source: rtems-libbsd/freebsd/sys/netinet/tcp_subr.c @ e599318

4.1155-freebsd-126-freebsd-12freebsd-9.3
Last change on this file since e599318 was e599318, checked in by Sebastian Huber <sebastian.huber@…>, on 10/09/13 at 20:52:54

Update files to match FreeBSD layout

Add compatibility with Newlib header files. Some FreeBSD header files
are mapped by the translation script:

o rtems/bsd/sys/_types.h
o rtems/bsd/sys/errno.h
o rtems/bsd/sys/lock.h
o rtems/bsd/sys/param.h
o rtems/bsd/sys/resource.h
o rtems/bsd/sys/time.h
o rtems/bsd/sys/timespec.h
o rtems/bsd/sys/types.h
o rtems/bsd/sys/unistd.h

It is now possible to include <sys/socket.h> directly for example.

Generate one Makefile which builds everything including tests.

  • Property mode set to 100644
File size: 64.3 KB
Line 
1#include <machine/rtems-bsd-config.h>
2
3/*-
4 * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1995
5 *      The Regents of the University of California.  All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 *    notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 *    notice, this list of conditions and the following disclaimer in the
14 *    documentation and/or other materials provided with the distribution.
15 * 4. Neither the name of the University nor the names of its contributors
16 *    may be used to endorse or promote products derived from this software
17 *    without specific prior written permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 *
31 *      @(#)tcp_subr.c  8.2 (Berkeley) 5/24/95
32 */
33
34#include <sys/cdefs.h>
35__FBSDID("$FreeBSD$");
36
37#include <rtems/bsd/local/opt_compat.h>
38#include <rtems/bsd/local/opt_inet.h>
39#include <rtems/bsd/local/opt_inet6.h>
40#include <rtems/bsd/local/opt_ipsec.h>
41#include <rtems/bsd/local/opt_tcpdebug.h>
42
43#include <rtems/bsd/sys/param.h>
44#include <sys/systm.h>
45#include <sys/callout.h>
46#include <sys/kernel.h>
47#include <sys/sysctl.h>
48#include <sys/jail.h>
49#include <sys/malloc.h>
50#include <sys/mbuf.h>
51#ifdef INET6
52#include <sys/domain.h>
53#endif
54#include <sys/priv.h>
55#include <sys/proc.h>
56#include <sys/socket.h>
57#include <sys/socketvar.h>
58#include <sys/protosw.h>
59#include <sys/random.h>
60
61#include <vm/uma.h>
62
63#include <net/route.h>
64#include <net/if.h>
65#include <net/vnet.h>
66
67#include <netinet/in.h>
68#include <netinet/in_systm.h>
69#include <netinet/ip.h>
70#ifdef INET6
71#include <netinet/ip6.h>
72#endif
73#include <netinet/in_pcb.h>
74#ifdef INET6
75#include <netinet6/in6_pcb.h>
76#endif
77#include <netinet/in_var.h>
78#include <netinet/ip_var.h>
79#ifdef INET6
80#include <netinet6/ip6_var.h>
81#include <netinet6/scope6_var.h>
82#include <netinet6/nd6.h>
83#endif
84#include <netinet/ip_icmp.h>
85#include <netinet/tcp.h>
86#include <netinet/tcp_fsm.h>
87#include <netinet/tcp_seq.h>
88#include <netinet/tcp_timer.h>
89#include <netinet/tcp_var.h>
90#include <netinet/tcp_syncache.h>
91#include <netinet/tcp_offload.h>
92#ifdef INET6
93#include <netinet6/tcp6_var.h>
94#endif
95#include <netinet/tcpip.h>
96#ifdef TCPDEBUG
97#include <netinet/tcp_debug.h>
98#endif
99#include <netinet6/ip6protosw.h>
100
101#ifdef IPSEC
102#include <netipsec/ipsec.h>
103#include <netipsec/xform.h>
104#ifdef INET6
105#include <netipsec/ipsec6.h>
106#endif
107#include <netipsec/key.h>
108#include <sys/syslog.h>
109#endif /*IPSEC*/
110
111#include <machine/in_cksum.h>
112#include <sys/md5.h>
113
114#include <security/mac/mac_framework.h>
115
116VNET_DEFINE(int, tcp_mssdflt) = TCP_MSS;
117#ifdef INET6
118VNET_DEFINE(int, tcp_v6mssdflt) = TCP6_MSS;
119#endif
120
121static int
122sysctl_net_inet_tcp_mss_check(SYSCTL_HANDLER_ARGS)
123{
124        int error, new;
125
126        new = V_tcp_mssdflt;
127        error = sysctl_handle_int(oidp, &new, 0, req);
128        if (error == 0 && req->newptr) {
129                if (new < TCP_MINMSS)
130                        error = EINVAL;
131                else
132                        V_tcp_mssdflt = new;
133        }
134        return (error);
135}
136
137SYSCTL_VNET_PROC(_net_inet_tcp, TCPCTL_MSSDFLT, mssdflt,
138    CTLTYPE_INT|CTLFLAG_RW, &VNET_NAME(tcp_mssdflt), 0,
139    &sysctl_net_inet_tcp_mss_check, "I",
140    "Default TCP Maximum Segment Size");
141
142#ifdef INET6
143static int
144sysctl_net_inet_tcp_mss_v6_check(SYSCTL_HANDLER_ARGS)
145{
146        int error, new;
147
148        new = V_tcp_v6mssdflt;
149        error = sysctl_handle_int(oidp, &new, 0, req);
150        if (error == 0 && req->newptr) {
151                if (new < TCP_MINMSS)
152                        error = EINVAL;
153                else
154                        V_tcp_v6mssdflt = new;
155        }
156        return (error);
157}
158
159SYSCTL_VNET_PROC(_net_inet_tcp, TCPCTL_V6MSSDFLT, v6mssdflt,
160    CTLTYPE_INT|CTLFLAG_RW, &VNET_NAME(tcp_v6mssdflt), 0,
161    &sysctl_net_inet_tcp_mss_v6_check, "I",
162   "Default TCP Maximum Segment Size for IPv6");
163#endif
164
165static int
166vnet_sysctl_msec_to_ticks(SYSCTL_HANDLER_ARGS)
167{
168
169        VNET_SYSCTL_ARG(req, arg1);
170        return (sysctl_msec_to_ticks(oidp, arg1, arg2, req));
171}
172
173/*
174 * Minimum MSS we accept and use. This prevents DoS attacks where
175 * we are forced to a ridiculous low MSS like 20 and send hundreds
176 * of packets instead of one. The effect scales with the available
177 * bandwidth and quickly saturates the CPU and network interface
178 * with packet generation and sending. Set to zero to disable MINMSS
179 * checking. This setting prevents us from sending too small packets.
180 */
181VNET_DEFINE(int, tcp_minmss) = TCP_MINMSS;
182SYSCTL_VNET_INT(_net_inet_tcp, OID_AUTO, minmss, CTLFLAG_RW,
183     &VNET_NAME(tcp_minmss), 0,
184    "Minmum TCP Maximum Segment Size");
185
186VNET_DEFINE(int, tcp_do_rfc1323) = 1;
187SYSCTL_VNET_INT(_net_inet_tcp, TCPCTL_DO_RFC1323, rfc1323, CTLFLAG_RW,
188    &VNET_NAME(tcp_do_rfc1323), 0,
189    "Enable rfc1323 (high performance TCP) extensions");
190
191static int      tcp_log_debug = 0;
192SYSCTL_INT(_net_inet_tcp, OID_AUTO, log_debug, CTLFLAG_RW,
193    &tcp_log_debug, 0, "Log errors caused by incoming TCP segments");
194
195static int      tcp_tcbhashsize = 0;
196SYSCTL_INT(_net_inet_tcp, OID_AUTO, tcbhashsize, CTLFLAG_RDTUN,
197    &tcp_tcbhashsize, 0, "Size of TCP control-block hashtable");
198
199static int      do_tcpdrain = 1;
200SYSCTL_INT(_net_inet_tcp, OID_AUTO, do_tcpdrain, CTLFLAG_RW, &do_tcpdrain, 0,
201    "Enable tcp_drain routine for extra help when low on mbufs");
202
203SYSCTL_VNET_INT(_net_inet_tcp, OID_AUTO, pcbcount, CTLFLAG_RD,
204    &VNET_NAME(tcbinfo.ipi_count), 0, "Number of active PCBs");
205
206static VNET_DEFINE(int, icmp_may_rst) = 1;
207#define V_icmp_may_rst                  VNET(icmp_may_rst)
208SYSCTL_VNET_INT(_net_inet_tcp, OID_AUTO, icmp_may_rst, CTLFLAG_RW,
209    &VNET_NAME(icmp_may_rst), 0,
210    "Certain ICMP unreachable messages may abort connections in SYN_SENT");
211
212static VNET_DEFINE(int, tcp_isn_reseed_interval) = 0;
213#define V_tcp_isn_reseed_interval       VNET(tcp_isn_reseed_interval)
214SYSCTL_VNET_INT(_net_inet_tcp, OID_AUTO, isn_reseed_interval, CTLFLAG_RW,
215    &VNET_NAME(tcp_isn_reseed_interval), 0,
216    "Seconds between reseeding of ISN secret");
217
218/*
219 * TCP bandwidth limiting sysctls.  Note that the default lower bound of
220 * 1024 exists only for debugging.  A good production default would be
221 * something like 6100.
222 */
223SYSCTL_NODE(_net_inet_tcp, OID_AUTO, inflight, CTLFLAG_RW, 0,
224    "TCP inflight data limiting");
225
226static VNET_DEFINE(int, tcp_inflight_enable) = 0;
227#define V_tcp_inflight_enable           VNET(tcp_inflight_enable)
228SYSCTL_VNET_INT(_net_inet_tcp_inflight, OID_AUTO, enable, CTLFLAG_RW,
229    &VNET_NAME(tcp_inflight_enable), 0,
230    "Enable automatic TCP inflight data limiting");
231
232static int      tcp_inflight_debug = 0;
233SYSCTL_INT(_net_inet_tcp_inflight, OID_AUTO, debug, CTLFLAG_RW,
234    &tcp_inflight_debug, 0,
235    "Debug TCP inflight calculations");
236
237static VNET_DEFINE(int, tcp_inflight_rttthresh);
238#define V_tcp_inflight_rttthresh        VNET(tcp_inflight_rttthresh)
239SYSCTL_VNET_PROC(_net_inet_tcp_inflight, OID_AUTO, rttthresh,
240    CTLTYPE_INT|CTLFLAG_RW, &VNET_NAME(tcp_inflight_rttthresh), 0,
241    vnet_sysctl_msec_to_ticks, "I",
242    "RTT threshold below which inflight will deactivate itself");
243
244static VNET_DEFINE(int, tcp_inflight_min) = 6144;
245#define V_tcp_inflight_min              VNET(tcp_inflight_min)
246SYSCTL_VNET_INT(_net_inet_tcp_inflight, OID_AUTO, min, CTLFLAG_RW,
247    &VNET_NAME(tcp_inflight_min), 0,
248    "Lower-bound for TCP inflight window");
249
250static VNET_DEFINE(int, tcp_inflight_max) = TCP_MAXWIN << TCP_MAX_WINSHIFT;
251#define V_tcp_inflight_max              VNET(tcp_inflight_max)
252SYSCTL_VNET_INT(_net_inet_tcp_inflight, OID_AUTO, max, CTLFLAG_RW,
253    &VNET_NAME(tcp_inflight_max), 0,
254    "Upper-bound for TCP inflight window");
255
256static VNET_DEFINE(int, tcp_inflight_stab) = 20;
257#define V_tcp_inflight_stab             VNET(tcp_inflight_stab)
258SYSCTL_VNET_INT(_net_inet_tcp_inflight, OID_AUTO, stab, CTLFLAG_RW,
259    &VNET_NAME(tcp_inflight_stab), 0,
260    "Inflight Algorithm Stabilization 20 = 2 packets");
261
262VNET_DEFINE(uma_zone_t, sack_hole_zone);
263#define V_sack_hole_zone                VNET(sack_hole_zone)
264
265static struct inpcb *tcp_notify(struct inpcb *, int);
266static void     tcp_isn_tick(void *);
267static char *   tcp_log_addr(struct in_conninfo *inc, struct tcphdr *th,
268                    void *ip4hdr, const void *ip6hdr);
269
270/*
271 * Target size of TCP PCB hash tables. Must be a power of two.
