source: rtems-libbsd/mDNSResponder/mDNSCore/DNSCommon.c @ a814950

55-freebsd-126-freebsd-12
Last change on this file since a814950 was a814950, checked in by Sebastian Huber <sebastian.huber@…>, on 09/19/18 at 06:55:35

mDNSResponder: Update to v765.50.9

The sources can be obtained via:

https://opensource.apple.com/tarballs/mDNSResponder/mDNSResponder-765.50.9.tar.gz

Update #3522.

  • Property mode set to 100644
File size: 185.5 KB
Line 
1/* -*- Mode: C; tab-width: 4 -*-
2 *
3 * Copyright (c) 2002-2015 Apple Inc. All rights reserved.
4 *
5 * Licensed under the Apache License, Version 2.0 (the "License");
6 * you may not use this file except in compliance with the License.
7 * You may obtain a copy of the License at
8 *
9 *     http://www.apache.org/licenses/LICENSE-2.0
10 *
11 * Unless required by applicable law or agreed to in writing, software
12 * distributed under the License is distributed on an "AS IS" BASIS,
13 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14 * See the License for the specific language governing permissions and
15 * limitations under the License.
16 */
17
18// Set mDNS_InstantiateInlines to tell mDNSEmbeddedAPI.h to instantiate inline functions, if necessary
19#define mDNS_InstantiateInlines 1
20#include "DNSCommon.h"
21#include "CryptoAlg.h"
22#include "anonymous.h"
23
24// Disable certain benign warnings with Microsoft compilers
25#if (defined(_MSC_VER))
26// Disable "conditional expression is constant" warning for debug macros.
27// Otherwise, this generates warnings for the perfectly natural construct "while(1)"
28// If someone knows a variant way of writing "while(1)" that doesn't generate warning messages, please let us know
29    #pragma warning(disable:4127)
30// Disable "array is too small to include a terminating null character" warning
31// -- domain labels have an initial length byte, not a terminating null character
32    #pragma warning(disable:4295)
33#endif
34
35// ***************************************************************************
36#if COMPILER_LIKES_PRAGMA_MARK
37#pragma mark - Program Constants
38#endif
39
40mDNSexport const mDNSInterfaceID mDNSInterface_Any       = 0;
41mDNSexport const mDNSInterfaceID mDNSInterfaceMark       = (mDNSInterfaceID)-1;
42mDNSexport const mDNSInterfaceID mDNSInterface_LocalOnly = (mDNSInterfaceID)-2;
43mDNSexport const mDNSInterfaceID mDNSInterface_Unicast   = (mDNSInterfaceID)-3;
44mDNSexport const mDNSInterfaceID mDNSInterface_P2P       = (mDNSInterfaceID)-4;
45mDNSexport const mDNSInterfaceID uDNSInterfaceMark       = (mDNSInterfaceID)-5;
46mDNSexport const mDNSInterfaceID mDNSInterface_BLE       = (mDNSInterfaceID)-6;
47
48// Note: Microsoft's proposed "Link Local Multicast Name Resolution Protocol" (LLMNR) is essentially a limited version of
49// Multicast DNS, using the same packet formats, naming syntax, and record types as Multicast DNS, but on a different UDP
50// port and multicast address, which means it won't interoperate with the existing installed base of Multicast DNS responders.
51// LLMNR uses IPv4 multicast address 224.0.0.252, IPv6 multicast address FF02::0001:0003, and UDP port 5355.
52// Uncomment the appropriate lines below to build a special Multicast DNS responder for testing interoperability
53// with Microsoft's LLMNR client code.
54
55#define   DiscardPortAsNumber               9
56#define   SSHPortAsNumber                  22
57#define   UnicastDNSPortAsNumber           53
58#define   SSDPPortAsNumber               1900
59#define   IPSECPortAsNumber              4500
60#define   NSIPCPortAsNumber              5030       // Port used for dnsextd to talk to local nameserver bound to loopback
61#define   NATPMPAnnouncementPortAsNumber 5350
62#define   NATPMPPortAsNumber             5351
63#define   DNSEXTPortAsNumber             5352       // Port used for end-to-end DNS operations like LLQ, Updates with Leases, etc.
64#define   MulticastDNSPortAsNumber       5353
65#define   LoopbackIPCPortAsNumber        5354
66//#define MulticastDNSPortAsNumber       5355           // LLMNR
67#define   PrivateDNSPortAsNumber         5533
68
69mDNSexport const mDNSIPPort DiscardPort            = { { DiscardPortAsNumber            >> 8, DiscardPortAsNumber            & 0xFF } };
70mDNSexport const mDNSIPPort SSHPort                = { { SSHPortAsNumber                >> 8, SSHPortAsNumber                & 0xFF } };
71mDNSexport const mDNSIPPort UnicastDNSPort         = { { UnicastDNSPortAsNumber         >> 8, UnicastDNSPortAsNumber         & 0xFF } };
72mDNSexport const mDNSIPPort SSDPPort               = { { SSDPPortAsNumber               >> 8, SSDPPortAsNumber               & 0xFF } };
73mDNSexport const mDNSIPPort IPSECPort              = { { IPSECPortAsNumber              >> 8, IPSECPortAsNumber              & 0xFF } };
74mDNSexport const mDNSIPPort NSIPCPort              = { { NSIPCPortAsNumber              >> 8, NSIPCPortAsNumber              & 0xFF } };
75mDNSexport const mDNSIPPort NATPMPAnnouncementPort = { { NATPMPAnnouncementPortAsNumber >> 8, NATPMPAnnouncementPortAsNumber & 0xFF } };
76mDNSexport const mDNSIPPort NATPMPPort             = { { NATPMPPortAsNumber             >> 8, NATPMPPortAsNumber             & 0xFF } };
77mDNSexport const mDNSIPPort DNSEXTPort             = { { DNSEXTPortAsNumber             >> 8, DNSEXTPortAsNumber             & 0xFF } };
78mDNSexport const mDNSIPPort MulticastDNSPort       = { { MulticastDNSPortAsNumber       >> 8, MulticastDNSPortAsNumber       & 0xFF } };
79mDNSexport const mDNSIPPort LoopbackIPCPort        = { { LoopbackIPCPortAsNumber        >> 8, LoopbackIPCPortAsNumber        & 0xFF } };
80mDNSexport const mDNSIPPort PrivateDNSPort         = { { PrivateDNSPortAsNumber         >> 8, PrivateDNSPortAsNumber         & 0xFF } };
81
82mDNSexport const OwnerOptData zeroOwner         = { 0, 0, { { 0 } }, { { 0 } }, { { 0 } } };
83
84mDNSexport const mDNSIPPort zeroIPPort        = { { 0 } };
85mDNSexport const mDNSv4Addr zerov4Addr        = { { 0 } };
86mDNSexport const mDNSv6Addr zerov6Addr        = { { 0 } };
87mDNSexport const mDNSEthAddr zeroEthAddr       = { { 0 } };
88mDNSexport const mDNSv4Addr onesIPv4Addr      = { { 255, 255, 255, 255 } };
89mDNSexport const mDNSv6Addr onesIPv6Addr      = { { 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255 } };
90mDNSexport const mDNSEthAddr onesEthAddr       = { { 255, 255, 255, 255, 255, 255 } };
91mDNSexport const mDNSAddr zeroAddr          = { mDNSAddrType_None, {{{ 0 }}} };
92
93mDNSexport const mDNSv4Addr AllDNSAdminGroup   = { { 239, 255, 255, 251 } };
94mDNSexport const mDNSv4Addr AllHosts_v4        = { { 224,   0,   0,   1 } };  // For NAT-PMP & PCP Annoucements
95mDNSexport const mDNSv6Addr AllHosts_v6        = { { 0xFF,0x02,0x00,0x00, 0x00,0x00,0x00,0x00, 0x00,0x00,0x00,0x00, 0x00,0x00,0x00,0x01 } };
96mDNSexport const mDNSv6Addr NDP_prefix         = { { 0xFF,0x02,0x00,0x00, 0x00,0x00,0x00,0x00, 0x00,0x00,0x00,0x01, 0xFF,0x00,0x00,0xFB } };  // FF02:0:0:0:0:1:FF00::/104
97mDNSexport const mDNSEthAddr AllHosts_v6_Eth    = { { 0x33, 0x33, 0x00, 0x00, 0x00, 0x01 } };
98mDNSexport const mDNSAddr AllDNSLinkGroup_v4 = { mDNSAddrType_IPv4, { { { 224,   0,   0, 251 } } } };
99//mDNSexport const mDNSAddr  AllDNSLinkGroup_v4 = { mDNSAddrType_IPv4, { { { 224,   0,   0, 252 } } } }; // LLMNR
100mDNSexport const mDNSAddr AllDNSLinkGroup_v6 = { mDNSAddrType_IPv6, { { { 0xFF,0x02,0x00,0x00, 0x00,0x00,0x00,0x00, 0x00,0x00,0x00,0x00, 0x00,0x00,0x00,0xFB } } } };
101//mDNSexport const mDNSAddr  AllDNSLinkGroup_v6 = { mDNSAddrType_IPv6, { { { 0xFF,0x02,0x00,0x00, 0x00,0x00,0x00,0x00, 0x00,0x00,0x00,0x00, 0x00,0x01,0x00,0x03 } } } }; // LLMNR
102
103mDNSexport const mDNSOpaque16 zeroID          = { { 0, 0 } };
104mDNSexport const mDNSOpaque16 onesID          = { { 255, 255 } };
105mDNSexport const mDNSOpaque16 QueryFlags      = { { kDNSFlag0_QR_Query    | kDNSFlag0_OP_StdQuery,                0 } };
106mDNSexport const mDNSOpaque16 uQueryFlags     = { { kDNSFlag0_QR_Query    | kDNSFlag0_OP_StdQuery | kDNSFlag0_RD, 0 } };
107mDNSexport const mDNSOpaque16 DNSSecQFlags    = { { kDNSFlag0_QR_Query    | kDNSFlag0_OP_StdQuery | kDNSFlag0_RD, kDNSFlag1_CD } };
108mDNSexport const mDNSOpaque16 ResponseFlags   = { { kDNSFlag0_QR_Response | kDNSFlag0_OP_StdQuery | kDNSFlag0_AA, 0 } };
109mDNSexport const mDNSOpaque16 UpdateReqFlags  = { { kDNSFlag0_QR_Query    | kDNSFlag0_OP_Update,                  0 } };
110mDNSexport const mDNSOpaque16 UpdateRespFlags = { { kDNSFlag0_QR_Response | kDNSFlag0_OP_Update,                  0 } };
111mDNSexport const mDNSOpaque16 SubscribeFlags  = { { kDNSFlag0_QR_Query    | kDNSFlag0_OP_Subscribe, 0 } };
112mDNSexport const mDNSOpaque16 UnSubscribeFlags= { { kDNSFlag0_QR_Query    | kDNSFlag0_OP_UnSubscribe, 0 } };
113
114mDNSexport const mDNSOpaque64 zeroOpaque64    = { { 0 } };
115
116// ***************************************************************************
117#if COMPILER_LIKES_PRAGMA_MARK
118#pragma mark -
119#pragma mark - General Utility Functions
120#endif
121
122// return true for RFC1918 private addresses
123mDNSexport mDNSBool mDNSv4AddrIsRFC1918(const mDNSv4Addr * const addr)
124{
125    return ((addr->b[0] == 10) ||                                 // 10/8 prefix
126            (addr->b[0] == 172 && (addr->b[1] & 0xF0) == 16) ||   // 172.16/12
127            (addr->b[0] == 192 && addr->b[1] == 168));            // 192.168/16
128}
129
130mDNSexport void mDNSAddrMapIPv4toIPv6(mDNSv4Addr* in, mDNSv6Addr* out)
131{
132    out->l[0] = 0;
133    out->l[1] = 0;
134    out->w[4] = 0;
135    out->w[5] = 0xffff;
136    out->b[12] = in->b[0];
137    out->b[13] = in->b[1];
138    out->b[14] = in->b[2];
139    out->b[15] = in->b[3];
140}
141
142mDNSexport mDNSBool mDNSAddrIPv4FromMappedIPv6(mDNSv6Addr *in, mDNSv4Addr* out)
143{
144    if (in->l[0] != 0 || in->l[1] != 0 || in->w[4] != 0 || in->w[5] != 0xffff)
145        return mDNSfalse;
146
147    out->NotAnInteger = in->l[3];
148    return mDNStrue;
149}
150
151mDNSexport NetworkInterfaceInfo *GetFirstActiveInterface(NetworkInterfaceInfo *intf)
152{
153    while (intf && !intf->InterfaceActive) intf = intf->next;
154    return(intf);
155}
156
157mDNSexport mDNSInterfaceID GetNextActiveInterfaceID(const NetworkInterfaceInfo *intf)
158{
159    const NetworkInterfaceInfo *next = GetFirstActiveInterface(intf->next);
160    if (next) return(next->InterfaceID);else return(mDNSNULL);
161}
162
163mDNSexport mDNSu32 NumCacheRecordsForInterfaceID(const mDNS *const m, mDNSInterfaceID id)
164{
165    mDNSu32 slot, used = 0;
166    CacheGroup *cg;
167    const CacheRecord *rr;
168    FORALL_CACHERECORDS(slot, cg, rr)
169    {
170        if (rr->resrec.InterfaceID == id)
171            used++;
172    }
173    return(used);
174}
175
176mDNSexport char *DNSTypeName(mDNSu16 rrtype)
177{
178    switch (rrtype)
179    {
180    case kDNSType_A:    return("Addr");
181    case kDNSType_NS:   return("NS");
182    case kDNSType_CNAME: return("CNAME");
183    case kDNSType_SOA:  return("SOA");
184    case kDNSType_NULL: return("NULL");
185    case kDNSType_PTR:  return("PTR");
186    case kDNSType_HINFO: return("HINFO");
187    case kDNSType_TXT:  return("TXT");
188    case kDNSType_AAAA: return("AAAA");
189    case kDNSType_SRV:  return("SRV");
190    case kDNSType_OPT:  return("OPT");
191    case kDNSType_NSEC: return("NSEC");
192    case kDNSType_NSEC3: return("NSEC3");
193    case kDNSType_NSEC3PARAM: return("NSEC3PARAM");
194    case kDNSType_TSIG: return("TSIG");
195    case kDNSType_RRSIG: return("RRSIG");
196    case kDNSType_DNSKEY: return("DNSKEY");
197    case kDNSType_DS: return("DS");
198    case kDNSQType_ANY: return("ANY");
199    default:            {
200        static char buffer[16];
201        mDNS_snprintf(buffer, sizeof(buffer), "TYPE%d", rrtype);
202        return(buffer);
203    }
204    }
205}
206
207mDNSlocal char *DNSSECAlgName(mDNSu8 alg)
208{
209    switch (alg)
210    {
211    case CRYPTO_RSA_SHA1: return "RSA_SHA1";
212    case CRYPTO_DSA_NSEC3_SHA1: return "DSA_NSEC3_SHA1";
213    case CRYPTO_RSA_NSEC3_SHA1: return "RSA_NSEC3_SHA1";
214    case CRYPTO_RSA_SHA256: return "RSA_SHA256";
215    case CRYPTO_RSA_SHA512: return "RSA_SHA512";
216    default: {
217        static char algbuffer[16];
218        mDNS_snprintf(algbuffer, sizeof(algbuffer), "ALG%d", alg);
219        return(algbuffer);
220    }
221    }
222}
223
224mDNSlocal char *DNSSECDigestName(mDNSu8 digest)
225{
226    switch (digest)
227    {
228    case SHA1_DIGEST_TYPE: return "SHA1";
229    case SHA256_DIGEST_TYPE: return "SHA256";
230    default:
231        {
232        static char digbuffer[16];
233        mDNS_snprintf(digbuffer, sizeof(digbuffer), "DIG%d", digest);
234        return(digbuffer);
235        }
236    }
237}
238
239mDNSexport mDNSu32 swap32(mDNSu32 x)
240{
241    mDNSu8 *ptr = (mDNSu8 *)&x;
242    return (mDNSu32)((mDNSu32)ptr[0] << 24 | (mDNSu32)ptr[1] << 16 | (mDNSu32)ptr[2] << 8 | ptr[3]);
243}
244
245mDNSexport mDNSu16 swap16(mDNSu16 x)
246{
247    mDNSu8 *ptr = (mDNSu8 *)&x;
248    return (mDNSu16)((mDNSu16)ptr[0] << 8 | ptr[1]);
249}
250
251// RFC 4034 Appendix B: Get the keyid of a DNS KEY. It is not transmitted
252// explicitly on the wire.
253//
254// Note: This just helps narrow down the list of keys to look at. It is possible
255// for two DNS keys to have the same ID i.e., key ID is not a unqiue tag. We ignore
256// MD5 keys.
257//
258// 1st argument - the RDATA part of the DNSKEY RR
259// 2nd argument - the RDLENGTH
260//
261mDNSlocal mDNSu32 keytag(mDNSu8 *key, mDNSu32 keysize)
262{
263    unsigned long ac;
264    unsigned int i;
265
266    for (ac = 0, i = 0; i < keysize; ++i)
267        ac += (i & 1) ? key[i] : key[i] << 8;
268    ac += (ac >> 16) & 0xFFFF;
269    return ac & 0xFFFF;
270}
271
272mDNSexport int baseEncode(char *buffer, int blen, const mDNSu8 *data, int len, int encAlg)
273{
274    AlgContext *ctx;
275    mDNSu8 *outputBuffer;
276    int length;
277
278    ctx = AlgCreate(ENC_ALG, encAlg);
279    if (!ctx)
280    {
281        LogMsg("baseEncode: AlgCreate failed\n");
282        return 0;
283    }
284    AlgAdd(ctx, data, len);
285    outputBuffer = AlgEncode(ctx);
286    length = 0;
287    if (outputBuffer)
288    {
289        // Note: don't include any spaces in the format string below. This
290        // is also used by NSEC3 code for proving non-existence where it
291        // needs the base32 encoding without any spaces etc.
292        length = mDNS_snprintf(buffer, blen, "%s", outputBuffer);
293    }
294    AlgDestroy(ctx);
295    return length;
296}
297
298mDNSlocal void PrintTypeBitmap(const mDNSu8 *bmap, int bitmaplen, char *const buffer, mDNSu32 length)
299{
300    int win, wlen, type;
301
302    while (bitmaplen > 0)
303    {
304        int i;
305
306        if (bitmaplen < 3)
307        {
308            LogMsg("PrintTypeBitmap: malformed bitmap, bitmaplen %d short", bitmaplen);
309            break;
310        }
311
312        win = *bmap++;
313        wlen = *bmap++;
314        bitmaplen -= 2;
315        if (bitmaplen < wlen || wlen < 1 || wlen > 32)
316        {
317            LogInfo("PrintTypeBitmap: malformed nsec, bitmaplen %d wlen %d", bitmaplen, wlen);
318            break;
319        }
320        if (win < 0 || win >= 256)
321        {
322            LogInfo("PrintTypeBitmap: malformed nsec, bad window win %d", win);
323            break;
324        }
325        type = win * 256;
326        for (i = 0; i < wlen * 8; i++)
327        {
328            if (bmap[i>>3] & (128 >> (i&7)))
329                length += mDNS_snprintf(buffer+length, (MaxMsg - 1) - length, "%s ", DNSTypeName(type + i));
330        }
331        bmap += wlen;
332        bitmaplen -= wlen;
333    }
334}
335
336// Parse the fields beyond the base header. NSEC3 should have been validated.
337mDNSexport void NSEC3Parse(const ResourceRecord *const rr, mDNSu8 **salt, int *hashLength, mDNSu8 **nxtName, int *bitmaplen, mDNSu8 **bitmap)
338{
339        const RDataBody2 *const rdb = (RDataBody2 *)rr->rdata->u.data;
340        rdataNSEC3 *nsec3 = (rdataNSEC3 *)rdb->data;
341    mDNSu8 *p = (mDNSu8 *)&nsec3->salt;
342    int hlen;
343
344    if (salt)
345    {
346        if (nsec3->saltLength)
347            *salt = p;
348        else
349            *salt = mDNSNULL;
350    }
351    p += nsec3->saltLength;
352    // p is pointing at hashLength
353    hlen = (int)*p;
354    if (hashLength)
355        *hashLength = hlen;
356    p++;
357    if (nxtName)
358        *nxtName = p;
359    p += hlen;
360    if (bitmaplen)
361        *bitmaplen = rr->rdlength - (int)(p - rdb->data);
362    if (bitmap)
363        *bitmap = p;
364}
365
366// Note slight bug: this code uses the rdlength from the ResourceRecord object, to display
367// the rdata from the RDataBody object. Sometimes this could be the wrong length -- but as
368// long as this routine is only used for debugging messages, it probably isn't a big problem.
369mDNSexport char *GetRRDisplayString_rdb(const ResourceRecord *const rr, const RDataBody *const rd1, char *const buffer)
370{
371    const RDataBody2 *const rd = (RDataBody2 *)rd1;
372    #define RemSpc (MaxMsg-1-length)
373    char *ptr = buffer;
374    mDNSu32 length = mDNS_snprintf(buffer, MaxMsg-1, "%4d %##s %s ", rr->rdlength, rr->name->c, DNSTypeName(rr->rrtype));
375    if (rr->RecordType == kDNSRecordTypePacketNegative) return(buffer);
376    if (!rr->rdlength && rr->rrtype != kDNSType_OPT) { mDNS_snprintf(buffer+length, RemSpc, "<< ZERO RDATA LENGTH >>"); return(buffer); }
377
378    switch (rr->rrtype)
379    {
380    case kDNSType_A:    mDNS_snprintf(buffer+length, RemSpc, "%.4a", &rd->ipv4);          break;
381
382    case kDNSType_NS:       // Same as PTR
383    case kDNSType_CNAME:    // Same as PTR
384    case kDNSType_PTR:  mDNS_snprintf(buffer+length, RemSpc, "%##s", rd->name.c);       break;
385
386    case kDNSType_SOA:  mDNS_snprintf(buffer+length, RemSpc, "%##s %##s %d %d %d %d %d",
387                                      rd->soa.mname.c, rd->soa.rname.c,
388                                      rd->soa.serial, rd->soa.refresh, rd->soa.retry, rd->soa.expire, rd->soa.min);
389        break;
390
391    case kDNSType_HINFO:    // Display this the same as TXT (show all constituent strings)
392    case kDNSType_TXT:  {
393        const mDNSu8 *t = rd->txt.c;
394        while (t < rd->txt.c + rr->rdlength)
395        {
396            length += mDNS_snprintf(buffer+length, RemSpc, "%s%#s", t > rd->txt.c ? "Š" : "", t);
397            t += 1 + t[0];
398        }
399    } break;
400
401    case kDNSType_AAAA: mDNS_snprintf(buffer+length, RemSpc, "%.16a", &rd->ipv6);       break;
402    case kDNSType_SRV:  mDNS_snprintf(buffer+length, RemSpc, "%u %u %u %##s",
403                                      rd->srv.priority, rd->srv.weight, mDNSVal16(rd->srv.port), rd->srv.target.c); break;
404
405    case kDNSType_OPT:  {
406        const rdataOPT *opt;
407        const rdataOPT *const end = (const rdataOPT *)&rd->data[rr->rdlength];
408        length += mDNS_snprintf(buffer+length, RemSpc, "Max %d", rr->rrclass);
409        for (opt = &rd->opt[0]; opt < end; opt++)
410        {
411            switch(opt->opt)
412            {
413            case kDNSOpt_LLQ:
414                length += mDNS_snprintf(buffer+length, RemSpc, " LLQ");
415                length += mDNS_snprintf(buffer+length, RemSpc, " Vers %d",     opt->u.llq.vers);
416                length += mDNS_snprintf(buffer+length, RemSpc, " Op %d",       opt->u.llq.llqOp);
417                length += mDNS_snprintf(buffer+length, RemSpc, " Err/Port %d", opt->u.llq.err);
418                length += mDNS_snprintf(buffer+length, RemSpc, " ID %08X%08X", opt->u.llq.id.l[0], opt->u.llq.id.l[1]);
419                length += mDNS_snprintf(buffer+length, RemSpc, " Lease %d",    opt->u.llq.llqlease);
420                break;
421            case kDNSOpt_Lease:
422                length += mDNS_snprintf(buffer+length, RemSpc, " Lease %d",    opt->u.updatelease);
423                break;
424            case kDNSOpt_Owner:
425                length += mDNS_snprintf(buffer+length, RemSpc, " Owner");
426                length += mDNS_snprintf(buffer+length, RemSpc, " Vers %d",     opt->u.owner.vers);
427                length += mDNS_snprintf(buffer+length, RemSpc, " Seq %3d", (mDNSu8)opt->u.owner.seq);                           // Display as unsigned
428                length += mDNS_snprintf(buffer+length, RemSpc, " MAC %.6a",    opt->u.owner.HMAC.b);
429                if (opt->optlen >= DNSOpt_OwnerData_ID_Wake_Space-4)
430                {
431                    length += mDNS_snprintf(buffer+length, RemSpc, " I-MAC %.6a", opt->u.owner.IMAC.b);
432                    if (opt->optlen > DNSOpt_OwnerData_ID_Wake_Space-4)
433                        length += mDNS_snprintf(buffer+length, RemSpc, " Password %.6a", opt->u.owner.password.b);
434                }
435                break;
436            case kDNSOpt_Trace:
437                length += mDNS_snprintf(buffer+length, RemSpc, " Trace");
438                length += mDNS_snprintf(buffer+length, RemSpc, " Platform %d",    opt->u.tracer.platf);
439                length += mDNS_snprintf(buffer+length, RemSpc, " mDNSVers %d",    opt->u.tracer.mDNSv);
440                break;
441            default:
442                length += mDNS_snprintf(buffer+length, RemSpc, " Unknown %d",  opt->opt);
443                break;
444            }
445        }
446    }
447    break;
448
449    case kDNSType_NSEC: {
450        domainname *next = (domainname *)rd->data;
451        int len, bitmaplen;
452        mDNSu8 *bmap;
453        len = DomainNameLength(next);
454        bitmaplen = rr->rdlength - len;
455        bmap = (mDNSu8 *)((mDNSu8 *)next + len);
456
457        if (UNICAST_NSEC(rr))
458            length += mDNS_snprintf(buffer+length, RemSpc, "%##s ", next->c);
459        PrintTypeBitmap(bmap, bitmaplen, buffer, length);
460
461    }
462    break;
463    case kDNSType_NSEC3: {
464        rdataNSEC3 *nsec3 = (rdataNSEC3 *)rd->data;
465        const mDNSu8 *p = (mDNSu8 *)&nsec3->salt;
466        int hashLength, bitmaplen, i;
467
468        length += mDNS_snprintf(buffer+length, RemSpc, "\t%s  %d  %d ",
469                                DNSSECDigestName(nsec3->alg), nsec3->flags, swap16(nsec3->iterations));
470       
471        if (!nsec3->saltLength)
472        {
473            length += mDNS_snprintf(buffer+length, RemSpc, "-");
474        }
475        else
476        {
477            for (i = 0; i < nsec3->saltLength; i++)
478            {
479                length += mDNS_snprintf(buffer+length, RemSpc, "%x", p[i]);
480            }
481        }
482
483        // put a space at the end
484        length += mDNS_snprintf(buffer+length, RemSpc, " ");
485
486        p += nsec3->saltLength;
487        // p is pointing at hashLength
488        hashLength = (int)*p++;
489       
490        length += baseEncode(buffer + length, RemSpc, p, hashLength, ENC_BASE32);
491
492        // put a space at the end
493        length += mDNS_snprintf(buffer+length, RemSpc, " ");
494
495        p += hashLength;
496        bitmaplen = rr->rdlength - (int)(p - rd->data);
497        PrintTypeBitmap(p, bitmaplen, buffer, length);
498    }
499    break;
500    case kDNSType_RRSIG:    {
501        rdataRRSig *rrsig = (rdataRRSig *)rd->data;
502        mDNSu8 expTimeBuf[64];
503        mDNSu8 inceptTimeBuf[64];
504        unsigned long inceptClock;
505        unsigned long expClock;
506        int len;
507
508        expClock = (unsigned long)swap32(rrsig->sigExpireTime);
509        mDNSPlatformFormatTime(expClock, expTimeBuf, sizeof(expTimeBuf));
510
511        inceptClock = (unsigned long)swap32(rrsig->sigInceptTime);
512        mDNSPlatformFormatTime(inceptClock, inceptTimeBuf, sizeof(inceptTimeBuf));
513
514        length += mDNS_snprintf(buffer+length, RemSpc, "\t%s  %s  %d  %d  %s  %s  %d  %##s ",
515                                DNSTypeName(swap16(rrsig->typeCovered)), DNSSECAlgName(rrsig->alg), rrsig->labels, swap32(rrsig->origTTL),
516                                expTimeBuf, inceptTimeBuf, swap16(rrsig->keyTag), rrsig->signerName);
517
518        len = DomainNameLength((domainname *)&rrsig->signerName);
519        baseEncode(buffer + length, RemSpc, (const mDNSu8 *)(rd->data + len + RRSIG_FIXED_SIZE),
520                               rr->rdlength - (len + RRSIG_FIXED_SIZE), ENC_BASE64);
521    }
522    break;
523    case kDNSType_DNSKEY:   {
524        rdataDNSKey *rrkey = (rdataDNSKey *)rd->data;
525        length += mDNS_snprintf(buffer+length, RemSpc, "\t%d  %d  %s  %u ", swap16(rrkey->flags), rrkey->proto,
526                                DNSSECAlgName(rrkey->alg), (unsigned int)keytag((mDNSu8 *)rrkey, rr->rdlength));
527        baseEncode(buffer + length, RemSpc, (const mDNSu8 *)(rd->data + DNSKEY_FIXED_SIZE),
528                               rr->rdlength - DNSKEY_FIXED_SIZE, ENC_BASE64);
529    }
530    break;
531    case kDNSType_DS:       {
532        mDNSu8 *p;
533        int i;
534        rdataDS *rrds = (rdataDS *)rd->data;
535
536        length += mDNS_snprintf(buffer+length, RemSpc, "\t%s\t%d\t%s ", DNSSECAlgName(rrds->alg), swap16(rrds->keyTag),
537                                DNSSECDigestName(rrds->digestType));
538
539        p = (mDNSu8 *)(rd->data + DS_FIXED_SIZE);
540        for (i = 0; i < (rr->rdlength - DS_FIXED_SIZE); i++)
541        {
542            length += mDNS_snprintf(buffer+length, RemSpc, "%x", p[i]);
543        }
544    }
545    break;
546
547    default:            mDNS_snprintf(buffer+length, RemSpc, "RDLen %d: %.*s", rr->rdlength, rr->rdlength, rd->data);
548        // Really should scan buffer to check if text is valid UTF-8 and only replace with dots if not
549        for (ptr = buffer; *ptr; ptr++) if (*ptr < ' ') *ptr = '.';
550        break;
551    }
552    return(buffer);
553}
554
555// See comments in mDNSEmbeddedAPI.h
556#if _PLATFORM_HAS_STRONG_PRNG_
557#define mDNSRandomNumber mDNSPlatformRandomNumber
558#else
559mDNSlocal mDNSu32 mDNSRandomFromSeed(mDNSu32 seed)
560{
561    return seed * 21 + 1;
562}
563
564mDNSlocal mDNSu32 mDNSMixRandomSeed(mDNSu32 seed, mDNSu8 iteration)
565{
566    return iteration ? mDNSMixRandomSeed(mDNSRandomFromSeed(seed), --iteration) : seed;
567}
568
569mDNSlocal mDNSu32 mDNSRandomNumber()
570{
571    static mDNSBool seeded = mDNSfalse;
572    static mDNSu32 seed = 0;
573    if (!seeded)
574    {
575        seed = mDNSMixRandomSeed(mDNSPlatformRandomSeed(), 100);
576        seeded = mDNStrue;
577    }
578    return (seed = mDNSRandomFromSeed(seed));
579}
580#endif // ! _PLATFORM_HAS_STRONG_PRNG_
581
582mDNSexport mDNSu32 mDNSRandom(mDNSu32 max)      // Returns pseudo-random result from zero to max inclusive
583{
584    mDNSu32 ret = 0;
585    mDNSu32 mask = 1;
586
587    while (mask < max) mask = (mask << 1) | 1;
588
589    do ret = mDNSRandomNumber() & mask;
590    while (ret > max);
591
592    return ret;
593}
594
595mDNSexport mDNSBool mDNSSameAddress(const mDNSAddr *ip1, const mDNSAddr *ip2)
596{
597    if (ip1->type == ip2->type)
598    {
599        switch (ip1->type)
600        {
601        case mDNSAddrType_None: return(mDNStrue);      // Empty addresses have no data and are therefore always equal
602        case mDNSAddrType_IPv4: return (mDNSBool)(mDNSSameIPv4Address(ip1->ip.v4, ip2->ip.v4));
603        case mDNSAddrType_IPv6: return (mDNSBool)(mDNSSameIPv6Address(ip1->ip.v6, ip2->ip.v6));
604        }
605    }
606    return(mDNSfalse);
607}
608
609mDNSexport mDNSBool mDNSAddrIsDNSMulticast(const mDNSAddr *ip)
610{
611    switch(ip->type)
612    {
613    case mDNSAddrType_IPv4: return (mDNSBool)(mDNSSameIPv4Address(ip->ip.v4, AllDNSLinkGroup_v4.ip.v4));
614    case mDNSAddrType_IPv6: return (mDNSBool)(mDNSSameIPv6Address(ip->ip.v6, AllDNSLinkGroup_v6.ip.v6));
615    default: return(mDNSfalse);
616    }
617}
618
619// ***************************************************************************
620#if COMPILER_LIKES_PRAGMA_MARK
621#pragma mark -
622#pragma mark - Domain Name Utility Functions
623#endif
624
625mDNSexport mDNSBool SameDomainLabel(const mDNSu8 *a, const mDNSu8 *b)
626{
627    int i;
628    const int len = *a++;
629
630    if (len > MAX_DOMAIN_LABEL)
631    { debugf("Malformed label (too long)"); return(mDNSfalse); }
632
633    if (len != *b++) return(mDNSfalse);
634    for (i=0; i<len; i++)
635    {
636        mDNSu8 ac = *a++;
637        mDNSu8 bc = *b++;
638        if (mDNSIsUpperCase(ac)) ac += 'a' - 'A';
639        if (mDNSIsUpperCase(bc)) bc += 'a' - 'A';
640        if (ac != bc) return(mDNSfalse);
641    }
642    return(mDNStrue);
643}
644
645mDNSexport mDNSBool SameDomainName(const domainname *const d1, const domainname *const d2)
646{
647    const mDNSu8 *      a   = d1->c;
648    const mDNSu8 *      b   = d2->c;
649    const mDNSu8 *const max = d1->c + MAX_DOMAIN_NAME;          // Maximum that's valid
650
651    while (*a || *b)
652    {
653        if (a + 1 + *a >= max)
654        { debugf("Malformed domain name (more than 256 characters)"); return(mDNSfalse); }
655        if (!SameDomainLabel(a, b)) return(mDNSfalse);
656        a += 1 + *a;
657        b += 1 + *b;
658    }
659
660    return(mDNStrue);
661}
662
663mDNSexport mDNSBool SameDomainNameCS(const domainname *const d1, const domainname *const d2)
664{
665    mDNSu16 l1 = DomainNameLength(d1);
666    mDNSu16 l2 = DomainNameLength(d2);
667    return(l1 <= MAX_DOMAIN_NAME && l1 == l2 && mDNSPlatformMemSame(d1, d2, l1));
668}
669
670mDNSexport mDNSBool IsLocalDomain(const domainname *d)
671{
672    // Domains that are defined to be resolved via link-local multicast are:
673    // local., 254.169.in-addr.arpa., and {8,9,A,B}.E.F.ip6.arpa.
