source: rtems-libbsd/freebsd/sys/netpfil/ipfw/ip_dn_io.c @ 66659ff

4.1155-freebsd-126-freebsd-12freebsd-9.3
Last change on this file since 66659ff was 66659ff, checked in by Sebastian Huber <sebastian.huber@…>, on 11/06/13 at 15:20:21

Update to FreeBSD 9.2

  • Property mode set to 100644
File size: 23.4 KB
Line 
1#include <machine/rtems-bsd-kernel-space.h>
2
3/*-
4 * Copyright (c) 2010 Luigi Rizzo, Riccardo Panicucci, Universita` di Pisa
5 * All rights reserved
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 *    notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 *    notice, this list of conditions and the following disclaimer in the
14 *    documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26 * SUCH DAMAGE.
27 */
28
29/*
30 * Dummynet portions related to packet handling.
31 */
32#include <sys/cdefs.h>
33__FBSDID("$FreeBSD$");
34
35#include <rtems/bsd/local/opt_inet6.h>
36
37#include <rtems/bsd/sys/param.h>
38#include <sys/systm.h>
39#include <sys/malloc.h>
40#include <sys/mbuf.h>
41#include <sys/kernel.h>
42#include <rtems/bsd/sys/lock.h>
43#include <sys/module.h>
44#include <sys/priv.h>
45#include <sys/proc.h>
46#include <sys/rwlock.h>
47#include <sys/socket.h>
48#include <rtems/bsd/sys/time.h>
49#include <sys/sysctl.h>
50
51#include <net/if.h>     /* IFNAMSIZ, struct ifaddr, ifq head, lock.h mutex.h */
52#include <net/netisr.h>
53#include <net/vnet.h>
54
55#include <netinet/in.h>
56#include <netinet/ip.h>         /* ip_len, ip_off */
57#include <netinet/ip_var.h>     /* ip_output(), IP_FORWARDING */
58#include <netinet/ip_fw.h>
59#include <netinet/ip_dummynet.h>
60#include <netinet/if_ether.h> /* various ether_* routines */
61#include <netinet/ip6.h>       /* for ip6_input, ip6_output prototypes */
62#include <netinet6/ip6_var.h>
63
64#include <netpfil/ipfw/ip_fw_private.h>
65#include <netpfil/ipfw/dn_heap.h>
66#include <netpfil/ipfw/ip_dn_private.h>
67#include <netpfil/ipfw/dn_sched.h>
68
69/*
70 * We keep a private variable for the simulation time, but we could
71 * probably use an existing one ("softticks" in sys/kern/kern_timeout.c)
72 * instead of dn_cfg.curr_time
73 */
74
75struct dn_parms dn_cfg;
76//VNET_DEFINE(struct dn_parms, _base_dn_cfg);
77
78static long tick_last;          /* Last tick duration (usec). */
79static long tick_delta;         /* Last vs standard tick diff (usec). */
80static long tick_delta_sum;     /* Accumulated tick difference (usec).*/
81static long tick_adjustment;    /* Tick adjustments done. */
82static long tick_lost;          /* Lost(coalesced) ticks number. */
83/* Adjusted vs non-adjusted curr_time difference (ticks). */
84static long tick_diff;
85
86static unsigned long    io_pkt;
87static unsigned long    io_pkt_fast;
88static unsigned long    io_pkt_drop;
89
90/*
91 * We use a heap to store entities for which we have pending timer events.
92 * The heap is checked at every tick and all entities with expired events
93 * are extracted.