272 *
273 * Note that this can be overridden by the kernel environment
274 * variable net.inet.tcp.tcbhashsize
275 */
276#ifndef TCBHASHSIZE
277#define TCBHASHSIZE     512
278#endif
279
280/*
281 * XXX
282 * Callouts should be moved into struct tcp directly.  They are currently
283 * separate because the tcpcb structure is exported to userland for sysctl
284 * parsing purposes, which do not know about callouts.
285 */
286struct tcpcb_mem {
287        struct  tcpcb           tcb;
288        struct  tcp_timer       tt;
289};
290
291static VNET_DEFINE(uma_zone_t, tcpcb_zone);
292#define V_tcpcb_zone                    VNET(tcpcb_zone)
293
294MALLOC_DEFINE(M_TCPLOG, "tcplog", "TCP address and flags print buffers");
295struct callout isn_callout;
296static struct mtx isn_mtx;
297
298#define ISN_LOCK_INIT() mtx_init(&isn_mtx, "isn_mtx", NULL, MTX_DEF)
299#define ISN_LOCK()      mtx_lock(&isn_mtx)
300#define ISN_UNLOCK()    mtx_unlock(&isn_mtx)
301
302/*
303 * TCP initialization.
304 */
305static void
306tcp_zone_change(void *tag)
307{
308
309        uma_zone_set_max(V_tcbinfo.ipi_zone, maxsockets);
310        uma_zone_set_max(V_tcpcb_zone, maxsockets);
311        tcp_tw_zone_change();
312}
313
314static int
315tcp_inpcb_init(void *mem, int size, int flags)
316{
317        struct inpcb *inp = mem;
318
319        INP_LOCK_INIT(inp, "inp", "tcpinp");
320        return (0);
321}
322
323void
324tcp_init(void)
325{
326        int hashsize;
327
328        INP_INFO_LOCK_INIT(&V_tcbinfo, "tcp");
329        LIST_INIT(&V_tcb);
330#ifdef VIMAGE
331        V_tcbinfo.ipi_vnet = curvnet;
332#endif
333        V_tcbinfo.ipi_listhead = &V_tcb;
334        hashsize = TCBHASHSIZE;
335        TUNABLE_INT_FETCH("net.inet.tcp.tcbhashsize", &hashsize);
336        if (!powerof2(hashsize)) {
337                printf("WARNING: TCB hash size not a power of 2\n");
338                hashsize = 512; /* safe default */
339        }
340        V_tcbinfo.ipi_hashbase = hashinit(hashsize, M_PCB,
341            &V_tcbinfo.ipi_hashmask);
342        V_tcbinfo.ipi_porthashbase = hashinit(hashsize, M_PCB,
343            &V_tcbinfo.ipi_porthashmask);
344        V_tcbinfo.ipi_zone = uma_zcreate("tcp_inpcb", sizeof(struct inpcb),
345            NULL, NULL, tcp_inpcb_init, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
346        uma_zone_set_max(V_tcbinfo.ipi_zone, maxsockets);
347        V_tcp_inflight_rttthresh = TCPTV_INFLIGHT_RTTTHRESH;
348
349        /*
350         * These have to be type stable for the benefit of the timers.
351         */
352        V_tcpcb_zone = uma_zcreate("tcpcb", sizeof(struct tcpcb_mem),
353            NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
354        uma_zone_set_max(V_tcpcb_zone, maxsockets);
355
356        tcp_tw_init();
357        syncache_init();
358        tcp_hc_init();
359        tcp_reass_init();
360
361        TUNABLE_INT_FETCH("net.inet.tcp.sack.enable", &V_tcp_do_sack);
362        V_sack_hole_zone = uma_zcreate("sackhole", sizeof(struct sackhole),
363            NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
364
365        /* Skip initialization of globals for non-default instances. */
366        if (!IS_DEFAULT_VNET(curvnet))
367                return;
368
369        /* XXX virtualize those bellow? */
370        tcp_delacktime = TCPTV_DELACK;
371        tcp_keepinit = TCPTV_KEEP_INIT;
372        tcp_keepidle = TCPTV_KEEP_IDLE;
373        tcp_keepintvl = TCPTV_KEEPINTVL;
374        tcp_maxpersistidle = TCPTV_KEEP_IDLE;
375        tcp_msl = TCPTV_MSL;
376        tcp_rexmit_min = TCPTV_MIN;
377        if (tcp_rexmit_min < 1)
378                tcp_rexmit_min = 1;
379        tcp_rexmit_slop = TCPTV_CPU_VAR;
380        tcp_finwait2_timeout = TCPTV_FINWAIT2_TIMEOUT;
381        tcp_tcbhashsize = hashsize;
382
383#ifdef INET6
384#define TCP_MINPROTOHDR (sizeof(struct ip6_hdr) + sizeof(struct tcphdr))
385#else /* INET6 */
386#define TCP_MINPROTOHDR (sizeof(struct tcpiphdr))
387#endif /* INET6 */
388        if (max_protohdr < TCP_MINPROTOHDR)
389                max_protohdr = TCP_MINPROTOHDR;
390        if (max_linkhdr + TCP_MINPROTOHDR > MHLEN)
391                panic("tcp_init");
392#undef TCP_MINPROTOHDR
393
394        ISN_LOCK_INIT();
395        callout_init(&isn_callout, CALLOUT_MPSAFE);
396        callout_reset(&isn_callout, hz/100, tcp_isn_tick, NULL);
397        EVENTHANDLER_REGISTER(shutdown_pre_sync, tcp_fini, NULL,
398                SHUTDOWN_PRI_DEFAULT);
399        EVENTHANDLER_REGISTER(maxsockets_change, tcp_zone_change, NULL,
400                EVENTHANDLER_PRI_ANY);
401}
402
403#ifdef VIMAGE
404void
405tcp_destroy(void)
406{
407
408        tcp_reass_destroy();
409        tcp_hc_destroy();
410        syncache_destroy();
411        tcp_tw_destroy();
412
413        /* XXX check that hashes are empty! */
414        hashdestroy(V_tcbinfo.ipi_hashbase, M_PCB,
415            V_tcbinfo.ipi_hashmask);
416        hashdestroy(V_tcbinfo.ipi_porthashbase, M_PCB,
417            V_tcbinfo.ipi_porthashmask);
418
419        uma_zdestroy(V_sack_hole_zone);
420        uma_zdestroy(V_tcpcb_zone);
421        uma_zdestroy(V_tcbinfo.ipi_zone);
422
423        INP_INFO_LOCK_DESTROY(&V_tcbinfo);
424}
425#endif
426
427void
428tcp_fini(void *xtp)
429{
430
431        callout_stop(&isn_callout);
432}
433
434/*
435 * Fill in the IP and TCP headers for an outgoing packet, given the tcpcb.
436 * tcp_template used to store this data in mbufs, but we now recopy it out
437 * of the tcpcb each time to conserve mbufs.
438 */
439void
440tcpip_fillheaders(struct inpcb *inp, void *ip_ptr, void *tcp_ptr)
441{
442        struct tcphdr *th = (struct tcphdr *)tcp_ptr;
443
444        INP_WLOCK_ASSERT(inp);
445
446#ifdef INET6
447        if ((inp->inp_vflag & INP_IPV6) != 0) {
448                struct ip6_hdr *ip6;
449
450                ip6 = (struct ip6_hdr *)ip_ptr;
451                ip6->ip6_flow = (ip6->ip6_flow & ~IPV6_FLOWINFO_MASK) |
452                        (inp->inp_flow & IPV6_FLOWINFO_MASK);
453                ip6->ip6_vfc = (ip6->ip6_vfc & ~IPV6_VERSION_MASK) |
454                        (IPV6_VERSION & IPV6_VERSION_MASK);
455                ip6->ip6_nxt = IPPROTO_TCP;
456                ip6->ip6_plen = htons(sizeof(struct tcphdr));
457                ip6->ip6_src = inp->in6p_laddr;
458                ip6->ip6_dst = inp->in6p_faddr;
459        } else
460#endif
461        {
462                struct ip *ip;
463
464                ip = (struct ip *)ip_ptr;
465                ip->ip_v = IPVERSION;
466                ip->ip_hl = 5;
467                ip->ip_tos = inp->inp_ip_tos;
468                ip->ip_len = 0;
469                ip->ip_id = 0;
470                ip->ip_off = 0;
471                ip->ip_ttl = inp->inp_ip_ttl;
472                ip->ip_sum = 0;
473                ip->ip_p = IPPROTO_TCP;
474                ip->ip_src = inp->inp_laddr;
475                ip->ip_dst = inp->inp_faddr;
476        }
477        th->th_sport = inp->inp_lport;
478        th->th_dport = inp->inp_fport;
479        th->th_seq = 0;
480        th->th_ack = 0;
481        th->th_x2 = 0;
482        th->th_off = 5;
483        th->th_flags = 0;
484        th->th_win = 0;
485        th->th_urp = 0;
486        th->th_sum = 0;         /* in_pseudo() is called later for ipv4 */
487}
488
489/*
490 * Create template to be used to send tcp packets on a connection.
491 * Allocates an mbuf and fills in a skeletal tcp/ip header.  The only
492 * use for this function is in keepalives, which use tcp_respond.
493 */
494struct tcptemp *
495tcpip_maketemplate(struct inpcb *inp)
496{
497        struct tcptemp *t;
498
499        t = malloc(sizeof(*t), M_TEMP, M_NOWAIT);
500        if (t == NULL)
501                return (NULL);
502        tcpip_fillheaders(inp, (void *)&t->tt_ipgen, (void *)&t->tt_t);
503        return (t);
504}
505
506/*
507 * Send a single message to the TCP at address specified by
508 * the given TCP/IP header.  If m == NULL, then we make a copy
509 * of the tcpiphdr at ti and send directly to the addressed host.
510 * This is used to force keep alive messages out using the TCP
511 * template for a connection.  If flags are given then we send
512 * a message back to the TCP which originated the * segment ti,
513 * and discard the mbuf containing it and any other attached mbufs.
514 *
515 * In any case the ack and sequence number of the transmitted
516 * segment are as specified by the parameters.
517 *
518 * NOTE: If m != NULL, then ti must point to *inside* the mbuf.