674    static const domainname *nL = (const domainname*)"\x5" "local";
675    static const domainname *nR = (const domainname*)"\x3" "254" "\x3" "169"         "\x7" "in-addr" "\x4" "arpa";
676    static const domainname *n8 = (const domainname*)"\x1" "8"   "\x1" "e" "\x1" "f" "\x3" "ip6"     "\x4" "arpa";
677    static const domainname *n9 = (const domainname*)"\x1" "9"   "\x1" "e" "\x1" "f" "\x3" "ip6"     "\x4" "arpa";
678    static const domainname *nA = (const domainname*)"\x1" "a"   "\x1" "e" "\x1" "f" "\x3" "ip6"     "\x4" "arpa";
679    static const domainname *nB = (const domainname*)"\x1" "b"   "\x1" "e" "\x1" "f" "\x3" "ip6"     "\x4" "arpa";
680
681    const domainname *d1, *d2, *d3, *d4, *d5;   // Top-level domain, second-level domain, etc.
682    d1 = d2 = d3 = d4 = d5 = mDNSNULL;
683    while (d->c[0])
684    {
685        d5 = d4; d4 = d3; d3 = d2; d2 = d1; d1 = d;
686        d = (const domainname*)(d->c + 1 + d->c[0]);
687    }
688
689    if (d1 && SameDomainName(d1, nL)) return(mDNStrue);
690    if (d4 && SameDomainName(d4, nR)) return(mDNStrue);
691    if (d5 && SameDomainName(d5, n8)) return(mDNStrue);
692    if (d5 && SameDomainName(d5, n9)) return(mDNStrue);
693    if (d5 && SameDomainName(d5, nA)) return(mDNStrue);
694    if (d5 && SameDomainName(d5, nB)) return(mDNStrue);
695    return(mDNSfalse);
696}
697
698mDNSexport const mDNSu8 *LastLabel(const domainname *d)
699{
700    const mDNSu8 *p = d->c;
701    while (d->c[0])
702    {
703        p = d->c;
704        d = (const domainname*)(d->c + 1 + d->c[0]);
705    }
706    return(p);
707}
708
709// Returns length of a domain name INCLUDING the byte for the final null label
710// e.g. for the root label "." it returns one
711// For the FQDN "com." it returns 5 (length byte, three data bytes, final zero)
712// Legal results are 1 (just root label) to 256 (MAX_DOMAIN_NAME)
713// If the given domainname is invalid, result is 257 (MAX_DOMAIN_NAME+1)
714mDNSexport mDNSu16 DomainNameLengthLimit(const domainname *const name, const mDNSu8 *limit)
715{
716    const mDNSu8 *src = name->c;
717    while (src < limit && *src <= MAX_DOMAIN_LABEL)
718    {
719        if (*src == 0) return((mDNSu16)(src - name->c + 1));
720        src += 1 + *src;
721    }
722    return(MAX_DOMAIN_NAME+1);
723}
724
725// CompressedDomainNameLength returns the length of a domain name INCLUDING the byte
726// for the final null label, e.g. for the root label "." it returns one.
727// E.g. for the FQDN "foo.com." it returns 9
728// (length, three data bytes, length, three more data bytes, final zero).
729// In the case where a parent domain name is provided, and the given name is a child
730// of that parent, CompressedDomainNameLength returns the length of the prefix portion
731// of the child name, plus TWO bytes for the compression pointer.
732// E.g. for the name "foo.com." with parent "com.", it returns 6
733// (length, three data bytes, two-byte compression pointer).
734mDNSexport mDNSu16 CompressedDomainNameLength(const domainname *const name, const domainname *parent)
735{
736    const mDNSu8 *src = name->c;
737    if (parent && parent->c[0] == 0) parent = mDNSNULL;
738    while (*src)
739    {
740        if (*src > MAX_DOMAIN_LABEL) return(MAX_DOMAIN_NAME+1);
741        if (parent && SameDomainName((const domainname *)src, parent)) return((mDNSu16)(src - name->c + 2));
742        src += 1 + *src;
743        if (src - name->c >= MAX_DOMAIN_NAME) return(MAX_DOMAIN_NAME+1);
744    }
745    return((mDNSu16)(src - name->c + 1));
746}
747
748// CountLabels() returns number of labels in name, excluding final root label
749// (e.g. for "apple.com." CountLabels returns 2.)
750mDNSexport int CountLabels(const domainname *d)
751{
752    int count = 0;
753    const mDNSu8 *ptr;
754    for (ptr = d->c; *ptr; ptr = ptr + ptr[0] + 1) count++;
755    return count;
756}
757
758// SkipLeadingLabels skips over the first 'skip' labels in the domainname,
759// returning a pointer to the suffix with 'skip' labels removed.
760mDNSexport const domainname *SkipLeadingLabels(const domainname *d, int skip)
761{
762    while (skip > 0 && d->c[0]) { d = (const domainname *)(d->c + 1 + d->c[0]); skip--; }
763    return(d);
764}
765
766// AppendLiteralLabelString appends a single label to an existing (possibly empty) domainname.
767// The C string contains the label as-is, with no escaping, etc.
768// Any dots in the name are literal dots, not label separators
769// If successful, AppendLiteralLabelString returns a pointer to the next unused byte
770// in the domainname bufer (i.e. the next byte after the terminating zero).
771// If unable to construct a legal domain name (i.e. label more than 63 bytes, or total more than 256 bytes)
772// AppendLiteralLabelString returns mDNSNULL.
773mDNSexport mDNSu8 *AppendLiteralLabelString(domainname *const name, const char *cstr)
774{
775    mDNSu8       *      ptr  = name->c + DomainNameLength(name) - 1;    // Find end of current name
776    const mDNSu8 *const lim1 = name->c + MAX_DOMAIN_NAME - 1;           // Limit of how much we can add (not counting final zero)
777    const mDNSu8 *const lim2 = ptr + 1 + MAX_DOMAIN_LABEL;
778    const mDNSu8 *const lim  = (lim1 < lim2) ? lim1 : lim2;
779    mDNSu8       *lengthbyte = ptr++;                                   // Record where the length is going to go
780
781    while (*cstr && ptr < lim) *ptr++ = (mDNSu8)*cstr++;    // Copy the data
782    *lengthbyte = (mDNSu8)(ptr - lengthbyte - 1);           // Fill in the length byte
783    *ptr++ = 0;                                             // Put the null root label on the end
784    if (*cstr) return(mDNSNULL);                            // Failure: We didn't successfully consume all input
785    else return(ptr);                                       // Success: return new value of ptr
786}
787
788// AppendDNSNameString appends zero or more labels to an existing (possibly empty) domainname.
789// The C string is in conventional DNS syntax:
790// Textual labels, escaped as necessary using the usual DNS '\' notation, separated by dots.
791// If successful, AppendDNSNameString returns a pointer to the next unused byte
792// in the domainname bufer (i.e. the next byte after the terminating zero).
793// If unable to construct a legal domain name (i.e. label more than 63 bytes, or total more than 256 bytes)
794// AppendDNSNameString returns mDNSNULL.
795mDNSexport mDNSu8 *AppendDNSNameString(domainname *const name, const char *cstring)
796{
797    const char   *cstr      = cstring;
798    mDNSu8       *      ptr = name->c + DomainNameLength(name) - 1; // Find end of current name
799    const mDNSu8 *const lim = name->c + MAX_DOMAIN_NAME - 1;        // Limit of how much we can add (not counting final zero)
800    while (*cstr && ptr < lim)                                      // While more characters, and space to put them...
801    {
802        mDNSu8 *lengthbyte = ptr++;                                 // Record where the length is going to go
803        if (*cstr == '.') { LogMsg("AppendDNSNameString: Illegal empty label in name \"%s\"", cstring); return(mDNSNULL); }
804        while (*cstr && *cstr != '.' && ptr < lim)                  // While we have characters in the label...
805        {
806            mDNSu8 c = (mDNSu8)*cstr++;                             // Read the character
807            if (c == '\\')                                          // If escape character, check next character
808            {
809                if (*cstr == '\0') break;                           // If this is the end of the string, then break
810                c = (mDNSu8)*cstr++;                                // Assume we'll just take the next character
811                if (mDNSIsDigit(cstr[-1]) && mDNSIsDigit(cstr[0]) && mDNSIsDigit(cstr[1]))
812                {                                                   // If three decimal digits,
813                    int v0 = cstr[-1] - '0';                        // then interpret as three-digit decimal
814                    int v1 = cstr[ 0] - '0';
815                    int v2 = cstr[ 1] - '0';
816                    int val = v0 * 100 + v1 * 10 + v2;
817                    if (val <= 255) { c = (mDNSu8)val; cstr += 2; } // If valid three-digit decimal value, use it
818                }
819            }
820            *ptr++ = c;                                             // Write the character
821        }
822        if (*cstr == '.') cstr++;                                   // Skip over the trailing dot (if present)
823        if (ptr - lengthbyte - 1 > MAX_DOMAIN_LABEL)                // If illegal label, abort
824            return(mDNSNULL);
825        *lengthbyte = (mDNSu8)(ptr - lengthbyte - 1);               // Fill in the length byte
826    }
827
828    *ptr++ = 0;                                                     // Put the null root label on the end
829    if (*cstr) return(mDNSNULL);                                    // Failure: We didn't successfully consume all input
830    else return(ptr);                                               // Success: return new value of ptr
831}
832
833// AppendDomainLabel appends a single label to a name.
834// If successful, AppendDomainLabel returns a pointer to the next unused byte
835// in the domainname bufer (i.e. the next byte after the terminating zero).
836// If unable to construct a legal domain name (i.e. label more than 63 bytes, or total more than 256 bytes)
837// AppendDomainLabel returns mDNSNULL.
838mDNSexport mDNSu8 *AppendDomainLabel(domainname *const name, const domainlabel *const label)
839{
840    int i;
841    mDNSu8 *ptr = name->c + DomainNameLength(name) - 1;
842
843    // Check label is legal
844    if (label->c[0] > MAX_DOMAIN_LABEL) return(mDNSNULL);
845
846    // Check that ptr + length byte + data bytes + final zero does not exceed our limit
847    if (ptr + 1 + label->c[0] + 1 > name->c + MAX_DOMAIN_NAME) return(mDNSNULL);
848
849    for (i=0; i<=label->c[0]; i++) *ptr++ = label->c[i];    // Copy the label data
850    *ptr++ = 0;                             // Put the null root label on the end
851    return(ptr);
852}
853
854mDNSexport mDNSu8 *AppendDomainName(domainname *const name, const domainname *const append)
855{
856    mDNSu8       *      ptr = name->c + DomainNameLength(name) - 1; // Find end of current name
857    const mDNSu8 *const lim = name->c + MAX_DOMAIN_NAME - 1;        // Limit of how much we can add (not counting final zero)
858    const mDNSu8 *      src = append->c;
859    while (src[0])
860    {
861        int i;
862        if (ptr + 1 + src[0] > lim) return(mDNSNULL);
863        for (i=0; i<=src[0]; i++) *ptr++ = src[i];
864        *ptr = 0;   // Put the null root label on the end
865        src += i;
866    }
867    return(ptr);
868}
869
870// MakeDomainLabelFromLiteralString makes a single domain label from a single literal C string (with no escaping).
871// If successful, MakeDomainLabelFromLiteralString returns mDNStrue.
872// If unable to convert the whole string to a legal domain label (i.e. because length is more than 63 bytes) then
873// MakeDomainLabelFromLiteralString makes a legal domain label from the first 63 bytes of the string and returns mDNSfalse.
874// In some cases silently truncated oversized names to 63 bytes is acceptable, so the return result may be ignored.
875// In other cases silent truncation may not be acceptable, so in those cases the calling function needs to check the return result.
876mDNSexport mDNSBool MakeDomainLabelFromLiteralString(domainlabel *const label, const char *cstr)
877{
878    mDNSu8       *      ptr   = label->c + 1;                       // Where we're putting it
879    const mDNSu8 *const limit = label->c + 1 + MAX_DOMAIN_LABEL;    // The maximum we can put
880    while (*cstr && ptr < limit) *ptr++ = (mDNSu8)*cstr++;          // Copy the label
881    label->c[0] = (mDNSu8)(ptr - label->c - 1);                     // Set the length byte
882    return(*cstr == 0);                                             // Return mDNStrue if we successfully consumed all input
883}
884
885// MakeDomainNameFromDNSNameString makes a native DNS-format domainname from a C string.
886// The C string is in conventional DNS syntax:
887// Textual labels, escaped as necessary using the usual DNS '\' notation, separated by dots.
888// If successful, MakeDomainNameFromDNSNameString returns a pointer to the next unused byte
889// in the domainname bufer (i.e. the next byte after the terminating zero).
890// If unable to construct a legal domain name (i.e. label more than 63 bytes, or total more than 256 bytes)
891// MakeDomainNameFromDNSNameString returns mDNSNULL.
892mDNSexport mDNSu8 *MakeDomainNameFromDNSNameString(domainname *const name, const char *cstr)
893{
894    name->c[0] = 0;                                 // Make an empty domain name
895    return(AppendDNSNameString(name, cstr));        // And then add this string to it
896}
897
898mDNSexport char *ConvertDomainLabelToCString_withescape(const domainlabel *const label, char *ptr, char esc)
899{
900    const mDNSu8 *      src = label->c;                         // Domain label we're reading
901    const mDNSu8 len = *src++;                                  // Read length of this (non-null) label
902    const mDNSu8 *const end = src + len;                        // Work out where the label ends
903    if (len > MAX_DOMAIN_LABEL) return(mDNSNULL);               // If illegal label, abort
904    while (src < end)                                           // While we have characters in the label
905    {
906        mDNSu8 c = *src++;
907        if (esc)
908        {
909            if (c == '.' || c == esc)                           // If character is a dot or the escape character
910                *ptr++ = esc;                                   // Output escape character
911            else if (c <= ' ')                                  // If non-printing ascii,
912            {                                                   // Output decimal escape sequence
913                *ptr++ = esc;
914                *ptr++ = (char)  ('0' + (c / 100)     );
915                *ptr++ = (char)  ('0' + (c /  10) % 10);
916                c      = (mDNSu8)('0' + (c      ) % 10);
917            }
918        }
919        *ptr++ = (char)c;                                       // Copy the character
920    }
921    *ptr = 0;                                                   // Null-terminate the string
922    return(ptr);                                                // and return
923}
924
925// Note: To guarantee that there will be no possible overrun, cstr must be at least MAX_ESCAPED_DOMAIN_NAME (1009 bytes)
926mDNSexport char *ConvertDomainNameToCString_withescape(const domainname *const name, char *ptr, char esc)
927{
928    const mDNSu8 *src         = name->c;                            // Domain name we're reading
929    const mDNSu8 *const max   = name->c + MAX_DOMAIN_NAME;          // Maximum that's valid
930
931    if (*src == 0) *ptr++ = '.';                                    // Special case: For root, just write a dot
932
933    while (*src)                                                    // While more characters in the domain name
934    {
935        if (src + 1 + *src >= max) return(mDNSNULL);
936        ptr = ConvertDomainLabelToCString_withescape((const domainlabel *)src, ptr, esc);
937        if (!ptr) return(mDNSNULL);
938        src += 1 + *src;
939        *ptr++ = '.';                                               // Write the dot after the label
940    }
941
942    *ptr++ = 0;                                                     // Null-terminate the string
943    return(ptr);                                                    // and return
944}
945
946// RFC 1034 rules:
947// Host names must start with a letter, end with a letter or digit,
948// and have as interior characters only letters, digits, and hyphen.
949// This was subsequently modified in RFC 1123 to allow the first character to be either a letter or a digit
950
951mDNSexport void ConvertUTF8PstringToRFC1034HostLabel(const mDNSu8 UTF8Name[], domainlabel *const hostlabel)
952{
953    const mDNSu8 *      src  = &UTF8Name[1];
954    const mDNSu8 *const end  = &UTF8Name[1] + UTF8Name[0];
955    mDNSu8 *      ptr  = &hostlabel->c[1];
956    const mDNSu8 *const lim  = &hostlabel->c[1] + MAX_DOMAIN_LABEL;
957    while (src < end)
958    {
959        // Delete apostrophes from source name
960        if (src[0] == '\'') { src++; continue; }        // Standard straight single quote
961        if (src + 2 < end && src[0] == 0xE2 && src[1] == 0x80 && src[2] == 0x99)
962        { src += 3; continue; }     // Unicode curly apostrophe
963        if (ptr < lim)
964        {
965            if (mDNSValidHostChar(*src, (ptr > &hostlabel->c[1]), (src < end-1))) *ptr++ = *src;
966            else if (ptr > &hostlabel->c[1] && ptr[-1] != '-') *ptr++ = '-';
967        }
968        src++;
969    }
970    while (ptr > &hostlabel->c[1] && ptr[-1] == '-') ptr--; // Truncate trailing '-' marks
971    hostlabel->c[0] = (mDNSu8)(ptr - &hostlabel->c[1]);
972}
973
974#define ValidTransportProtocol(X) ( (X)[0] == 4 && (X)[1] == '_' && \
975                                    ((((X)[2] | 0x20) == 'u' && ((X)[3] | 0x20) == 'd') || (((X)[2] | 0x20) == 't' && ((X)[3] | 0x20) == 'c')) && \
976                                    ((X)[4] | 0x20) == 'p')
977
978mDNSexport mDNSu8 *ConstructServiceName(domainname *const fqdn,
979                                        const domainlabel *name, const domainname *type, const domainname *const domain)
980{
981    int i, len;
982    mDNSu8 *dst = fqdn->c;
983    const mDNSu8 *src;
984    const char *errormsg;
985#if APPLE_OSX_mDNSResponder
986    mDNSBool loggedUnderscore = mDNSfalse;
987    static char typeBuf[MAX_ESCAPED_DOMAIN_NAME];
988#endif
989
990    // In the case where there is no name (and ONLY in that case),
991    // a single-label subtype is allowed as the first label of a three-part "type"
992    if (!name && type)
993    {
994        const mDNSu8 *s0 = type->c;
995        if (s0[0] && s0[0] < 0x40)      // If legal first label (at least one character, and no more than 63)
996        {
997            const mDNSu8 * s1 = s0 + 1 + s0[0];
998            if (s1[0] && s1[0] < 0x40)  // and legal second label (at least one character, and no more than 63)
999            {
1000                const mDNSu8 *s2 = s1 + 1 + s1[0];
1001                if (s2[0] && s2[0] < 0x40 && s2[1+s2[0]] == 0)  // and we have three and only three labels
1002                {
1003                    static const mDNSu8 SubTypeLabel[5] = mDNSSubTypeLabel;
1004                    src = s0;                                   // Copy the first label
1005                    len = *src;
1006                    for (i=0; i <= len;                      i++) *dst++ = *src++;
1007                    for (i=0; i < (int)sizeof(SubTypeLabel); i++) *dst++ = SubTypeLabel[i];
1008                    type = (const domainname *)s1;
1009
1010                    // Special support to enable the DNSServiceBrowse call made by Bonjour Browser
1011                    // For these queries, we retract the "._sub" we just added between the subtype and the main type
1012                    // Remove after Bonjour Browser is updated to use DNSServiceQueryRecord instead of DNSServiceBrowse
1013                    if (SameDomainName((domainname*)s0, (const domainname*)"\x09_services\x07_dns-sd\x04_udp"))
1014                        dst -= sizeof(SubTypeLabel);
1015                }
1016            }
1017        }
1018    }
1019
1020    if (name && name->c[0])
1021    {
1022        src = name->c;                                  // Put the service name into the domain name
1023        len = *src;
1024        if (len >= 0x40) { errormsg = "Service instance name too long"; goto fail; }
1025        for (i=0; i<=len; i++) *dst++ = *src++;
1026    }
1027    else
1028        name = (domainlabel*)"";    // Set this up to be non-null, to avoid errors if we have to call LogMsg() below
1029
1030    src = type->c;                                      // Put the service type into the domain name
1031    len = *src;
1032    if (len < 2 || len > 16)
1033    {
1034        LogMsg("Bad service type in %#s.%##s%##s Application protocol name must be underscore plus 1-15 characters. "
1035               "See <http://www.dns-sd.org/ServiceTypes.html>", name->c, type->c, domain->c);
1036#if APPLE_OSX_mDNSResponder
1037        ConvertDomainNameToCString(type, typeBuf);
1038        mDNSASLLog(mDNSNULL, "serviceType.nameTooLong", "noop", typeBuf, "");
1039#endif
1040    }
1041    if (len < 2 || len >= 0x40 || (len > 16 && !SameDomainName(domain, &localdomain))) return(mDNSNULL);
1042    if (src[1] != '_') { errormsg = "Application protocol name must begin with underscore"; goto fail; }
1043    for (i=2; i<=len; i++)
1044    {
1045        // Letters and digits are allowed anywhere
1046        if (mDNSIsLetter(src[i]) || mDNSIsDigit(src[i])) continue;
1047        // Hyphens are only allowed as interior characters
1048        // Underscores are not supposed to be allowed at all, but for backwards compatibility with some old products we do allow them,
1049        // with the same rule as hyphens
1050        if ((src[i] == '-' || src[i] == '_') && i > 2 && i < len)
1051        {
1052#if APPLE_OSX_mDNSResponder
1053            if (src[i] == '_' && loggedUnderscore == mDNSfalse)
1054            {
1055                ConvertDomainNameToCString(type, typeBuf);
1056                mDNSASLLog(mDNSNULL, "serviceType.nameWithUnderscore", "noop", typeBuf, "");
1057                loggedUnderscore = mDNStrue;
1058            }
1059#endif
1060            continue;
1061        }
1062        errormsg = "Application protocol name must contain only letters, digits, and hyphens";
1063#if APPLE_OSX_mDNSResponder
1064        {
1065            ConvertDomainNameToCString(type, typeBuf);
1066            mDNSASLLog(mDNSNULL, "serviceType.nameWithIllegalCharacters", "noop", typeBuf, "");
1067        }
1068#endif
1069        goto fail;
1070    }
1071    for (i=0; i<=len; i++) *dst++ = *src++;
1072
1073    len = *src;
1074    if (!ValidTransportProtocol(src)) { errormsg = "Transport protocol name must be _udp or _tcp"; goto fail; }
1075    for (i=0; i<=len; i++) *dst++ = *src++;
1076
1077    if (*src) { errormsg = "Service type must have only two labels"; goto fail; }
1078
1079    *dst = 0;
1080    if (!domain->c[0]) { errormsg = "Service domain must be non-empty"; goto fail; }
1081    if (SameDomainName(domain, (const domainname*)"\x05" "local" "\x04" "arpa"))
1082    { errormsg = "Illegal domain \"local.arpa.\" Use \"local.\" (or empty string)"; goto fail; }
1083    dst = AppendDomainName(fqdn, domain);
1084    if (!dst) { errormsg = "Service domain too long"; goto fail; }
1085    return(dst);
1086
1087fail:
1088    LogMsg("ConstructServiceName: %s: %#s.%##s%##s", errormsg, name->c, type->c, domain->c);
1089    return(mDNSNULL);
1090}
1091
1092// A service name has the form: instance.application-protocol.transport-protocol.domain
1093// DeconstructServiceName is currently fairly forgiving: It doesn't try to enforce character
1094// set or length limits for the protocol names, and the final domain is allowed to be empty.