94 */
95 
96MALLOC_DEFINE(M_DUMMYNET, "dummynet", "dummynet heap");
97
98extern  void (*bridge_dn_p)(struct mbuf *, struct ifnet *);
99
100#ifdef SYSCTL_NODE
101
102SYSBEGIN(f4)
103
104SYSCTL_DECL(_net_inet);
105SYSCTL_DECL(_net_inet_ip);
106static SYSCTL_NODE(_net_inet_ip, OID_AUTO, dummynet, CTLFLAG_RW, 0, "Dummynet");
107
108/* wrapper to pass dn_cfg fields to SYSCTL_* */
109//#define DC(x) (&(VNET_NAME(_base_dn_cfg).x))
110#define DC(x)   (&(dn_cfg.x))
111/* parameters */
112
113static int
114sysctl_hash_size(SYSCTL_HANDLER_ARGS)
115{
116        int error, value;
117
118        value = dn_cfg.hash_size;
119        error = sysctl_handle_int(oidp, &value, 0, req);
120        if (error != 0 || req->newptr == NULL)
121                return (error);
122        if (value < 16 || value > 65536)
123                return (EINVAL);
124        dn_cfg.hash_size = value;
125        return (0);
126}
127
128SYSCTL_PROC(_net_inet_ip_dummynet, OID_AUTO, hash_size,
129    CTLTYPE_INT | CTLFLAG_RW, 0, 0, sysctl_hash_size,
130    "I", "Default hash table size");
131
132static int
133sysctl_limits(SYSCTL_HANDLER_ARGS)
134{
135        int error;
136        long value;
137
138        if (arg2 != 0)
139                value = dn_cfg.slot_limit;
140        else
141                value = dn_cfg.byte_limit;
142        error = sysctl_handle_long(oidp, &value, 0, req);
143
144        if (error != 0 || req->newptr == NULL)
145                return (error);
146        if (arg2 != 0) {
147                if (value < 1)
148                        return (EINVAL);
149                dn_cfg.slot_limit = value;
150        } else {
151                if (value < 1500)
152                        return (EINVAL);
153                dn_cfg.byte_limit = value;
154        }
155        return (0);
156}
157
158SYSCTL_PROC(_net_inet_ip_dummynet, OID_AUTO, pipe_slot_limit,
159    CTLTYPE_LONG | CTLFLAG_RW, 0, 1, sysctl_limits,
160    "L", "Upper limit in slots for pipe queue.");
161SYSCTL_PROC(_net_inet_ip_dummynet, OID_AUTO, pipe_byte_limit,
162    CTLTYPE_LONG | CTLFLAG_RW, 0, 0, sysctl_limits,
163    "L", "Upper limit in bytes for pipe queue.");
164SYSCTL_INT(_net_inet_ip_dummynet, OID_AUTO, io_fast,
165    CTLFLAG_RW, DC(io_fast), 0, "Enable fast dummynet io.");
166SYSCTL_INT(_net_inet_ip_dummynet, OID_AUTO, debug,
167    CTLFLAG_RW, DC(debug), 0, "Dummynet debug level");
168
169/* RED parameters */
170SYSCTL_INT(_net_inet_ip_dummynet, OID_AUTO, red_lookup_depth,
171    CTLFLAG_RD, DC(red_lookup_depth), 0, "Depth of RED lookup table");
172SYSCTL_INT(_net_inet_ip_dummynet, OID_AUTO, red_avg_pkt_size,
173    CTLFLAG_RD, DC(red_avg_pkt_size), 0, "RED Medium packet size");
174SYSCTL_INT(_net_inet_ip_dummynet, OID_AUTO, red_max_pkt_size,
175    CTLFLAG_RD, DC(red_max_pkt_size), 0, "RED Max packet size");
176
177/* time adjustment */
178SYSCTL_LONG(_net_inet_ip_dummynet, OID_AUTO, tick_delta,
179    CTLFLAG_RD, &tick_delta, 0, "Last vs standard tick difference (usec).");
180SYSCTL_LONG(_net_inet_ip_dummynet, OID_AUTO, tick_delta_sum,
181    CTLFLAG_RD, &tick_delta_sum, 0, "Accumulated tick difference (usec).");
182SYSCTL_LONG(_net_inet_ip_dummynet, OID_AUTO, tick_adjustment,
183    CTLFLAG_RD, &tick_adjustment, 0, "Tick adjustments done.");
184SYSCTL_LONG(_net_inet_ip_dummynet, OID_AUTO, tick_diff,
185    CTLFLAG_RD, &tick_diff, 0,
186    "Adjusted vs non-adjusted curr_time difference (ticks).");
187SYSCTL_LONG(_net_inet_ip_dummynet, OID_AUTO, tick_lost,
188    CTLFLAG_RD, &tick_lost, 0,
189    "Number of ticks coalesced by dummynet taskqueue.");
190