519 */
520void
521tcp_respond(struct tcpcb *tp, void *ipgen, struct tcphdr *th, struct mbuf *m,
522    tcp_seq ack, tcp_seq seq, int flags)
523{
524        int tlen;
525        int win = 0;
526        struct ip *ip;
527        struct tcphdr *nth;
528#ifdef INET6
529        struct ip6_hdr *ip6;
530        int isipv6;
531#endif /* INET6 */
532        int ipflags = 0;
533        struct inpcb *inp;
534
535        KASSERT(tp != NULL || m != NULL, ("tcp_respond: tp and m both NULL"));
536
537#ifdef INET6
538        isipv6 = ((struct ip *)ipgen)->ip_v == 6;
539        ip6 = ipgen;
540#endif /* INET6 */
541        ip = ipgen;
542
543        if (tp != NULL) {
544                inp = tp->t_inpcb;
545                KASSERT(inp != NULL, ("tcp control block w/o inpcb"));
546                INP_WLOCK_ASSERT(inp);
547        } else
548                inp = NULL;
549
550        if (tp != NULL) {
551                if (!(flags & TH_RST)) {
552                        win = sbspace(&inp->inp_socket->so_rcv);
553                        if (win > (long)TCP_MAXWIN << tp->rcv_scale)
554                                win = (long)TCP_MAXWIN << tp->rcv_scale;
555                }
556        }
557        if (m == NULL) {
558                m = m_gethdr(M_DONTWAIT, MT_DATA);
559                if (m == NULL)
560                        return;
561                tlen = 0;
562                m->m_data += max_linkhdr;
563#ifdef INET6
564                if (isipv6) {
565                        bcopy((caddr_t)ip6, mtod(m, caddr_t),
566                              sizeof(struct ip6_hdr));
567                        ip6 = mtod(m, struct ip6_hdr *);
568                        nth = (struct tcphdr *)(ip6 + 1);
569                } else
570#endif /* INET6 */
571              {
572                bcopy((caddr_t)ip, mtod(m, caddr_t), sizeof(struct ip));
573                ip = mtod(m, struct ip *);
574                nth = (struct tcphdr *)(ip + 1);
575              }
576                bcopy((caddr_t)th, (caddr_t)nth, sizeof(struct tcphdr));
577                flags = TH_ACK;
578        } else {
579                /*
580                 *  reuse the mbuf.
581                 * XXX MRT We inherrit the FIB, which is lucky.
582                 */
583                m_freem(m->m_next);
584                m->m_next = NULL;
585                m->m_data = (caddr_t)ipgen;
586                /* m_len is set later */
587                tlen = 0;
588#define xchg(a,b,type) { type t; t=a; a=b; b=t; }
589#ifdef INET6
590                if (isipv6) {
591                        xchg(ip6->ip6_dst, ip6->ip6_src, struct in6_addr);
592                        nth = (struct tcphdr *)(ip6 + 1);
593                } else
594#endif /* INET6 */
595              {
596                xchg(ip->ip_dst.s_addr, ip->ip_src.s_addr, uint32_t);
597                nth = (struct tcphdr *)(ip + 1);
598              }
599                if (th != nth) {
600                        /*
601                         * this is usually a case when an extension header
602                         * exists between the IPv6 header and the
603                         * TCP header.
604                         */
605                        nth->th_sport = th->th_sport;
606                        nth->th_dport = th->th_dport;
607                }
608                xchg(nth->th_dport, nth->th_sport, uint16_t);
609#undef xchg
610        }
611#ifdef INET6
612        if (isipv6) {
613                ip6->ip6_flow = 0;
614                ip6->ip6_vfc = IPV6_VERSION;
615                ip6->ip6_nxt = IPPROTO_TCP;
616                ip6->ip6_plen = htons((u_short)(sizeof (struct tcphdr) +
617                                                tlen));
618                tlen += sizeof (struct ip6_hdr) + sizeof (struct tcphdr);
619        } else
620#endif
621        {
622                tlen += sizeof (struct tcpiphdr);
623                ip->ip_len = tlen;
624                ip->ip_ttl = V_ip_defttl;
625                if (V_path_mtu_discovery)
626                        ip->ip_off |= IP_DF;
627        }
628        m->m_len = tlen;
629        m->m_pkthdr.len = tlen;
630        m->m_pkthdr.rcvif = NULL;
631#ifdef MAC
632        if (inp != NULL) {
633                /*
634                 * Packet is associated with a socket, so allow the
635                 * label of the response to reflect the socket label.
636                 */
637                INP_WLOCK_ASSERT(inp);
638                mac_inpcb_create_mbuf(inp, m);
639        } else {
640                /*
641                 * Packet is not associated with a socket, so possibly
642                 * update the label in place.
643                 */
644                mac_netinet_tcp_reply(m);
645        }
646#endif
647        nth->th_seq = htonl(seq);
648        nth->th_ack = htonl(ack);
649        nth->th_x2 = 0;
650        nth->th_off = sizeof (struct tcphdr) >> 2;
651        nth->th_flags = flags;
652        if (tp != NULL)
653                nth->th_win = htons((u_short) (win >> tp->rcv_scale));
654        else
655                nth->th_win = htons((u_short)win);
656        nth->th_urp = 0;
657#ifdef INET6
658        if (isipv6) {
659                nth->th_sum = 0;
660                nth->th_sum = in6_cksum(m, IPPROTO_TCP,
661                                        sizeof(struct ip6_hdr),
662                                        tlen - sizeof(struct ip6_hdr));
663                ip6->ip6_hlim = in6_selecthlim(tp != NULL ? tp->t_inpcb :
664                    NULL, NULL);
665        } else
666#endif /* INET6 */
667        {
668                nth->th_sum = in_pseudo(ip->ip_src.s_addr, ip->ip_dst.s_addr,
669                    htons((u_short)(tlen - sizeof(struct ip) + ip->ip_p)));
670                m->m_pkthdr.csum_flags = CSUM_TCP;
671                m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum);
672        }
673#ifdef TCPDEBUG
674        if (tp == NULL || (inp->inp_socket->so_options & SO_DEBUG))
675                tcp_trace(TA_OUTPUT, 0, tp, mtod(m, void *), th, 0);
676#endif
677#ifdef INET6
678        if (isipv6)
679                (void) ip6_output(m, NULL, NULL, ipflags, NULL, NULL, inp);
680        else
681#endif /* INET6 */
682        (void) ip_output(m, NULL, NULL, ipflags, NULL, inp);
683}
684
685/*
686 * Create a new TCP control block, making an
687 * empty reassembly queue and hooking it to the argument
688 * protocol control block.  The `inp' parameter must have
689 * come from the zone allocator set up in tcp_init().
690 */
691struct tcpcb *
692tcp_newtcpcb(struct inpcb *inp)
693{
694        struct tcpcb_mem *tm;
695        struct tcpcb *tp;
696#ifdef INET6
697        int isipv6 = (inp->inp_vflag & INP_IPV6) != 0;
698#endif /* INET6 */
699
700        tm = uma_zalloc(V_tcpcb_zone, M_NOWAIT | M_ZERO);
701        if (tm == NULL)
702                return (NULL);
703        tp = &tm->tcb;
704#ifdef VIMAGE
705        tp->t_vnet = inp->inp_vnet;
706#endif
707        tp->t_timers = &tm->tt;
708        /*      LIST_INIT(&tp->t_segq); */      /* XXX covered by M_ZERO */
709        tp->t_maxseg = tp->t_maxopd =
710#ifdef INET6
711                isipv6 ? V_tcp_v6mssdflt :
712#endif /* INET6 */
713                V_tcp_mssdflt;
714
715        /* Set up our timeouts. */
716        callout_init(&tp->t_timers->tt_rexmt, CALLOUT_MPSAFE);
717        callout_init(&tp->t_timers->tt_persist, CALLOUT_MPSAFE);
718        callout_init(&tp->t_timers->tt_keep, CALLOUT_MPSAFE);
719        callout_init(&tp->t_timers->tt_2msl, CALLOUT_MPSAFE);
720        callout_init(&tp->t_timers->tt_delack, CALLOUT_MPSAFE);
721
722        if (V_tcp_do_rfc1323)
723                tp->t_flags = (TF_REQ_SCALE|TF_REQ_TSTMP);
724        if (V_tcp_do_sack)
725                tp->t_flags |= TF_SACK_PERMIT;
726        TAILQ_INIT(&tp->snd_holes);
727        tp->t_inpcb = inp;      /* XXX */
728        /*
729         * Init srtt to TCPTV_SRTTBASE (0), so we can tell that we have no
730         * rtt estimate.  Set rttvar so that srtt + 4 * rttvar gives
731         * reasonable initial retransmit time.
732         */
733        tp->t_srtt = TCPTV_SRTTBASE;
734        tp->t_rttvar = ((TCPTV_RTOBASE - TCPTV_SRTTBASE) << TCP_RTTVAR_SHIFT) / 4;
735        tp->t_rttmin = tcp_rexmit_min;
736        tp->t_rxtcur = TCPTV_RTOBASE;
737        tp->snd_cwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT;
738        tp->snd_bwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT;
739        tp->snd_ssthresh = TCP_MAXWIN << TCP_MAX_WINSHIFT;
740        tp->t_rcvtime = ticks;
741        tp->t_bw_rtttime = ticks;
742        /*
743         * IPv4 TTL initialization is necessary for an IPv6 socket as well,
744         * because the socket may be bound to an IPv6 wildcard address,
745         * which may match an IPv4-mapped IPv6 address.
746         */
747        inp->inp_ip_ttl = V_ip_defttl;
748        inp->inp_ppcb = tp;
749        return (tp);            /* XXX */
750}
751
752/*
753 * Drop a TCP connection, reporting
754 * the specified error.  If connection is synchronized,
755 * then send a RST to peer.
756 */
757struct tcpcb *
758tcp_drop(struct tcpcb *tp, int errno)
759{
760        struct socket *so = tp->t_inpcb->inp_socket;
761
762        INP_INFO_WLOCK_ASSERT(&V_tcbinfo);
763        INP_WLOCK_ASSERT(tp->t_inpcb);
764
765        if (TCPS_HAVERCVDSYN(tp->t_state)) {
766                tp->t_state = TCPS_CLOSED;
767                (void) tcp_output_reset(tp);
768                TCPSTAT_INC(tcps_drops);
769        } else
770                TCPSTAT_INC(tcps_conndrops);
771        if (errno == ETIMEDOUT && tp->t_softerror)
772                errno = tp->t_softerror;
773        so->so_error = errno;
774        return (tcp_close(tp));
775}
776
777void
778tcp_discardcb(struct tcpcb *tp)
779{
780        struct inpcb *inp = tp->t_inpcb;
781        struct socket *so = inp->inp_socket;
782#ifdef INET6
783        int isipv6 = (inp->inp_vflag & INP_IPV6) != 0;
784#endif /* INET6 */
785
786        INP_WLOCK_ASSERT(inp);
787
788        /*
789         * Make sure that all of our timers are stopped before we
790         * delete the PCB.
791         */
792        callout_stop(&tp->t_timers->tt_rexmt);
793        callout_stop(&tp->t_timers->tt_persist);
794        callout_stop(&tp->t_timers->tt_keep);
795        callout_stop(&tp->t_timers->tt_2msl);
796        callout_stop(&tp->t_timers->tt_delack);
797
798        /*
799         * If we got enough samples through the srtt filter,
800         * save the rtt and rttvar in the routing entry.
801         * 'Enough' is arbitrarily defined as 4 rtt samples.
802         * 4 samples is enough for the srtt filter to converge
803         * to within enough % of the correct value; fewer samples
804         * and we could save a bogus rtt. The danger is not high
805         * as tcp quickly recovers from everything.