1095// However, if the given FQDN doesn't contain at least three labels,
1096// DeconstructServiceName will reject it and return mDNSfalse.
1097mDNSexport mDNSBool DeconstructServiceName(const domainname *const fqdn,
1098                                           domainlabel *const name, domainname *const type, domainname *const domain)
1099{
1100    int i, len;
1101    const mDNSu8 *src = fqdn->c;
1102    const mDNSu8 *max = fqdn->c + MAX_DOMAIN_NAME;
1103    mDNSu8 *dst;
1104
1105    dst = name->c;                                      // Extract the service name
1106    len = *src;
1107    if (!len)         { debugf("DeconstructServiceName: FQDN empty!");                             return(mDNSfalse); }
1108    if (len >= 0x40)  { debugf("DeconstructServiceName: Instance name too long");                  return(mDNSfalse); }
1109    for (i=0; i<=len; i++) *dst++ = *src++;
1110
1111    dst = type->c;                                      // Extract the service type
1112    len = *src;
1113    if (!len)         { debugf("DeconstructServiceName: FQDN contains only one label!");           return(mDNSfalse); }
1114    if (len >= 0x40)  { debugf("DeconstructServiceName: Application protocol name too long");      return(mDNSfalse); }
1115    if (src[1] != '_') { debugf("DeconstructServiceName: No _ at start of application protocol");   return(mDNSfalse); }
1116    for (i=0; i<=len; i++) *dst++ = *src++;
1117
1118    len = *src;
1119    if (!len)         { debugf("DeconstructServiceName: FQDN contains only two labels!");          return(mDNSfalse); }
1120    if (!ValidTransportProtocol(src))
1121    { debugf("DeconstructServiceName: Transport protocol must be _udp or _tcp"); return(mDNSfalse); }
1122    for (i=0; i<=len; i++) *dst++ = *src++;
1123    *dst++ = 0;                                         // Put terminator on the end of service type
1124
1125    dst = domain->c;                                    // Extract the service domain
1126    while (*src)
1127    {
1128        len = *src;
1129        if (len >= 0x40)
1130        { debugf("DeconstructServiceName: Label in service domain too long"); return(mDNSfalse); }
1131        if (src + 1 + len + 1 >= max)
1132        { debugf("DeconstructServiceName: Total service domain too long"); return(mDNSfalse); }
1133        for (i=0; i<=len; i++) *dst++ = *src++;
1134    }
1135    *dst++ = 0;     // Put the null root label on the end
1136
1137    return(mDNStrue);
1138}
1139
1140mDNSexport mStatus DNSNameToLowerCase(domainname *d, domainname *result)
1141{
1142    const mDNSu8 *a = d->c;
1143    mDNSu8 *b = result->c;
1144    const mDNSu8 *const max = d->c + MAX_DOMAIN_NAME;
1145    int i, len;
1146
1147    while (*a)
1148    {
1149        if (a + 1 + *a >= max)
1150        {
1151            LogMsg("DNSNameToLowerCase: ERROR!! Malformed Domain name");
1152            return mStatus_BadParamErr;
1153        }
1154        len = *a++;
1155        *b++ = len;
1156        for (i = 0; i < len; i++)
1157        {
1158            mDNSu8 ac = *a++;
1159            if (mDNSIsUpperCase(ac)) ac += 'a' - 'A';
1160            *b++ = ac;
1161        }
1162    }
1163    *b = 0;
1164
1165    return mStatus_NoError;
1166}
1167
1168mDNSexport const mDNSu8 *NSEC3HashName(const domainname *name, rdataNSEC3 *nsec3, const mDNSu8 *AnonData, int AnonDataLen,
1169    const mDNSu8 hash[NSEC3_MAX_HASH_LEN], int *dlen)
1170{
1171    AlgContext *ctx;
1172    unsigned int i;
1173    unsigned int iterations;
1174    domainname lname;
1175    mDNSu8 *p = (mDNSu8 *)&nsec3->salt;
1176    const mDNSu8 *digest;
1177    int digestlen;
1178    mDNSBool first = mDNStrue;
1179
1180    if (DNSNameToLowerCase((domainname *)name, &lname) != mStatus_NoError)
1181    {
1182        LogMsg("NSEC3HashName: ERROR!! DNSNameToLowerCase failed");
1183        return mDNSNULL;
1184    }
1185
1186    digest = lname.c;
1187    digestlen = DomainNameLength(&lname);
1188
1189    // Note that it is "i <=". The first iteration is for digesting the name and salt.
1190    // The iteration count does not include that.
1191    iterations = swap16(nsec3->iterations);
1192    for (i = 0; i <= iterations; i++)
1193    {
1194        ctx = AlgCreate(DIGEST_ALG, nsec3->alg);
1195        if (!ctx)
1196        {
1197            LogMsg("NSEC3HashName: ERROR!! Cannot allocate context");
1198            return mDNSNULL;
1199        }
1200
1201        AlgAdd(ctx, digest, digestlen);
1202        if (nsec3->saltLength)
1203            AlgAdd(ctx, p, nsec3->saltLength);
1204        if (AnonDataLen)
1205            AlgAdd(ctx, AnonData, AnonDataLen);
1206        if (first)
1207        {
1208            first = mDNSfalse;
1209            digest = hash;
1210            digestlen = AlgLength(ctx);
1211        }
1212        AlgFinal(ctx, (void *)digest, digestlen);
1213        AlgDestroy(ctx);
1214    }
1215    *dlen = digestlen;
1216    return digest;
1217}
1218
1219// Notes on UTF-8:
1220// 0xxxxxxx represents a 7-bit ASCII value from 0x00 to 0x7F
1221// 10xxxxxx is a continuation byte of a multi-byte character
1222// 110xxxxx is the first byte of a 2-byte character (11 effective bits; values 0x     80 - 0x     800-1)
1223// 1110xxxx is the first byte of a 3-byte character (16 effective bits; values 0x    800 - 0x   10000-1)
1224// 11110xxx is the first byte of a 4-byte character (21 effective bits; values 0x  10000 - 0x  200000-1)
1225// 111110xx is the first byte of a 5-byte character (26 effective bits; values 0x 200000 - 0x 4000000-1)
1226// 1111110x is the first byte of a 6-byte character (31 effective bits; values 0x4000000 - 0x80000000-1)
1227//
1228// UTF-16 surrogate pairs are used in UTF-16 to encode values larger than 0xFFFF.
1229// Although UTF-16 surrogate pairs are not supposed to appear in legal UTF-8, we want to be defensive
1230// about that too. (See <http://www.unicode.org/faq/utf_bom.html#34>, "What are surrogates?")
1231// The first of pair is a UTF-16 value in the range 0xD800-0xDBFF (11101101 1010xxxx 10xxxxxx in UTF-8),
1232// and the second    is a UTF-16 value in the range 0xDC00-0xDFFF (11101101 1011xxxx 10xxxxxx in UTF-8).
1233
1234mDNSexport mDNSu32 TruncateUTF8ToLength(mDNSu8 *string, mDNSu32 length, mDNSu32 max)
1235{
1236    if (length > max)
1237    {
1238        mDNSu8 c1 = string[max];                                        // First byte after cut point
1239        mDNSu8 c2 = (max+1 < length) ? string[max+1] : (mDNSu8)0xB0;    // Second byte after cut point
1240        length = max;   // Trim length down
1241        while (length > 0)
1242        {
1243            // Check if the byte right after the chop point is a UTF-8 continuation byte,
1244            // or if the character right after the chop point is the second of a UTF-16 surrogate pair.
1245            // If so, then we continue to chop more bytes until we get to a legal chop point.
1246            mDNSBool continuation    = ((c1 & 0xC0) == 0x80);
1247            mDNSBool secondsurrogate = (c1 == 0xED && (c2 & 0xF0) == 0xB0);
1248            if (!continuation && !secondsurrogate) break;
1249            c2 = c1;
1250            c1 = string[--length];
1251        }
1252        // Having truncated characters off the end of our string, also cut off any residual white space
1253        while (length > 0 && string[length-1] <= ' ') length--;
1254    }
1255    return(length);
1256}
1257
1258// Returns true if a rich text label ends in " (nnn)", or if an RFC 1034
1259// name ends in "-nnn", where n is some decimal number.
1260mDNSexport mDNSBool LabelContainsSuffix(const domainlabel *const name, const mDNSBool RichText)
1261{
1262    mDNSu16 l = name->c[0];
1263
1264    if (RichText)
1265    {
1266        if (l < 4) return mDNSfalse;                            // Need at least " (2)"
1267        if (name->c[l--] != ')') return mDNSfalse;              // Last char must be ')'
1268        if (!mDNSIsDigit(name->c[l])) return mDNSfalse;         // Preceeded by a digit
1269        l--;
1270        while (l > 2 && mDNSIsDigit(name->c[l])) l--;           // Strip off digits
1271        return (name->c[l] == '(' && name->c[l - 1] == ' ');
1272    }
1273    else
1274    {
1275        if (l < 2) return mDNSfalse;                            // Need at least "-2"
1276        if (!mDNSIsDigit(name->c[l])) return mDNSfalse;         // Last char must be a digit
1277        l--;
1278        while (l > 2 && mDNSIsDigit(name->c[l])) l--;           // Strip off digits
1279        return (name->c[l] == '-');
1280    }
1281}
1282
1283// removes an auto-generated suffix (appended on a name collision) from a label.  caller is
1284// responsible for ensuring that the label does indeed contain a suffix.  returns the number
1285// from the suffix that was removed.
1286mDNSexport mDNSu32 RemoveLabelSuffix(domainlabel *name, mDNSBool RichText)
1287{
1288    mDNSu32 val = 0, multiplier = 1;
1289
1290    // Chop closing parentheses from RichText suffix
1291    if (RichText && name->c[0] >= 1 && name->c[name->c[0]] == ')') name->c[0]--;
1292
1293    // Get any existing numerical suffix off the name
1294    while (mDNSIsDigit(name->c[name->c[0]]))
1295    { val += (name->c[name->c[0]] - '0') * multiplier; multiplier *= 10; name->c[0]--; }
1296
1297    // Chop opening parentheses or dash from suffix
1298    if (RichText)
1299    {
1300        if (name->c[0] >= 2 && name->c[name->c[0]] == '(' && name->c[name->c[0]-1] == ' ') name->c[0] -= 2;
1301    }
1302    else
1303    {
1304        if (name->c[0] >= 1 && name->c[name->c[0]] == '-') name->c[0] -= 1;
1305    }
1306
1307    return(val);
1308}
1309
1310// appends a numerical suffix to a label, with the number following a whitespace and enclosed
1311// in parentheses (rich text) or following two consecutive hyphens (RFC 1034 domain label).
1312mDNSexport void AppendLabelSuffix(domainlabel *const name, mDNSu32 val, const mDNSBool RichText)
1313{
1314    mDNSu32 divisor = 1, chars = 2; // Shortest possible RFC1034 name suffix is 2 characters ("-2")
1315    if (RichText) chars = 4;        // Shortest possible RichText suffix is 4 characters (" (2)")
1316
1317    // Truncate trailing spaces from RichText names
1318    if (RichText) while (name->c[name->c[0]] == ' ') name->c[0]--;
1319
1320    while (divisor < 0xFFFFFFFFUL/10 && val >= divisor * 10) { divisor *= 10; chars++; }
1321
1322    name->c[0] = (mDNSu8) TruncateUTF8ToLength(name->c+1, name->c[0], MAX_DOMAIN_LABEL - chars);
1323
1324    if (RichText) { name->c[++name->c[0]] = ' '; name->c[++name->c[0]] = '('; }
1325    else          { name->c[++name->c[0]] = '-'; }
1326
1327    while (divisor)
1328    {
1329        name->c[++name->c[0]] = (mDNSu8)('0' + val / divisor);
1330        val     %= divisor;
1331        divisor /= 10;
1332    }
1333
1334    if (RichText) name->c[++name->c[0]] = ')';
1335}
1336
1337mDNSexport void IncrementLabelSuffix(domainlabel *name, mDNSBool RichText)
1338{
1339    mDNSu32 val = 0;
1340
1341    if (LabelContainsSuffix(name, RichText))
1342        val = RemoveLabelSuffix(name, RichText);
1343
1344    // If no existing suffix, start by renaming "Foo" as "Foo (2)" or "Foo-2" as appropriate.
1345    // If existing suffix in the range 2-9, increment it.
1346    // If we've had ten conflicts already, there are probably too many hosts trying to use the same name,
1347    // so add a random increment to improve the chances of finding an available name next time.
1348    if      (val == 0) val = 2;
1349    else if (val < 10) val++;
1350    else val += 1 + mDNSRandom(99);
1351
1352    AppendLabelSuffix(name, val, RichText);
1353}
1354
1355// ***************************************************************************
1356#if COMPILER_LIKES_PRAGMA_MARK
1357#pragma mark -
1358#pragma mark - Resource Record Utility Functions
1359#endif
1360
1361// Set up a AuthRecord with sensible default values.
1362// These defaults may be overwritten with new values before mDNS_Register is called
1363mDNSexport void mDNS_SetupResourceRecord(AuthRecord *rr, RData *RDataStorage, mDNSInterfaceID InterfaceID,
1364                                         mDNSu16 rrtype, mDNSu32 ttl, mDNSu8 RecordType, AuthRecType artype, mDNSRecordCallback Callback, void *Context)
1365{
1366    //
1367    // LocalOnly auth record can be created with LocalOnly InterfaceID or a valid InterfaceID.
1368    // Most of the applications normally create with LocalOnly InterfaceID and we store them as
1369    // such, so that we can deliver the response to questions that specify LocalOnly InterfaceID.
1370    // LocalOnly resource records can also be created with valid InterfaceID which happens today
1371    // when we create LocalOnly records for /etc/hosts.
1372
1373    if (InterfaceID == mDNSInterface_LocalOnly && artype != AuthRecordLocalOnly)
1374    {
1375        LogMsg("mDNS_SetupResourceRecord: ERROR!! Mismatch LocalOnly record InterfaceID %p called with artype %d", InterfaceID, artype);
1376    }
1377    else if (InterfaceID == mDNSInterface_P2P && artype != AuthRecordP2P)
1378    {
1379        LogMsg("mDNS_SetupResourceRecord: ERROR!! Mismatch P2P record InterfaceID %p called with artype %d", InterfaceID, artype);
1380    }
1381    else if (!InterfaceID && (artype == AuthRecordP2P || artype == AuthRecordLocalOnly))
1382    {
1383        LogMsg("mDNS_SetupResourceRecord: ERROR!! Mismatch InterfaceAny record InterfaceID %p called with artype %d", InterfaceID, artype);
1384    }
1385
1386    // Don't try to store a TTL bigger than we can represent in platform time units
1387    if (ttl > 0x7FFFFFFFUL / mDNSPlatformOneSecond)
1388        ttl = 0x7FFFFFFFUL / mDNSPlatformOneSecond;
1389    else if (ttl == 0)      // And Zero TTL is illegal
1390        ttl = DefaultTTLforRRType(rrtype);
1391
1392    // Field Group 1: The actual information pertaining to this resource record
1393    rr->resrec.RecordType        = RecordType;
1394    rr->resrec.InterfaceID       = InterfaceID;
1395    rr->resrec.name              = &rr->namestorage;
1396    rr->resrec.rrtype            = rrtype;
1397    rr->resrec.rrclass           = kDNSClass_IN;
1398    rr->resrec.rroriginalttl     = ttl;
1399    rr->resrec.rDNSServer        = mDNSNULL;
1400    rr->resrec.AnonInfo          = mDNSNULL;
1401//      rr->resrec.rdlength          = MUST set by client and/or in mDNS_Register_internal
1402//      rr->resrec.rdestimate        = set in mDNS_Register_internal
1403//      rr->resrec.rdata             = MUST be set by client
1404
1405    if (RDataStorage)
1406        rr->resrec.rdata = RDataStorage;
1407    else
1408    {
1409        rr->resrec.rdata = &rr->rdatastorage;
1410        rr->resrec.rdata->MaxRDLength = sizeof(RDataBody);
1411    }
1412
1413    // Field Group 2: Persistent metadata for Authoritative Records
1414    rr->Additional1       = mDNSNULL;
1415    rr->Additional2       = mDNSNULL;
1416    rr->DependentOn       = mDNSNULL;
1417    rr->RRSet             = mDNSNULL;
1418    rr->RecordCallback    = Callback;
1419    rr->RecordContext     = Context;
1420
1421    rr->AutoTarget        = Target_Manual;
1422    rr->AllowRemoteQuery  = mDNSfalse;
1423    rr->ForceMCast        = mDNSfalse;
1424
1425    rr->WakeUp            = zeroOwner;
1426    rr->AddressProxy      = zeroAddr;
1427    rr->TimeRcvd          = 0;
1428    rr->TimeExpire        = 0;
1429    rr->ARType            = artype;
1430    rr->AuthFlags         = 0;
1431
1432    // Field Group 3: Transient state for Authoritative Records (set in mDNS_Register_internal)
1433    // Field Group 4: Transient uDNS state for Authoritative Records (set in mDNS_Register_internal)
1434
1435    // For now, until the uDNS code is fully integrated, it's helpful to zero the uDNS state fields here too, just in case
1436    // (e.g. uDNS_RegisterService short-circuits the usual mDNS_Register_internal record registration calls, so a bunch
1437    // of fields don't get set up properly. In particular, if we don't zero rr->QueuedRData then the uDNS code crashes.)
1438    rr->state             = regState_Zero;
1439    rr->uselease          = 0;
1440    rr->expire            = 0;
1441    rr->Private           = 0;
1442    rr->updateid          = zeroID;
1443    rr->zone              = rr->resrec.name;
1444    rr->nta               = mDNSNULL;
1445    rr->tcp               = mDNSNULL;
1446    rr->OrigRData         = 0;
1447    rr->OrigRDLen         = 0;
1448    rr->InFlightRData     = 0;
1449    rr->InFlightRDLen     = 0;
1450    rr->QueuedRData       = 0;
1451    rr->QueuedRDLen       = 0;
1452    mDNSPlatformMemZero(&rr->NATinfo, sizeof(rr->NATinfo));
1453    rr->SRVChanged = mDNSfalse;
1454    rr->mState = mergeState_Zero;
1455
1456    rr->namestorage.c[0]  = 0;      // MUST be set by client before calling mDNS_Register()
1457}
1458
1459mDNSexport void mDNS_SetupQuestion(DNSQuestion *const q, const mDNSInterfaceID InterfaceID, const domainname *const name,
1460                                   const mDNSu16 qtype, mDNSQuestionCallback *const callback, void *const context)
1461{
1462    q->InterfaceID         = InterfaceID;
1463    q->flags               = 0;
1464    q->Target              = zeroAddr;
1465    AssignDomainName(&q->qname, name);
1466    q->qtype               = qtype;
1467    q->qclass              = kDNSClass_IN;
1468    q->LongLived           = (qtype == kDNSType_PTR);
1469    q->ExpectUnique        = (qtype != kDNSType_PTR);
1470    q->ForceMCast          = mDNSfalse;
1471    q->ReturnIntermed      = mDNSfalse;
1472    q->SuppressUnusable    = mDNSfalse;
1473    q->SearchListIndex     = 0;
1474    q->AppendSearchDomains = 0;
1475    q->RetryWithSearchDomains = mDNSfalse;
1476    q->TimeoutQuestion     = 0;
1477    q->WakeOnResolve       = 0;
1478    q->UseBackgroundTrafficClass = mDNSfalse;
1479    q->ValidationRequired  = 0;
1480    q->ValidatingResponse  = 0;
1481    q->ProxyQuestion       = 0;
1482    q->qnameOrig           = mDNSNULL;
1483    q->AnonInfo            = mDNSNULL;
1484    q->pid                 = mDNSPlatformGetPID();
1485    q->euid                = 0;
1486    q->DisallowPID         = mDNSfalse;
1487    q->ServiceID           = -1;
1488    q->QuestionCallback    = callback;
1489    q->QuestionContext     = context;
1490}
1491
1492mDNSexport mDNSu32 RDataHashValue(const ResourceRecord *const rr)
1493{
1494    int len = rr->rdlength;
1495    const RDataBody2 *const rdb = (RDataBody2 *)rr->rdata->u.data;
1496    const mDNSu8 *ptr = rdb->data;
1497    mDNSu32 sum = 0;
1498
1499    switch(rr->rrtype)
1500    {
1501    case kDNSType_NS:
1502    case kDNSType_MD:
1503    case kDNSType_MF:
1504    case kDNSType_CNAME:
1505    case kDNSType_MB:
1506    case kDNSType_MG:
1507    case kDNSType_MR:
1508    case kDNSType_PTR:
1509    case kDNSType_NSAP_PTR:
1510    case kDNSType_DNAME: return DomainNameHashValue(&rdb->name);
1511
1512    case kDNSType_SOA:   return rdb->soa.serial  +
1513               rdb->soa.refresh +
1514               rdb->soa.retry   +
1515               rdb->soa.expire  +
1516               rdb->soa.min     +
1517               DomainNameHashValue(&rdb->soa.mname) +
1518               DomainNameHashValue(&rdb->soa.rname);
1519
1520    case kDNSType_MX:
1521    case kDNSType_AFSDB:
1522    case kDNSType_RT:
1523    case kDNSType_KX:    return DomainNameHashValue(&rdb->mx.exchange);
1524
1525    case kDNSType_MINFO:
1526    case kDNSType_RP:    return DomainNameHashValue(&rdb->rp.mbox)   + DomainNameHashValue(&rdb->rp.txt);
1527
1528    case kDNSType_PX:    return DomainNameHashValue(&rdb->px.map822) + DomainNameHashValue(&rdb->px.mapx400);
1529
1530    case kDNSType_SRV:   return DomainNameHashValue(&rdb->srv.target);
1531
1532    case kDNSType_OPT:   return 0;      // OPT is a pseudo-RR container structure; makes no sense to compare
1533
1534    case kDNSType_NSEC: {
1535        int dlen;
1536        dlen = DomainNameLength((domainname *)rdb->data);
1537        sum = DomainNameHashValue((domainname *)rdb->data);
1538        ptr += dlen;
1539        len -= dlen;
1540        /* FALLTHROUGH */
1541    }
1542
1543    default:
1544    {
1545        int i;
1546        for (i=0; i+1 < len; i+=2)
1547        {
1548            sum += (((mDNSu32)(ptr[i])) << 8) | ptr[i+1];
1549            sum = (sum<<3) | (sum>>29);
1550        }
1551        if (i < len)
1552        {
1553            sum += ((mDNSu32)(ptr[i])) << 8;
1554        }
1555        return(sum);
1556    }
1557    }
1558}
1559
1560// r1 has to be a full ResourceRecord including rrtype and rdlength
1561// r2 is just a bare RDataBody, which MUST be the same rrtype and rdlength as r1
1562mDNSexport mDNSBool SameRDataBody(const ResourceRecord *const r1, const RDataBody *const r2, DomainNameComparisonFn *samename)
1563{
1564    const RDataBody2 *const b1 = (RDataBody2 *)r1->rdata->u.data;
1565    const RDataBody2 *const b2 = (RDataBody2 *)r2;
1566    switch(r1->rrtype)
1567    {
1568    case kDNSType_NS:
1569    case kDNSType_MD:
1570    case kDNSType_MF:
1571    case kDNSType_CNAME:
1572    case kDNSType_MB:
1573    case kDNSType_MG:
1574    case kDNSType_MR:
1575    case kDNSType_PTR:
1576    case kDNSType_NSAP_PTR:
1577    case kDNSType_DNAME: return(SameDomainName(&b1->name, &b2->name));
1578
1579    case kDNSType_SOA:  return (mDNSBool)(   b1->soa.serial   == b2->soa.serial             &&
1580                                             b1->soa.refresh  == b2->soa.refresh            &&
1581                                             b1->soa.retry    == b2->soa.retry              &&
1582                                             b1->soa.expire   == b2->soa.expire             &&
1583                                             b1->soa.min      == b2->soa.min                &&
1584                                             samename(&b1->soa.mname, &b2->soa.mname) &&
1585                                             samename(&b1->soa.rname, &b2->soa.rname));
1586
1587    case kDNSType_MX:
1588    case kDNSType_AFSDB:
1589    case kDNSType_RT:
1590    case kDNSType_KX:   return (mDNSBool)(   b1->mx.preference == b2->mx.preference &&
1591                                             samename(&b1->mx.exchange, &b2->mx.exchange));
1592
1593    case kDNSType_MINFO:
1594    case kDNSType_RP:   return (mDNSBool)(   samename(&b1->rp.mbox, &b2->rp.mbox) &&
1595                                             samename(&b1->rp.txt,  &b2->rp.txt));
1596
1597    case kDNSType_PX:   return (mDNSBool)(   b1->px.preference == b2->px.preference          &&
1598                                             samename(&b1->px.map822,  &b2->px.map822) &&
1599                                             samename(&b1->px.mapx400, &b2->px.mapx400));
1600
1601    case kDNSType_SRV:  return (mDNSBool)(   b1->srv.priority == b2->srv.priority       &&
1602                                             b1->srv.weight   == b2->srv.weight         &&
1603                                             mDNSSameIPPort(b1->srv.port, b2->srv.port) &&
1604                                             samename(&b1->srv.target, &b2->srv.target));
1605
1606    case kDNSType_OPT:  return mDNSfalse;       // OPT is a pseudo-RR container structure; makes no sense to compare
1607    case kDNSType_NSEC: {
1608        // If the "nxt" name changes in case, we want to delete the old
1609        // and store just the new one. If the caller passes in SameDomainCS for "samename",
1610        // we would return "false" when the only change between the two rdata is the case
1611        // change in "nxt".
1612        //
1613        // Note: rdlength of both the RData are same (ensured by the caller) and hence we can
1614        // use just r1->rdlength below
1615
1616        int dlen1 = DomainNameLength((domainname *)b1->data);
1617        int dlen2 = DomainNameLength((domainname *)b2->data);
1618        return (mDNSBool)(dlen1 == dlen2 &&
1619                          samename((domainname *)b1->data, (domainname *)b2->data) &&
1620                          mDNSPlatformMemSame(b1->data + dlen1, b2->data + dlen2, r1->rdlength - dlen1));
1621    }
1622
1623    default:            return(mDNSPlatformMemSame(b1->data, b2->data, r1->rdlength));
1624    }
1625}
1626
1627mDNSexport mDNSBool BitmapTypeCheck(mDNSu8 *bmap, int bitmaplen, mDNSu16 type)
1628{
1629    int win, wlen;
1630    int wintype;
1631
1632    // The window that this type belongs to. NSEC has 256 windows that
1633    // comprises of 256 types.