191/* Drain parameters */
192SYSCTL_UINT(_net_inet_ip_dummynet, OID_AUTO, expire,
193    CTLFLAG_RW, DC(expire), 0, "Expire empty queues/pipes");
194SYSCTL_UINT(_net_inet_ip_dummynet, OID_AUTO, expire_cycle,
195    CTLFLAG_RD, DC(expire_cycle), 0, "Expire cycle for queues/pipes");
196
197/* statistics */
198SYSCTL_INT(_net_inet_ip_dummynet, OID_AUTO, schk_count,
199    CTLFLAG_RD, DC(schk_count), 0, "Number of schedulers");
200SYSCTL_INT(_net_inet_ip_dummynet, OID_AUTO, si_count,
201    CTLFLAG_RD, DC(si_count), 0, "Number of scheduler instances");
202SYSCTL_INT(_net_inet_ip_dummynet, OID_AUTO, fsk_count,
203    CTLFLAG_RD, DC(fsk_count), 0, "Number of flowsets");
204SYSCTL_INT(_net_inet_ip_dummynet, OID_AUTO, queue_count,
205    CTLFLAG_RD, DC(queue_count), 0, "Number of queues");
206SYSCTL_ULONG(_net_inet_ip_dummynet, OID_AUTO, io_pkt,
207    CTLFLAG_RD, &io_pkt, 0,
208    "Number of packets passed to dummynet.");
209SYSCTL_ULONG(_net_inet_ip_dummynet, OID_AUTO, io_pkt_fast,
210    CTLFLAG_RD, &io_pkt_fast, 0,
211    "Number of packets bypassed dummynet scheduler.");
212SYSCTL_ULONG(_net_inet_ip_dummynet, OID_AUTO, io_pkt_drop,
213    CTLFLAG_RD, &io_pkt_drop, 0,
214    "Number of packets dropped by dummynet.");
215#undef DC
216SYSEND
217
218#endif
219
220static void     dummynet_send(struct mbuf *);
221
222/*
223 * Packets processed by dummynet have an mbuf tag associated with
224 * them that carries their dummynet state.
225 * Outside dummynet, only the 'rule' field is relevant, and it must
226 * be at the beginning of the structure.
227 */
228struct dn_pkt_tag {
229        struct ipfw_rule_ref rule;      /* matching rule        */
230
231        /* second part, dummynet specific */
232        int dn_dir;             /* action when packet comes out.*/
233                                /* see ip_fw_private.h          */
234        uint64_t output_time;   /* when the pkt is due for delivery*/
235        struct ifnet *ifp;      /* interface, for ip_output     */
236        struct _ip6dn_args ip6opt;      /* XXX ipv6 options     */
237};
238
239/*
240 * Return the mbuf tag holding the dummynet state (it should
241 * be the first one on the list).
242 */
243static struct dn_pkt_tag *
244dn_tag_get(struct mbuf *m)
245{
246        struct m_tag *mtag = m_tag_first(m);
247        KASSERT(mtag != NULL &&
248            mtag->m_tag_cookie == MTAG_ABI_COMPAT &&
249            mtag->m_tag_id == PACKET_TAG_DUMMYNET,
250            ("packet on dummynet queue w/o dummynet tag!"));
251        return (struct dn_pkt_tag *)(mtag+1);
252}
253
254static inline void
255mq_append(struct mq *q, struct mbuf *m)
256{
257        if (q->head == NULL)
258                q->head = m;
259        else
260                q->tail->m_nextpkt = m;
261        q->tail = m;
262        m->m_nextpkt = NULL;
263}
264
265/*
266 * Dispose a list of packet. Use a functions so if we need to do
267 * more work, this is a central point to do it.
268 */
269void dn_free_pkts(struct mbuf *mnext)
270{
271        struct mbuf *m;
272   
273        while ((m = mnext) != NULL) {
274                mnext = m->m_nextpkt;
275                FREE_PKT(m);
276        }
277}
278
279static int
280red_drops (struct dn_queue *q, int len)
281{
282        /*
283         * RED algorithm
284         *
285         * RED calculates the average queue size (avg) using a low-pass filter
286         * with an exponential weighted (w_q) moving average:
287         *      avg  <-  (1-w_q) * avg + w_q * q_size
288         * where q_size is the queue length (measured in bytes or * packets).