806         * XXX: Works very well but needs some more statistics!
807         */
808        if (tp->t_rttupdated >= 4) {
809                struct hc_metrics_lite metrics;
810                u_long ssthresh;
811
812                bzero(&metrics, sizeof(metrics));
813                /*
814                 * Update the ssthresh always when the conditions below
815                 * are satisfied. This gives us better new start value
816                 * for the congestion avoidance for new connections.
817                 * ssthresh is only set if packet loss occured on a session.
818                 *
819                 * XXXRW: 'so' may be NULL here, and/or socket buffer may be
820                 * being torn down.  Ideally this code would not use 'so'.
821                 */
822                ssthresh = tp->snd_ssthresh;
823                if (ssthresh != 0 && ssthresh < so->so_snd.sb_hiwat / 2) {
824                        /*
825                         * convert the limit from user data bytes to
826                         * packets then to packet data bytes.
827                         */
828                        ssthresh = (ssthresh + tp->t_maxseg / 2) / tp->t_maxseg;
829                        if (ssthresh < 2)
830                                ssthresh = 2;
831                        ssthresh *= (u_long)(tp->t_maxseg +
832#ifdef INET6
833                                      (isipv6 ? sizeof (struct ip6_hdr) +
834                                               sizeof (struct tcphdr) :
835#endif
836                                       sizeof (struct tcpiphdr)
837#ifdef INET6
838                                       )
839#endif
840                                      );
841                } else
842                        ssthresh = 0;
843                metrics.rmx_ssthresh = ssthresh;
844
845                metrics.rmx_rtt = tp->t_srtt;
846                metrics.rmx_rttvar = tp->t_rttvar;
847                /* XXX: This wraps if the pipe is more than 4 Gbit per second */
848                metrics.rmx_bandwidth = tp->snd_bandwidth;
849                metrics.rmx_cwnd = tp->snd_cwnd;
850                metrics.rmx_sendpipe = 0;
851                metrics.rmx_recvpipe = 0;
852
853                tcp_hc_update(&inp->inp_inc, &metrics);
854        }
855
856        /* free the reassembly queue, if any */
857        tcp_reass_flush(tp);
858        /* Disconnect offload device, if any. */
859        tcp_offload_detach(tp);
860               
861        tcp_free_sackholes(tp);
862        inp->inp_ppcb = NULL;
863        tp->t_inpcb = NULL;
864        uma_zfree(V_tcpcb_zone, tp);
865}
866
867/*
868 * Attempt to close a TCP control block, marking it as dropped, and freeing
869 * the socket if we hold the only reference.
870 */
871struct tcpcb *
872tcp_close(struct tcpcb *tp)
873{
874        struct inpcb *inp = tp->t_inpcb;
875        struct socket *so;
876
877        INP_INFO_WLOCK_ASSERT(&V_tcbinfo);
878        INP_WLOCK_ASSERT(inp);
879
880        /* Notify any offload devices of listener close */
881        if (tp->t_state == TCPS_LISTEN)
882                tcp_offload_listen_close(tp);
883        in_pcbdrop(inp);
884        TCPSTAT_INC(tcps_closed);
885        KASSERT(inp->inp_socket != NULL, ("tcp_close: inp_socket NULL"));
886        so = inp->inp_socket;
887        soisdisconnected(so);
888        if (inp->inp_flags & INP_SOCKREF) {
889                KASSERT(so->so_state & SS_PROTOREF,
890                    ("tcp_close: !SS_PROTOREF"));
891                inp->inp_flags &= ~INP_SOCKREF;
892                INP_WUNLOCK(inp);
893                ACCEPT_LOCK();
894                SOCK_LOCK(so);
895                so->so_state &= ~SS_PROTOREF;
896                sofree(so);
897                return (NULL);
898        }
899        return (tp);
900}
901
902void
903tcp_drain(void)
904{
905        VNET_ITERATOR_DECL(vnet_iter);
906
907        if (!do_tcpdrain)
908                return;
909
910        VNET_LIST_RLOCK_NOSLEEP();
911        VNET_FOREACH(vnet_iter) {
912                CURVNET_SET(vnet_iter);
913                struct inpcb *inpb;
914                struct tcpcb *tcpb;
915
916        /*
917         * Walk the tcpbs, if existing, and flush the reassembly queue,
918         * if there is one...
919         * XXX: The "Net/3" implementation doesn't imply that the TCP
920         *      reassembly queue should be flushed, but in a situation
921         *      where we're really low on mbufs, this is potentially
922         *      usefull.
923         */
924                INP_INFO_RLOCK(&V_tcbinfo);
925                LIST_FOREACH(inpb, V_tcbinfo.ipi_listhead, inp_list) {
926                        if (inpb->inp_flags & INP_TIMEWAIT)
927                                continue;
928                        INP_WLOCK(inpb);
929                        if ((tcpb = intotcpcb(inpb)) != NULL) {
930                                tcp_reass_flush(tcpb);
931                                tcp_clean_sackreport(tcpb);
932                        }
933                        INP_WUNLOCK(inpb);
934                }
935                INP_INFO_RUNLOCK(&V_tcbinfo);
936                CURVNET_RESTORE();
937        }
938        VNET_LIST_RUNLOCK_NOSLEEP();
939}
940
941/*
942 * Notify a tcp user of an asynchronous error;
943 * store error as soft error, but wake up user
944 * (for now, won't do anything until can select for soft error).
945 *
946 * Do not wake up user since there currently is no mechanism for
947 * reporting soft errors (yet - a kqueue filter may be added).
948 */
949static struct inpcb *
950tcp_notify(struct inpcb *inp, int error)
951{
952        struct tcpcb *tp;
953
954        INP_INFO_WLOCK_ASSERT(&V_tcbinfo);
955        INP_WLOCK_ASSERT(inp);
956
957        if ((inp->inp_flags & INP_TIMEWAIT) ||
958            (inp->inp_flags & INP_DROPPED))
959                return (inp);
960
961        tp = intotcpcb(inp);
962        KASSERT(tp != NULL, ("tcp_notify: tp == NULL"));
963
964        /*
965         * Ignore some errors if we are hooked up.
966         * If connection hasn't completed, has retransmitted several times,
967         * and receives a second error, give up now.  This is better
968         * than waiting a long time to establish a connection that
969         * can never complete.
970         */
971        if (tp->t_state == TCPS_ESTABLISHED &&
972            (error == EHOSTUNREACH || error == ENETUNREACH ||
973             error == EHOSTDOWN)) {
974                return (inp);
975        } else if (tp->t_state < TCPS_ESTABLISHED && tp->t_rxtshift > 3 &&
976            tp->t_softerror) {
977                tp = tcp_drop(tp, error);
978                if (tp != NULL)
979                        return (inp);
980                else
981                        return (NULL);
982        } else {
983                tp->t_softerror = error;
984                return (inp);
985        }
986#if 0
987        wakeup( &so->so_timeo);
988        sorwakeup(so);
989        sowwakeup(so);
990#endif
991}
992
993static int
994tcp_pcblist(SYSCTL_HANDLER_ARGS)
995{
996        int error, i, m, n, pcb_count;
997        struct inpcb *inp, **inp_list;
998        inp_gen_t gencnt;
999        struct xinpgen xig;
1000
1001        /*
1002         * The process of preparing the TCB list is too time-consuming and
1003         * resource-intensive to repeat twice on every request.
1004         */
1005        if (req->oldptr == NULL) {
1006                n = V_tcbinfo.ipi_count + syncache_pcbcount();
1007                n += imax(n / 8, 10);
1008                req->oldidx = 2 * (sizeof xig) + n * sizeof(struct xtcpcb);
1009                return (0);
1010        }
1011
1012        if (req->newptr != NULL)
1013                return (EPERM);
1014
1015        /*
1016         * OK, now we're committed to doing something.
1017         */
1018        INP_INFO_RLOCK(&V_tcbinfo);
1019        gencnt = V_tcbinfo.ipi_gencnt;
1020        n = V_tcbinfo.ipi_count;
1021        INP_INFO_RUNLOCK(&V_tcbinfo);
1022
1023        m = syncache_pcbcount();
1024
1025        error = sysctl_wire_old_buffer(req, 2 * (sizeof xig)
1026                + (n + m) * sizeof(struct xtcpcb));
1027        if (error != 0)
1028                return (error);
1029
1030        xig.xig_len = sizeof xig;
1031        xig.xig_count = n + m;
1032        xig.xig_gen = gencnt;
1033        xig.xig_sogen = so_gencnt;
1034        error = SYSCTL_OUT(req, &xig, sizeof xig);
1035        if (error)
1036                return (error);
1037
1038        error = syncache_pcblist(req, m, &pcb_count);
1039        if (error)
1040                return (error);
1041
1042        inp_list = malloc(n * sizeof *inp_list, M_TEMP, M_WAITOK);
1043        if (inp_list == NULL)
1044                return (ENOMEM);
1045
1046        INP_INFO_RLOCK(&V_tcbinfo);
1047        for (inp = LIST_FIRST(V_tcbinfo.ipi_listhead), i = 0;
1048            inp != NULL && i < n; inp = LIST_NEXT(inp, inp_list)) {
1049                INP_WLOCK(inp);
1050                if (inp->inp_gencnt <= gencnt) {
1051                        /*
1052                         * XXX: This use of cr_cansee(), introduced with
1053                         * TCP state changes, is not quite right, but for
1054                         * now, better than nothing.
1055                         */
1056                        if (inp->inp_flags & INP_TIMEWAIT) {
1057                                if (intotw(inp) != NULL)
1058                                        error = cr_cansee(req->td->td_ucred,
1059                                            intotw(inp)->tw_cred);
1060                                else
1061                                        error = EINVAL; /* Skip this inp. */
1062                        } else
1063                                error = cr_canseeinpcb(req->td->td_ucred, inp);
1064                        if (error == 0) {
1065                                in_pcbref(inp);
1066                                inp_list[i++] = inp;
1067                        }
1068                }
1069                INP_WUNLOCK(inp);
1070        }
1071        INP_INFO_RUNLOCK(&V_tcbinfo);
1072        n = i;
1073
1074        error = 0;
1075        for (i = 0; i < n; i++) {
1076                inp = inp_list[i];
1077                INP_RLOCK(inp);
1078                if (inp->inp_gencnt <= gencnt) {
1079                        struct xtcpcb xt;
1080                        void *inp_ppcb;
1081
1082                        bzero(&xt, sizeof(xt));
1083                        xt.xt_len = sizeof xt;
1084                        /* XXX should avoid extra copy */
1085                        bcopy(inp, &xt.xt_inp, sizeof *inp);
1086                        inp_ppcb = inp->inp_ppcb;
1087                        if (inp_ppcb == NULL)
1088                                bzero((char *) &xt.xt_tp, sizeof xt.xt_tp);
1089                        else if (inp->inp_flags & INP_TIMEWAIT) {
1090                                bzero((char *) &xt.xt_tp, sizeof xt.xt_tp);
1091                                xt.xt_tp.t_state = TCPS_TIME_WAIT;
1092                        } else
1093                                bcopy(inp_ppcb, &xt.xt_tp, sizeof xt.xt_tp);
1094                        if (inp->inp_socket != NULL)
1095                                sotoxsocket(inp->inp_socket, &xt.xt_socket);
1096                        else {
1097                                bzero(&xt.xt_socket, sizeof xt.xt_socket);
1098                                xt.xt_socket.xso_protocol = IPPROTO_TCP;
1099                        }
1100                        xt.xt_inp.inp_gencnt = inp->inp_gencnt;
1101                        INP_RUNLOCK(inp);
1102                        error = SYSCTL_OUT(req, &xt, sizeof xt);
1103                } else
1104                        INP_RUNLOCK(inp);
1105        }
1106        INP_INFO_WLOCK(&V_tcbinfo);
1107        for (i = 0; i < n; i++) {
1108                inp = inp_list[i];
1109                INP_WLOCK(inp);
1110                if (!in_pcbrele(inp))
1111                        INP_WUNLOCK(inp);
1112        }
1113        INP_INFO_WUNLOCK(&V_tcbinfo);
1114
1115        if (!error) {
1116                /*
1117                 * Give the user an updated idea of our state.