1634    wintype = type >> 8;
1635
1636    while (bitmaplen > 0)
1637    {
1638        if (bitmaplen < 3)
1639        {
1640            LogInfo("BitmapTypeCheck: malformed nsec, bitmaplen %d short", bitmaplen);
1641            return mDNSfalse;
1642        }
1643
1644        win = *bmap++;
1645        wlen = *bmap++;
1646        bitmaplen -= 2;
1647        if (bitmaplen < wlen || wlen < 1 || wlen > 32)
1648        {
1649            LogInfo("BitmapTypeCheck: malformed nsec, bitmaplen %d wlen %d, win %d", bitmaplen, wlen, win);
1650            return mDNSfalse;
1651        }
1652        if (win < 0 || win >= 256)
1653        {
1654            LogInfo("BitmapTypeCheck: malformed nsec, wlen %d", wlen);
1655            return mDNSfalse;
1656        }
1657        if (win == wintype)
1658        {
1659            // First byte in the window serves 0 to 7, the next one serves 8 to 15 and so on.
1660            // Calculate the right byte offset first.
1661            int boff = (type & 0xff ) >> 3;
1662            if (wlen <= boff)
1663                return mDNSfalse;
1664            // The last three bits values 0 to 7 corresponds to bit positions
1665            // within the byte.
1666            return (bmap[boff] & (0x80 >> (type & 7)));
1667        }
1668        else
1669        {
1670            // If the windows are ordered, then we could check to see
1671            // if wintype > win and then return early.
1672            bmap += wlen;
1673            bitmaplen -= wlen;
1674        }
1675    }
1676    return mDNSfalse;
1677}
1678
1679// Don't call this function if the resource record is not NSEC. It will return false
1680// which means that the type does not exist.
1681mDNSexport mDNSBool RRAssertsExistence(const ResourceRecord *const rr, mDNSu16 type)
1682{
1683    const RDataBody2 *const rdb = (RDataBody2 *)rr->rdata->u.data;
1684    mDNSu8 *nsec = (mDNSu8 *)rdb->data;
1685    int len, bitmaplen;
1686    mDNSu8 *bmap;
1687
1688    if (rr->rrtype != kDNSType_NSEC) return mDNSfalse;
1689
1690    len = DomainNameLength((domainname *)nsec);
1691
1692    bitmaplen = rr->rdlength - len;
1693    bmap = nsec + len;
1694    return (BitmapTypeCheck(bmap, bitmaplen, type));
1695}
1696
1697// Don't call this function if the resource record is not NSEC. It will return false
1698// which means that the type exists.
1699mDNSexport mDNSBool RRAssertsNonexistence(const ResourceRecord *const rr, mDNSu16 type)
1700{
1701    if (rr->rrtype != kDNSType_NSEC) return mDNSfalse;
1702
1703    return !RRAssertsExistence(rr, type);
1704}
1705
1706// Checks whether the RRSIG or NSEC record answers the question "q".
1707mDNSlocal mDNSBool DNSSECRecordAnswersQuestion(const ResourceRecord *const rr, const DNSQuestion *const q, mDNSBool *checkType)
1708{
1709    *checkType = mDNStrue;
1710
1711    // This function is called for all questions and as long as the type matches,
1712    // return true. For the types (RRSIG and NSEC) that are specifically checked in
1713    // this function, returning true still holds good.
1714    if (q->qtype == rr->rrtype)
1715        return mDNStrue;
1716
1717    // For DS and DNSKEY questions, the types should match i.e., don't answer using CNAME
1718    // records as it answers any question type.
1719    //
1720    // - DS record comes from the parent zone where CNAME record cannot coexist and hence
1721    //  cannot possibly answer it.
1722    //
1723    // - For DNSKEY, one could potentially follow CNAME but there could be a DNSKEY at
1724    //   the "qname" itself. To keep it simple, we don't follow CNAME.
1725
1726    if ((q->qtype == kDNSType_DS || q->qtype == kDNSType_DNSKEY) && (q->qtype != rr->rrtype))
1727    {
1728        debugf("DNSSECRecordAnswersQuestion: %d type resource record matched question %##s (%s), ignoring", rr->rrtype,
1729            q->qname.c, DNSTypeName(q->qtype));
1730        return mDNSfalse;
1731    }
1732
1733    // If we are validating a response using DNSSEC, we might already have the records
1734    // for the "q->qtype" in the cache but we issued a query with DO bit set
1735    // to get the RRSIGs e.g., if you have two questions one of which does not require
1736    // DNSSEC validation. When the RRSIG is added to the cache, we need to deliver
1737    // the response to the question. The RRSIG type won't match the q->qtype and hence
1738    // we need to bypass the check in that case.
1739    if (rr->rrtype == kDNSType_RRSIG && q->ValidatingResponse)
1740    {
1741        const RDataBody2 *const rdb = (RDataBody2 *)rr->rdata->u.data;
1742        rdataRRSig *rrsig = (rdataRRSig *)rdb->data;
1743        mDNSu16 typeCovered = swap16(rrsig->typeCovered);
1744        debugf("DNSSECRecordAnswersQuestion: Matching RRSIG typeCovered %s", DNSTypeName(typeCovered));
1745        if (typeCovered != kDNSType_CNAME && typeCovered != q->qtype)
1746        {
1747            debugf("DNSSECRecordAnswersQuestion: RRSIG did not match question %##s (%s)", q->qname.c,
1748                    DNSTypeName(q->qtype));
1749            return mDNSfalse;
1750        }
1751        LogInfo("DNSSECRecordAnswersQuestion: RRSIG matched question %##s (%s)", q->qname.c,
1752                DNSTypeName(q->qtype));
1753        *checkType = mDNSfalse;
1754        return mDNStrue;
1755    }
1756    // If the NSEC record asserts the non-existence of a name looked up by the question, we would
1757    // typically answer that e.g., the bitmap asserts that q->qtype does not exist. If we have
1758    // to prove the non-existence as required by ValidatingResponse and ValidationRequired question,
1759    // then we should not answer that as it may not be the right one always. We may need more than
1760    // one NSEC to prove the non-existence.
1761    if (rr->rrtype == kDNSType_NSEC && DNSSECQuestion(q))
1762    {
1763        debugf("DNSSECRecordAnswersQuestion: Question %##s (%s) matched record %##s (NSEC)", q->qname.c,
1764                DNSTypeName(q->qtype), rr->name->c);
1765        return mDNSfalse;
1766    }
1767    return mDNStrue;
1768}
1769
1770// ResourceRecordAnswersQuestion returns mDNStrue if the given resource record is a valid answer to the given question.
1771// SameNameRecordAnswersQuestion is the same, except it skips the expensive SameDomainName() call.
1772// SameDomainName() is generally cheap when the names don't match, but expensive when they do match,
1773// because it has to check all the way to the end of the names to be sure.
1774// In cases where we know in advance that the names match it's especially advantageous to skip the
1775// SameDomainName() call because that's precisely the time when it's most expensive and least useful.
1776
1777mDNSexport mDNSBool SameNameRecordAnswersQuestion(const ResourceRecord *const rr, const DNSQuestion *const q)
1778{
1779    mDNSBool checkType = mDNStrue;
1780
1781    // LocalOnly/P2P questions can be answered with AuthRecordAny in this function. LocalOnly/P2P records
1782    // are handled in LocalOnlyRecordAnswersQuestion
1783    if (LocalOnlyOrP2PInterface(rr->InterfaceID))
1784    {
1785        LogMsg("SameNameRecordAnswersQuestion: ERROR!! called with LocalOnly ResourceRecord %p, Question %p", rr->InterfaceID, q->InterfaceID);
1786        return mDNSfalse;
1787    }
1788    if (QuerySuppressed(q))
1789        return mDNSfalse;
1790
1791    if (rr->InterfaceID &&
1792        q->InterfaceID && q->InterfaceID != mDNSInterface_LocalOnly &&
1793        rr->InterfaceID != q->InterfaceID) return(mDNSfalse);
1794
1795    // Resource record received via unicast, the resolver group ID should match ?
1796    if (!rr->InterfaceID)
1797    {
1798        mDNSu16 idr = (rr->rDNSServer ? rr->rDNSServer->resGroupID : 0);
1799        mDNSu16 idq = (q->qDNSServer ? q->qDNSServer->resGroupID : 0);
1800        if (idr != idq) return(mDNSfalse);
1801        if (!DNSSECRecordAnswersQuestion(rr, q, &checkType)) return mDNSfalse;
1802    }
1803
1804    // If ResourceRecord received via multicast, but question was unicast, then shouldn't use record to answer this question
1805    if (rr->InterfaceID && !mDNSOpaque16IsZero(q->TargetQID)) return(mDNSfalse);
1806
1807    // CNAME answers question of any type and a negative cache record should not prevent us from querying other
1808    // valid types at the same name.
1809    if (rr->rrtype == kDNSType_CNAME && rr->RecordType == kDNSRecordTypePacketNegative && rr->rrtype != q->qtype)
1810        return mDNSfalse;
1811
1812    // RR type CNAME matches any query type. QTYPE ANY matches any RR type. QCLASS ANY matches any RR class.
1813    if (checkType && !RRTypeAnswersQuestionType(rr,q->qtype)) return(mDNSfalse);
1814    if (rr->rrclass != q->qclass && q->qclass != kDNSQClass_ANY) return(mDNSfalse);
1815
1816#if APPLE_OSX_mDNSResponder
1817    if (!mDNSPlatformValidRecordForQuestion(rr, q))
1818        return mDNSfalse;
1819#endif // APPLE_OSX_mDNSResponder
1820
1821    if (!AnonInfoAnswersQuestion(rr, q))
1822        return mDNSfalse;
1823
1824    return(mDNStrue);
1825}
1826
1827mDNSexport mDNSBool ResourceRecordAnswersQuestion(const ResourceRecord *const rr, const DNSQuestion *const q)
1828{
1829    if (!SameNameRecordAnswersQuestion(rr, q))
1830        return mDNSfalse;
1831
1832    return(rr->namehash == q->qnamehash && SameDomainName(rr->name, &q->qname));
1833}
1834
1835// We have a separate function to handle LocalOnly AuthRecords because they can be created with
1836// a valid InterfaceID (e.g., scoped /etc/hosts) and can be used to answer unicast questions unlike
1837// multicast resource records (which has a valid InterfaceID) which can't be used to answer
1838// unicast questions. ResourceRecordAnswersQuestion/SameNameRecordAnswersQuestion can't tell whether
1839// a resource record is multicast or LocalOnly by just looking at the ResourceRecord because
1840// LocalOnly records are truly identified by ARType in the AuthRecord.  As P2P and LocalOnly record
1841// are kept in the same hash table, we use the same function to make it easy for the callers when
1842// they walk the hash table to answer LocalOnly/P2P questions
1843//
1844mDNSexport mDNSBool LocalOnlyRecordAnswersQuestion(AuthRecord *const ar, const DNSQuestion *const q)
1845{
1846    ResourceRecord *rr = &ar->resrec;
1847
1848    // mDNSInterface_Any questions can be answered with LocalOnly/P2P records in this function. AuthRecord_Any
1849    // records are handled in ResourceRecordAnswersQuestion/SameNameRecordAnswersQuestion
1850    if (RRAny(ar))
1851    {
1852        LogMsg("LocalOnlyRecordAnswersQuestion: ERROR!! called with regular AuthRecordAny %##s", rr->name->c);
1853        return mDNSfalse;
1854    }
1855
1856    // Questions with mDNSInterface_LocalOnly InterfaceID should be answered with all resource records that are
1857    // *local* to the machine. These include resource records that have InterfaceID set to mDNSInterface_LocalOnly,
1858    // mDNSInterface_Any and any other real InterfaceID. Hence, LocalOnly questions should not be checked against
1859    // the InterfaceID in the resource record.
1860    //
1861    // mDNSInterface_Unicast does not indicate any scope and hence treat them like mDNSInterface_Any.
1862
1863    if (rr->InterfaceID &&
1864        q->InterfaceID && q->InterfaceID != mDNSInterface_LocalOnly && q->InterfaceID != mDNSInterface_Unicast &&
1865        rr->InterfaceID != q->InterfaceID) return(mDNSfalse);
1866
1867    // Entries in /etc/hosts are added as LocalOnly resource records. The LocalOnly resource records
1868    // may have a scope e.g., fe80::1%en0. The question may be scoped or not: the InterfaceID may be set
1869    // to mDNSInterface_Any, mDNSInterface_LocalOnly or a real InterfaceID (scoped).
1870    //
1871    // 1) Question: Any, LocalOnly Record: no scope. This question should be answered with this record.
1872    //
1873    // 2) Question: Any, LocalOnly Record: scoped.  This question should be answered with the record because
1874    //    traditionally applications never specify scope e.g., getaddrinfo, but need to be able
1875    //    to get to /etc/hosts entries.
1876    //
1877    // 3) Question: Scoped (LocalOnly or InterfaceID), LocalOnly Record: no scope. This is the inverse of (2).
1878    //    If we register a LocalOnly record, we need to answer a LocalOnly question. If the /etc/hosts has a
1879    //    non scoped entry, it may not make sense to answer a scoped question. But we can't tell these two
1880    //    cases apart. As we currently answer LocalOnly question with LocalOnly record, we continue to do so.
1881    //
1882    // 4) Question: Scoped (LocalOnly or InterfaceID), LocalOnly Record: scoped. LocalOnly questions should be
1883    //    answered with any resource record where as if it has a valid InterfaceID, the scope should match.
1884    //
1885    // (1) and (2) is bypassed because we check for a non-NULL InterfaceID above. For (3), the InterfaceID is NULL
1886    // and hence bypassed above. For (4) we bypassed LocalOnly questions and checked the scope of the record
1887    // against the question.
1888    //
1889    // For P2P, InterfaceIDs of the question and the record should match.
1890
1891    // If ResourceRecord received via multicast, but question was unicast, then shouldn't use record to answer this question.
1892    // LocalOnly authoritative answers are exempt. LocalOnly authoritative answers are used for /etc/host entries.
1893    // We don't want a local process to be able to create a fake LocalOnly address record for "www.bigbank.com" which would then
1894    // cause other applications (e.g. Safari) to connect to the wrong address. The rpc to register records filters out records
1895    // with names that don't end in local and have mDNSInterface_LocalOnly set.
1896    //
1897    // Note: The check is bypassed for LocalOnly and for P2P it is not needed as only .local records are registered and for
1898    // a question to match its names, it also has to end in .local and that question can't be a unicast question (See
1899    // Question_uDNS macro and its usage). As P2P does not enforce .local only registrations we still make this check
1900    // and also makes it future proof.
1901
1902    if (ar->ARType != AuthRecordLocalOnly && rr->InterfaceID && !mDNSOpaque16IsZero(q->TargetQID)) return(mDNSfalse);
1903
1904    // RR type CNAME matches any query type. QTYPE ANY matches any RR type. QCLASS ANY matches any RR class.
1905    if (!RRTypeAnswersQuestionType(rr,q->qtype)) return(mDNSfalse);
1906    if (rr->rrclass != q->qclass && q->qclass != kDNSQClass_ANY) return(mDNSfalse);
1907
1908    if (!AnonInfoAnswersQuestion(rr, q))
1909        return mDNSfalse;
1910
1911    return(rr->namehash == q->qnamehash && SameDomainName(rr->name, &q->qname));
1912}
1913
1914mDNSexport mDNSBool AnyTypeRecordAnswersQuestion(const ResourceRecord *const rr, const DNSQuestion *const q)
1915{
1916    // LocalOnly/P2P questions can be answered with AuthRecordAny in this function. LocalOnly/P2P records
1917    // are handled in LocalOnlyRecordAnswersQuestion
1918    if (LocalOnlyOrP2PInterface(rr->InterfaceID))
1919    {
1920        LogMsg("AnyTypeRecordAnswersQuestion: ERROR!! called with LocalOnly ResourceRecord %p, Question %p", rr->InterfaceID, q->InterfaceID);
1921        return mDNSfalse;
1922    }
1923    if (rr->InterfaceID &&
1924        q->InterfaceID && q->InterfaceID != mDNSInterface_LocalOnly &&
1925        rr->InterfaceID != q->InterfaceID) return(mDNSfalse);
1926
1927    // Resource record received via unicast, the resolver group ID should match ?
1928    // Note that Auth Records are normally setup with NULL InterfaceID and
1929    // both the DNSServers are assumed to be NULL in that case
1930    if (!rr->InterfaceID)
1931    {
1932        mDNSu16 idr = (rr->rDNSServer ? rr->rDNSServer->resGroupID : 0);
1933        mDNSu16 idq = (q->qDNSServer ? q->qDNSServer->resGroupID : 0);
1934        if (idr != idq) return(mDNSfalse);
1935    }
1936
1937    // If ResourceRecord received via multicast, but question was unicast, then shouldn't use record to answer this question
1938    if (rr->InterfaceID && !mDNSOpaque16IsZero(q->TargetQID)) return(mDNSfalse);
1939
1940    if (rr->rrclass != q->qclass && q->qclass != kDNSQClass_ANY) return(mDNSfalse);
1941
1942    if (!AnonInfoAnswersQuestion(rr, q))
1943        return mDNSfalse;
1944
1945    return(rr->namehash == q->qnamehash && SameDomainName(rr->name, &q->qname));
1946}
1947
1948// This is called with both unicast resource record and multicast resource record. The question that
1949// received the unicast response could be the regular unicast response from a DNS server or a response
1950// to a mDNS QU query. The main reason we need this function is that we can't compare DNSServers between the
1951// question and the resource record because the resource record is not completely initialized in
1952// mDNSCoreReceiveResponse when this function is called.
1953mDNSexport mDNSBool ResourceRecordAnswersUnicastResponse(const ResourceRecord *const rr, const DNSQuestion *const q)
1954{
1955    mDNSBool checkType = mDNStrue;
1956
1957    if (QuerySuppressed(q))
1958        return mDNSfalse;
1959
1960    // For resource records created using multicast, the InterfaceIDs have to match
1961    if (rr->InterfaceID &&
1962        q->InterfaceID && rr->InterfaceID != q->InterfaceID) return(mDNSfalse);
1963
1964    // If ResourceRecord received via multicast, but question was unicast, then shouldn't use record to answer this question.
1965    if (rr->InterfaceID && !mDNSOpaque16IsZero(q->TargetQID)) return(mDNSfalse);
1966
1967    if (!DNSSECRecordAnswersQuestion(rr, q, &checkType)) return mDNSfalse;
1968
1969    // RR type CNAME matches any query type. QTYPE ANY matches any RR type. QCLASS ANY matches any RR class.
1970    if (checkType && !RRTypeAnswersQuestionType(rr,q->qtype)) return(mDNSfalse);
1971
1972    if (rr->rrclass != q->qclass && q->qclass != kDNSQClass_ANY) return(mDNSfalse);
1973
1974    return(rr->namehash == q->qnamehash && SameDomainName(rr->name, &q->qname));
1975}
1976
1977mDNSexport mDNSu16 GetRDLength(const ResourceRecord *const rr, mDNSBool estimate)
1978{
1979    const RDataBody2 *const rd = (RDataBody2 *)rr->rdata->u.data;
1980    const domainname *const name = estimate ? rr->name : mDNSNULL;
1981    if (rr->rrclass == kDNSQClass_ANY) return(rr->rdlength);    // Used in update packets to mean "Delete An RRset" (RFC 2136)
1982    else switch (rr->rrtype)
1983        {
1984        case kDNSType_A:    return(sizeof(rd->ipv4));
1985
1986        case kDNSType_NS:
1987        case kDNSType_CNAME:
1988        case kDNSType_PTR:
1989        case kDNSType_DNAME: return(CompressedDomainNameLength(&rd->name, name));
1990
1991        case kDNSType_SOA:  return (mDNSu16)(CompressedDomainNameLength(&rd->soa.mname, name) +
1992                                             CompressedDomainNameLength(&rd->soa.rname, name) +
1993                                             5 * sizeof(mDNSOpaque32));
1994
1995        case kDNSType_NULL:
1996        case kDNSType_TSIG:
1997        case kDNSType_TXT:
1998        case kDNSType_X25:
1999        case kDNSType_ISDN:
2000        case kDNSType_LOC:
2001        case kDNSType_DHCID: return(rr->rdlength); // Not self-describing, so have to just trust rdlength
2002
2003        case kDNSType_HINFO: return (mDNSu16)(2 + (int)rd->data[0] + (int)rd->data[1 + (int)rd->data[0]]);
2004
2005        case kDNSType_MX:
2006        case kDNSType_AFSDB:
2007        case kDNSType_RT:
2008        case kDNSType_KX:   return (mDNSu16)(2 + CompressedDomainNameLength(&rd->mx.exchange, name));
2009
2010        case kDNSType_RP:   return (mDNSu16)(CompressedDomainNameLength(&rd->rp.mbox, name) +
2011                                             CompressedDomainNameLength(&rd->rp.txt, name));
2012
2013        case kDNSType_PX:   return (mDNSu16)(2 + CompressedDomainNameLength(&rd->px.map822, name) +
2014                                             CompressedDomainNameLength(&rd->px.mapx400, name));
2015
2016        case kDNSType_AAAA: return(sizeof(rd->ipv6));
2017
2018        case kDNSType_SRV:  return (mDNSu16)(6 + CompressedDomainNameLength(&rd->srv.target, name));
2019
2020        case kDNSType_OPT:  return(rr->rdlength);
2021
2022        case kDNSType_NSEC: {
2023            domainname *next = (domainname *)rd->data;
2024            int dlen = DomainNameLength(next);
2025            //
2026            if (UNICAST_NSEC(rr))
2027                return (mDNSu16)(CompressedDomainNameLength(next, name) + rr->rdlength - dlen);
2028            else
2029                return (mDNSu16)((estimate ? 2 : dlen) + rr->rdlength - dlen);
2030        }
2031
2032        default:            debugf("Warning! Don't know how to get length of resource type %d", rr->rrtype);
2033            return(rr->rdlength);
2034        }
2035}
2036
2037// When a local client registers (or updates) a record, we use this routine to do some simple validation checks
2038// to help reduce the risk of bogus malformed data on the network
2039mDNSexport mDNSBool ValidateRData(const mDNSu16 rrtype, const mDNSu16 rdlength, const RData *const rd)
2040{
2041    mDNSu16 len;
2042
2043    switch(rrtype)
2044    {
2045    case kDNSType_A:    return(rdlength == sizeof(mDNSv4Addr));
2046
2047    case kDNSType_NS:       // Same as PTR
2048    case kDNSType_MD:       // Same as PTR
2049    case kDNSType_MF:       // Same as PTR
2050    case kDNSType_CNAME:    // Same as PTR
2051    //case kDNSType_SOA not checked
2052    case kDNSType_MB:       // Same as PTR
2053    case kDNSType_MG:       // Same as PTR
2054    case kDNSType_MR:       // Same as PTR
2055    //case kDNSType_NULL not checked (no specified format, so always valid)
2056    //case kDNSType_WKS not checked
2057    case kDNSType_PTR:  len = DomainNameLengthLimit(&rd->u.name, rd->u.data + rdlength);
2058        return(len <= MAX_DOMAIN_NAME && rdlength == len);
2059
2060    case kDNSType_HINFO:    // Same as TXT (roughly)
2061    case kDNSType_MINFO:    // Same as TXT (roughly)
2062    case kDNSType_TXT:  if (!rdlength) return(mDNSfalse);     // TXT record has to be at least one byte (RFC 1035)
2063        {
2064            const mDNSu8 *ptr = rd->u.txt.c;
2065            const mDNSu8 *end = rd->u.txt.c + rdlength;
2066            while (ptr < end) ptr += 1 + ptr[0];
2067            return (ptr == end);
2068        }
2069
2070    case kDNSType_AAAA: return(rdlength == sizeof(mDNSv6Addr));
2071
2072    case kDNSType_MX:       // Must be at least two-byte preference, plus domainname
2073                            // Call to DomainNameLengthLimit() implicitly enforces both requirements for us
2074        len = DomainNameLengthLimit(&rd->u.mx.exchange, rd->u.data + rdlength);
2075        return(len <= MAX_DOMAIN_NAME && rdlength == 2+len);
2076
2077    case kDNSType_SRV:      // Must be at least priority+weight+port, plus domainname
2078                            // Call to DomainNameLengthLimit() implicitly enforces both requirements for us
2079        len = DomainNameLengthLimit(&rd->u.srv.target, rd->u.data + rdlength);
2080        return(len <= MAX_DOMAIN_NAME && rdlength == 6+len);
2081
2082    //case kDNSType_NSEC not checked
2083
2084    default:            return(mDNStrue);       // Allow all other types without checking
2085    }
2086}
2087
2088// ***************************************************************************
2089#if COMPILER_LIKES_PRAGMA_MARK
2090#pragma mark -
2091#pragma mark - DNS Message Creation Functions
2092#endif
2093
2094mDNSexport void InitializeDNSMessage(DNSMessageHeader *h, mDNSOpaque16 id, mDNSOpaque16 flags)
2095{
2096    h->id             = id;
2097    h->flags          = flags;
2098    h->numQuestions   = 0;
2099    h->numAnswers     = 0;
2100    h->numAuthorities = 0;
2101    h->numAdditionals = 0;
2102}
2103
2104mDNSexport const mDNSu8 *FindCompressionPointer(const mDNSu8 *const base, const mDNSu8 *const end, const mDNSu8 *const domname)
2105{
2106    const mDNSu8 *result = end - *domname - 1;
2107
2108    if (*domname == 0) return(mDNSNULL);    // There's no point trying to match just the root label
2109
2110    // This loop examines each possible starting position in packet, starting end of the packet and working backwards
2111    while (result >= base)
2112    {
2113        // If the length byte and first character of the label match, then check further to see
2114        // if this location in the packet will yield a useful name compression pointer.
2115        if (result[0] == domname[0] && result[1] == domname[1])
2116        {
2117            const mDNSu8 *name = domname;
2118            const mDNSu8 *targ = result;
2119            while (targ + *name < end)
2120            {
2121                // First see if this label matches
2122                int i;
2123                const mDNSu8 *pointertarget;
2124                for (i=0; i <= *name; i++) if (targ[i] != name[i]) break;
2125                if (i <= *name) break;                          // If label did not match, bail out
2126                targ += 1 + *name;                              // Else, did match, so advance target pointer
2127                name += 1 + *name;                              // and proceed to check next label
2128                if (*name == 0 && *targ == 0) return(result);   // If no more labels, we found a match!
2129                if (*name == 0) break;                          // If no more labels to match, we failed, so bail out
2130
2131                // The label matched, so now follow the pointer (if appropriate) and then see if the next label matches
2132                if (targ[0] < 0x40) continue;                   // If length value, continue to check next label
2133                if (targ[0] < 0xC0) break;                      // If 40-BF, not valid
2134                if (targ+1 >= end) break;                       // Second byte not present!
2135                pointertarget = base + (((mDNSu16)(targ[0] & 0x3F)) << 8) + targ[1];
2136                if (targ < pointertarget) break;                // Pointertarget must point *backwards* in the packet
2137                if (pointertarget[0] >= 0x40) break;            // Pointertarget must point to a valid length byte
2138                targ = pointertarget;
2139            }
2140        }
2141        result--;   // We failed to match at this search position, so back up the tentative result pointer and try again
2142    }
2143    return(mDNSNULL);
2144}
2145
2146// domainname is a fully-qualified name (i.e. assumed to be ending in a dot, even if it doesn't)
2147// msg points to the message we're building (pass mDNSNULL if we don't want to use compression pointers)
2148// end points to the end of the message so far
2149// ptr points to where we want to put the name
2150// limit points to one byte past the end of the buffer that we must not overrun
2151// domainname is the name to put
2152mDNSexport mDNSu8 *putDomainNameAsLabels(const DNSMessage *const msg,
2153                                         mDNSu8 *ptr, const mDNSu8 *const limit, const domainname *const name)
2154{
2155    const mDNSu8 *const base        = (const mDNSu8 *)msg;
2156    const mDNSu8 *      np          = name->c;
2157    const mDNSu8 *const max         = name->c + MAX_DOMAIN_NAME;    // Maximum that's valid
2158    const mDNSu8 *      pointer     = mDNSNULL;
2159    const mDNSu8 *const searchlimit = ptr;
2160
2161    if (!ptr) { LogMsg("putDomainNameAsLabels %##s ptr is null", name->c); return(mDNSNULL); }
2162
2163    if (!*np)       // If just writing one-byte root label, make sure we have space for that
2164    {
2165        if (ptr >= limit) return(mDNSNULL);
2166    }
2167    else            // else, loop through writing labels and/or a compression offset
2168    {
2169        do  {
2170            if (*np > MAX_DOMAIN_LABEL)
2171            { LogMsg("Malformed domain name %##s (label more than 63 bytes)", name->c); return(mDNSNULL); }
2172
2173            // This check correctly allows for the final trailing root label:
2174            // e.g.