289         *
290         * If q_size == 0, we compute the idle time for the link, and set
291         *      avg = (1 - w_q)^(idle/s)
292         * where s is the time needed for transmitting a medium-sized packet.
293         *
294         * Now, if avg < min_th the packet is enqueued.
295         * If avg > max_th the packet is dropped. Otherwise, the packet is
296         * dropped with probability P function of avg.
297         */
298
299        struct dn_fsk *fs = q->fs;
300        int64_t p_b = 0;
301
302        /* Queue in bytes or packets? */
303        uint32_t q_size = (fs->fs.flags & DN_QSIZE_BYTES) ?
304            q->ni.len_bytes : q->ni.length;
305
306        /* Average queue size estimation. */
307        if (q_size != 0) {
308                /* Queue is not empty, avg <- avg + (q_size - avg) * w_q */
309                int diff = SCALE(q_size) - q->avg;
310                int64_t v = SCALE_MUL((int64_t)diff, (int64_t)fs->w_q);
311
312                q->avg += (int)v;
313        } else {
314                /*
315                 * Queue is empty, find for how long the queue has been
316                 * empty and use a lookup table for computing
317                 * (1 - * w_q)^(idle_time/s) where s is the time to send a
318                 * (small) packet.
319                 * XXX check wraps...
320                 */
321                if (q->avg) {
322                        u_int t = div64((dn_cfg.curr_time - q->q_time), fs->lookup_step);
323
324                        q->avg = (t < fs->lookup_depth) ?
325                            SCALE_MUL(q->avg, fs->w_q_lookup[t]) : 0;
326                }
327        }
328
329        /* Should i drop? */
330        if (q->avg < fs->min_th) {
331                q->count = -1;
332                return (0);     /* accept packet */
333        }
334        if (q->avg >= fs->max_th) {     /* average queue >=  max threshold */
335                if (fs->fs.flags & DN_IS_GENTLE_RED) {
336                        /*
337                         * According to Gentle-RED, if avg is greater than
338                         * max_th the packet is dropped with a probability
339                         *       p_b = c_3 * avg - c_4
340                         * where c_3 = (1 - max_p) / max_th
341                         *       c_4 = 1 - 2 * max_p
342                         */
343                        p_b = SCALE_MUL((int64_t)fs->c_3, (int64_t)q->avg) -
344                            fs->c_4;
345                } else {
346                        q->count = -1;
347                        return (1);
348                }
349        } else if (q->avg > fs->min_th) {
350                /*
351                 * We compute p_b using the linear dropping function
352                 *       p_b = c_1 * avg - c_2
353                 * where c_1 = max_p / (max_th - min_th)
354                 *       c_2 = max_p * min_th / (max_th - min_th)
355                 */
356                p_b = SCALE_MUL((int64_t)fs->c_1, (int64_t)q->avg) - fs->c_2;
357        }
358
359        if (fs->fs.flags & DN_QSIZE_BYTES)
360                p_b = div64((p_b * len) , fs->max_pkt_size);
361        if (++q->count == 0)
362                q->random = random() & 0xffff;
363        else {
364                /*
365                 * q->count counts packets arrived since last drop, so a greater
366                 * value of q->count means a greater packet drop probability.
367                 */
368                if (SCALE_MUL(p_b, SCALE((int64_t)q->count)) > q->random) {
369                        q->count = 0;
370                        /* After a drop we calculate a new random value. */
371                        q->random = random() & 0xffff;
372                        return (1);     /* drop */
373                }
374        }
375        /* End of RED algorithm. */
376
377        return (0);     /* accept */
378
379}
380
381/*
382 * Enqueue a packet in q, subject to space and queue management policy
383 * (whose parameters are in q->fs).
384 * Update stats for the queue and the scheduler.
385 * Return 0 on success, 1 on drop. The packet is consumed anyways.