1118                 * If the generation differs from what we told
1119                 * her before, she knows that something happened
1120                 * while we were processing this request, and it
1121                 * might be necessary to retry.
1122                 */
1123                INP_INFO_RLOCK(&V_tcbinfo);
1124                xig.xig_gen = V_tcbinfo.ipi_gencnt;
1125                xig.xig_sogen = so_gencnt;
1126                xig.xig_count = V_tcbinfo.ipi_count + pcb_count;
1127                INP_INFO_RUNLOCK(&V_tcbinfo);
1128                error = SYSCTL_OUT(req, &xig, sizeof xig);
1129        }
1130        free(inp_list, M_TEMP);
1131        return (error);
1132}
1133
1134SYSCTL_PROC(_net_inet_tcp, TCPCTL_PCBLIST, pcblist, CTLFLAG_RD, 0, 0,
1135    tcp_pcblist, "S,xtcpcb", "List of active TCP connections");
1136
1137static int
1138tcp_getcred(SYSCTL_HANDLER_ARGS)
1139{
1140        struct xucred xuc;
1141        struct sockaddr_in addrs[2];
1142        struct inpcb *inp;
1143        int error;
1144
1145        error = priv_check(req->td, PRIV_NETINET_GETCRED);
1146        if (error)
1147                return (error);
1148        error = SYSCTL_IN(req, addrs, sizeof(addrs));
1149        if (error)
1150                return (error);
1151        INP_INFO_RLOCK(&V_tcbinfo);
1152        inp = in_pcblookup_hash(&V_tcbinfo, addrs[1].sin_addr,
1153            addrs[1].sin_port, addrs[0].sin_addr, addrs[0].sin_port, 0, NULL);
1154        if (inp != NULL) {
1155                INP_RLOCK(inp);
1156                INP_INFO_RUNLOCK(&V_tcbinfo);
1157                if (inp->inp_socket == NULL)
1158                        error = ENOENT;
1159                if (error == 0)
1160                        error = cr_canseeinpcb(req->td->td_ucred, inp);
1161                if (error == 0)
1162                        cru2x(inp->inp_cred, &xuc);
1163                INP_RUNLOCK(inp);
1164        } else {
1165                INP_INFO_RUNLOCK(&V_tcbinfo);
1166                error = ENOENT;
1167        }
1168        if (error == 0)
1169                error = SYSCTL_OUT(req, &xuc, sizeof(struct xucred));
1170        return (error);
1171}
1172
1173SYSCTL_PROC(_net_inet_tcp, OID_AUTO, getcred,
1174    CTLTYPE_OPAQUE|CTLFLAG_RW|CTLFLAG_PRISON, 0, 0,
1175    tcp_getcred, "S,xucred", "Get the xucred of a TCP connection");
1176
1177#ifdef INET6
1178static int
1179tcp6_getcred(SYSCTL_HANDLER_ARGS)
1180{
1181        struct xucred xuc;
1182        struct sockaddr_in6 addrs[2];
1183        struct inpcb *inp;
1184        int error, mapped = 0;
1185
1186        error = priv_check(req->td, PRIV_NETINET_GETCRED);
1187        if (error)
1188                return (error);
1189        error = SYSCTL_IN(req, addrs, sizeof(addrs));
1190        if (error)
1191                return (error);
1192        if ((error = sa6_embedscope(&addrs[0], V_ip6_use_defzone)) != 0 ||
1193            (error = sa6_embedscope(&addrs[1], V_ip6_use_defzone)) != 0) {
1194                return (error);
1195        }
1196        if (IN6_IS_ADDR_V4MAPPED(&addrs[0].sin6_addr)) {
1197                if (IN6_IS_ADDR_V4MAPPED(&addrs[1].sin6_addr))
1198                        mapped = 1;
1199                else
1200                        return (EINVAL);
1201        }
1202
1203        INP_INFO_RLOCK(&V_tcbinfo);
1204        if (mapped == 1)
1205                inp = in_pcblookup_hash(&V_tcbinfo,
1206                        *(struct in_addr *)&addrs[1].sin6_addr.s6_addr[12],
1207                        addrs[1].sin6_port,
1208                        *(struct in_addr *)&addrs[0].sin6_addr.s6_addr[12],
1209                        addrs[0].sin6_port,
1210                        0, NULL);
1211        else
1212                inp = in6_pcblookup_hash(&V_tcbinfo,
1213                        &addrs[1].sin6_addr, addrs[1].sin6_port,
1214                        &addrs[0].sin6_addr, addrs[0].sin6_port, 0, NULL);
1215        if (inp != NULL) {
1216                INP_RLOCK(inp);
1217                INP_INFO_RUNLOCK(&V_tcbinfo);
1218                if (inp->inp_socket == NULL)
1219                        error = ENOENT;
1220                if (error == 0)
1221                        error = cr_canseeinpcb(req->td->td_ucred, inp);
1222                if (error == 0)
1223                        cru2x(inp->inp_cred, &xuc);
1224                INP_RUNLOCK(inp);
1225        } else {
1226                INP_INFO_RUNLOCK(&V_tcbinfo);
1227                error = ENOENT;
1228        }
1229        if (error == 0)
1230                error = SYSCTL_OUT(req, &xuc, sizeof(struct xucred));
1231        return (error);
1232}
1233
1234SYSCTL_PROC(_net_inet6_tcp6, OID_AUTO, getcred,
1235    CTLTYPE_OPAQUE|CTLFLAG_RW|CTLFLAG_PRISON, 0, 0,
1236    tcp6_getcred, "S,xucred", "Get the xucred of a TCP6 connection");
1237#endif
1238
1239
1240void
1241tcp_ctlinput(int cmd, struct sockaddr *sa, void *vip)
1242{
1243        struct ip *ip = vip;
1244        struct tcphdr *th;
1245        struct in_addr faddr;
1246        struct inpcb *inp;
1247        struct tcpcb *tp;
1248        struct inpcb *(*notify)(struct inpcb *, int) = tcp_notify;
1249        struct icmp *icp;
1250        struct in_conninfo inc;
1251        tcp_seq icmp_tcp_seq;
1252        int mtu;
1253
1254        faddr = ((struct sockaddr_in *)sa)->sin_addr;
1255        if (sa->sa_family != AF_INET || faddr.s_addr == INADDR_ANY)
1256                return;
1257
1258        if (cmd == PRC_MSGSIZE)
1259                notify = tcp_mtudisc;
1260        else if (V_icmp_may_rst && (cmd == PRC_UNREACH_ADMIN_PROHIB ||
1261                cmd == PRC_UNREACH_PORT || cmd == PRC_TIMXCEED_INTRANS) && ip)
1262                notify = tcp_drop_syn_sent;
1263        /*
1264         * Redirects don't need to be handled up here.
1265         */
1266        else if (PRC_IS_REDIRECT(cmd))
1267                return;
1268        /*
1269         * Source quench is depreciated.
1270         */
1271        else if (cmd == PRC_QUENCH)
1272                return;
1273        /*
1274         * Hostdead is ugly because it goes linearly through all PCBs.
1275         * XXX: We never get this from ICMP, otherwise it makes an
1276         * excellent DoS attack on machines with many connections.
1277         */
1278        else if (cmd == PRC_HOSTDEAD)
1279                ip = NULL;
1280        else if ((unsigned)cmd >= PRC_NCMDS || inetctlerrmap[cmd] == 0)
1281                return;
1282        if (ip != NULL) {
1283                icp = (struct icmp *)((caddr_t)ip
1284                                      - offsetof(struct icmp, icmp_ip));
1285                th = (struct tcphdr *)((caddr_t)ip
1286                                       + (ip->ip_hl << 2));
1287                INP_INFO_WLOCK(&V_tcbinfo);
1288                inp = in_pcblookup_hash(&V_tcbinfo, faddr, th->th_dport,
1289                    ip->ip_src, th->th_sport, 0, NULL);
1290                if (inp != NULL)  {
1291                        INP_WLOCK(inp);
1292                        if (!(inp->inp_flags & INP_TIMEWAIT) &&
1293                            !(inp->inp_flags & INP_DROPPED) &&
1294                            !(inp->inp_socket == NULL)) {
1295                                icmp_tcp_seq = htonl(th->th_seq);
1296                                tp = intotcpcb(inp);
1297                                if (SEQ_GEQ(icmp_tcp_seq, tp->snd_una) &&
1298                                    SEQ_LT(icmp_tcp_seq, tp->snd_max)) {
1299                                        if (cmd == PRC_MSGSIZE) {
1300                                            /*
1301                                             * MTU discovery:
1302                                             * If we got a needfrag set the MTU
1303                                             * in the route to the suggested new
1304                                             * value (if given) and then notify.
1305                                             */
1306                                            bzero(&inc, sizeof(inc));
1307                                            inc.inc_faddr = faddr;
1308                                            inc.inc_fibnum =
1309                                                inp->inp_inc.inc_fibnum;
1310
1311                                            mtu = ntohs(icp->icmp_nextmtu);
1312                                            /*
1313                                             * If no alternative MTU was
1314                                             * proposed, try the next smaller
1315                                             * one.  ip->ip_len has already
1316                                             * been swapped in icmp_input().
1317                                             */
1318                                            if (!mtu)
1319                                                mtu = ip_next_mtu(ip->ip_len,
1320                                                 1);
1321                                            if (mtu < V_tcp_minmss
1322                                                 + sizeof(struct tcpiphdr))
1323                                                mtu = V_tcp_minmss
1324                                                 + sizeof(struct tcpiphdr);
1325                                            /*
1326                                             * Only cache the the MTU if it
1327                                             * is smaller than the interface
1328                                             * or route MTU.  tcp_mtudisc()
1329                                             * will do right thing by itself.