2175            // Suppose our domain name is exactly 256 bytes long, including the final trailing root label.
2176            // Suppose np is now at name->c[249], and we're about to write our last non-null label ("local").
2177            // We know that max will be at name->c[256]
2178            // That means that np + 1 + 5 == max - 1, so we (just) pass the "if" test below, write our
2179            // six bytes, then exit the loop, write the final terminating root label, and the domain
2180            // name we've written is exactly 256 bytes long, exactly at the correct legal limit.
2181            // If the name is one byte longer, then we fail the "if" test below, and correctly bail out.
2182            if (np + 1 + *np >= max)
2183            { LogMsg("Malformed domain name %##s (more than 256 bytes)", name->c); return(mDNSNULL); }
2184
2185            if (base) pointer = FindCompressionPointer(base, searchlimit, np);
2186            if (pointer)                    // Use a compression pointer if we can
2187            {
2188                const mDNSu16 offset = (mDNSu16)(pointer - base);
2189                if (ptr+2 > limit) return(mDNSNULL);    // If we don't have two bytes of space left, give up
2190                *ptr++ = (mDNSu8)(0xC0 | (offset >> 8));
2191                *ptr++ = (mDNSu8)(        offset &  0xFF);
2192                return(ptr);
2193            }
2194            else                            // Else copy one label and try again
2195            {
2196                int i;
2197                mDNSu8 len = *np++;
2198                // If we don't at least have enough space for this label *plus* a terminating zero on the end, give up
2199                if (ptr + 1 + len >= limit) return(mDNSNULL);
2200                *ptr++ = len;
2201                for (i=0; i<len; i++) *ptr++ = *np++;
2202            }
2203        } while (*np);                      // While we've got characters remaining in the name, continue
2204    }
2205
2206    *ptr++ = 0;     // Put the final root label
2207    return(ptr);
2208}
2209
2210mDNSlocal mDNSu8 *putVal16(mDNSu8 *ptr, mDNSu16 val)
2211{
2212    ptr[0] = (mDNSu8)((val >> 8 ) & 0xFF);
2213    ptr[1] = (mDNSu8)((val      ) & 0xFF);
2214    return ptr + sizeof(mDNSOpaque16);
2215}
2216
2217mDNSlocal mDNSu8 *putVal32(mDNSu8 *ptr, mDNSu32 val)
2218{
2219    ptr[0] = (mDNSu8)((val >> 24) & 0xFF);
2220    ptr[1] = (mDNSu8)((val >> 16) & 0xFF);
2221    ptr[2] = (mDNSu8)((val >>  8) & 0xFF);
2222    ptr[3] = (mDNSu8)((val      ) & 0xFF);
2223    return ptr + sizeof(mDNSu32);
2224}
2225
2226// Copy the RDATA information. The actual in memory storage for the data might be bigger than what the rdlength
2227// says. Hence, the only way to copy out the data from a resource record is to use putRData.
2228// msg points to the message we're building (pass mDNSNULL for "msg" if we don't want to use compression pointers)
2229mDNSexport mDNSu8 *putRData(const DNSMessage *const msg, mDNSu8 *ptr, const mDNSu8 *const limit, const ResourceRecord *const rr)
2230{
2231    const RDataBody2 *const rdb = (RDataBody2 *)rr->rdata->u.data;
2232    switch (rr->rrtype)
2233    {
2234    case kDNSType_A:    if (rr->rdlength != 4)
2235        { debugf("putRData: Illegal length %d for kDNSType_A", rr->rdlength); return(mDNSNULL); }
2236        if (ptr + 4 > limit) return(mDNSNULL);
2237        *ptr++ = rdb->ipv4.b[0];
2238        *ptr++ = rdb->ipv4.b[1];
2239        *ptr++ = rdb->ipv4.b[2];
2240        *ptr++ = rdb->ipv4.b[3];
2241        return(ptr);
2242
2243    case kDNSType_NS:
2244    case kDNSType_CNAME:
2245    case kDNSType_PTR:
2246    case kDNSType_DNAME: return(putDomainNameAsLabels(msg, ptr, limit, &rdb->name));
2247
2248    case kDNSType_SOA:  ptr = putDomainNameAsLabels(msg, ptr, limit, &rdb->soa.mname);
2249        if (!ptr) return(mDNSNULL);
2250        ptr = putDomainNameAsLabels(msg, ptr, limit, &rdb->soa.rname);
2251        if (!ptr || ptr + 20 > limit) return(mDNSNULL);
2252        ptr = putVal32(ptr, rdb->soa.serial);
2253        ptr = putVal32(ptr, rdb->soa.refresh);
2254        ptr = putVal32(ptr, rdb->soa.retry);
2255        ptr = putVal32(ptr, rdb->soa.expire);
2256        ptr = putVal32(ptr, rdb->soa.min);
2257        return(ptr);
2258
2259    case kDNSType_NULL:
2260    case kDNSType_HINFO:
2261    case kDNSType_TSIG:
2262    case kDNSType_TXT:
2263    case kDNSType_X25:
2264    case kDNSType_ISDN:
2265    case kDNSType_LOC:
2266    case kDNSType_DHCID: if (ptr + rr->rdlength > limit) return(mDNSNULL);
2267        mDNSPlatformMemCopy(ptr, rdb->data, rr->rdlength);
2268        return(ptr + rr->rdlength);
2269
2270    case kDNSType_MX:
2271    case kDNSType_AFSDB:
2272    case kDNSType_RT:
2273    case kDNSType_KX:   if (ptr + 3 > limit) return(mDNSNULL);
2274        ptr = putVal16(ptr, rdb->mx.preference);
2275        return(putDomainNameAsLabels(msg, ptr, limit, &rdb->mx.exchange));
2276
2277    case kDNSType_RP:   ptr = putDomainNameAsLabels(msg, ptr, limit, &rdb->rp.mbox);
2278        if (!ptr) return(mDNSNULL);
2279        ptr = putDomainNameAsLabels(msg, ptr, limit, &rdb->rp.txt);
2280        return(ptr);
2281
2282    case kDNSType_PX:   if (ptr + 5 > limit) return(mDNSNULL);
2283        ptr = putVal16(ptr, rdb->px.preference);
2284        ptr = putDomainNameAsLabels(msg, ptr, limit, &rdb->px.map822);
2285        if (!ptr) return(mDNSNULL);
2286        ptr = putDomainNameAsLabels(msg, ptr, limit, &rdb->px.mapx400);
2287        return(ptr);
2288
2289    case kDNSType_AAAA: if (rr->rdlength != sizeof(rdb->ipv6))
2290        { debugf("putRData: Illegal length %d for kDNSType_AAAA", rr->rdlength); return(mDNSNULL); }
2291        if (ptr + sizeof(rdb->ipv6) > limit) return(mDNSNULL);
2292        mDNSPlatformMemCopy(ptr, &rdb->ipv6, sizeof(rdb->ipv6));
2293        return(ptr + sizeof(rdb->ipv6));
2294
2295    case kDNSType_SRV:  if (ptr + 7 > limit) return(mDNSNULL);
2296        *ptr++ = (mDNSu8)(rdb->srv.priority >> 8);
2297        *ptr++ = (mDNSu8)(rdb->srv.priority &  0xFF);
2298        *ptr++ = (mDNSu8)(rdb->srv.weight   >> 8);
2299        *ptr++ = (mDNSu8)(rdb->srv.weight   &  0xFF);
2300        *ptr++ = rdb->srv.port.b[0];
2301        *ptr++ = rdb->srv.port.b[1];
2302        return(putDomainNameAsLabels(msg, ptr, limit, &rdb->srv.target));
2303
2304    case kDNSType_OPT:  {
2305        int len = 0;
2306        const rdataOPT *opt;
2307        const rdataOPT *const end = (const rdataOPT *)&rr->rdata->u.data[rr->rdlength];
2308        for (opt = &rr->rdata->u.opt[0]; opt < end; opt++)
2309            len += DNSOpt_Data_Space(opt);
2310        if (ptr + len > limit)
2311        {
2312            LogMsg("ERROR: putOptRData - out of space");
2313            return mDNSNULL;
2314        }
2315        for (opt = &rr->rdata->u.opt[0]; opt < end; opt++)
2316        {
2317            const int space = DNSOpt_Data_Space(opt);
2318            ptr = putVal16(ptr, opt->opt);
2319            ptr = putVal16(ptr, (mDNSu16)space - 4);
2320            switch (opt->opt)
2321            {
2322            case kDNSOpt_LLQ:
2323                ptr = putVal16(ptr, opt->u.llq.vers);
2324                ptr = putVal16(ptr, opt->u.llq.llqOp);
2325                ptr = putVal16(ptr, opt->u.llq.err);
2326                mDNSPlatformMemCopy(ptr, opt->u.llq.id.b, 8);                          // 8-byte id
2327                ptr += 8;
2328                ptr = putVal32(ptr, opt->u.llq.llqlease);
2329                break;
2330            case kDNSOpt_Lease:
2331                ptr = putVal32(ptr, opt->u.updatelease);
2332                break;
2333            case kDNSOpt_Owner:
2334                *ptr++ = opt->u.owner.vers;
2335                *ptr++ = opt->u.owner.seq;
2336                mDNSPlatformMemCopy(ptr, opt->u.owner.HMAC.b, 6);                          // 6-byte Host identifier
2337                ptr += 6;
2338                if (space >= DNSOpt_OwnerData_ID_Wake_Space)
2339                {
2340                    mDNSPlatformMemCopy(ptr, opt->u.owner.IMAC.b, 6);                           // 6-byte interface MAC
2341                    ptr += 6;
2342                    if (space > DNSOpt_OwnerData_ID_Wake_Space)
2343                    {
2344                        mDNSPlatformMemCopy(ptr, opt->u.owner.password.b, space - DNSOpt_OwnerData_ID_Wake_Space);
2345                        ptr += space - DNSOpt_OwnerData_ID_Wake_Space;
2346                    }
2347                }
2348                break;
2349            case kDNSOpt_Trace:
2350                *ptr++ = opt->u.tracer.platf;
2351                ptr    = putVal32(ptr, opt->u.tracer.mDNSv);
2352                break;
2353            }
2354        }
2355        return ptr;
2356    }
2357
2358    case kDNSType_NSEC: {
2359        // For NSEC records, rdlength represents the exact number of bytes
2360        // of in memory storage.
2361        mDNSu8 *nsec = (mDNSu8 *)rdb->data;
2362        domainname *name = (domainname *)nsec;
2363        const int dlen = DomainNameLength(name);
2364        nsec += dlen;
2365        // This function is called when we are sending a NSEC record as part of mDNS,
2366        // or to copy the data to any other buffer needed which could be a mDNS or uDNS
2367        // NSEC record. The only time compression is used that when we are sending it
2368        // in mDNS (indicated by non-NULL "msg") and hence we handle mDNS case
2369        // separately.
2370        if (!UNICAST_NSEC(rr))
2371        {
2372            mDNSu8 *save = ptr;
2373            int i, j, wlen;
2374            wlen = *(nsec + 1);
2375            nsec += 2;                     // Skip the window number and len
2376
2377            // For our simplified use of NSEC synthetic records:
2378            //
2379            // nextname is always the record's own name,
2380            // the block number is always 0,
2381            // the count byte is a value in the range 1-32,
2382            // followed by the 1-32 data bytes
2383            //
2384            // Note: When we send the NSEC record in mDNS, the window size is set to 32.
2385            // We need to find out what the last non-NULL byte is.  If we are copying out
2386            // from an RDATA, we have the right length. As we need to handle both the case,
2387            // we loop to find the right value instead of blindly using len to copy.
2388
2389            for (i=wlen; i>0; i--) if (nsec[i-1]) break;
2390
2391            ptr = putDomainNameAsLabels(msg, ptr, limit, rr->name);
2392            if (!ptr) { LogInfo("putRData: Can't put name, Length %d, record %##s", limit - save, rr->name->c); return(mDNSNULL); }
2393            if (i)                          // Only put a block if at least one type exists for this name
2394            {
2395                if (ptr + 2 + i > limit) { LogInfo("putRData: Can't put window, Length %d, i %d, record %##s", limit - ptr, i, rr->name->c); return(mDNSNULL); }
2396                *ptr++ = 0;
2397                *ptr++ = (mDNSu8)i;
2398                for (j=0; j<i; j++) *ptr++ = nsec[j];
2399            }
2400            return ptr;
2401        }
2402        else
2403        {
2404            int win, wlen;
2405            int len = rr->rdlength - dlen;
2406
2407            // Sanity check whether the bitmap is good
2408            while (len)
2409            {
2410                if (len < 3)
2411                { LogMsg("putRData: invalid length %d", len); return mDNSNULL; }
2412
2413                win = *nsec++;
2414                wlen = *nsec++;
2415                len -= 2;
2416                if (len < wlen || wlen < 1 || wlen > 32)
2417                { LogMsg("putRData: invalid window length %d", wlen); return mDNSNULL; }
2418                if (win < 0 || win >= 256)
2419                { LogMsg("putRData: invalid window %d", win); return mDNSNULL; }
2420
2421                nsec += wlen;
2422                len -= wlen;
2423            }
2424            if (ptr + rr->rdlength > limit) { LogMsg("putRData: NSEC rdlength beyond limit %##s (%s), ptr %p, rdlength %d, limit %p", rr->name->c, DNSTypeName(rr->rrtype), ptr, rr->rdlength, limit); return(mDNSNULL);}
2425
2426            // No compression allowed for "nxt", just copy the data.
2427            mDNSPlatformMemCopy(ptr, rdb->data, rr->rdlength);
2428            return(ptr + rr->rdlength);
2429        }
2430    }
2431
2432    default:            debugf("putRData: Warning! Writing unknown resource type %d as raw data", rr->rrtype);
2433        if (ptr + rr->rdlength > limit) return(mDNSNULL);
2434        mDNSPlatformMemCopy(ptr, rdb->data, rr->rdlength);
2435        return(ptr + rr->rdlength);
2436    }
2437}
2438
2439#define IsUnicastUpdate(X) (!mDNSOpaque16IsZero((X)->h.id) && ((X)->h.flags.b[0] & kDNSFlag0_OP_Mask) == kDNSFlag0_OP_Update)
2440
2441mDNSexport mDNSu8 *PutResourceRecordTTLWithLimit(DNSMessage *const msg, mDNSu8 *ptr, mDNSu16 *count, ResourceRecord *rr, mDNSu32 ttl, const mDNSu8 *limit)
2442{
2443    mDNSu8 *endofrdata;
2444    mDNSu16 actualLength;
2445    // When sending SRV to conventional DNS server (i.e. in DNS update requests) we should not do name compression on the rdata (RFC 2782)
2446    const DNSMessage *const rdatacompressionbase = (IsUnicastUpdate(msg) && rr->rrtype == kDNSType_SRV) ? mDNSNULL : msg;
2447
2448    if (rr->RecordType == kDNSRecordTypeUnregistered)
2449    {
2450        LogMsg("PutResourceRecordTTLWithLimit ERROR! Attempt to put kDNSRecordTypeUnregistered %##s (%s)", rr->name->c, DNSTypeName(rr->rrtype));
2451        return(ptr);
2452    }
2453
2454    if (!ptr)
2455    {
2456        LogMsg("PutResourceRecordTTLWithLimit ptr is null %##s (%s)", rr->name->c, DNSTypeName(rr->rrtype));
2457        return(mDNSNULL);
2458    }
2459
2460    ptr = putDomainNameAsLabels(msg, ptr, limit, rr->name);
2461    // If we're out-of-space, return mDNSNULL
2462    if (!ptr || ptr + 10 >= limit)
2463    {
2464        LogInfo("PutResourceRecordTTLWithLimit: can't put name, out of space %##s (%s), ptr %p, limit %p", rr->name->c,
2465            DNSTypeName(rr->rrtype), ptr, limit);
2466        return(mDNSNULL);
2467    }
2468    ptr[0] = (mDNSu8)(rr->rrtype  >> 8);
2469    ptr[1] = (mDNSu8)(rr->rrtype  &  0xFF);
2470    ptr[2] = (mDNSu8)(rr->rrclass >> 8);
2471    ptr[3] = (mDNSu8)(rr->rrclass &  0xFF);
2472    ptr[4] = (mDNSu8)((ttl >> 24) &  0xFF);
2473    ptr[5] = (mDNSu8)((ttl >> 16) &  0xFF);
2474    ptr[6] = (mDNSu8)((ttl >>  8) &  0xFF);
2475    ptr[7] = (mDNSu8)( ttl        &  0xFF);
2476    // ptr[8] and ptr[9] filled in *after* we find out how much space the rdata takes
2477
2478    endofrdata = putRData(rdatacompressionbase, ptr+10, limit, rr);
2479    if (!endofrdata)
2480    {
2481        LogInfo("PutResourceRecordTTLWithLimit: Ran out of space in PutResourceRecord for %##s (%s), ptr %p, limit %p", rr->name->c,
2482            DNSTypeName(rr->rrtype), ptr+10, limit);
2483        return(mDNSNULL);
2484    }
2485
2486    // Go back and fill in the actual number of data bytes we wrote
2487    // (actualLength can be less than rdlength when domain name compression is used)
2488    actualLength = (mDNSu16)(endofrdata - ptr - 10);
2489    ptr[8] = (mDNSu8)(actualLength >> 8);
2490    ptr[9] = (mDNSu8)(actualLength &  0xFF);
2491
2492    if (count) (*count)++;
2493    else LogMsg("PutResourceRecordTTL: ERROR: No target count to update for %##s (%s)", rr->name->c, DNSTypeName(rr->rrtype));
2494    return(endofrdata);
2495}
2496
2497mDNSlocal mDNSu8 *putEmptyResourceRecord(DNSMessage *const msg, mDNSu8 *ptr, const mDNSu8 *const limit, mDNSu16 *count, const AuthRecord *rr)
2498{
2499    ptr = putDomainNameAsLabels(msg, ptr, limit, rr->resrec.name);
2500    if (!ptr || ptr + 10 > limit) return(mDNSNULL);     // If we're out-of-space, return mDNSNULL
2501    ptr[0] = (mDNSu8)(rr->resrec.rrtype  >> 8);             // Put type
2502    ptr[1] = (mDNSu8)(rr->resrec.rrtype  &  0xFF);
2503    ptr[2] = (mDNSu8)(rr->resrec.rrclass >> 8);             // Put class
2504    ptr[3] = (mDNSu8)(rr->resrec.rrclass &  0xFF);
2505    ptr[4] = ptr[5] = ptr[6] = ptr[7] = 0;              // TTL is zero
2506    ptr[8] = ptr[9] = 0;                                // RDATA length is zero
2507    (*count)++;
2508    return(ptr + 10);
2509}
2510
2511mDNSexport mDNSu8 *putQuestion(DNSMessage *const msg, mDNSu8 *ptr, const mDNSu8 *const limit, const domainname *const name, mDNSu16 rrtype, mDNSu16 rrclass)
2512{
2513    ptr = putDomainNameAsLabels(msg, ptr, limit, name);
2514    if (!ptr || ptr+4 >= limit) return(mDNSNULL);           // If we're out-of-space, return mDNSNULL
2515    ptr[0] = (mDNSu8)(rrtype  >> 8);
2516    ptr[1] = (mDNSu8)(rrtype  &  0xFF);
2517    ptr[2] = (mDNSu8)(rrclass >> 8);
2518    ptr[3] = (mDNSu8)(rrclass &  0xFF);
2519    msg->h.numQuestions++;
2520    return(ptr+4);
2521}
2522
2523// for dynamic updates
2524mDNSexport mDNSu8 *putZone(DNSMessage *const msg, mDNSu8 *ptr, mDNSu8 *limit, const domainname *zone, mDNSOpaque16 zoneClass)
2525{
2526    ptr = putDomainNameAsLabels(msg, ptr, limit, zone);
2527    if (!ptr || ptr + 4 > limit) return mDNSNULL;       // If we're out-of-space, return NULL
2528    *ptr++ = (mDNSu8)(kDNSType_SOA  >> 8);
2529    *ptr++ = (mDNSu8)(kDNSType_SOA  &  0xFF);
2530    *ptr++ = zoneClass.b[0];
2531    *ptr++ = zoneClass.b[1];
2532    msg->h.mDNS_numZones++;
2533    return ptr;
2534}
2535
2536// for dynamic updates
2537mDNSexport mDNSu8 *putPrereqNameNotInUse(const domainname *const name, DNSMessage *const msg, mDNSu8 *const ptr, mDNSu8 *const end)
2538{
2539    AuthRecord prereq;
2540    mDNS_SetupResourceRecord(&prereq, mDNSNULL, mDNSInterface_Any, kDNSQType_ANY, kStandardTTL, 0, AuthRecordAny, mDNSNULL, mDNSNULL);
2541    AssignDomainName(&prereq.namestorage, name);
2542    prereq.resrec.rrtype = kDNSQType_ANY;
2543    prereq.resrec.rrclass = kDNSClass_NONE;
2544    return putEmptyResourceRecord(msg, ptr, end, &msg->h.mDNS_numPrereqs, &prereq);
2545}
2546
2547// for dynamic updates
2548mDNSexport mDNSu8 *putDeletionRecord(DNSMessage *msg, mDNSu8 *ptr, ResourceRecord *rr)
2549{
2550    // deletion: specify record w/ TTL 0, class NONE
2551    const mDNSu16 origclass = rr->rrclass;
2552    rr->rrclass = kDNSClass_NONE;
2553    ptr = PutResourceRecordTTLJumbo(msg, ptr, &msg->h.mDNS_numUpdates, rr, 0);
2554    rr->rrclass = origclass;
2555    return ptr;
2556}
2557
2558// for dynamic updates
2559mDNSexport mDNSu8 *putDeletionRecordWithLimit(DNSMessage *msg, mDNSu8 *ptr, ResourceRecord *rr, mDNSu8 *limit)
2560{
2561    // deletion: specify record w/ TTL 0, class NONE
2562    const mDNSu16 origclass = rr->rrclass;
2563    rr->rrclass = kDNSClass_NONE;
2564    ptr = PutResourceRecordTTLWithLimit(msg, ptr, &msg->h.mDNS_numUpdates, rr, 0, limit);
2565    rr->rrclass = origclass;
2566    return ptr;
2567}
2568
2569mDNSexport mDNSu8 *putDeleteRRSetWithLimit(DNSMessage *msg, mDNSu8 *ptr, const domainname *name, mDNSu16 rrtype, mDNSu8 *limit)
2570{
2571    mDNSu16 class = kDNSQClass_ANY;
2572
2573    ptr = putDomainNameAsLabels(msg, ptr, limit, name);
2574    if (!ptr || ptr + 10 >= limit) return mDNSNULL; // If we're out-of-space, return mDNSNULL
2575    ptr[0] = (mDNSu8)(rrtype  >> 8);
2576    ptr[1] = (mDNSu8)(rrtype  &  0xFF);
2577    ptr[2] = (mDNSu8)(class >> 8);
2578    ptr[3] = (mDNSu8)(class &  0xFF);
2579    ptr[4] = ptr[5] = ptr[6] = ptr[7] = 0; // zero ttl
2580    ptr[8] = ptr[9] = 0; // zero rdlength/rdata
2581
2582    msg->h.mDNS_numUpdates++;
2583    return ptr + 10;
2584}
2585
2586// for dynamic updates
2587mDNSexport mDNSu8 *putDeleteAllRRSets(DNSMessage *msg, mDNSu8 *ptr, const domainname *name)
2588{
2589    const mDNSu8 *limit = msg->data + AbsoluteMaxDNSMessageData;
2590    mDNSu16 class = kDNSQClass_ANY;
2591    mDNSu16 rrtype = kDNSQType_ANY;
2592
2593    ptr = putDomainNameAsLabels(msg, ptr, limit, name);
2594    if (!ptr || ptr + 10 >= limit) return mDNSNULL; // If we're out-of-space, return mDNSNULL
2595    ptr[0] = (mDNSu8)(rrtype >> 8);
2596    ptr[1] = (mDNSu8)(rrtype &  0xFF);
2597    ptr[2] = (mDNSu8)(class >> 8);
2598    ptr[3] = (mDNSu8)(class &  0xFF);
2599    ptr[4] = ptr[5] = ptr[6] = ptr[7] = 0; // zero ttl
2600    ptr[8] = ptr[9] = 0; // zero rdlength/rdata
2601
2602    msg->h.mDNS_numUpdates++;
2603    return ptr + 10;
2604}
2605
2606// for dynamic updates
2607mDNSexport mDNSu8 *putUpdateLease(DNSMessage *msg, mDNSu8 *ptr, mDNSu32 lease)
2608{
2609    AuthRecord rr;
2610    mDNS_SetupResourceRecord(&rr, mDNSNULL, mDNSInterface_Any, kDNSType_OPT, kStandardTTL, kDNSRecordTypeKnownUnique, AuthRecordAny, mDNSNULL, mDNSNULL);
2611    rr.resrec.rrclass    = NormalMaxDNSMessageData;
2612    rr.resrec.rdlength   = sizeof(rdataOPT);    // One option in this OPT record
2613    rr.resrec.rdestimate = sizeof(rdataOPT);
2614    rr.resrec.rdata->u.opt[0].opt           = kDNSOpt_Lease;
2615    rr.resrec.rdata->u.opt[0].u.updatelease = lease;
2616    ptr = PutResourceRecordTTLJumbo(msg, ptr, &msg->h.numAdditionals, &rr.resrec, 0);
2617    if (!ptr) { LogMsg("ERROR: putUpdateLease - PutResourceRecordTTL"); return mDNSNULL; }
2618    return ptr;
2619}
2620
2621// for dynamic updates
2622mDNSexport mDNSu8 *putUpdateLeaseWithLimit(DNSMessage *msg, mDNSu8 *ptr, mDNSu32 lease, mDNSu8 *limit)
2623{
2624    AuthRecord rr;
2625    mDNS_SetupResourceRecord(&rr, mDNSNULL, mDNSInterface_Any, kDNSType_OPT, kStandardTTL, kDNSRecordTypeKnownUnique, AuthRecordAny, mDNSNULL, mDNSNULL);
2626    rr.resrec.rrclass    = NormalMaxDNSMessageData;
2627    rr.resrec.rdlength   = sizeof(rdataOPT);    // One option in this OPT record
2628    rr.resrec.rdestimate = sizeof(rdataOPT);
2629    rr.resrec.rdata->u.opt[0].opt           = kDNSOpt_Lease;
2630    rr.resrec.rdata->u.opt[0].u.updatelease = lease;
2631    ptr = PutResourceRecordTTLWithLimit(msg, ptr, &msg->h.numAdditionals, &rr.resrec, 0, limit);
2632    if (!ptr) { LogMsg("ERROR: putUpdateLeaseWithLimit - PutResourceRecordTTLWithLimit"); return mDNSNULL; }
2633    return ptr;
2634}
2635
2636mDNSexport mDNSu8 *putDNSSECOption(DNSMessage *msg, mDNSu8 *end, mDNSu8 *limit)
2637{
2638    AuthRecord rr;
2639    mDNSu32 ttl = 0;
2640
2641    mDNS_SetupResourceRecord(&rr, mDNSNULL, mDNSInterface_Any, kDNSType_OPT, kStandardTTL, kDNSRecordTypeKnownUnique, AuthRecordAny, mDNSNULL, mDNSNULL);
2642    // It is still not clear what the right size is. We will have to fine tune this once we do
2643    // a lot of testing with DNSSEC.