386 */
387int
388dn_enqueue(struct dn_queue *q, struct mbuf* m, int drop)
389{   
390        struct dn_fs *f;
391        struct dn_flow *ni;     /* stats for scheduler instance */
392        uint64_t len;
393
394        if (q->fs == NULL || q->_si == NULL) {
395                printf("%s fs %p si %p, dropping\n",
396                        __FUNCTION__, q->fs, q->_si);
397                FREE_PKT(m);
398                return 1;
399        }
400        f = &(q->fs->fs);
401        ni = &q->_si->ni;
402        len = m->m_pkthdr.len;
403        /* Update statistics, then check reasons to drop pkt. */
404        q->ni.tot_bytes += len;
405        q->ni.tot_pkts++;
406        ni->tot_bytes += len;
407        ni->tot_pkts++;
408        if (drop)
409                goto drop;
410        if (f->plr && random() < f->plr)
411                goto drop;
412        if (f->flags & DN_IS_RED && red_drops(q, m->m_pkthdr.len))
413                goto drop;
414        if (f->flags & DN_QSIZE_BYTES) {
415                if (q->ni.len_bytes > f->qsize)
416                        goto drop;
417        } else if (q->ni.length >= f->qsize) {
418                goto drop;
419        }
420        mq_append(&q->mq, m);
421        q->ni.length++;
422        q->ni.len_bytes += len;
423        ni->length++;
424        ni->len_bytes += len;
425        return 0;
426
427drop:
428        io_pkt_drop++;
429        q->ni.drops++;
430        ni->drops++;
431        FREE_PKT(m);
432        return 1;
433}
434
435/*
436 * Fetch packets from the delay line which are due now. If there are
437 * leftover packets, reinsert the delay line in the heap.
438 * Runs under scheduler lock.
439 */
440static void
441transmit_event(struct mq *q, struct delay_line *dline, uint64_t now)
442{
443        struct mbuf *m;
444        struct dn_pkt_tag *pkt = NULL;
445
446        dline->oid.subtype = 0; /* not in heap */
447        while ((m = dline->mq.head) != NULL) {
448                pkt = dn_tag_get(m);
449                if (!DN_KEY_LEQ(pkt->output_time, now))
450                        break;
451                dline->mq.head = m->m_nextpkt;
452                mq_append(q, m);
453        }
454        if (m != NULL) {
455                dline->oid.subtype = 1; /* in heap */
456                heap_insert(&dn_cfg.evheap, pkt->output_time, dline);
457        }
458}
459
460/*
461 * Convert the additional MAC overheads/delays into an equivalent
462 * number of bits for the given data rate. The samples are
463 * in milliseconds so we need to divide by 1000.
464 */
465static uint64_t
466extra_bits(struct mbuf *m, struct dn_schk *s)
467{
468        int index;
469        uint64_t bits;
470        struct dn_profile *pf = s->profile;
471
472        if (!pf || pf->samples_no == 0)
473                return 0;
474        index  = random() % pf->samples_no;
475        bits = div64((uint64_t)pf->samples[index] * s->link.bandwidth, 1000);
476        if (index >= pf->loss_level) {
477                struct dn_pkt_tag *dt = dn_tag_get(m);
478                if (dt)
479                        dt->dn_dir = DIR_DROP;
480        }
481        return bits;
482}
483
484/*
485 * Send traffic from a scheduler instance due by 'now'.
486 * Return a pointer to the head of the queue.
487 */
488static struct mbuf *
489serve_sched(struct mq *q, struct dn_sch_inst *si, uint64_t now)
490{
491        struct mq def_q;
492        struct dn_schk *s = si->sched;
493        struct mbuf *m = NULL;
494        int delay_line_idle = (si->dline.mq.head == NULL);
495        int done, bw;
496
497        if (q == NULL) {
498                q = &def_q;
499                q->head = NULL;
500        }
501
502        bw = s->link.bandwidth;
503        si->kflags &= ~DN_ACTIVE;
504
505        if (bw > 0)
506                si->credit += (now - si->sched_time) * bw;
507        else
508                si->credit = 0;
509        si->sched_time = now;
510        done = 0;
511        while (si->credit >= 0 && (m = s->fp->dequeue(si)) != NULL) {
512                uint64_t len_scaled;
513
514                done++;
515                len_scaled = (bw == 0) ? 0 : hz *
516                        (m->m_pkthdr.len * 8 + extra_bits(m, s));
517                si->credit -= len_scaled;
518                /* Move packet in the delay line */
519                dn_tag_get(m)->output_time = dn_cfg.curr_time + s->link.delay ;
520                mq_append(&si->dline.mq, m);
521        }
522
523        /*
524         * If credit >= 0 the instance is idle, mark time.