1330                                             */
1331                                            if (mtu <= tcp_maxmtu(&inc, NULL))
1332                                                tcp_hc_updatemtu(&inc, mtu);
1333                                        }
1334
1335                                        inp = (*notify)(inp, inetctlerrmap[cmd]);
1336                                }
1337                        }
1338                        if (inp != NULL)
1339                                INP_WUNLOCK(inp);
1340                } else {
1341                        bzero(&inc, sizeof(inc));
1342                        inc.inc_fport = th->th_dport;
1343                        inc.inc_lport = th->th_sport;
1344                        inc.inc_faddr = faddr;
1345                        inc.inc_laddr = ip->ip_src;
1346                        syncache_unreach(&inc, th);
1347                }
1348                INP_INFO_WUNLOCK(&V_tcbinfo);
1349        } else
1350                in_pcbnotifyall(&V_tcbinfo, faddr, inetctlerrmap[cmd], notify);
1351}
1352
1353#ifdef INET6
1354void
1355tcp6_ctlinput(int cmd, struct sockaddr *sa, void *d)
1356{
1357        struct tcphdr th;
1358        struct inpcb *(*notify)(struct inpcb *, int) = tcp_notify;
1359        struct ip6_hdr *ip6;
1360        struct mbuf *m;
1361        struct ip6ctlparam *ip6cp = NULL;
1362        const struct sockaddr_in6 *sa6_src = NULL;
1363        int off;
1364        struct tcp_portonly {
1365                u_int16_t th_sport;
1366                u_int16_t th_dport;
1367        } *thp;
1368
1369        if (sa->sa_family != AF_INET6 ||
1370            sa->sa_len != sizeof(struct sockaddr_in6))
1371                return;
1372
1373        if (cmd == PRC_MSGSIZE)
1374                notify = tcp_mtudisc;
1375        else if (!PRC_IS_REDIRECT(cmd) &&
1376                 ((unsigned)cmd >= PRC_NCMDS || inet6ctlerrmap[cmd] == 0))
1377                return;
1378        /* Source quench is depreciated. */
1379        else if (cmd == PRC_QUENCH)
1380                return;
1381
1382        /* if the parameter is from icmp6, decode it. */
1383        if (d != NULL) {
1384                ip6cp = (struct ip6ctlparam *)d;
1385                m = ip6cp->ip6c_m;
1386                ip6 = ip6cp->ip6c_ip6;
1387                off = ip6cp->ip6c_off;
1388                sa6_src = ip6cp->ip6c_src;
1389        } else {
1390                m = NULL;
1391                ip6 = NULL;
1392                off = 0;        /* fool gcc */
1393                sa6_src = &sa6_any;
1394        }
1395
1396        if (ip6 != NULL) {
1397                struct in_conninfo inc;
1398                /*
1399                 * XXX: We assume that when IPV6 is non NULL,
1400                 * M and OFF are valid.
1401                 */
1402
1403                /* check if we can safely examine src and dst ports */
1404                if (m->m_pkthdr.len < off + sizeof(*thp))
1405                        return;
1406
1407                bzero(&th, sizeof(th));
1408                m_copydata(m, off, sizeof(*thp), (caddr_t)&th);
1409
1410                in6_pcbnotify(&V_tcbinfo, sa, th.th_dport,
1411                    (struct sockaddr *)ip6cp->ip6c_src,
1412                    th.th_sport, cmd, NULL, notify);
1413
1414                bzero(&inc, sizeof(inc));
1415                inc.inc_fport = th.th_dport;
1416                inc.inc_lport = th.th_sport;
1417                inc.inc6_faddr = ((struct sockaddr_in6 *)sa)->sin6_addr;
1418                inc.inc6_laddr = ip6cp->ip6c_src->sin6_addr;
1419                inc.inc_flags |= INC_ISIPV6;
1420                INP_INFO_WLOCK(&V_tcbinfo);
1421                syncache_unreach(&inc, &th);
1422                INP_INFO_WUNLOCK(&V_tcbinfo);
1423        } else
1424                in6_pcbnotify(&V_tcbinfo, sa, 0, (const struct sockaddr *)sa6_src,
1425                              0, cmd, NULL, notify);
1426}
1427#endif /* INET6 */
1428
1429
1430/*
1431 * Following is where TCP initial sequence number generation occurs.
1432 *
1433 * There are two places where we must use initial sequence numbers:
1434 * 1.  In SYN-ACK packets.
1435 * 2.  In SYN packets.
1436 *
1437 * All ISNs for SYN-ACK packets are generated by the syncache.  See
1438 * tcp_syncache.c for details.
1439 *
1440 * The ISNs in SYN packets must be monotonic; TIME_WAIT recycling
1441 * depends on this property.  In addition, these ISNs should be
1442 * unguessable so as to prevent connection hijacking.  To satisfy
1443 * the requirements of this situation, the algorithm outlined in
1444 * RFC 1948 is used, with only small modifications.
1445 *
1446 * Implementation details:
1447 *
1448 * Time is based off the system timer, and is corrected so that it
1449 * increases by one megabyte per second.  This allows for proper
1450 * recycling on high speed LANs while still leaving over an hour
1451 * before rollover.
1452 *
1453 * As reading the *exact* system time is too expensive to be done
1454 * whenever setting up a TCP connection, we increment the time
1455 * offset in two ways.  First, a small random positive increment
1456 * is added to isn_offset for each connection that is set up.
1457 * Second, the function tcp_isn_tick fires once per clock tick
1458 * and increments isn_offset as necessary so that sequence numbers
1459 * are incremented at approximately ISN_BYTES_PER_SECOND.  The
1460 * random positive increments serve only to ensure that the same
1461 * exact sequence number is never sent out twice (as could otherwise
1462 * happen when a port is recycled in less than the system tick
1463 * interval.)
1464 *
1465 * net.inet.tcp.isn_reseed_interval controls the number of seconds
1466 * between seeding of isn_secret.  This is normally set to zero,
1467 * as reseeding should not be necessary.
1468 *
1469 * Locking of the global variables isn_secret, isn_last_reseed, isn_offset,
1470 * isn_offset_old, and isn_ctx is performed using the TCP pcbinfo lock.  In
1471 * general, this means holding an exclusive (write) lock.
1472 */
1473
1474#define ISN_BYTES_PER_SECOND 1048576
1475#define ISN_STATIC_INCREMENT 4096
1476#define ISN_RANDOM_INCREMENT (4096 - 1)
1477
1478static VNET_DEFINE(u_char, isn_secret[32]);
1479static VNET_DEFINE(int, isn_last_reseed);
1480static VNET_DEFINE(u_int32_t, isn_offset);
1481static VNET_DEFINE(u_int32_t, isn_offset_old);
1482
1483#define V_isn_secret                    VNET(isn_secret)
1484#define V_isn_last_reseed               VNET(isn_last_reseed)
1485#define V_isn_offset                    VNET(isn_offset)
1486#define V_isn_offset_old                VNET(isn_offset_old)
1487
1488tcp_seq
1489tcp_new_isn(struct tcpcb *tp)
1490{
1491        MD5_CTX isn_ctx;
1492        u_int32_t md5_buffer[4];
1493        tcp_seq new_isn;
1494
1495        INP_WLOCK_ASSERT(tp->t_inpcb);
1496
1497        ISN_LOCK();
1498        /* Seed if this is the first use, reseed if requested. */
1499        if ((V_isn_last_reseed == 0) || ((V_tcp_isn_reseed_interval > 0) &&
1500             (((u_int)V_isn_last_reseed + (u_int)V_tcp_isn_reseed_interval*hz)
1501                < (u_int)ticks))) {
1502                read_random(&V_isn_secret, sizeof(V_isn_secret));
1503                V_isn_last_reseed = ticks;
1504        }
1505
1506        /* Compute the md5 hash and return the ISN. */
1507        MD5Init(&isn_ctx);
1508        MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_fport, sizeof(u_short));
1509        MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_lport, sizeof(u_short));
1510#ifdef INET6
1511        if ((tp->t_inpcb->inp_vflag & INP_IPV6) != 0) {
1512                MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->in6p_faddr,
1513                          sizeof(struct in6_addr));
1514                MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->in6p_laddr,
1515                          sizeof(struct in6_addr));
1516        } else
1517#endif
1518        {
1519                MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_faddr,
1520                          sizeof(struct in_addr));
1521                MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_laddr,
1522                          sizeof(struct in_addr));
1523        }
1524        MD5Update(&isn_ctx, (u_char *) &V_isn_secret, sizeof(V_isn_secret));
1525        MD5Final((u_char *) &md5_buffer, &isn_ctx);
1526        new_isn = (tcp_seq) md5_buffer[0];
1527        V_isn_offset += ISN_STATIC_INCREMENT +
1528                (arc4random() & ISN_RANDOM_INCREMENT);
1529        new_isn += V_isn_offset;
1530        ISN_UNLOCK();
1531        return (new_isn);
1532}
1533
1534/*
1535 * Increment the offset to the next ISN_BYTES_PER_SECOND / 100 boundary
1536 * to keep time flowing at a relatively constant rate.  If the random
1537 * increments have already pushed us past the projected offset, do nothing.
1538 */
1539static void
1540tcp_isn_tick(void *xtp)
1541{
1542        VNET_ITERATOR_DECL(vnet_iter);
1543        u_int32_t projected_offset;
1544
1545        VNET_LIST_RLOCK_NOSLEEP();
1546        ISN_LOCK();
1547        VNET_FOREACH(vnet_iter) {
1548                CURVNET_SET(vnet_iter); /* XXX appease INVARIANTS */
1549                projected_offset =
1550                    V_isn_offset_old + ISN_BYTES_PER_SECOND / 100;
1551
1552                if (SEQ_GT(projected_offset, V_isn_offset))
1553                        V_isn_offset = projected_offset;
1554
1555                V_isn_offset_old = V_isn_offset;
1556                CURVNET_RESTORE();
1557        }
1558        ISN_UNLOCK();
1559        VNET_LIST_RUNLOCK_NOSLEEP();
1560        callout_reset(&isn_callout, hz/100, tcp_isn_tick, NULL);
1561}
1562
1563/*
1564 * When a specific ICMP unreachable message is received and the
1565 * connection state is SYN-SENT, drop the connection.  This behavior
1566 * is controlled by the icmp_may_rst sysctl.
1567 */
1568struct inpcb *
1569tcp_drop_syn_sent(struct inpcb *inp, int errno)
1570{
1571        struct tcpcb *tp;
1572
1573        INP_INFO_WLOCK_ASSERT(&V_tcbinfo);
1574        INP_WLOCK_ASSERT(inp);
1575
1576        if ((inp->inp_flags & INP_TIMEWAIT) ||
1577            (inp->inp_flags & INP_DROPPED))
1578                return (inp);
1579
1580        tp = intotcpcb(inp);
1581        if (tp->t_state != TCPS_SYN_SENT)
1582                return (inp);
1583
1584        tp = tcp_drop(tp, errno);
1585        if (tp != NULL)
1586                return (inp);
1587        else
1588                return (NULL);
1589}
1590
1591/*
1592 * When `need fragmentation' ICMP is received, update our idea of the MSS
1593 * based on the new value in the route.  Also nudge TCP to send something,
1594 * since we know the packet we just sent was dropped.
1595 * This duplicates some code in the tcp_mss() function in tcp_input.c.
1596 */
1597struct inpcb *
1598tcp_mtudisc(struct inpcb *inp, int errno)
1599{
1600        struct tcpcb *tp;
1601        struct socket *so;
1602
1603        INP_WLOCK_ASSERT(inp);
1604        if ((inp->inp_flags & INP_TIMEWAIT) ||
1605            (inp->inp_flags & INP_DROPPED))
1606                return (inp);
1607
1608        tp = intotcpcb(inp);
1609        KASSERT(tp != NULL, ("tcp_mtudisc: tp == NULL"));
1610
1611        tcp_mss_update(tp, -1, NULL, NULL);
1612 
1613        so = inp->inp_socket;
1614        SOCKBUF_LOCK(&so->so_snd);
1615        /* If the mss is larger than the socket buffer, decrease the mss. */
1616        if (so->so_snd.sb_hiwat < tp->t_maxseg)
1617                tp->t_maxseg = so->so_snd.sb_hiwat;
1618        SOCKBUF_UNLOCK(&so->so_snd);
1619
1620        TCPSTAT_INC(tcps_mturesent);
1621        tp->t_rtttime = 0;
1622        tp->snd_nxt = tp->snd_una;
1623        tcp_free_sackholes(tp);
1624        tp->snd_recover = tp->snd_max;
1625        if (tp->t_flags & TF_SACK_PERMIT)
1626                EXIT_FASTRECOVERY(tp);
1627        tcp_output_send(tp);
1628        return (inp);
1629}
1630
1631/*
1632 * Look-up the routing entry to the peer of this inpcb.  If no route
1633 * is found and it cannot be allocated, then return 0.  This routine
1634 * is called by TCP routines that access the rmx structure and by
1635 * tcp_mss_update to get the peer/interface MTU.