2644    rr.resrec.rrclass    = 4096;
2645    rr.resrec.rdlength   = 0;
2646    rr.resrec.rdestimate = 0;
2647    // set the DO bit
2648    ttl |= 0x8000;
2649    end = PutResourceRecordTTLWithLimit(msg, end, &msg->h.numAdditionals, &rr.resrec, ttl, limit);
2650    if (!end) { LogMsg("ERROR: putDNSSECOption - PutResourceRecordTTLWithLimit"); return mDNSNULL; }
2651    return end;
2652}
2653
2654mDNSexport mDNSu8 *putHINFO(const mDNS *const m, DNSMessage *const msg, mDNSu8 *end, DomainAuthInfo *authInfo, mDNSu8 *limit)
2655{
2656    if (authInfo && authInfo->AutoTunnel)
2657    {
2658        AuthRecord hinfo;
2659        mDNSu8 *h = hinfo.rdatastorage.u.data;
2660        mDNSu16 len = 2 + m->HIHardware.c[0] + m->HISoftware.c[0];
2661        mDNSu8 *newptr;
2662        mDNS_SetupResourceRecord(&hinfo, mDNSNULL, mDNSInterface_Any, kDNSType_HINFO, 0, kDNSRecordTypeUnique, AuthRecordAny, mDNSNULL, mDNSNULL);
2663        AppendDomainLabel(&hinfo.namestorage, &m->hostlabel);
2664        AppendDomainName (&hinfo.namestorage, &authInfo->domain);
2665        hinfo.resrec.rroriginalttl = 0;
2666        mDNSPlatformMemCopy(h, &m->HIHardware, 1 + (mDNSu32)m->HIHardware.c[0]);
2667        h += 1 + (int)h[0];
2668        mDNSPlatformMemCopy(h, &m->HISoftware, 1 + (mDNSu32)m->HISoftware.c[0]);
2669        hinfo.resrec.rdlength   = len;
2670        hinfo.resrec.rdestimate = len;
2671        newptr = PutResourceRecordTTLWithLimit(msg, end, &msg->h.numAdditionals, &hinfo.resrec, 0, limit);
2672        return newptr;
2673    }
2674    else
2675        return end;
2676}
2677
2678// ***************************************************************************
2679#if COMPILER_LIKES_PRAGMA_MARK
2680#pragma mark -
2681#pragma mark - DNS Message Parsing Functions
2682#endif
2683
2684mDNSexport mDNSu32 DomainNameHashValue(const domainname *const name)
2685{
2686    mDNSu32 sum = 0;
2687    const mDNSu8 *c;
2688
2689    for (c = name->c; c[0] != 0 && c[1] != 0; c += 2)
2690    {
2691        sum += ((mDNSIsUpperCase(c[0]) ? c[0] + 'a' - 'A' : c[0]) << 8) |
2692               (mDNSIsUpperCase(c[1]) ? c[1] + 'a' - 'A' : c[1]);
2693        sum = (sum<<3) | (sum>>29);
2694    }
2695    if (c[0]) sum += ((mDNSIsUpperCase(c[0]) ? c[0] + 'a' - 'A' : c[0]) << 8);
2696    return(sum);
2697}
2698
2699mDNSexport void SetNewRData(ResourceRecord *const rr, RData *NewRData, mDNSu16 rdlength)
2700{
2701    domainname *target;
2702    if (NewRData)
2703    {
2704        rr->rdata    = NewRData;
2705        rr->rdlength = rdlength;
2706    }
2707    // Must not try to get target pointer until after updating rr->rdata
2708    target = GetRRDomainNameTarget(rr);
2709    rr->rdlength   = GetRDLength(rr, mDNSfalse);
2710    rr->rdestimate = GetRDLength(rr, mDNStrue);
2711    rr->rdatahash  = target ? DomainNameHashValue(target) : RDataHashValue(rr);
2712}
2713
2714mDNSexport const mDNSu8 *skipDomainName(const DNSMessage *const msg, const mDNSu8 *ptr, const mDNSu8 *const end)
2715{
2716    mDNSu16 total = 0;
2717
2718    if (ptr < (mDNSu8*)msg || ptr >= end)
2719    { debugf("skipDomainName: Illegal ptr not within packet boundaries"); return(mDNSNULL); }
2720
2721    while (1)                       // Read sequence of labels
2722    {
2723        const mDNSu8 len = *ptr++;  // Read length of this label
2724        if (len == 0) return(ptr);  // If length is zero, that means this name is complete
2725        switch (len & 0xC0)
2726        {
2727        case 0x00:  if (ptr + len >= end)                       // Remember: expect at least one more byte for the root label
2728            { debugf("skipDomainName: Malformed domain name (overruns packet end)"); return(mDNSNULL); }
2729            if (total + 1 + len >= MAX_DOMAIN_NAME)             // Remember: expect at least one more byte for the root label
2730            { debugf("skipDomainName: Malformed domain name (more than 256 characters)"); return(mDNSNULL); }
2731            ptr += len;
2732            total += 1 + len;
2733            break;
2734
2735        case 0x40:  debugf("skipDomainName: Extended EDNS0 label types 0x%X not supported", len); return(mDNSNULL);
2736        case 0x80:  debugf("skipDomainName: Illegal label length 0x%X", len); return(mDNSNULL);
2737        case 0xC0:  return(ptr+1);
2738        }
2739    }
2740}
2741
2742// Routine to fetch an FQDN from the DNS message, following compression pointers if necessary.
2743mDNSexport const mDNSu8 *getDomainName(const DNSMessage *const msg, const mDNSu8 *ptr, const mDNSu8 *const end,
2744                                       domainname *const name)
2745{
2746    const mDNSu8 *nextbyte = mDNSNULL;                  // Record where we got to before we started following pointers
2747    mDNSu8       *np = name->c;                         // Name pointer
2748    const mDNSu8 *const limit = np + MAX_DOMAIN_NAME;   // Limit so we don't overrun buffer
2749
2750    if (ptr < (mDNSu8*)msg || ptr >= end)
2751    { debugf("getDomainName: Illegal ptr not within packet boundaries"); return(mDNSNULL); }
2752
2753    *np = 0;                        // Tentatively place the root label here (may be overwritten if we have more labels)
2754
2755    while (1)                       // Read sequence of labels
2756    {
2757        const mDNSu8 len = *ptr++;  // Read length of this label
2758        if (len == 0) break;        // If length is zero, that means this name is complete
2759        switch (len & 0xC0)
2760        {
2761            int i;
2762            mDNSu16 offset;
2763
2764        case 0x00:  if (ptr + len >= end)           // Remember: expect at least one more byte for the root label
2765            { debugf("getDomainName: Malformed domain name (overruns packet end)"); return(mDNSNULL); }
2766            if (np + 1 + len >= limit)              // Remember: expect at least one more byte for the root label
2767            { debugf("getDomainName: Malformed domain name (more than 256 characters)"); return(mDNSNULL); }
2768            *np++ = len;
2769            for (i=0; i<len; i++) *np++ = *ptr++;
2770            *np = 0;                // Tentatively place the root label here (may be overwritten if we have more labels)
2771            break;
2772
2773        case 0x40:  debugf("getDomainName: Extended EDNS0 label types 0x%X not supported in name %##s", len, name->c);
2774            return(mDNSNULL);
2775
2776        case 0x80:  debugf("getDomainName: Illegal label length 0x%X in domain name %##s", len, name->c); return(mDNSNULL);
2777
2778        case 0xC0:  offset = (mDNSu16)((((mDNSu16)(len & 0x3F)) << 8) | *ptr++);
2779            if (!nextbyte) nextbyte = ptr;              // Record where we got to before we started following pointers
2780            ptr = (mDNSu8 *)msg + offset;
2781            if (ptr < (mDNSu8*)msg || ptr >= end)
2782            { debugf("getDomainName: Illegal compression pointer not within packet boundaries"); return(mDNSNULL); }
2783            if (*ptr & 0xC0)
2784            { debugf("getDomainName: Compression pointer must point to real label"); return(mDNSNULL); }
2785            break;
2786        }
2787    }
2788
2789    if (nextbyte) return(nextbyte);
2790    else return(ptr);
2791}
2792
2793mDNSexport const mDNSu8 *skipResourceRecord(const DNSMessage *msg, const mDNSu8 *ptr, const mDNSu8 *end)
2794{
2795    mDNSu16 pktrdlength;
2796
2797    ptr = skipDomainName(msg, ptr, end);
2798    if (!ptr) { debugf("skipResourceRecord: Malformed RR name"); return(mDNSNULL); }
2799
2800    if (ptr + 10 > end) { debugf("skipResourceRecord: Malformed RR -- no type/class/ttl/len!"); return(mDNSNULL); }
2801    pktrdlength = (mDNSu16)((mDNSu16)ptr[8] <<  8 | ptr[9]);
2802    ptr += 10;
2803    if (ptr + pktrdlength > end) { debugf("skipResourceRecord: RDATA exceeds end of packet"); return(mDNSNULL); }
2804
2805    return(ptr + pktrdlength);
2806}
2807
2808// Sanity check whether the NSEC/NSEC3 bitmap is good
2809mDNSlocal mDNSu8 *SanityCheckBitMap(const mDNSu8 *bmap, const mDNSu8 *end, int len)
2810{
2811    int win, wlen;
2812
2813    while (bmap < end)
2814    {
2815        if (len < 3)
2816        {
2817            LogInfo("SanityCheckBitMap: invalid length %d", len);
2818            return mDNSNULL;
2819        }
2820
2821        win = *bmap++;
2822        wlen = *bmap++;
2823        len -= 2;
2824        if (len < wlen || wlen < 1 || wlen > 32)
2825        {
2826            LogInfo("SanityCheckBitMap: invalid window length %d", wlen);
2827            return mDNSNULL;
2828        }
2829        if (win < 0 || win >= 256)
2830        {
2831            LogInfo("SanityCheckBitMap: invalid window %d", win);
2832            return mDNSNULL;
2833        }
2834
2835        bmap += wlen;
2836        len -= wlen;
2837    }
2838    return (mDNSu8 *)bmap;
2839}
2840
2841// This function is called with "msg" when we receive a DNS message and needs to parse a single resource record
2842// pointed to by "ptr". Some resource records like SOA, SRV are converted to host order and also expanded
2843// (domainnames are expanded to 255 bytes) when stored in memory.
2844//
2845// This function can also be called with "NULL" msg to parse a single resource record pointed to by ptr.
2846// The caller can do this only if the names in the resource records are not compressed and validity of the
2847// resource record has already been done before. DNSSEC currently uses it this way.
2848mDNSexport mDNSBool SetRData(const DNSMessage *const msg, const mDNSu8 *ptr, const mDNSu8 *end,
2849    LargeCacheRecord *const largecr, mDNSu16 rdlength)
2850{
2851    CacheRecord *const rr = &largecr->r;
2852    RDataBody2 *const rdb = (RDataBody2 *)rr->smallrdatastorage.data;
2853
2854    switch (rr->resrec.rrtype)
2855    {
2856    case kDNSType_A:
2857        if (rdlength != sizeof(mDNSv4Addr))
2858            goto fail;
2859        rdb->ipv4.b[0] = ptr[0];
2860        rdb->ipv4.b[1] = ptr[1];
2861        rdb->ipv4.b[2] = ptr[2];
2862        rdb->ipv4.b[3] = ptr[3];
2863        break;
2864
2865    case kDNSType_NS:
2866    case kDNSType_MD:
2867    case kDNSType_MF:
2868    case kDNSType_CNAME:
2869    case kDNSType_MB:
2870    case kDNSType_MG:
2871    case kDNSType_MR:
2872    case kDNSType_PTR:
2873    case kDNSType_NSAP_PTR:
2874    case kDNSType_DNAME:
2875        if (msg)
2876        {
2877            ptr = getDomainName(msg, ptr, end, &rdb->name);
2878        }
2879        else
2880        {
2881            AssignDomainName(&rdb->name, (domainname *)ptr);
2882            ptr += DomainNameLength(&rdb->name);
2883        }
2884        if (ptr != end)
2885        {
2886            debugf("SetRData: Malformed CNAME/PTR RDATA name");
2887            goto fail;
2888        }
2889        break;
2890
2891    case kDNSType_SOA:
2892        if (msg)
2893        {
2894            ptr = getDomainName(msg, ptr, end, &rdb->soa.mname);
2895        }
2896        else
2897        {
2898            AssignDomainName(&rdb->soa.mname, (domainname *)ptr);
2899            ptr += DomainNameLength(&rdb->soa.mname);
2900        }
2901        if (!ptr)
2902        {
2903            debugf("SetRData: Malformed SOA RDATA mname");
2904            goto fail;
2905        }
2906        if (msg)
2907        {
2908            ptr = getDomainName(msg, ptr, end, &rdb->soa.rname);
2909        }
2910        else
2911        {
2912            AssignDomainName(&rdb->soa.rname, (domainname *)ptr);
2913            ptr += DomainNameLength(&rdb->soa.rname);
2914        }
2915        if (!ptr)
2916        {
2917            debugf("SetRData: Malformed SOA RDATA rname");
2918            goto fail;
2919        }
2920        if (ptr + 0x14 != end)
2921        {
2922            debugf("SetRData: Malformed SOA RDATA");
2923            goto fail;
2924        }
2925        rdb->soa.serial  = (mDNSs32) ((mDNSs32)ptr[0x00] << 24 | (mDNSs32)ptr[0x01] << 16 | (mDNSs32)ptr[0x02] << 8 | ptr[0x03]);
2926        rdb->soa.refresh = (mDNSu32) ((mDNSu32)ptr[0x04] << 24 | (mDNSu32)ptr[0x05] << 16 | (mDNSu32)ptr[0x06] << 8 | ptr[0x07]);
2927        rdb->soa.retry   = (mDNSu32) ((mDNSu32)ptr[0x08] << 24 | (mDNSu32)ptr[0x09] << 16 | (mDNSu32)ptr[0x0A] << 8 | ptr[0x0B]);
2928        rdb->soa.expire  = (mDNSu32) ((mDNSu32)ptr[0x0C] << 24 | (mDNSu32)ptr[0x0D] << 16 | (mDNSu32)ptr[0x0E] << 8 | ptr[0x0F]);
2929        rdb->soa.min     = (mDNSu32) ((mDNSu32)ptr[0x10] << 24 | (mDNSu32)ptr[0x11] << 16 | (mDNSu32)ptr[0x12] << 8 | ptr[0x13]);
2930        break;
2931
2932    case kDNSType_NULL:
2933    case kDNSType_HINFO:
2934    case kDNSType_TXT:
2935    case kDNSType_X25:
2936    case kDNSType_ISDN:
2937    case kDNSType_LOC:
2938    case kDNSType_DHCID:
2939        rr->resrec.rdlength = rdlength;
2940        mDNSPlatformMemCopy(rdb->data, ptr, rdlength);
2941        break;
2942
2943    case kDNSType_MX:
2944    case kDNSType_AFSDB:
2945    case kDNSType_RT:
2946    case kDNSType_KX:
2947        // Preference + domainname
2948        if (rdlength < 3)
2949            goto fail;
2950        rdb->mx.preference = (mDNSu16)((mDNSu16)ptr[0] <<  8 | ptr[1]);
2951        ptr += 2;
2952        if (msg)
2953        {
2954            ptr = getDomainName(msg, ptr, end, &rdb->mx.exchange);
2955        }
2956        else
2957        {
2958            AssignDomainName(&rdb->mx.exchange, (domainname *)ptr);
2959            ptr += DomainNameLength(&rdb->mx.exchange);
2960        }
2961        if (ptr != end)
2962        {
2963            debugf("SetRData: Malformed MX name");
2964            goto fail;
2965        }
2966        break;
2967
2968    case kDNSType_MINFO:
2969    case kDNSType_RP:
2970        // Domainname + domainname
2971        if (msg)
2972        {
2973            ptr = getDomainName(msg, ptr, end, &rdb->rp.mbox);
2974        }
2975        else
2976        {
2977            AssignDomainName(&rdb->rp.mbox, (domainname *)ptr);
2978            ptr += DomainNameLength(&rdb->rp.mbox);
2979        }
2980        if (!ptr)
2981        {
2982            debugf("SetRData: Malformed RP mbox");
2983            goto fail;
2984        }
2985        if (msg)
2986        {
2987            ptr = getDomainName(msg, ptr, end, &rdb->rp.txt);
2988        }
2989        else
2990        {
2991            AssignDomainName(&rdb->rp.txt, (domainname *)ptr);
2992            ptr += DomainNameLength(&rdb->rp.txt);
2993        }
2994        if (ptr != end)
2995        {
2996            debugf("SetRData: Malformed RP txt");
2997            goto fail;
2998        }
2999        break;
3000
3001    case kDNSType_PX:
3002        // Preference + domainname + domainname
3003        if (rdlength < 4)
3004            goto fail;
3005        rdb->px.preference = (mDNSu16)((mDNSu16)ptr[0] <<  8 | ptr[1]);
3006        ptr += 2;
3007        if (msg)
3008        {
3009            ptr = getDomainName(msg, ptr, end, &rdb->px.map822);
3010        }
3011        else
3012        {
3013            AssignDomainName(&rdb->px.map822, (domainname *)ptr);
3014            ptr += DomainNameLength(&rdb->px.map822);
3015        }
3016        if (!ptr)
3017        {
3018            debugf("SetRData: Malformed PX map822");
3019            goto fail;
3020        }
3021        if (msg)
3022        {
3023            ptr = getDomainName(msg, ptr, end, &rdb->px.mapx400);
3024        }
3025        else
3026        {
3027            AssignDomainName(&rdb->px.mapx400, (domainname *)ptr);
3028            ptr += DomainNameLength(&rdb->px.mapx400);
3029        }
3030        if (ptr != end)
3031        {
3032            debugf("SetRData: Malformed PX mapx400");
3033            goto fail;
3034        }
3035        break;
3036
3037    case kDNSType_AAAA:
3038        if (rdlength != sizeof(mDNSv6Addr))
3039            goto fail;
3040        mDNSPlatformMemCopy(&rdb->ipv6, ptr, sizeof(rdb->ipv6));
3041        break;
3042
3043    case kDNSType_SRV:
3044        // Priority + weight + port + domainname
3045        if (rdlength < 7)
3046            goto fail;
3047        rdb->srv.priority = (mDNSu16)((mDNSu16)ptr[0] <<  8 | ptr[1]);
3048        rdb->srv.weight   = (mDNSu16)((mDNSu16)ptr[2] <<  8 | ptr[3]);
3049        rdb->srv.port.b[0] = ptr[4];
3050        rdb->srv.port.b[1] = ptr[5];
3051        ptr += 6;
3052        if (msg)
3053        {
3054            ptr = getDomainName(msg, ptr, end, &rdb->srv.target);
3055        }
3056        else
3057        {
3058            AssignDomainName(&rdb->srv.target, (domainname *)ptr);
3059            ptr += DomainNameLength(&rdb->srv.target);
3060        }
3061        if (ptr != end)
3062        {
3063            debugf("SetRData: Malformed SRV RDATA name");
3064            goto fail;
3065        }
3066        break;
3067
3068    case kDNSType_NAPTR:
3069    {
3070        int savelen, len;
3071        domainname name;
3072        const mDNSu8 *orig = ptr;
3073
3074        // Make sure the data is parseable and within the limits. DNSSEC code looks at
3075        // the domain name in the end for a valid domainname.
3076        //
3077        // Fixed length: Order, preference (4 bytes)
3078        // Variable length: flags, service, regexp, domainname
3079
3080        if (rdlength < 8)
3081            goto fail;
3082        // Order, preference.
3083        ptr += 4;
3084        // Parse flags, Service and Regexp
3085        // length in the first byte does not include the length byte itself
3086        len = *ptr + 1;
3087        ptr += len;
3088        if (ptr >= end)
3089        {
3090            LogInfo("SetRData: Malformed NAPTR flags");
3091            goto fail;
3092        }
3093
3094        // Service
3095        len = *ptr + 1;
3096        ptr += len;
3097        if (ptr >= end)
3098        {
3099            LogInfo("SetRData: Malformed NAPTR service");
3100            goto fail;
3101        }
3102
3103        // Regexp
3104        len = *ptr + 1;
3105        ptr += len;
3106        if (ptr >= end)
3107        {
3108            LogInfo("SetRData: Malformed NAPTR regexp");
3109            goto fail;
3110        }
3111
3112        savelen = ptr - orig;
3113
3114        // RFC 2915 states that name compression is not allowed for this field. But RFC 3597
3115        // states that for NAPTR we should decompress. We make sure that we store the full
3116        // name rather than the compressed name
3117        if (msg)
3118        {
3119            ptr = getDomainName(msg, ptr, end, &name);
3120        }
3121        else
3122        {
3123            AssignDomainName(&name, (domainname *)ptr);
3124            ptr += DomainNameLength(&name);
3125        }
3126        if (ptr != end)
3127        {
3128            LogInfo("SetRData: Malformed NAPTR RDATA name");
3129            goto fail;
3130        }
3131
3132        rr->resrec.rdlength = savelen + DomainNameLength(&name);
3133        // The uncompressed size should not exceed the limits
3134        if (rr->resrec.rdlength > MaximumRDSize)
3135        {
3136            LogInfo("SetRData: Malformed NAPTR rdlength %d, rr->resrec.rdlength %d, "
3137                    "bmaplen %d, name %##s", rdlength, rr->resrec.rdlength, name.c);
3138            goto fail;
3139        }
3140        mDNSPlatformMemCopy(rdb->data, orig, savelen);
3141        AssignDomainName((domainname *)(rdb->data + savelen), &name);
3142        break;
3143    }
3144    case kDNSType_OPT:  {
3145        mDNSu8 *dataend     = rr->resrec.rdata->u.data;
3146        rdataOPT *opt = rr->resrec.rdata->u.opt;
3147        rr->resrec.rdlength = 0;
3148        while (ptr < end && (mDNSu8 *)(opt+1) < &dataend[MaximumRDSize])
3149        {
3150            const rdataOPT *const currentopt = opt;
3151            if (ptr + 4 > end) { LogInfo("SetRData: OPT RDATA ptr + 4 > end"); goto fail; }
3152            opt->opt    = (mDNSu16)((mDNSu16)ptr[0] <<  8 | ptr[1]);
3153            opt->optlen = (mDNSu16)((mDNSu16)ptr[2] <<  8 | ptr[3]);
3154            ptr += 4;
3155            if (ptr + opt->optlen > end) { LogInfo("SetRData: ptr + opt->optlen > end"); goto fail; }
3156            switch (opt->opt)
3157            {
3158            case kDNSOpt_LLQ:
3159                if (opt->optlen == DNSOpt_LLQData_Space - 4)
3160                {
3161                    opt->u.llq.vers  = (mDNSu16)((mDNSu16)ptr[0] <<  8 | ptr[1]);
3162                    opt->u.llq.llqOp = (mDNSu16)((mDNSu16)ptr[2] <<  8 | ptr[3]);
3163                    opt->u.llq.err   = (mDNSu16)((mDNSu16)ptr[4] <<  8 | ptr[5]);
3164                    mDNSPlatformMemCopy(opt->u.llq.id.b, ptr+6, 8);
3165                    opt->u.llq.llqlease = (mDNSu32) ((mDNSu32)ptr[14] << 24 | (mDNSu32)ptr[15] << 16 | (mDNSu32)ptr[16] << 8 | ptr[17]);
3166                    if (opt->u.llq.llqlease > 0x70000000UL / mDNSPlatformOneSecond)
3167                        opt->u.llq.llqlease = 0x70000000UL / mDNSPlatformOneSecond;
3168                    opt++;
3169                }
3170                break;
3171            case kDNSOpt_Lease:
3172                if (opt->optlen == DNSOpt_LeaseData_Space - 4)
3173                {
3174                    opt->u.updatelease = (mDNSu32) ((mDNSu32)ptr[0] << 24 | (mDNSu32)ptr[1] << 16 | (mDNSu32)ptr[2] << 8 | ptr[3]);
3175                    if (opt->u.updatelease > 0x70000000UL / mDNSPlatformOneSecond)
3176                        opt->u.updatelease = 0x70000000UL / mDNSPlatformOneSecond;
3177                    opt++;
3178                }
3179                break;
3180            case kDNSOpt_Owner:
3181                if (ValidOwnerLength(opt->optlen))
3182                {
3183                    opt->u.owner.vers = ptr[0];
3184                    opt->u.owner.seq  = ptr[1];
3185                    mDNSPlatformMemCopy(opt->u.owner.HMAC.b, ptr+2, 6);                         // 6-byte MAC address
3186                    mDNSPlatformMemCopy(opt->u.owner.IMAC.b, ptr+2, 6);                         // 6-byte MAC address
3187                    opt->u.owner.password = zeroEthAddr;
3188                    if (opt->optlen >= DNSOpt_OwnerData_ID_Wake_Space-4)
3189                    {
3190                        mDNSPlatformMemCopy(opt->u.owner.IMAC.b, ptr+8, 6);                     // 6-byte MAC address
3191                        // This mDNSPlatformMemCopy is safe because the ValidOwnerLength(opt->optlen) check above
3192                        // ensures that opt->optlen is no more than DNSOpt_OwnerData_ID_Wake_PW6_Space - 4
3193                        if (opt->optlen > DNSOpt_OwnerData_ID_Wake_Space-4)
3194                            mDNSPlatformMemCopy(opt->u.owner.password.b, ptr+14, opt->optlen - (DNSOpt_OwnerData_ID_Wake_Space-4));
3195                    }
3196                    opt++;
3197                }
3198                break;
3199            case kDNSOpt_Trace:
3200                if (opt->optlen == DNSOpt_TraceData_Space - 4)
3201                {
3202                    opt->u.tracer.platf   = ptr[0];
3203                    opt->u.tracer.mDNSv   = (mDNSu32) ((mDNSu32)ptr[1] << 24 | (mDNSu32)ptr[2] << 16 | (mDNSu32)ptr[3] << 8 | ptr[4]);
3204                    opt++;
3205                }
3206                else
3207                {
3208                    opt->u.tracer.platf   = 0xFF;
3209                    opt->u.tracer.mDNSv   = 0xFFFFFFFF;
3210                    opt++;
3211                }
3212                break;
3213            }
3214            ptr += currentopt->optlen;
3215        }
3216        rr->resrec.rdlength = (mDNSu16)((mDNSu8*)opt - rr->resrec.rdata->u.data);
3217        if (ptr != end) { LogInfo("SetRData: Malformed OptRdata"); goto fail; }
3218        break;
3219    }
3220
3221    case kDNSType_NSEC: {
3222        domainname name;
3223        int len = rdlength;
3224        int bmaplen, dlen;
3225        const mDNSu8 *orig = ptr;
3226        const mDNSu8 *bmap;
3227
3228        if (msg)
3229        {
3230            ptr = getDomainName(msg, ptr, end, &name);
3231        }
3232        else
3233        {
3234            AssignDomainName(&name, (domainname *)ptr);
3235            ptr += DomainNameLength(&name);
3236        }
3237        if (!ptr)
3238        {
3239            LogInfo("SetRData: Malformed NSEC nextname");
3240            goto fail;
3241        }
3242
3243        dlen = DomainNameLength(&name);
3244
3245        // Multicast NSECs use name compression for this field unlike the unicast case which
3246        // does not use compression. And multicast case always succeeds in compression. So,
3247        // the rdlength includes only the compressed space in that case. So, can't
3248        // use the DomainNameLength of name to reduce the length here.
3249        len -= (ptr - orig);
3250        bmaplen = len;                  // Save the length of the bitmap
3251        bmap = ptr;
3252        ptr = SanityCheckBitMap(bmap, end, len);
3253        if (!ptr)
3254            goto fail;
3255        if (ptr != end)
3256        {
3257            LogInfo("SetRData: Malformed NSEC length not right");
3258            goto fail;
3259        }
3260
3261        // Initialize the right length here. When we call SetNewRData below which in turn calls
3262        // GetRDLength and for NSEC case, it assumes that rdlength is intitialized
3263        rr->resrec.rdlength = DomainNameLength(&name) + bmaplen;
3264
3265        // Do we have space after the name expansion ?