525         * Otherwise put back in the heap, and adjust the output
526         * time of the last inserted packet, m, which was too early.
527         */
528        if (si->credit >= 0) {
529                si->idle_time = now;
530        } else {
531                uint64_t t;
532                KASSERT (bw > 0, ("bw=0 and credit<0 ?"));
533                t = div64(bw - 1 - si->credit, bw);
534                if (m)
535                        dn_tag_get(m)->output_time += t;
536                si->kflags |= DN_ACTIVE;
537                heap_insert(&dn_cfg.evheap, now + t, si);
538        }
539        if (delay_line_idle && done)
540                transmit_event(q, &si->dline, now);
541        return q->head;
542}
543
544/*
545 * The timer handler for dummynet. Time is computed in ticks, but
546 * but the code is tolerant to the actual rate at which this is called.
547 * Once complete, the function reschedules itself for the next tick.
548 */
549void
550dummynet_task(void *context, int pending)
551{
552        struct timeval t;
553        struct mq q = { NULL, NULL }; /* queue to accumulate results */
554
555        CURVNET_SET((struct vnet *)context);
556
557        DN_BH_WLOCK();
558
559        /* Update number of lost(coalesced) ticks. */
560        tick_lost += pending - 1;
561
562        getmicrouptime(&t);
563        /* Last tick duration (usec). */
564        tick_last = (t.tv_sec - dn_cfg.prev_t.tv_sec) * 1000000 +
565        (t.tv_usec - dn_cfg.prev_t.tv_usec);
566        /* Last tick vs standard tick difference (usec). */
567        tick_delta = (tick_last * hz - 1000000) / hz;
568        /* Accumulated tick difference (usec). */
569        tick_delta_sum += tick_delta;
570
571        dn_cfg.prev_t = t;
572
573        /*
574        * Adjust curr_time if the accumulated tick difference is
575        * greater than the 'standard' tick. Since curr_time should
576        * be monotonically increasing, we do positive adjustments
577        * as required, and throttle curr_time in case of negative
578        * adjustment.
579        */
580        dn_cfg.curr_time++;
581        if (tick_delta_sum - tick >= 0) {
582                int diff = tick_delta_sum / tick;
583
584                dn_cfg.curr_time += diff;
585                tick_diff += diff;
586                tick_delta_sum %= tick;
587                tick_adjustment++;
588        } else if (tick_delta_sum + tick <= 0) {
589                dn_cfg.curr_time--;
590                tick_diff--;
591                tick_delta_sum += tick;
592                tick_adjustment++;
593        }
594
595        /* serve pending events, accumulate in q */
596        for (;;) {
597                struct dn_id *p;    /* generic parameter to handler */
598
599                if (dn_cfg.evheap.elements == 0 ||
600                    DN_KEY_LT(dn_cfg.curr_time, HEAP_TOP(&dn_cfg.evheap)->key))
601                        break;
602                p = HEAP_TOP(&dn_cfg.evheap)->object;
603                heap_extract(&dn_cfg.evheap, NULL);
604
605                if (p->type == DN_SCH_I) {
606                        serve_sched(&q, (struct dn_sch_inst *)p, dn_cfg.curr_time);
607                } else { /* extracted a delay line */
608                        transmit_event(&q, (struct delay_line *)p, dn_cfg.curr_time);
609                }
610        }
611        if (dn_cfg.expire && ++dn_cfg.expire_cycle >= dn_cfg.expire) {
612                dn_cfg.expire_cycle = 0;
613                dn_drain_scheduler();
614                dn_drain_queue();
615        }
616
617        DN_BH_WUNLOCK();
618        dn_reschedule();
619        if (q.head != NULL)
620                dummynet_send(q.head);
621        CURVNET_RESTORE();
622}
623
624/*
625 * forward a chain of packets to the proper destination.
626 * This runs outside the dummynet lock.