1636 */
1637u_long
1638tcp_maxmtu(struct in_conninfo *inc, int *flags)
1639{
1640        struct route sro;
1641        struct sockaddr_in *dst;
1642        struct ifnet *ifp;
1643        u_long maxmtu = 0;
1644
1645        KASSERT(inc != NULL, ("tcp_maxmtu with NULL in_conninfo pointer"));
1646
1647        bzero(&sro, sizeof(sro));
1648        if (inc->inc_faddr.s_addr != INADDR_ANY) {
1649                dst = (struct sockaddr_in *)&sro.ro_dst;
1650                dst->sin_family = AF_INET;
1651                dst->sin_len = sizeof(*dst);
1652                dst->sin_addr = inc->inc_faddr;
1653                in_rtalloc_ign(&sro, 0, inc->inc_fibnum);
1654        }
1655        if (sro.ro_rt != NULL) {
1656                ifp = sro.ro_rt->rt_ifp;
1657                if (sro.ro_rt->rt_rmx.rmx_mtu == 0)
1658                        maxmtu = ifp->if_mtu;
1659                else
1660                        maxmtu = min(sro.ro_rt->rt_rmx.rmx_mtu, ifp->if_mtu);
1661
1662                /* Report additional interface capabilities. */
1663                if (flags != NULL) {
1664                        if (ifp->if_capenable & IFCAP_TSO4 &&
1665                            ifp->if_hwassist & CSUM_TSO)
1666                                *flags |= CSUM_TSO;
1667                }
1668                RTFREE(sro.ro_rt);
1669        }
1670        return (maxmtu);
1671}
1672
1673#ifdef INET6
1674u_long
1675tcp_maxmtu6(struct in_conninfo *inc, int *flags)
1676{
1677        struct route_in6 sro6;
1678        struct ifnet *ifp;
1679        u_long maxmtu = 0;
1680
1681        KASSERT(inc != NULL, ("tcp_maxmtu6 with NULL in_conninfo pointer"));
1682
1683        bzero(&sro6, sizeof(sro6));
1684        if (!IN6_IS_ADDR_UNSPECIFIED(&inc->inc6_faddr)) {
1685                sro6.ro_dst.sin6_family = AF_INET6;
1686                sro6.ro_dst.sin6_len = sizeof(struct sockaddr_in6);
1687                sro6.ro_dst.sin6_addr = inc->inc6_faddr;
1688                rtalloc_ign((struct route *)&sro6, 0);
1689        }
1690        if (sro6.ro_rt != NULL) {
1691                ifp = sro6.ro_rt->rt_ifp;
1692                if (sro6.ro_rt->rt_rmx.rmx_mtu == 0)
1693                        maxmtu = IN6_LINKMTU(sro6.ro_rt->rt_ifp);
1694                else
1695                        maxmtu = min(sro6.ro_rt->rt_rmx.rmx_mtu,
1696                                     IN6_LINKMTU(sro6.ro_rt->rt_ifp));
1697
1698                /* Report additional interface capabilities. */
1699                if (flags != NULL) {
1700                        if (ifp->if_capenable & IFCAP_TSO6 &&
1701                            ifp->if_hwassist & CSUM_TSO)
1702                                *flags |= CSUM_TSO;
1703                }
1704                RTFREE(sro6.ro_rt);
1705        }
1706
1707        return (maxmtu);
1708}
1709#endif /* INET6 */
1710
1711#ifdef IPSEC
1712/* compute ESP/AH header size for TCP, including outer IP header. */
1713size_t
1714ipsec_hdrsiz_tcp(struct tcpcb *tp)
1715{
1716        struct inpcb *inp;
1717        struct mbuf *m;
1718        size_t hdrsiz;
1719        struct ip *ip;
1720#ifdef INET6
1721        struct ip6_hdr *ip6;
1722#endif
1723        struct tcphdr *th;
1724
1725        if ((tp == NULL) || ((inp = tp->t_inpcb) == NULL))
1726                return (0);
1727        MGETHDR(m, M_DONTWAIT, MT_DATA);
1728        if (!m)
1729                return (0);
1730
1731#ifdef INET6
1732        if ((inp->inp_vflag & INP_IPV6) != 0) {
1733                ip6 = mtod(m, struct ip6_hdr *);
1734                th = (struct tcphdr *)(ip6 + 1);
1735                m->m_pkthdr.len = m->m_len =
1736                        sizeof(struct ip6_hdr) + sizeof(struct tcphdr);
1737                tcpip_fillheaders(inp, ip6, th);
1738                hdrsiz = ipsec_hdrsiz(m, IPSEC_DIR_OUTBOUND, inp);
1739        } else
1740#endif /* INET6 */
1741        {
1742                ip = mtod(m, struct ip *);
1743                th = (struct tcphdr *)(ip + 1);
1744                m->m_pkthdr.len = m->m_len = sizeof(struct tcpiphdr);
1745                tcpip_fillheaders(inp, ip, th);
1746                hdrsiz = ipsec_hdrsiz(m, IPSEC_DIR_OUTBOUND, inp);
1747        }
1748
1749        m_free(m);
1750        return (hdrsiz);
1751}
1752#endif /* IPSEC */
1753
1754/*
1755 * TCP BANDWIDTH DELAY PRODUCT WINDOW LIMITING
1756 *
1757 * This code attempts to calculate the bandwidth-delay product as a
1758 * means of determining the optimal window size to maximize bandwidth,
1759 * minimize RTT, and avoid the over-allocation of buffers on interfaces and
1760 * routers.  This code also does a fairly good job keeping RTTs in check
1761 * across slow links like modems.  We implement an algorithm which is very
1762 * similar (but not meant to be) TCP/Vegas.  The code operates on the
1763 * transmitter side of a TCP connection and so only effects the transmit
1764 * side of the connection.
1765 *
1766 * BACKGROUND:  TCP makes no provision for the management of buffer space
1767 * at the end points or at the intermediate routers and switches.  A TCP
1768 * stream, whether using NewReno or not, will eventually buffer as
1769 * many packets as it is able and the only reason this typically works is
1770 * due to the fairly small default buffers made available for a connection
1771 * (typicaly 16K or 32K).  As machines use larger windows and/or window
1772 * scaling it is now fairly easy for even a single TCP connection to blow-out
1773 * all available buffer space not only on the local interface, but on
1774 * intermediate routers and switches as well.  NewReno makes a misguided
1775 * attempt to 'solve' this problem by waiting for an actual failure to occur,
1776 * then backing off, then steadily increasing the window again until another
1777 * failure occurs, ad-infinitum.  This results in terrible oscillation that
1778 * is only made worse as network loads increase and the idea of intentionally
1779 * blowing out network buffers is, frankly, a terrible way to manage network
1780 * resources.
1781 *
1782 * It is far better to limit the transmit window prior to the failure
1783 * condition being achieved.  There are two general ways to do this:  First
1784 * you can 'scan' through different transmit window sizes and locate the
1785 * point where the RTT stops increasing, indicating that you have filled the
1786 * pipe, then scan backwards until you note that RTT stops decreasing, then
1787 * repeat ad-infinitum.  This method works in principle but has severe
1788 * implementation issues due to RTT variances, timer granularity, and
1789 * instability in the algorithm which can lead to many false positives and
1790 * create oscillations as well as interact badly with other TCP streams
1791 * implementing the same algorithm.
1792 *
1793 * The second method is to limit the window to the bandwidth delay product
1794 * of the link.  This is the method we implement.  RTT variances and our
1795 * own manipulation of the congestion window, bwnd, can potentially
1796 * destabilize the algorithm.  For this reason we have to stabilize the
1797 * elements used to calculate the window.  We do this by using the minimum
1798 * observed RTT, the long term average of the observed bandwidth, and
1799 * by adding two segments worth of slop.  It isn't perfect but it is able
1800 * to react to changing conditions and gives us a very stable basis on
1801 * which to extend the algorithm.
1802 */
1803void
1804tcp_xmit_bandwidth_limit(struct tcpcb *tp, tcp_seq ack_seq)
1805{
1806        u_long bw;
1807        u_long bwnd;
1808        int save_ticks;
1809
1810        INP_WLOCK_ASSERT(tp->t_inpcb);
1811
1812        /*
1813         * If inflight_enable is disabled in the middle of a tcp connection,
1814         * make sure snd_bwnd is effectively disabled.
1815         */
1816        if (V_tcp_inflight_enable == 0 ||
1817            tp->t_rttlow < V_tcp_inflight_rttthresh) {
1818                tp->snd_bwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT;
1819                tp->snd_bandwidth = 0;
1820                return;
1821        }
1822
1823        /*
1824         * Figure out the bandwidth.  Due to the tick granularity this
1825         * is a very rough number and it MUST be averaged over a fairly
1826         * long period of time.  XXX we need to take into account a link
1827         * that is not using all available bandwidth, but for now our
1828         * slop will ramp us up if this case occurs and the bandwidth later
1829         * increases.
1830         *
1831         * Note: if ticks rollover 'bw' may wind up negative.  We must
1832         * effectively reset t_bw_rtttime for this case.
1833         */
1834        save_ticks = ticks;
1835        if ((u_int)(save_ticks - tp->t_bw_rtttime) < 1)
1836                return;
1837
1838        bw = (int64_t)(ack_seq - tp->t_bw_rtseq) * hz /
1839            (save_ticks - tp->t_bw_rtttime);
1840        tp->t_bw_rtttime = save_ticks;
1841        tp->t_bw_rtseq = ack_seq;
1842        if (tp->t_bw_rtttime == 0 || (int)bw < 0)
1843                return;
1844        bw = ((int64_t)tp->snd_bandwidth * 15 + bw) >> 4;
1845
1846        tp->snd_bandwidth = bw;
1847
1848        /*
1849         * Calculate the semi-static bandwidth delay product, plus two maximal
1850         * segments.  The additional slop puts us squarely in the sweet
1851         * spot and also handles the bandwidth run-up case and stabilization.
1852         * Without the slop we could be locking ourselves into a lower
1853         * bandwidth.
1854         *
1855         * Situations Handled:
1856         *      (1) Prevents over-queueing of packets on LANs, especially on
1857         *          high speed LANs, allowing larger TCP buffers to be
1858         *          specified, and also does a good job preventing
1859         *          over-queueing of packets over choke points like modems
1860         *          (at least for the transmit side).
1861         *
1862         *      (2) Is able to handle changing network loads (bandwidth
1863         *          drops so bwnd drops, bandwidth increases so bwnd
1864         *          increases).
1865         *
1866         *      (3) Theoretically should stabilize in the face of multiple
1867         *          connections implementing the same algorithm (this may need
1868         *          a little work).
1869         *
1870         *      (4) Stability value (defaults to 20 = 2 maximal packets) can
1871         *          be adjusted with a sysctl but typically only needs to be
1872         *          on very slow connections.  A value no smaller then 5
1873         *          should be used, but only reduce this default if you have
1874         *          no other choice.