3266        if (rr->resrec.rdlength > MaximumRDSize)
3267        {
3268            LogInfo("SetRData: Malformed NSEC rdlength %d, rr->resrec.rdlength %d, "
3269                    "bmaplen %d, name %##s", rdlength, rr->resrec.rdlength, name.c);
3270            goto fail;
3271        }
3272        AssignDomainName((domainname *)rdb->data, &name);
3273        mDNSPlatformMemCopy(rdb->data + dlen, bmap, bmaplen);
3274        break;
3275    }
3276    case kDNSType_NSEC3:
3277    {
3278        rdataNSEC3 *nsec3 = (rdataNSEC3 *)ptr;
3279        mDNSu8 *p = (mDNSu8 *)&nsec3->salt;
3280        int hashLength, bitmaplen;
3281
3282        if (rdlength < NSEC3_FIXED_SIZE + 1)
3283        {
3284            LogInfo("SetRData: NSEC3 too small length %d", rdlength);
3285            goto fail;
3286        }
3287        if (nsec3->alg != SHA1_DIGEST_TYPE)
3288        {
3289            LogInfo("SetRData: nsec3 alg %d not supported", nsec3->alg);
3290            goto fail;
3291        }
3292        if (swap16(nsec3->iterations) > NSEC3_MAX_ITERATIONS)
3293        {
3294            LogInfo("SetRData: nsec3 iteration count %d too big", swap16(nsec3->iterations));
3295            goto fail;
3296        }
3297        p += nsec3->saltLength;
3298        // There should at least be one byte beyond saltLength
3299        if (p >= end)
3300        {
3301            LogInfo("SetRData: nsec3 too small, at saltlength %d, p %p, end %p", nsec3->saltLength, p, end);
3302            goto fail;
3303        }
3304        // p is pointing at hashLength
3305        hashLength = (int)*p++;
3306        if (!hashLength)
3307        {
3308            LogInfo("SetRData: hashLength zero");
3309            goto fail;
3310        }
3311        p += hashLength;
3312        if (p > end)
3313        {
3314            LogInfo("SetRData: nsec3 too small, at hashLength %d, p %p, end %p", hashLength, p, end);
3315            goto fail;
3316        }
3317
3318        bitmaplen = rdlength - (int)(p - ptr);
3319        p = SanityCheckBitMap(p, end, bitmaplen);
3320        if (!p)
3321            goto fail;
3322        rr->resrec.rdlength = rdlength;
3323        mDNSPlatformMemCopy(rdb->data, ptr, rdlength);
3324        break;
3325    }
3326    case kDNSType_TKEY:
3327    case kDNSType_TSIG:
3328    {
3329        domainname name;
3330        int dlen, rlen;
3331
3332        // The name should not be compressed. But we take the conservative approach
3333        // and uncompress the name before we store it.
3334        if (msg)
3335        {
3336            ptr = getDomainName(msg, ptr, end, &name);
3337        }
3338        else
3339        {
3340            AssignDomainName(&name, (domainname *)ptr);
3341            ptr += DomainNameLength(&name);
3342        }
3343        if (!ptr)
3344        {
3345            LogInfo("SetRData: Malformed name for TSIG/TKEY type %d", rr->resrec.rrtype);
3346            goto fail;
3347        }
3348        dlen = DomainNameLength(&name);
3349        rlen = end - ptr;
3350        rr->resrec.rdlength = dlen + rlen;
3351        if (rr->resrec.rdlength > MaximumRDSize)
3352        {
3353            LogInfo("SetRData: Malformed TSIG/TKEY rdlength %d, rr->resrec.rdlength %d, "
3354                    "bmaplen %d, name %##s", rdlength, rr->resrec.rdlength, name.c);
3355            goto fail;
3356        }
3357        AssignDomainName((domainname *)rdb->data, &name);
3358        mDNSPlatformMemCopy(rdb->data + dlen, ptr, rlen);
3359        break;
3360    }
3361    case kDNSType_RRSIG:
3362    {
3363        const mDNSu8 *sig = ptr + RRSIG_FIXED_SIZE;
3364        const mDNSu8 *orig = sig;
3365        domainname name;
3366        if (rdlength < RRSIG_FIXED_SIZE + 1)
3367        {
3368            LogInfo("SetRData: RRSIG too small length %d", rdlength);
3369            goto fail;
3370        }
3371        if (msg)
3372        {
3373            sig = getDomainName(msg, sig, end, &name);
3374        }
3375        else
3376        {
3377            AssignDomainName(&name, (domainname *)sig);
3378            sig += DomainNameLength(&name);
3379        }
3380        if (!sig)
3381        {
3382            LogInfo("SetRData: Malformed RRSIG record");
3383            goto fail;
3384        }
3385
3386        if ((sig - orig) != DomainNameLength(&name))
3387        {
3388            LogInfo("SetRData: Malformed RRSIG record, signer name compression");
3389            goto fail;
3390        }
3391        // Just ensure that we have at least one byte of the signature
3392        if (sig + 1 >= end)
3393        {
3394            LogInfo("SetRData: Not enough bytes for signature type %d", rr->resrec.rrtype);
3395            goto fail;
3396        }
3397        rr->resrec.rdlength = rdlength;
3398        mDNSPlatformMemCopy(rdb->data, ptr, rdlength);
3399        break;
3400    }
3401    case kDNSType_DNSKEY:
3402    {
3403        if (rdlength < DNSKEY_FIXED_SIZE + 1)
3404        {
3405            LogInfo("SetRData: DNSKEY too small length %d", rdlength);
3406            goto fail;
3407        }
3408        rr->resrec.rdlength = rdlength;
3409        mDNSPlatformMemCopy(rdb->data, ptr, rdlength);
3410        break;
3411    }
3412    case kDNSType_DS:
3413    {
3414        if (rdlength < DS_FIXED_SIZE + 1)
3415        {
3416            LogInfo("SetRData: DS too small length %d", rdlength);
3417            goto fail;
3418        }
3419        rr->resrec.rdlength = rdlength;
3420        mDNSPlatformMemCopy(rdb->data, ptr, rdlength);
3421        break;
3422    }
3423    default:
3424        debugf("SetRData: Warning! Reading resource type %d (%s) as opaque data",
3425               rr->resrec.rrtype, DNSTypeName(rr->resrec.rrtype));
3426        // Note: Just because we don't understand the record type, that doesn't
3427        // mean we fail. The DNS protocol specifies rdlength, so we can
3428        // safely skip over unknown records and ignore them.
3429        // We also grab a binary copy of the rdata anyway, since the caller
3430        // might know how to interpret it even if we don't.
3431        rr->resrec.rdlength = rdlength;
3432        mDNSPlatformMemCopy(rdb->data, ptr, rdlength);
3433        break;
3434    }
3435    return mDNStrue;
3436fail:
3437    return mDNSfalse;
3438}
3439
3440mDNSexport const mDNSu8 *GetLargeResourceRecord(mDNS *const m, const DNSMessage *const msg, const mDNSu8 *ptr,
3441                                                const mDNSu8 *end, const mDNSInterfaceID InterfaceID, mDNSu8 RecordType, LargeCacheRecord *const largecr)
3442{
3443    CacheRecord *const rr = &largecr->r;
3444    mDNSu16 pktrdlength;
3445
3446    if (largecr == &m->rec && m->rec.r.resrec.RecordType)
3447        LogFatalError("GetLargeResourceRecord: m->rec appears to be already in use for %s", CRDisplayString(m, &m->rec.r));
3448
3449    rr->next              = mDNSNULL;
3450    rr->resrec.name       = &largecr->namestorage;
3451
3452    rr->NextInKAList      = mDNSNULL;
3453    rr->TimeRcvd          = m ? m->timenow : 0;
3454    rr->DelayDelivery     = 0;
3455    rr->NextRequiredQuery = m ? m->timenow : 0;     // Will be updated to the real value when we call SetNextCacheCheckTimeForRecord()
3456    rr->LastUsed          = m ? m->timenow : 0;
3457    rr->CRActiveQuestion  = mDNSNULL;
3458    rr->UnansweredQueries = 0;
3459    rr->LastUnansweredTime= 0;
3460#if ENABLE_MULTI_PACKET_QUERY_SNOOPING
3461    rr->MPUnansweredQ     = 0;
3462    rr->MPLastUnansweredQT= 0;
3463    rr->MPUnansweredKA    = 0;
3464    rr->MPExpectingKA     = mDNSfalse;
3465#endif
3466    rr->NextInCFList      = mDNSNULL;
3467
3468    rr->resrec.InterfaceID       = InterfaceID;
3469    rr->resrec.rDNSServer = mDNSNULL;
3470
3471    ptr = getDomainName(msg, ptr, end, &largecr->namestorage);      // Will bail out correctly if ptr is NULL
3472    if (!ptr) { debugf("GetLargeResourceRecord: Malformed RR name"); return(mDNSNULL); }
3473    rr->resrec.namehash = DomainNameHashValue(rr->resrec.name);
3474
3475    if (ptr + 10 > end) { debugf("GetLargeResourceRecord: Malformed RR -- no type/class/ttl/len!"); return(mDNSNULL); }
3476
3477    rr->resrec.rrtype            = (mDNSu16) ((mDNSu16)ptr[0] <<  8 | ptr[1]);
3478    rr->resrec.rrclass           = (mDNSu16)(((mDNSu16)ptr[2] <<  8 | ptr[3]) & kDNSClass_Mask);
3479    rr->resrec.rroriginalttl     = (mDNSu32) ((mDNSu32)ptr[4] << 24 | (mDNSu32)ptr[5] << 16 | (mDNSu32)ptr[6] << 8 | ptr[7]);
3480    if (rr->resrec.rroriginalttl > 0x70000000UL / mDNSPlatformOneSecond && (mDNSs32)rr->resrec.rroriginalttl != -1)
3481        rr->resrec.rroriginalttl = 0x70000000UL / mDNSPlatformOneSecond;
3482    // Note: We don't have to adjust m->NextCacheCheck here -- this is just getting a record into memory for
3483    // us to look at. If we decide to copy it into the cache, then we'll update m->NextCacheCheck accordingly.
3484    pktrdlength           = (mDNSu16)((mDNSu16)ptr[8] <<  8 | ptr[9]);
3485
3486    // If mDNS record has cache-flush bit set, we mark it unique
3487    // For uDNS records, all are implicitly deemed unique (a single DNS server is always
3488    // authoritative for the entire RRSet), unless this is a truncated response
3489    if (ptr[2] & (kDNSClass_UniqueRRSet >> 8) || (!InterfaceID && !(msg->h.flags.b[0] & kDNSFlag0_TC)))
3490        RecordType |= kDNSRecordTypePacketUniqueMask;
3491    ptr += 10;
3492    if (ptr + pktrdlength > end) { debugf("GetLargeResourceRecord: RDATA exceeds end of packet"); return(mDNSNULL); }
3493    end = ptr + pktrdlength;        // Adjust end to indicate the end of the rdata for this resource record
3494
3495    rr->resrec.rdata = (RData*)&rr->smallrdatastorage;
3496    rr->resrec.rdata->MaxRDLength = MaximumRDSize;
3497
3498    if (pktrdlength > MaximumRDSize)
3499    {
3500        LogInfo("GetLargeResourceRecord: %s rdata size (%d) exceeds storage (%d)",
3501                DNSTypeName(rr->resrec.rrtype), pktrdlength, rr->resrec.rdata->MaxRDLength);
3502        goto fail;
3503    }
3504
3505    if (!RecordType) LogMsg("GetLargeResourceRecord: No RecordType for %##s", rr->resrec.name->c);
3506
3507    // IMPORTANT: Any record type we understand and unpack into a structure containing domainnames needs to have corresponding
3508    // cases in SameRDataBody() and RDataHashValue() to do a semantic comparison (or checksum) of the structure instead of a blind
3509    // bitwise memory compare (or sum). This is because a domainname is a fixed size structure holding variable-length data.
3510    // Any bytes past the logical end of the name are undefined, and a blind bitwise memory compare may indicate that
3511    // two domainnames are different when semantically they are the same name and it's only the unused bytes that differ.
3512    if (rr->resrec.rrclass == kDNSQClass_ANY && pktrdlength == 0)   // Used in update packets to mean "Delete An RRset" (RFC 2136)
3513        rr->resrec.rdlength = 0;
3514    else if (!SetRData(msg, ptr, end, largecr, pktrdlength))
3515        goto fail;
3516
3517    SetNewRData(&rr->resrec, mDNSNULL, 0);      // Sets rdlength, rdestimate, rdatahash for us
3518
3519    // Success! Now fill in RecordType to show this record contains valid data
3520    rr->resrec.RecordType = RecordType;
3521    return(end);
3522
3523fail:
3524    // If we were unable to parse the rdata in this record, we indicate that by
3525    // returing a 'kDNSRecordTypePacketNegative' record with rdlength set to zero
3526    rr->resrec.RecordType = kDNSRecordTypePacketNegative;
3527    rr->resrec.rdlength   = 0;
3528    rr->resrec.rdestimate = 0;
3529    rr->resrec.rdatahash  = 0;
3530    return(end);
3531}
3532
3533mDNSexport const mDNSu8 *skipQuestion(const DNSMessage *msg, const mDNSu8 *ptr, const mDNSu8 *end)
3534{
3535    ptr = skipDomainName(msg, ptr, end);
3536    if (!ptr) { debugf("skipQuestion: Malformed domain name in DNS question section"); return(mDNSNULL); }
3537    if (ptr+4 > end) { debugf("skipQuestion: Malformed DNS question section -- no query type and class!"); return(mDNSNULL); }
3538    return(ptr+4);
3539}
3540
3541mDNSexport const mDNSu8 *getQuestion(const DNSMessage *msg, const mDNSu8 *ptr, const mDNSu8 *end, const mDNSInterfaceID InterfaceID,
3542                                     DNSQuestion *question)
3543{
3544    mDNSPlatformMemZero(question, sizeof(*question));
3545    question->InterfaceID = InterfaceID;
3546    if (!InterfaceID) question->TargetQID = onesID; // In DNSQuestions we use TargetQID as the indicator of whether it's unicast or multicast
3547    ptr = getDomainName(msg, ptr, end, &question->qname);
3548    if (!ptr) { debugf("Malformed domain name in DNS question section"); return(mDNSNULL); }
3549    if (ptr+4 > end) { debugf("Malformed DNS question section -- no query type and class!"); return(mDNSNULL); }
3550
3551    question->qnamehash = DomainNameHashValue(&question->qname);
3552    question->qtype  = (mDNSu16)((mDNSu16)ptr[0] << 8 | ptr[1]);            // Get type
3553    question->qclass = (mDNSu16)((mDNSu16)ptr[2] << 8 | ptr[3]);            // and class
3554    return(ptr+4);
3555}
3556
3557mDNSexport const mDNSu8 *LocateAnswers(const DNSMessage *const msg, const mDNSu8 *const end)
3558{
3559    int i;
3560    const mDNSu8 *ptr = msg->data;
3561    for (i = 0; i < msg->h.numQuestions && ptr; i++) ptr = skipQuestion(msg, ptr, end);
3562    return(ptr);
3563}
3564
3565mDNSexport const mDNSu8 *LocateAuthorities(const DNSMessage *const msg, const mDNSu8 *const end)
3566{
3567    int i;
3568    const mDNSu8 *ptr = LocateAnswers(msg, end);
3569    for (i = 0; i < msg->h.numAnswers && ptr; i++) ptr = skipResourceRecord(msg, ptr, end);
3570    return(ptr);
3571}
3572
3573mDNSexport const mDNSu8 *LocateAdditionals(const DNSMessage *const msg, const mDNSu8 *const end)
3574{
3575    int i;
3576    const mDNSu8 *ptr = LocateAuthorities(msg, end);
3577    for (i = 0; i < msg->h.numAuthorities; i++) ptr = skipResourceRecord(msg, ptr, end);
3578    return (ptr);
3579}
3580
3581mDNSexport const mDNSu8 *LocateOptRR(const DNSMessage *const msg, const mDNSu8 *const end, int minsize)
3582{
3583    int i;
3584    const mDNSu8 *ptr = LocateAdditionals(msg, end);
3585
3586    // Locate the OPT record.
3587    // According to RFC 2671, "One OPT pseudo-RR can be added to the additional data section of either a request or a response."
3588    // This implies that there may be *at most* one OPT record per DNS message, in the Additional Section,
3589    // but not necessarily the *last* entry in the Additional Section.
3590    for (i = 0; ptr && i < msg->h.numAdditionals; i++)
3591    {
3592        if (ptr + DNSOpt_Header_Space + minsize <= end &&   // Make sure we have 11+minsize bytes of data
3593            ptr[0] == 0                                &&   // Name must be root label
3594            ptr[1] == (kDNSType_OPT >> 8  )            &&   // rrtype OPT
3595            ptr[2] == (kDNSType_OPT & 0xFF)            &&
3596            ((mDNSu16)ptr[9] << 8 | (mDNSu16)ptr[10]) >= (mDNSu16)minsize)
3597            return(ptr);
3598        else
3599            ptr = skipResourceRecord(msg, ptr, end);
3600    }
3601    return(mDNSNULL);
3602}
3603
3604// On success, GetLLQOptData returns pointer to storage within shared "m->rec";
3605// it is caller's responsibilty to clear m->rec.r.resrec.RecordType after use
3606// Note: An OPT RDataBody actually contains one or more variable-length rdataOPT objects packed together
3607// The code that currently calls this assumes there's only one, instead of iterating through the set
3608mDNSexport const rdataOPT *GetLLQOptData(mDNS *const m, const DNSMessage *const msg, const mDNSu8 *const end)
3609{
3610    const mDNSu8 *ptr = LocateOptRR(msg, end, DNSOpt_LLQData_Space);
3611    if (ptr)
3612    {
3613        ptr = GetLargeResourceRecord(m, msg, ptr, end, 0, kDNSRecordTypePacketAdd, &m->rec);
3614        if (ptr && m->rec.r.resrec.RecordType != kDNSRecordTypePacketNegative) return(&m->rec.r.resrec.rdata->u.opt[0]);
3615    }
3616    return(mDNSNULL);
3617}
3618
3619// Get the lease life of records in a dynamic update
3620// returns 0 on error or if no lease present
3621mDNSexport mDNSu32 GetPktLease(mDNS *m, DNSMessage *msg, const mDNSu8 *end)
3622{
3623    mDNSu32 result = 0;
3624    const mDNSu8 *ptr = LocateOptRR(msg, end, DNSOpt_LeaseData_Space);
3625    if (ptr) ptr = GetLargeResourceRecord(m, msg, ptr, end, 0, kDNSRecordTypePacketAdd, &m->rec);
3626    if (ptr && m->rec.r.resrec.rdlength >= DNSOpt_LeaseData_Space && m->rec.r.resrec.rdata->u.opt[0].opt == kDNSOpt_Lease)
3627        result = m->rec.r.resrec.rdata->u.opt[0].u.updatelease;
3628    m->rec.r.resrec.RecordType = 0;     // Clear RecordType to show we're not still using it
3629    return(result);
3630}
3631
3632mDNSlocal const mDNSu8 *DumpRecords(mDNS *const m, const DNSMessage *const msg, const mDNSu8 *ptr, const mDNSu8 *const end, int count, char *label)
3633{
3634    int i;
3635    LogInfo("%2d %s", count, label);
3636    for (i = 0; i < count && ptr; i++)
3637    {
3638        // This puts a LargeCacheRecord on the stack instead of using the shared m->rec storage,
3639        // but since it's only used for debugging (and probably only on OS X, not on
3640        // embedded systems) putting a 9kB object on the stack isn't a big problem.
3641        LargeCacheRecord largecr;
3642        ptr = GetLargeResourceRecord(m, msg, ptr, end, mDNSInterface_Any, kDNSRecordTypePacketAns, &largecr);
3643        if (ptr)
3644            LogInfo("%2d TTL%8d %s", i, largecr.r.resrec.rroriginalttl, CRDisplayString(m, &largecr.r));
3645    }
3646    if (!ptr)
3647        LogInfo("DumpRecords: ERROR: Premature end of packet data");
3648    return(ptr);
3649}
3650
3651#define DNS_OP_Name(X) (                              \
3652        (X) == kDNSFlag0_OP_StdQuery ? ""         :       \
3653        (X) == kDNSFlag0_OP_Iquery   ? "Iquery "  :       \
3654        (X) == kDNSFlag0_OP_Status   ? "Status "  :       \
3655        (X) == kDNSFlag0_OP_Unused3  ? "Unused3 " :       \
3656        (X) == kDNSFlag0_OP_Notify   ? "Notify "  :       \
3657        (X) == kDNSFlag0_OP_Update   ? "Update "  :       \
3658        (X) == kDNSFlag0_OP_Subscribe? "Subscribe":       \
3659        (X) == kDNSFlag0_OP_UnSubscribe? "UnSubscribe" : "?? " )
3660
3661#define DNS_RC_Name(X) (                             \
3662        (X) == kDNSFlag1_RC_NoErr    ? "NoErr"    :      \
3663        (X) == kDNSFlag1_RC_FormErr  ? "FormErr"  :      \
3664        (X) == kDNSFlag1_RC_ServFail ? "ServFail" :      \
3665        (X) == kDNSFlag1_RC_NXDomain ? "NXDomain" :      \
3666        (X) == kDNSFlag1_RC_NotImpl  ? "NotImpl"  :      \
3667        (X) == kDNSFlag1_RC_Refused  ? "Refused"  :      \
3668        (X) == kDNSFlag1_RC_YXDomain ? "YXDomain" :      \
3669        (X) == kDNSFlag1_RC_YXRRSet  ? "YXRRSet"  :      \
3670        (X) == kDNSFlag1_RC_NXRRSet  ? "NXRRSet"  :      \
3671        (X) == kDNSFlag1_RC_NotAuth  ? "NotAuth"  :      \
3672        (X) == kDNSFlag1_RC_NotZone  ? "NotZone"  : "??" )
3673
3674// Note: DumpPacket expects the packet header fields in host byte order, not network byte order
3675mDNSexport void DumpPacket(mDNS *const m, mStatus status, mDNSBool sent, char *transport,
3676                           const mDNSAddr *srcaddr, mDNSIPPort srcport,
3677                           const mDNSAddr *dstaddr, mDNSIPPort dstport, const DNSMessage *const msg, const mDNSu8 *const end)
3678{
3679    mDNSBool IsUpdate = ((msg->h.flags.b[0] & kDNSFlag0_OP_Mask) == kDNSFlag0_OP_Update);
3680    const mDNSu8 *ptr = msg->data;
3681    int i;
3682    DNSQuestion q;
3683    char tbuffer[64], sbuffer[64], dbuffer[64] = "";
3684    if (!status) tbuffer[mDNS_snprintf(tbuffer, sizeof(tbuffer), sent ? "Sent" : "Received"                        )] = 0;
3685    else tbuffer[mDNS_snprintf(tbuffer, sizeof(tbuffer), "ERROR %d %sing", status, sent ? "Send" : "Receive")] = 0;
3686    if (sent) sbuffer[mDNS_snprintf(sbuffer, sizeof(sbuffer), "port "        )] = 0;
3687    else sbuffer[mDNS_snprintf(sbuffer, sizeof(sbuffer), "%#a:", srcaddr)] = 0;
3688    if (dstaddr || !mDNSIPPortIsZero(dstport))
3689        dbuffer[mDNS_snprintf(dbuffer, sizeof(dbuffer), " to %#a:%d", dstaddr, mDNSVal16(dstport))] = 0;
3690
3691    LogInfo("-- %s %s DNS %s%s (flags %02X%02X) RCODE: %s (%d) %s%s%s%s%s%sID: %d %d bytes from %s%d%s%s --",
3692           tbuffer, transport,
3693           DNS_OP_Name(msg->h.flags.b[0] & kDNSFlag0_OP_Mask),
3694           msg->h.flags.b[0] & kDNSFlag0_QR_Response ? "Response" : "Query",
3695           msg->h.flags.b[0], msg->h.flags.b[1],
3696           DNS_RC_Name(msg->h.flags.b[1] & kDNSFlag1_RC_Mask),
3697           msg->h.flags.b[1] & kDNSFlag1_RC_Mask,
3698           msg->h.flags.b[0] & kDNSFlag0_AA ? "AA " : "",
3699           msg->h.flags.b[0] & kDNSFlag0_TC ? "TC " : "",
3700           msg->h.flags.b[0] & kDNSFlag0_RD ? "RD " : "",
3701           msg->h.flags.b[1] & kDNSFlag1_RA ? "RA " : "",
3702           msg->h.flags.b[1] & kDNSFlag1_AD ? "AD " : "",
3703           msg->h.flags.b[1] & kDNSFlag1_CD ? "CD " : "",
3704           mDNSVal16(msg->h.id),
3705           end - msg->data,
3706           sbuffer, mDNSVal16(srcport), dbuffer,
3707           (msg->h.flags.b[0] & kDNSFlag0_TC) ? " (truncated)" : ""
3708           );
3709
3710    LogInfo("%2d %s", msg->h.numQuestions, IsUpdate ? "Zone" : "Questions");
3711    for (i = 0; i < msg->h.numQuestions && ptr; i++)
3712    {
3713        ptr = getQuestion(msg, ptr, end, mDNSInterface_Any, &q);
3714        if (ptr) LogInfo("%2d %##s %s", i, q.qname.c, DNSTypeName(q.qtype));
3715    }
3716    ptr = DumpRecords(m, msg, ptr, end, msg->h.numAnswers,     IsUpdate ? "Prerequisites" : "Answers");
3717    ptr = DumpRecords(m, msg, ptr, end, msg->h.numAuthorities, IsUpdate ? "Updates"       : "Authorities");
3718          DumpRecords(m, msg, ptr, end, msg->h.numAdditionals, "Additionals");
3719    LogInfo("--------------");
3720}
3721
3722// ***************************************************************************
3723#if COMPILER_LIKES_PRAGMA_MARK
3724#pragma mark -
3725#pragma mark - Packet Sending Functions
3726#endif
3727
3728// Stub definition of TCPSocket_struct so we can access flags field. (Rest of TCPSocket_struct is platform-dependent.)
3729struct TCPSocket_struct { TCPSocketFlags flags; /* ... */ };
3730// Stub definition of UDPSocket_struct so we can access port field. (Rest of UDPSocket_struct is platform-dependent.)
3731struct UDPSocket_struct { mDNSIPPort     port;  /* ... */ };
3732
3733// Note: When we sign a DNS message using DNSDigest_SignMessage(), the current real-time clock value is used, which
3734// is why we generally defer signing until we send the message, to ensure the signature is as fresh as possible.
3735mDNSexport mStatus mDNSSendDNSMessage(mDNS *const m, DNSMessage *const msg, mDNSu8 *end,
3736                                      mDNSInterfaceID InterfaceID, UDPSocket *src, const mDNSAddr *dst,
3737                                      mDNSIPPort dstport, TCPSocket *sock, DomainAuthInfo *authInfo,
3738                                      mDNSBool useBackgroundTrafficClass)
3739{
3740    mStatus status = mStatus_NoError;
3741    const mDNSu16 numAdditionals = msg->h.numAdditionals;
3742    mDNSu8 *newend;
3743    mDNSu8 *limit = msg->data + AbsoluteMaxDNSMessageData;
3744
3745#if APPLE_OSX_mDNSResponder
3746    // maintain outbound packet statistics
3747    if (mDNSOpaque16IsZero(msg->h.id))
3748        m->MulticastPacketsSent++;
3749    else
3750        m->UnicastPacketsSent++;
3751#endif // APPLE_OSX_mDNSResponder
3752
3753    // Zero-length message data is okay (e.g. for a DNS Update ack, where all we need is an ID and an error code
3754    if (end < msg->data || end - msg->data > AbsoluteMaxDNSMessageData)
3755    {
3756        LogMsg("mDNSSendDNSMessage: invalid message %p %p %d", msg->data, end, end - msg->data);
3757        return mStatus_BadParamErr;
3758    }
3759
3760    newend = putHINFO(m, msg, end, authInfo, limit);
3761    if (!newend) LogMsg("mDNSSendDNSMessage: putHINFO failed msg %p end %p, limit %p", msg->data, end, limit); // Not fatal
3762    else end = newend;
3763
3764    // Put all the integer values in IETF byte-order (MSB first, LSB second)
3765    SwapDNSHeaderBytes(msg);
3766
3767    if (authInfo) DNSDigest_SignMessage(msg, &end, authInfo, 0);    // DNSDigest_SignMessage operates on message in network byte order
3768    if (!end) { LogMsg("mDNSSendDNSMessage: DNSDigest_SignMessage failed"); status = mStatus_NoMemoryErr; }
3769    else
3770    {
3771        // Send the packet on the wire
3772        if (!sock)
3773            status = mDNSPlatformSendUDP(m, msg, end, InterfaceID, src, dst, dstport, useBackgroundTrafficClass);
3774        else
3775        {
3776            mDNSu16 msglen = (mDNSu16)(end - (mDNSu8 *)msg);
3777            mDNSu8 lenbuf[2] = { (mDNSu8)(msglen >> 8), (mDNSu8)(msglen & 0xFF) };
3778            char *buf;
3779            long nsent;
3780
3781            // Try to send them in one packet if we can allocate enough memory
3782            buf = mDNSPlatformMemAllocate(msglen + 2);
3783            if (buf)
3784            {
3785                buf[0] = lenbuf[0];
3786                buf[1] = lenbuf[1];
3787                mDNSPlatformMemCopy(buf+2, msg, msglen);
3788                nsent = mDNSPlatformWriteTCP(sock, buf, msglen+2);
3789                if (nsent != (msglen + 2))
3790                {
3791                    LogMsg("mDNSSendDNSMessage: write message failed %d/%d", nsent, msglen);
3792                    status = mStatus_ConnFailed;
3793                }
3794                mDNSPlatformMemFree(buf);
3795            }
3796            else
3797            {
3798                nsent = mDNSPlatformWriteTCP(sock, (char*)lenbuf, 2);
3799                if (nsent != 2)
3800                {
3801                    LogMsg("mDNSSendDNSMessage: write msg length failed %d/%d", nsent, 2);
3802                    status = mStatus_ConnFailed;
3803                }
3804                else
3805                {
3806                    nsent = mDNSPlatformWriteTCP(sock, (char *)msg, msglen);
3807                    if (nsent != msglen)
3808                    {
3809                        LogMsg("mDNSSendDNSMessage: write msg body failed %d/%d", nsent, msglen);
3810                        status = mStatus_ConnFailed;
3811                    }
3812                }
3813            }
3814        }
3815    }
3816
3817    // Swap the integer values back the way they were (remember that numAdditionals may have been changed by putHINFO and/or SignMessage)
3818    SwapDNSHeaderBytes(msg);
3819
3820    // Dump the packet with the HINFO and TSIG
3821    if (mDNS_PacketLoggingEnabled && !mDNSOpaque16IsZero(msg->h.id))
3822        DumpPacket(m, status, mDNStrue, sock && (sock->flags & kTCPSocketFlags_UseTLS) ? "TLS" : sock ? "TCP" : "UDP", mDNSNULL, src ? src->port : MulticastDNSPort, dst, dstport, msg, end);
3823
3824    // put the number of additionals back the way it was
3825    msg->h.numAdditionals = numAdditionals;
3826
3827    return(status);
3828}
3829
3830// ***************************************************************************
3831#if COMPILER_LIKES_PRAGMA_MARK
3832#pragma mark -
3833#pragma mark - RR List Management & Task Management
3834#endif
3835
3836mDNSexport void mDNS_Lock_(mDNS *const m, const char * const functionname)
3837{
3838    // MUST grab the platform lock FIRST!