627 */
628static void
629dummynet_send(struct mbuf *m)
630{
631        struct mbuf *n;
632
633        for (; m != NULL; m = n) {
634                struct ifnet *ifp = NULL;       /* gcc 3.4.6 complains */
635                struct m_tag *tag;
636                int dst;
637
638                n = m->m_nextpkt;
639                m->m_nextpkt = NULL;
640                tag = m_tag_first(m);
641                if (tag == NULL) { /* should not happen */
642                        dst = DIR_DROP;
643                } else {
644                        struct dn_pkt_tag *pkt = dn_tag_get(m);
645                        /* extract the dummynet info, rename the tag
646                         * to carry reinject info.
647                         */
648                        dst = pkt->dn_dir;
649                        ifp = pkt->ifp;
650                        tag->m_tag_cookie = MTAG_IPFW_RULE;
651                        tag->m_tag_id = 0;
652                }
653
654                switch (dst) {
655                case DIR_OUT:
656                        SET_HOST_IPLEN(mtod(m, struct ip *));
657                        ip_output(m, NULL, NULL, IP_FORWARDING, NULL, NULL);
658                        break ;
659
660                case DIR_IN :
661                        /* put header in network format for ip_input() */
662                        //SET_NET_IPLEN(mtod(m, struct ip *));
663                        netisr_dispatch(NETISR_IP, m);
664                        break;
665
666#ifdef INET6
667                case DIR_IN | PROTO_IPV6:
668                        netisr_dispatch(NETISR_IPV6, m);
669                        break;
670
671                case DIR_OUT | PROTO_IPV6:
672                        ip6_output(m, NULL, NULL, IPV6_FORWARDING, NULL, NULL, NULL);
673                        break;
674#endif
675
676                case DIR_FWD | PROTO_IFB: /* DN_TO_IFB_FWD: */
677                        if (bridge_dn_p != NULL)
678                                ((*bridge_dn_p)(m, ifp));
679                        else
680                                printf("dummynet: if_bridge not loaded\n");
681
682                        break;
683
684                case DIR_IN | PROTO_LAYER2: /* DN_TO_ETH_DEMUX: */
685                        /*
686                         * The Ethernet code assumes the Ethernet header is
687                         * contiguous in the first mbuf header.
688                         * Insure this is true.
689                         */
690                        if (m->m_len < ETHER_HDR_LEN &&
691                            (m = m_pullup(m, ETHER_HDR_LEN)) == NULL) {
692                                printf("dummynet/ether: pullup failed, "
693                                    "dropping packet\n");
694                                break;
695                        }
696                        ether_demux(m->m_pkthdr.rcvif, m);
697                        break;
698
699                case DIR_OUT | PROTO_LAYER2: /* N_TO_ETH_OUT: */
700                        ether_output_frame(ifp, m);
701                        break;
702
703                case DIR_DROP:
704                        /* drop the packet after some time */
705                        FREE_PKT(m);
706                        break;
707
708                default:
709                        printf("dummynet: bad switch %d!\n", dst);
710                        FREE_PKT(m);
711                        break;
712                }
713        }
714}
715
716static inline int
717tag_mbuf(struct mbuf *m, int dir, struct ip_fw_args *fwa)
718{
719        struct dn_pkt_tag *dt;
720        struct m_tag *mtag;
721
722        mtag = m_tag_get(PACKET_TAG_DUMMYNET,
723                    sizeof(*dt), M_NOWAIT | M_ZERO);
724        if (mtag == NULL)
725                return 1;               /* Cannot allocate packet header. */
726        m_tag_prepend(m, mtag);         /* Attach to mbuf chain. */
727        dt = (struct dn_pkt_tag *)(mtag + 1);
728        dt->rule = fwa->rule;
729        dt->rule.info &= IPFW_ONEPASS;  /* only keep this info */
730        dt->dn_dir = dir;
731        dt->ifp = fwa->oif;
732        /* dt->output tame is updated as we move through */
733        dt->output_time = dn_cfg.curr_time;
734        return 0;
735}
736
737
738/*
739 * dummynet hook for packets.
740 * We use the argument to locate the flowset fs and the sched_set sch
741 * associated to it. The we apply flow_mask and sched_mask to
742 * determine the queue and scheduler instances.
743 *
744 * dir          where shall we send the packet after dummynet.
745 * *m0          the mbuf with the packet
746 * ifp          the 'ifp' parameter from the caller.
