F.precision < 1) F.precision = 1;
4197                }
4198                if (F.precision > mDNS_VACB_Size - 1)
4199                    F.precision = mDNS_VACB_Size - 1;
4200                for (i = 0; n; n /= 16, i++) *--s = digits[n % 16];
4201                for (; i < F.precision; i++) *--s = '0';
4202                if (F.altForm) { *--s = (char)c; *--s = '0'; i += 2; }
4203                break;
4204
4205            case 'c':  *--s = (char)va_arg(arg, int); i = 1; break;
4206
4207            case 's':  s = va_arg(arg, char *);
4208                if (!s) { static char emsg[] = "<<NULL>>"; s = emsg; i = sizeof(emsg)-1; }
4209                else switch (F.altForm)
4210                    {
4211                    case 0: i=0;
4212                        if (!F.havePrecision)                               // C string
4213                            while (s[i]) i++;
4214                        else
4215                        {
4216                            while ((i < F.precision) && s[i]) i++;
4217                            // Make sure we don't truncate in the middle of a UTF-8 character
4218                            // If last character we got was any kind of UTF-8 multi-byte character,
4219                            // then see if we have to back up.
4220                            // This is not as easy as the similar checks below, because
4221                            // here we can't assume it's safe to examine the *next* byte, so we
4222                            // have to confine ourselves to working only backwards in the string.
4223                            j = i;                      // Record where we got to
4224                            // Now, back up until we find first non-continuation-char
4225                            while (i>0 && (s[i-1] & 0xC0) == 0x80) i--;
4226                            // Now s[i-1] is the first non-continuation-char
4227                            // and (j-i) is the number of continuation-chars we found
4228                            if (i>0 && (s[i-1] & 0xC0) == 0xC0)                 // If we found a start-char
4229                            {
4230                                i--;                        // Tentatively eliminate this start-char as well
4231                                // Now (j-i) is the number of characters we're considering eliminating.
4232                                // To be legal UTF-8, the start-char must contain (j-i) one-bits,
4233                                // followed by a zero bit. If we shift it right by (7-(j-i)) bits
4234                                // (with sign extension) then the result has to be 0xFE.
4235                                // If this is right, then we reinstate the tentatively eliminated bytes.
4236                                if (((j-i) < 7) && (((s[i] >> (7-(j-i))) & 0xFF) == 0xFE)) i = j;
4237                            }
4238                        }
4239                        break;
4240                    case 1: i = (unsigned char) *s++; break;                // Pascal string
4241                    case 2: {                                               // DNS label-sequence name
4242                        unsigned char *a = (unsigned char *)s;
4243                        s = mDNS_VACB;                  // Adjust s to point to the start of the buffer, not the end
4244                        if (*a == 0) *s++ = '.';                    // Special case for root DNS name
4245                        while (*a)
4246                        {
4247                            char buf[63*4+1];
4248                            if (*a > 63)
4249                            { s += mDNS_snprintf(s, mDNS_VACB_Remain(s), "<<INVALID LABEL LENGTH %u>>", *a); break; }
4250                            if (s + *a >= &mDNS_VACB[254])
4251                            { s += mDNS_snprintf(s, mDNS_VACB_Remain(s), "<<NAME TOO LONG>>"); break; }
4252                            // Need to use ConvertDomainLabelToCString to do proper escaping here,
4253                            // so it's clear what's a literal dot and what's a label separator
4254                            ConvertDomainLabelToCString((domainlabel*)a, buf);
4255                            s += mDNS_snprintf(s, mDNS_VACB_Remain(s), "%s.", buf);
4256                            a += 1 + *a;
4257                        }
4258                        i = (mDNSu32)(s - mDNS_VACB);
4259                        s = mDNS_VACB;                  // Reset s back to the start of the buffer
4260                        break;
4261                    }
4262                    }
4263                // Make sure we don't truncate in the middle of a UTF-8 character (see similar comment below)
4264                if (F.havePrecision && i > F.precision)
4265                { i = F.precision; while (i>0 && (s[i] & 0xC0) == 0x80) i--;}
4266                break;
4267
4268            case 'n':  s = va_arg(arg, char *);
4269                if      (F.hSize) *(short *) s = (short)nwritten;
4270                else if (F.lSize) *(long  *) s = (long)nwritten;
4271                else *(int   *) s = (int)nwritten;
4272                continue;
4273
4274            default:    s = mDNS_VACB;
4275                i = mDNS_snprintf(mDNS_VACB, sizeof(mDNS_VACB), "<<UNKNOWN FORMAT CONVERSION CODE %%%c>>", c);
4276
4277            case '%':  *sbuffer++ = (char)c;
4278                if (++nwritten >= buflen) goto exit;
4279                break;
4280            }
4281
4282            if (i < F.fieldWidth && !F.leftJustify)         // Pad on the left
4283                do  {
4284                    *sbuffer++ = ' ';
4285                    if (++nwritten >= buflen) goto exit;
4286                } while (i < --F.fieldWidth);
4287
4288            // Make sure we don't truncate in the middle of a UTF-8 character.
4289            // Note: s[i] is the first eliminated character; i.e. the next character *after* the last character of the
4290            // allowed output. If s[i] is a UTF-8 continuation character, then we've cut a unicode character in half,
4291            // so back up 'i' until s[i] is no longer a UTF-8 continuation character. (if the input was proprly
4292            // formed, s[i] will now be the UTF-8 start character of the multi-byte character we just eliminated).
4293            if (i > buflen - nwritten)
4294            { i = buflen - nwritten; while (i>0 && (s[i] & 0xC0) == 0x80) i--;}
4295            for (j=0; j<i; j++) *sbuffer++ = *s++;          // Write the converted result
4296            nwritten += i;
4297            if (nwritten >= buflen) goto exit;
4298
4299            for (; i < F.fieldWidth; i++)                   // Pad on the right
4300            {
4301                *sbuffer++ = ' ';
4302                if (++nwritten >= buflen) goto exit;
4303            }
4304        }
4305    }
4306exit:
4307    *sbuffer++ = 0;
4308    return(nwritten);
4309}
4310
4311mDNSexport mDNSu32 mDNS_snprintf(char *sbuffer, mDNSu32 buflen, const char *fmt, ...)
4312{
4313    mDNSu32 length;
4314
4315    va_list ptr;
4316    va_start(ptr,fmt);
4317    length = mDNS_vsnprintf(sbuffer, buflen, fmt, ptr);
4318    va_end(ptr);
4319
4320    return(length);
4321}
Note: See TracBrowser for help on using the repository browser.