3839    mDNSPlatformLock(m);
3840
3841    // Normally, mDNS_reentrancy is zero and so is mDNS_busy
3842    // However, when we call a client callback mDNS_busy is one, and we increment mDNS_reentrancy too
3843    // If that client callback does mDNS API calls, mDNS_reentrancy and mDNS_busy will both be one
3844    // If mDNS_busy != mDNS_reentrancy that's a bad sign
3845    if (m->mDNS_busy != m->mDNS_reentrancy)
3846        LogFatalError("%s: mDNS_Lock: Locking failure! mDNS_busy (%ld) != mDNS_reentrancy (%ld)", functionname, m->mDNS_busy, m->mDNS_reentrancy);
3847
3848    // If this is an initial entry into the mDNSCore code, set m->timenow
3849    // else, if this is a re-entrant entry into the mDNSCore code, m->timenow should already be set
3850    if (m->mDNS_busy == 0)
3851    {
3852        if (m->timenow)
3853            LogMsg("%s: mDNS_Lock: m->timenow already set (%ld/%ld)", functionname, m->timenow, mDNS_TimeNow_NoLock(m));
3854        m->timenow = mDNS_TimeNow_NoLock(m);
3855        if (m->timenow == 0) m->timenow = 1;
3856    }
3857    else if (m->timenow == 0)
3858    {
3859        LogMsg("%s: mDNS_Lock: m->mDNS_busy is %ld but m->timenow not set", functionname, m->mDNS_busy);
3860        m->timenow = mDNS_TimeNow_NoLock(m);
3861        if (m->timenow == 0) m->timenow = 1;
3862    }
3863
3864    if (m->timenow_last - m->timenow > 0)
3865    {
3866        m->timenow_adjust += m->timenow_last - m->timenow;
3867        LogMsg("%s: mDNSPlatformRawTime went backwards by %ld ticks; setting correction factor to %ld", functionname, m->timenow_last - m->timenow, m->timenow_adjust);
3868        m->timenow = m->timenow_last;
3869    }
3870    m->timenow_last = m->timenow;
3871
3872    // Increment mDNS_busy so we'll recognise re-entrant calls
3873    m->mDNS_busy++;
3874}
3875
3876mDNSlocal AuthRecord *AnyLocalRecordReady(const mDNS *const m)
3877{
3878    AuthRecord *rr;
3879    for (rr = m->NewLocalRecords; rr; rr = rr->next)
3880        if (LocalRecordReady(rr)) return rr;
3881    return mDNSNULL;
3882}
3883
3884mDNSlocal mDNSs32 GetNextScheduledEvent(const mDNS *const m)
3885{
3886    mDNSs32 e = m->timenow + 0x78000000;
3887    if (m->mDNSPlatformStatus != mStatus_NoError) return(e);
3888    if (m->NewQuestions)
3889    {
3890        if (m->NewQuestions->DelayAnswering) e = m->NewQuestions->DelayAnswering;
3891        else return(m->timenow);
3892    }
3893    if (m->NewLocalOnlyQuestions) return(m->timenow);
3894    if (m->NewLocalRecords && AnyLocalRecordReady(m)) return(m->timenow);
3895    if (m->NewLocalOnlyRecords) return(m->timenow);
3896    if (m->SPSProxyListChanged) return(m->timenow);
3897    if (m->LocalRemoveEvents) return(m->timenow);
3898
3899#ifndef UNICAST_DISABLED
3900    if (e - m->NextuDNSEvent         > 0) e = m->NextuDNSEvent;
3901    if (e - m->NextScheduledNATOp    > 0) e = m->NextScheduledNATOp;
3902    if (m->NextSRVUpdate && e - m->NextSRVUpdate > 0) e = m->NextSRVUpdate;
3903#endif
3904
3905    if (e - m->NextCacheCheck        > 0) e = m->NextCacheCheck;
3906    if (e - m->NextScheduledSPS      > 0) e = m->NextScheduledSPS;
3907    if (e - m->NextScheduledKA       > 0) e = m->NextScheduledKA;
3908
3909#if BONJOUR_ON_DEMAND
3910    if (m->NextBonjourDisableTime && (e - m->NextBonjourDisableTime > 0)) e = m->NextBonjourDisableTime;
3911#endif // BONJOUR_ON_DEMAND
3912
3913    // NextScheduledSPRetry only valid when DelaySleep not set
3914    if (!m->DelaySleep && m->SleepLimit && e - m->NextScheduledSPRetry > 0) e = m->NextScheduledSPRetry;
3915    if (m->DelaySleep && e - m->DelaySleep > 0) e = m->DelaySleep;
3916
3917    if (m->SuppressSending)
3918    {
3919        if (e - m->SuppressSending       > 0) e = m->SuppressSending;
3920    }
3921    else
3922    {
3923        if (e - m->NextScheduledQuery    > 0) e = m->NextScheduledQuery;
3924        if (e - m->NextScheduledProbe    > 0) e = m->NextScheduledProbe;
3925        if (e - m->NextScheduledResponse > 0) e = m->NextScheduledResponse;
3926    }
3927    if (e - m->NextScheduledStopTime > 0) e = m->NextScheduledStopTime;
3928
3929    if (m->NextBLEServiceTime && (e - m->NextBLEServiceTime > 0)) e = m->NextBLEServiceTime;
3930
3931    return(e);
3932}
3933
3934#define LogTSE TSE++,LogMsg
3935
3936mDNSexport void ShowTaskSchedulingError(mDNS *const m)
3937{
3938    int TSE = 0;
3939    AuthRecord *rr;
3940    mDNS_Lock(m);
3941
3942    LogMsg("Task Scheduling Error: *** Continuously busy for more than a second");
3943
3944    // Note: To accurately diagnose *why* we're busy, the debugging code here needs to mirror the logic in GetNextScheduledEvent above
3945
3946    if (m->NewQuestions && (!m->NewQuestions->DelayAnswering || m->timenow - m->NewQuestions->DelayAnswering >= 0))
3947        LogTSE("Task Scheduling Error: NewQuestion %##s (%s)",
3948               m->NewQuestions->qname.c, DNSTypeName(m->NewQuestions->qtype));
3949
3950    if (m->NewLocalOnlyQuestions)
3951        LogTSE("Task Scheduling Error: NewLocalOnlyQuestions %##s (%s)",
3952               m->NewLocalOnlyQuestions->qname.c, DNSTypeName(m->NewLocalOnlyQuestions->qtype));
3953
3954    if (m->NewLocalRecords)
3955    {
3956        rr = AnyLocalRecordReady(m);
3957        if (rr) LogTSE("Task Scheduling Error: NewLocalRecords %s", ARDisplayString(m, rr));
3958    }
3959
3960    if (m->NewLocalOnlyRecords) LogTSE("Task Scheduling Error: NewLocalOnlyRecords");
3961
3962    if (m->SPSProxyListChanged) LogTSE("Task Scheduling Error: SPSProxyListChanged");
3963
3964    if (m->LocalRemoveEvents) LogTSE("Task Scheduling Error: LocalRemoveEvents");
3965
3966#ifndef UNICAST_DISABLED
3967    if (m->timenow - m->NextuDNSEvent         >= 0)
3968        LogTSE("Task Scheduling Error: m->NextuDNSEvent %d",         m->timenow - m->NextuDNSEvent);
3969    if (m->timenow - m->NextScheduledNATOp    >= 0)
3970        LogTSE("Task Scheduling Error: m->NextScheduledNATOp %d",    m->timenow - m->NextScheduledNATOp);
3971    if (m->NextSRVUpdate && m->timenow - m->NextSRVUpdate >= 0)
3972        LogTSE("Task Scheduling Error: m->NextSRVUpdate %d",         m->timenow - m->NextSRVUpdate);
3973#endif
3974
3975    if (m->timenow - m->NextCacheCheck        >= 0)
3976        LogTSE("Task Scheduling Error: m->NextCacheCheck %d",        m->timenow - m->NextCacheCheck);
3977    if (m->timenow - m->NextScheduledSPS      >= 0)
3978        LogTSE("Task Scheduling Error: m->NextScheduledSPS %d",      m->timenow - m->NextScheduledSPS);
3979    if (m->timenow - m->NextScheduledKA       >= 0)
3980        LogTSE("Task Scheduling Error: m->NextScheduledKA %d",      m->timenow - m->NextScheduledKA);
3981    if (!m->DelaySleep && m->SleepLimit && m->timenow - m->NextScheduledSPRetry >= 0)
3982        LogTSE("Task Scheduling Error: m->NextScheduledSPRetry %d",  m->timenow - m->NextScheduledSPRetry);
3983    if (m->DelaySleep && m->timenow - m->DelaySleep >= 0)
3984        LogTSE("Task Scheduling Error: m->DelaySleep %d",            m->timenow - m->DelaySleep);
3985
3986    if (m->SuppressSending && m->timenow - m->SuppressSending >= 0)
3987        LogTSE("Task Scheduling Error: m->SuppressSending %d",       m->timenow - m->SuppressSending);
3988    if (m->timenow - m->NextScheduledQuery    >= 0)
3989        LogTSE("Task Scheduling Error: m->NextScheduledQuery %d",    m->timenow - m->NextScheduledQuery);
3990    if (m->timenow - m->NextScheduledProbe    >= 0)
3991        LogTSE("Task Scheduling Error: m->NextScheduledProbe %d",    m->timenow - m->NextScheduledProbe);
3992    if (m->timenow - m->NextScheduledResponse >= 0)
3993        LogTSE("Task Scheduling Error: m->NextScheduledResponse %d", m->timenow - m->NextScheduledResponse);
3994    if (m->timenow - m->NextScheduledStopTime >= 0)
3995        LogTSE("Task Scheduling Error: m->NextScheduledStopTime %d", m->timenow - m->NextScheduledStopTime);
3996
3997    if (m->timenow - m->NextScheduledEvent    >= 0)
3998        LogTSE("Task Scheduling Error: m->NextScheduledEvent %d",    m->timenow - m->NextScheduledEvent);
3999
4000    if (m->NetworkChanged && m->timenow - m->NetworkChanged >= 0)
4001        LogTSE("Task Scheduling Error: NetworkChanged %d",           m->timenow - m->NetworkChanged);
4002
4003    if (!TSE) LogMsg("Task Scheduling Error: *** No likely causes identified");
4004    else LogMsg("Task Scheduling Error: *** %d potential cause%s identified (significant only if the same cause consistently appears)", TSE, TSE > 1 ? "s" : "");
4005
4006    mDNS_Unlock(m);
4007}
4008
4009mDNSexport void mDNS_Unlock_(mDNS *const m, const char *const functionname)
4010{
4011    // Decrement mDNS_busy
4012    m->mDNS_busy--;
4013
4014    // Check for locking failures
4015    if (m->mDNS_busy != m->mDNS_reentrancy)
4016        LogFatalError("%s: mDNS_Unlock: Locking failure! mDNS_busy (%ld) != mDNS_reentrancy (%ld)", functionname, m->mDNS_busy, m->mDNS_reentrancy);
4017
4018    // If this is a final exit from the mDNSCore code, set m->NextScheduledEvent and clear m->timenow
4019    if (m->mDNS_busy == 0)
4020    {
4021        m->NextScheduledEvent = GetNextScheduledEvent(m);
4022        if (m->timenow == 0) LogMsg("%s: mDNS_Unlock: ERROR! m->timenow aready zero", functionname);
4023        m->timenow = 0;
4024    }
4025
4026    // MUST release the platform lock LAST!
4027    mDNSPlatformUnlock(m);
4028}
4029
4030// ***************************************************************************
4031#if COMPILER_LIKES_PRAGMA_MARK
4032#pragma mark -
4033#pragma mark - Specialized mDNS version of vsnprintf
4034#endif
4035
4036static const struct mDNSprintf_format
4037{
4038    unsigned leftJustify : 1;
4039    unsigned forceSign : 1;
4040    unsigned zeroPad : 1;
4041    unsigned havePrecision : 1;
4042    unsigned hSize : 1;
4043    unsigned lSize : 1;
4044    char altForm;
4045    char sign;              // +, - or space
4046    unsigned int fieldWidth;
4047    unsigned int precision;
4048} mDNSprintf_format_default = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 };
4049
4050mDNSexport mDNSu32 mDNS_vsnprintf(char *sbuffer, mDNSu32 buflen, const char *fmt, va_list arg)
4051{
4052    mDNSu32 nwritten = 0;
4053    int c;
4054    if (buflen == 0) return(0);
4055    buflen--;       // Pre-reserve one space in the buffer for the terminating null
4056    if (buflen == 0) goto exit;
4057
4058    for (c = *fmt; c != 0; c = *++fmt)
4059    {
4060        if (c != '%')
4061        {
4062            *sbuffer++ = (char)c;
4063            if (++nwritten >= buflen) goto exit;
4064        }
4065        else
4066        {
4067            unsigned int i=0, j;
4068            // The mDNS Vsprintf Argument Conversion Buffer is used as a temporary holding area for
4069            // generating decimal numbers, hexdecimal numbers, IP addresses, domain name strings, etc.
4070            // The size needs to be enough for a 256-byte domain name plus some error text.
4071            #define mDNS_VACB_Size 300
4072            char mDNS_VACB[mDNS_VACB_Size];
4073            #define mDNS_VACB_Lim (&mDNS_VACB[mDNS_VACB_Size])
4074            #define mDNS_VACB_Remain(s) ((mDNSu32)(mDNS_VACB_Lim - s))
4075            char *s = mDNS_VACB_Lim, *digits;
4076            struct mDNSprintf_format F = mDNSprintf_format_default;
4077
4078            while (1)   //  decode flags
4079            {
4080                c = *++fmt;
4081                if      (c == '-') F.leftJustify = 1;
4082                else if (c == '+') F.forceSign = 1;
4083                else if (c == ' ') F.sign = ' ';
4084                else if (c == '#') F.altForm++;
4085                else if (c == '0') F.zeroPad = 1;
4086                else break;
4087            }
4088
4089            if (c == '*')   //  decode field width
4090            {
4091                int f = va_arg(arg, int);
4092                if (f < 0) { f = -f; F.leftJustify = 1; }
4093                F.fieldWidth = (unsigned int)f;
4094                c = *++fmt;
4095            }
4096            else
4097            {
4098                for (; c >= '0' && c <= '9'; c = *++fmt)
4099                    F.fieldWidth = (10 * F.fieldWidth) + (c - '0');
4100            }
4101
4102            if (c == '.')   //  decode precision
4103            {
4104                if ((c = *++fmt) == '*')
4105                { F.precision = va_arg(arg, unsigned int); c = *++fmt; }
4106                else for (; c >= '0' && c <= '9'; c = *++fmt)
4107                        F.precision = (10 * F.precision) + (c - '0');
4108                F.havePrecision = 1;
4109            }
4110
4111            if (F.leftJustify) F.zeroPad = 0;
4112
4113conv:
4114            switch (c)  //  perform appropriate conversion
4115            {
4116                unsigned long n;
4117            case 'h':  F.hSize = 1; c = *++fmt; goto conv;
4118            case 'l':       // fall through
4119            case 'L':  F.lSize = 1; c = *++fmt; goto conv;
4120            case 'd':
4121            case 'i':  if (F.lSize) n = (unsigned long)va_arg(arg, long);
4122                else n = (unsigned long)va_arg(arg, int);
4123                if (F.hSize) n = (short) n;
4124                if ((long) n < 0) { n = (unsigned long)-(long)n; F.sign = '-'; }
4125                else if (F.forceSign) F.sign = '+';
4126                goto decimal;
4127            case 'u':  if (F.lSize) n = va_arg(arg, unsigned long);
4128                else n = va_arg(arg, unsigned int);
4129                if (F.hSize) n = (unsigned short) n;
4130                F.sign = 0;
4131                goto decimal;
4132decimal:    if (!F.havePrecision)
4133                {
4134                    if (F.zeroPad)
4135                    {
4136                        F.precision = F.fieldWidth;
4137                        if (F.sign) --F.precision;
4138                    }
4139                    if (F.precision < 1) F.precision = 1;
4140                }
4141                if (F.precision > mDNS_VACB_Size - 1)
4142                    F.precision = mDNS_VACB_Size - 1;
4143                for (i = 0; n; n /= 10, i++) *--s = (char)(n % 10 + '0');
4144                for (; i < F.precision; i++) *--s = '0';
4145                if (F.sign) { *--s = F.sign; i++; }
4146                break;
4147
4148            case 'o':  if (F.lSize) n = va_arg(arg, unsigned long);
4149                else n = va_arg(arg, unsigned int);
4150                if (F.hSize) n = (unsigned short) n;
4151                if (!F.havePrecision)
4152                {
4153                    if (F.zeroPad) F.precision = F.fieldWidth;
4154                    if (F.precision < 1) F.precision = 1;
4155                }
4156                if (F.precision > mDNS_VACB_Size - 1)
4157                    F.precision = mDNS_VACB_Size - 1;
4158                for (i = 0; n; n /= 8, i++) *--s = (char)(n % 8 + '0');
4159                if (F.altForm && i && *s != '0') { *--s = '0'; i++; }
4160                for (; i < F.precision; i++) *--s = '0';
4161                break;
4162
4163            case 'a':  {
4164                unsigned char *a = va_arg(arg, unsigned char *);
4165                if (!a) { static char emsg[] = "<<NULL>>"; s = emsg; i = sizeof(emsg)-1; }
4166                else
4167                {
4168                    s = mDNS_VACB;              // Adjust s to point to the start of the buffer, not the end
4169                    if (F.altForm)
4170                    {
4171                        mDNSAddr *ip = (mDNSAddr*)a;
4172                        switch (ip->type)
4173                        {
4174                        case mDNSAddrType_IPv4: F.precision =  4; a = (unsigned char *)&ip->ip.v4; break;
4175                        case mDNSAddrType_IPv6: F.precision = 16; a = (unsigned char *)&ip->ip.v6; break;
4176                        default:                F.precision =  0; break;
4177                        }
4178                    }
4179                    if (F.altForm && !F.precision)
4180                        i = mDNS_snprintf(mDNS_VACB, sizeof(mDNS_VACB), "«ZERO ADDRESS»");
4181                    else switch (F.precision)
4182                        {
4183                        case  4: i = mDNS_snprintf(mDNS_VACB, sizeof(mDNS_VACB), "%d.%d.%d.%d",
4184                                                   a[0], a[1], a[2], a[3]); break;
4185                        case  6: i = mDNS_snprintf(mDNS_VACB, sizeof(mDNS_VACB), "%02X:%02X:%02X:%02X:%02X:%02X",
4186                                                   a[0], a[1], a[2], a[3], a[4], a[5]); break;
4187                        case 16: i = mDNS_snprintf(mDNS_VACB, sizeof(mDNS_VACB),
4188                                                   "%02X%02X:%02X%02X:%02X%02X:%02X%02X:%02X%02X:%02X%02X:%02X%02X:%02X%02X",
4189                                                   a[0x0], a[0x1], a[0x2], a[0x3], a[0x4], a[0x5], a[0x6], a[0x7],
4190                                                   a[0x8], a[0x9], a[0xA], a[0xB], a[0xC], a[0xD], a[0xE], a[0xF]); break;
4191                        default: i = mDNS_snprintf(mDNS_VACB, sizeof(mDNS_VACB), "%s", "<< ERROR: Must specify"
4192                                                   " address size (i.e. %.4a=IPv4, %.6a=Ethernet, %.16a=IPv6) >>"); break;
4193                        }
4194                }
4195            }
4196            break;
4197
4198            case 'p':  F.havePrecision = F.lSize = 1;
4199                F.precision = sizeof(void*) * 2;                // 8 characters on 32-bit; 16 characters on 64-bit
4200            case 'X':  digits = "0123456789ABCDEF";
4201                goto hexadecimal;
4202            case 'x':  digits = "0123456789abcdef";
4203hexadecimal: if (F.lSize) n = va_arg(arg, unsigned long);
4204                else n = va_arg(arg, unsigned int);
4205                if (F.hSize) n = (unsigned short) n;
4206                if (!F.havePrecision)
4207                {
4208                    if (F.zeroPad)
4209                    {
4210                        F.precision = F.fieldWidth;
4211                        if (F.altForm) F.precision -= 2;
4212                    }
4213                    if (F.precision < 1) F.precision = 1;
4214                }
4215                if (F.precision > mDNS_VACB_Size - 1)
4216                    F.precision = mDNS_VACB_Size - 1;
4217                for (i = 0; n; n /= 16, i++) *--s = digits[n % 16];
4218                for (; i < F.precision; i++) *--s = '0';
4219                if (F.altForm) { *--s = (char)c; *--s = '0'; i += 2; }
4220                break;
4221
4222            case 'c':  *--s = (char)va_arg(arg, int); i = 1; break;
4223
4224            case 's':  s = va_arg(arg, char *);
4225                if (!s) { static char emsg[] = "<<NULL>>"; s = emsg; i = sizeof(emsg)-1; }
4226                else switch (F.altForm)
4227                    {
4228                    case 0: i=0;
4229                        if (!F.havePrecision)                               // C string
4230                            while (s[i]) i++;
4231                        else
4232                        {
4233                            while ((i < F.precision) && s[i]) i++;
4234                            // Make sure we don't truncate in the middle of a UTF-8 character
4235                            // If last character we got was any kind of UTF-8 multi-byte character,
4236                            // then see if we have to back up.
4237                            // This is not as easy as the similar checks below, because
4238                            // here we can't assume it's safe to examine the *next* byte, so we
4239                            // have to confine ourselves to working only backwards in the string.
4240                            j = i;                      // Record where we got to
4241                            // Now, back up until we find first non-continuation-char
4242                            while (i>0 && (s[i-1] & 0xC0) == 0x80) i--;
4243                            // Now s[i-1] is the first non-continuation-char
4244                            // and (j-i) is the number of continuation-chars we found
4245                            if (i>0 && (s[i-1] & 0xC0) == 0xC0)                 // If we found a start-char
4246                            {
4247                                i--;                        // Tentatively eliminate this start-char as well
4248                                // Now (j-i) is the number of characters we're considering eliminating.
4249                                // To be legal UTF-8, the start-char must contain (j-i) one-bits,
4250                                // followed by a zero bit. If we shift it right by (7-(j-i)) bits
4251                                // (with sign extension) then the result has to be 0xFE.
4252                                // If this is right, then we reinstate the tentatively eliminated bytes.
4253                                if (((j-i) < 7) && (((s[i] >> (7-(j-i))) & 0xFF) == 0xFE)) i = j;
4254                            }
4255                        }
4256                        break;
4257                    case 1: i = (unsigned char) *s++; break;                // Pascal string
4258                    case 2: {                                               // DNS label-sequence name
4259                        unsigned char *a = (unsigned char *)s;
4260                        s = mDNS_VACB;                  // Adjust s to point to the start of the buffer, not the end
4261                        if (*a == 0) *s++ = '.';                    // Special case for root DNS name
4262                        while (*a)
4263                        {
4264                            char buf[63*4+1];
4265                            if (*a > 63)
4266                            { s += mDNS_snprintf(s, mDNS_VACB_Remain(s), "<<INVALID LABEL LENGTH %u>>", *a); break; }
4267                            if (s + *a >= &mDNS_VACB[254])
4268                            { s += mDNS_snprintf(s, mDNS_VACB_Remain(s), "<<NAME TOO LONG>>"); break; }
4269                            // Need to use ConvertDomainLabelToCString to do proper escaping here,
4270                            // so it's clear what's a literal dot and what's a label separator
4271                            ConvertDomainLabelToCString((domainlabel*)a, buf);
4272                            s += mDNS_snprintf(s, mDNS_VACB_Remain(s), "%s.", buf);
4273                            a += 1 + *a;
4274                        }
4275                        i = (mDNSu32)(s - mDNS_VACB);
4276                        s = mDNS_VACB;                  // Reset s back to the start of the buffer
4277                        break;
4278                    }
4279                    }
4280                // Make sure we don't truncate in the middle of a UTF-8 character (see similar comment below)
4281                if (F.havePrecision && i > F.precision)
4282                { i = F.precision; while (i>0 && (s[i] & 0xC0) == 0x80) i--;}
4283                break;
4284
4285            case 'n':  s = va_arg(arg, char *);
4286                if      (F.hSize) *(short *) s = (short)nwritten;
4287                else if (F.lSize) *(long  *) s = (long)nwritten;
4288                else *(int   *) s = (int)nwritten;
4289                continue;
4290
4291            default:    s = mDNS_VACB;
4292                i = mDNS_snprintf(mDNS_VACB, sizeof(mDNS_VACB), "<<UNKNOWN FORMAT CONVERSION CODE %%%c>>", c);
4293
4294            case '%':  *sbuffer++ = (char)c;
4295                if (++nwritten >= buflen) goto exit;
4296                break;
4297            }
4298
4299            if (i < F.fieldWidth && !F.leftJustify)         // Pad on the left
4300                do  {
4301                    *sbuffer++ = ' ';
4302                    if (++nwritten >= buflen) goto exit;
4303                } while (i < --F.fieldWidth);
4304
4305            // Make sure we don't truncate in the middle of a UTF-8 character.
4306            // Note: s[i] is the first eliminated character; i.e. the next character *after* the last character of the
4307            // allowed output. If s[i] is a UTF-8 continuation character, then we've cut a unicode character in half,
4308            // so back up 'i' until s[i] is no longer a UTF-8 continuation character. (if the input was proprly
4309            // formed, s[i] will now be the UTF-8 start character of the multi-byte character we just eliminated).
4310            if (i > buflen - nwritten)
4311            { i = buflen - nwritten; while (i>0 && (s[i] & 0xC0) == 0x80) i--;}
4312            for (j=0; j<i; j++) *sbuffer++ = *s++;          // Write the converted result
4313            nwritten += i;
4314            if (nwritten >= buflen) goto exit;
4315
4316            for (; i < F.fieldWidth; i++)                   // Pad on the right
4317            {
4318                *sbuffer++ = ' ';
4319                if (++nwritten >= buflen) goto exit;
4320            }
4321        }
4322    }
4323exit:
4324    *sbuffer++ = 0;
4325    return(nwritten);
4326}
4327
4328mDNSexport mDNSu32 mDNS_snprintf(char *sbuffer, mDNSu32 buflen, const char *fmt, ...)
4329{
4330    mDNSu32 length;
4331
4332    va_list ptr;
4333    va_start(ptr,fmt);
4334    length = mDNS_vsnprintf(sbuffer, buflen, fmt, ptr);
4335    va_end(ptr);
4336
4337    return(length);
4338}
Note: See TracBrowser for help on using the repository browser.