747 *              NULL in ip_input, destination interface in ip_output,
748 */
749int
750dummynet_io(struct mbuf **m0, int dir, struct ip_fw_args *fwa)
751{
752        struct mbuf *m = *m0;
753        struct dn_fsk *fs = NULL;
754        struct dn_sch_inst *si;
755        struct dn_queue *q = NULL;      /* default */
756
757        int fs_id = (fwa->rule.info & IPFW_INFO_MASK) +
758                ((fwa->rule.info & IPFW_IS_PIPE) ? 2*DN_MAX_ID : 0);
759        DN_BH_WLOCK();
760        io_pkt++;
761        /* we could actually tag outside the lock, but who cares... */
762        if (tag_mbuf(m, dir, fwa))
763                goto dropit;
764        if (dn_cfg.busy) {
765                /* if the upper half is busy doing something expensive,
766                 * lets queue the packet and move forward
767                 */
768                mq_append(&dn_cfg.pending, m);
769                m = *m0 = NULL; /* consumed */
770                goto done; /* already active, nothing to do */
771        }
772        /* XXX locate_flowset could be optimised with a direct ref. */
773        fs = dn_ht_find(dn_cfg.fshash, fs_id, 0, NULL);
774        if (fs == NULL)
775                goto dropit;    /* This queue/pipe does not exist! */
776        if (fs->sched == NULL)  /* should not happen */
777                goto dropit;
778        /* find scheduler instance, possibly applying sched_mask */
779        si = ipdn_si_find(fs->sched, &(fwa->f_id));
780        if (si == NULL)
781                goto dropit;
782        /*
783         * If the scheduler supports multiple queues, find the right one
784         * (otherwise it will be ignored by enqueue).
785         */
786        if (fs->sched->fp->flags & DN_MULTIQUEUE) {
787                q = ipdn_q_find(fs, si, &(fwa->f_id));
788                if (q == NULL)
789                        goto dropit;
790        }
791        if (fs->sched->fp->enqueue(si, q, m)) {
792                /* packet was dropped by enqueue() */
793                m = *m0 = NULL;
794                goto dropit;
795        }
796
797        if (si->kflags & DN_ACTIVE) {
798                m = *m0 = NULL; /* consumed */
799                goto done; /* already active, nothing to do */
800        }
801
802        /* compute the initial allowance */
803        if (si->idle_time < dn_cfg.curr_time) {
804            /* Do this only on the first packet on an idle pipe */
805            struct dn_link *p = &fs->sched->link;
806
807            si->sched_time = dn_cfg.curr_time;
808            si->credit = dn_cfg.io_fast ? p->bandwidth : 0;
809            if (p->burst) {
810                uint64_t burst = (dn_cfg.curr_time - si->idle_time) * p->bandwidth;
811                if (burst > p->burst)
812                        burst = p->burst;
813                si->credit += burst;
814            }
815        }
816        /* pass through scheduler and delay line */
817        m = serve_sched(NULL, si, dn_cfg.curr_time);
818
819        /* optimization -- pass it back to ipfw for immediate send */
820        /* XXX Don't call dummynet_send() if scheduler return the packet
821         *     just enqueued. This avoid a lock order reversal.
822         *     
823         */
824        if (/*dn_cfg.io_fast &&*/ m == *m0 && (dir & PROTO_LAYER2) == 0 ) {
825                /* fast io, rename the tag * to carry reinject info. */
826                struct m_tag *tag = m_tag_first(m);
827
828                tag->m_tag_cookie = MTAG_IPFW_RULE;
829                tag->m_tag_id = 0;
830                io_pkt_fast++;
831                if (m->m_nextpkt != NULL) {
832                        printf("dummynet: fast io: pkt chain detected!\n");
833                        m->m_nextpkt = NULL;
834                }
835                m = NULL;
836        } else {
837                *m0 = NULL;
838        }
839done:
840        DN_BH_WUNLOCK();
841        if (m)
842                dummynet_send(m);
843        return 0;
844
845dropit:
846        io_pkt_drop++;
847        DN_BH_WUNLOCK();
848        if (m)
849                FREE_PKT(m);
850        *m0 = NULL;
851        return (fs && (fs->fs.flags & DN_NOERROR)) ? 0 : ENOBUFS;
852}
Note: See TracBrowser for help on using the repository browser.