1875         */
1876#define USERTT  ((tp->t_srtt + tp->t_rttbest) / 2)
1877        bwnd = (int64_t)bw * USERTT / (hz << TCP_RTT_SHIFT) + V_tcp_inflight_stab * tp->t_maxseg / 10;
1878#undef USERTT
1879
1880        if (tcp_inflight_debug > 0) {
1881                static int ltime;
1882                if ((u_int)(ticks - ltime) >= hz / tcp_inflight_debug) {
1883                        ltime = ticks;
1884                        printf("%p bw %ld rttbest %d srtt %d bwnd %ld\n",
1885                            tp,
1886                            bw,
1887                            tp->t_rttbest,
1888                            tp->t_srtt,
1889                            bwnd
1890                        );
1891                }
1892        }
1893        if ((long)bwnd < V_tcp_inflight_min)
1894                bwnd = V_tcp_inflight_min;
1895        if (bwnd > V_tcp_inflight_max)
1896                bwnd = V_tcp_inflight_max;
1897        if ((long)bwnd < tp->t_maxseg * 2)
1898                bwnd = tp->t_maxseg * 2;
1899        tp->snd_bwnd = bwnd;
1900}
1901
1902#ifdef TCP_SIGNATURE
1903/*
1904 * Callback function invoked by m_apply() to digest TCP segment data
1905 * contained within an mbuf chain.
1906 */
1907static int
1908tcp_signature_apply(void *fstate, void *data, u_int len)
1909{
1910
1911        MD5Update(fstate, (u_char *)data, len);
1912        return (0);
1913}
1914
1915/*
1916 * Compute TCP-MD5 hash of a TCP segment. (RFC2385)
1917 *
1918 * Parameters:
1919 * m            pointer to head of mbuf chain
1920 * _unused     
1921 * len          length of TCP segment data, excluding options
1922 * optlen       length of TCP segment options
1923 * buf          pointer to storage for computed MD5 digest
1924 * direction    direction of flow (IPSEC_DIR_INBOUND or OUTBOUND)
1925 *
1926 * We do this over ip, tcphdr, segment data, and the key in the SADB.
1927 * When called from tcp_input(), we can be sure that th_sum has been
1928 * zeroed out and verified already.
1929 *
1930 * Return 0 if successful, otherwise return -1.
1931 *
1932 * XXX The key is retrieved from the system's PF_KEY SADB, by keying a
1933 * search with the destination IP address, and a 'magic SPI' to be
1934 * determined by the application. This is hardcoded elsewhere to 1179
1935 * right now. Another branch of this code exists which uses the SPD to
1936 * specify per-application flows but it is unstable.
1937 */
1938int
1939tcp_signature_compute(struct mbuf *m, int _unused, int len, int optlen,
1940    u_char *buf, u_int direction)
1941{
1942        union sockaddr_union dst;
1943        struct ippseudo ippseudo;
1944        MD5_CTX ctx;
1945        int doff;
1946        struct ip *ip;
1947        struct ipovly *ipovly;
1948        struct secasvar *sav;
1949        struct tcphdr *th;
1950#ifdef INET6
1951        struct ip6_hdr *ip6;
1952        struct in6_addr in6;
1953        char ip6buf[INET6_ADDRSTRLEN];
1954        uint32_t plen;
1955        uint16_t nhdr;
1956#endif
1957        u_short savecsum;
1958
1959        KASSERT(m != NULL, ("NULL mbuf chain"));
1960        KASSERT(buf != NULL, ("NULL signature pointer"));
1961
1962        /* Extract the destination from the IP header in the mbuf. */
1963        bzero(&dst, sizeof(union sockaddr_union));
1964        ip = mtod(m, struct ip *);
1965#ifdef INET6
1966        ip6 = NULL;     /* Make the compiler happy. */
1967#endif
1968        switch (ip->ip_v) {
1969        case IPVERSION:
1970                dst.sa.sa_len = sizeof(struct sockaddr_in);
1971                dst.sa.sa_family = AF_INET;
1972                dst.sin.sin_addr = (direction == IPSEC_DIR_INBOUND) ?
1973                    ip->ip_src : ip->ip_dst;
1974                break;
1975#ifdef INET6
1976        case (IPV6_VERSION >> 4):
1977                ip6 = mtod(m, struct ip6_hdr *);
1978                dst.sa.sa_len = sizeof(struct sockaddr_in6);
1979                dst.sa.sa_family = AF_INET6;
1980                dst.sin6.sin6_addr = (direction == IPSEC_DIR_INBOUND) ?
1981                    ip6->ip6_src : ip6->ip6_dst;
1982                break;
1983#endif
1984        default:
1985                return (EINVAL);
1986                /* NOTREACHED */
1987                break;
1988        }
1989
1990        /* Look up an SADB entry which matches the address of the peer. */
1991        sav = KEY_ALLOCSA(&dst, IPPROTO_TCP, htonl(TCP_SIG_SPI));
1992        if (sav == NULL) {
1993                ipseclog((LOG_ERR, "%s: SADB lookup failed for %s\n", __func__,
1994                    (ip->ip_v == IPVERSION) ? inet_ntoa(dst.sin.sin_addr) :
1995#ifdef INET6
1996                        (ip->ip_v == (IPV6_VERSION >> 4)) ?
1997                            ip6_sprintf(ip6buf, &dst.sin6.sin6_addr) :
1998#endif
1999                        "(unsupported)"));
2000                return (EINVAL);
2001        }
2002
2003        MD5Init(&ctx);
2004        /*
2005         * Step 1: Update MD5 hash with IP(v6) pseudo-header.
2006         *
2007         * XXX The ippseudo header MUST be digested in network byte order,
2008         * or else we'll fail the regression test. Assume all fields we've
2009         * been doing arithmetic on have been in host byte order.
2010         * XXX One cannot depend on ipovly->ih_len here. When called from
2011         * tcp_output(), the underlying ip_len member has not yet been set.
2012         */
2013        switch (ip->ip_v) {
2014        case IPVERSION:
2015                ipovly = (struct ipovly *)ip;
2016                ippseudo.ippseudo_src = ipovly->ih_src;
2017                ippseudo.ippseudo_dst = ipovly->ih_dst;
2018                ippseudo.ippseudo_pad = 0;
2019                ippseudo.ippseudo_p = IPPROTO_TCP;
2020                ippseudo.ippseudo_len = htons(len + sizeof(struct tcphdr) +
2021                    optlen);
2022                MD5Update(&ctx, (char *)&ippseudo, sizeof(struct ippseudo));
2023
2024                th = (struct tcphdr *)((u_char *)ip + sizeof(struct ip));
2025                doff = sizeof(struct ip) + sizeof(struct tcphdr) + optlen;
2026                break;
2027#ifdef INET6
2028        /*
2029         * RFC 2385, 2.0  Proposal
2030         * For IPv6, the pseudo-header is as described in RFC 2460, namely the
2031         * 128-bit source IPv6 address, 128-bit destination IPv6 address, zero-
2032         * extended next header value (to form 32 bits), and 32-bit segment
2033         * length.
2034         * Note: Upper-Layer Packet Length comes before Next Header.
2035         */
2036        case (IPV6_VERSION >> 4):
2037                in6 = ip6->ip6_src;
2038                in6_clearscope(&in6);
2039                MD5Update(&ctx, (char *)&in6, sizeof(struct in6_addr));
2040                in6 = ip6->ip6_dst;
2041                in6_clearscope(&in6);
2042                MD5Update(&ctx, (char *)&in6, sizeof(struct in6_addr));
2043                plen = htonl(len + sizeof(struct tcphdr) + optlen);
2044                MD5Update(&ctx, (char *)&plen, sizeof(uint32_t));
2045                nhdr = 0;
2046                MD5Update(&ctx, (char *)&nhdr, sizeof(uint8_t));
2047                MD5Update(&ctx, (char *)&nhdr, sizeof(uint8_t));
2048                MD5Update(&ctx, (char *)&nhdr, sizeof(uint8_t));
2049                nhdr = IPPROTO_TCP;
2050                MD5Update(&ctx, (char *)&nhdr, sizeof(uint8_t));
2051
2052                th = (struct tcphdr *)((u_char *)ip6 + sizeof(struct ip6_hdr));
2053                doff = sizeof(struct ip6_hdr) + sizeof(struct tcphdr) + optlen;
2054                break;
2055#endif
2056        default:
2057                return (EINVAL);
2058                /* NOTREACHED */
2059                break;
2060        }
2061
2062
2063        /*
2064         * Step 2: Update MD5 hash with TCP header, excluding options.
2065         * The TCP checksum must be set to zero.
2066         */
2067        savecsum = th->th_sum;
2068        th->th_sum = 0;
2069        MD5Update(&ctx, (char *)th, sizeof(struct tcphdr));
2070        th->th_sum = savecsum;
2071
2072        /*
2073         * Step 3: Update MD5 hash with TCP segment data.
2074         *         Use m_apply() to avoid an early m_pullup().
2075         */
2076        if (len > 0)
2077                m_apply(m, doff, len, tcp_signature_apply, &ctx);
2078
2079        /*
2080         * Step 4: Update MD5 hash with shared secret.
2081         */
2082        MD5Update(&ctx, sav->key_auth->key_data, _KEYLEN(sav->key_auth));
2083        MD5Final(buf, &ctx);
2084
2085        key_sa_recordxfer(sav, m);
2086        KEY_FREESAV(&sav);
2087        return (0);
2088}
2089#endif /* TCP_SIGNATURE */
2090
2091static int
2092sysctl_drop(SYSCTL_HANDLER_ARGS)
2093{
2094        /* addrs[0] is a foreign socket, addrs[1] is a local one. */
2095        struct sockaddr_storage addrs[2];
2096        struct inpcb *inp;
2097        struct tcpcb *tp;
2098        struct tcptw *tw;
2099        struct sockaddr_in *fin, *lin;
2100#ifdef INET6
2101        struct sockaddr_in6 *fin6, *lin6;
2102#endif
2103        int error;
2104
2105        inp = NULL;
2106        fin = lin = NULL;
2107#ifdef INET6
2108        fin6 = lin6 = NULL;
2109#endif
2110        error = 0;
2111
2112        if (req->oldptr != NULL || req->oldlen != 0)
2113                return (EINVAL);
2114        if (req->newptr == NULL)
2115                return (EPERM);
2116        if (req->newlen < sizeof(addrs))
2117                return (ENOMEM);
2118        error = SYSCTL_IN(req, &addrs, sizeof(addrs));
2119        if (error)
2120                return (error);
2121
2122        switch (addrs[0].ss_family) {
2123#ifdef INET6
2124        case AF_INET6:
2125                fin6 = (struct sockaddr_in6 *)&addrs[0];
2126                lin6 = (struct sockaddr_in6 *)&addrs[1];
2127                if (fin6->sin6_len != sizeof(struct sockaddr_in6) ||
2128                    lin6->sin6_len != sizeof(struct sockaddr_in6))
2129                        return (EINVAL);
2130                if (IN6_IS_ADDR_V4MAPPED(&fin6->sin6_addr)) {
2131                        if (!IN6_IS_ADDR_V4MAPPED(&lin6->sin6_addr))
2132                                return (EINVAL);
2133                        in6_sin6_2_sin_in_sock((struct sockaddr *)&addrs[0]);
2134                        in6_sin6_2_sin_in_sock((struct sockaddr *)&addrs[1]);
2135                        fin = (struct sockaddr_in *)&addrs[0];
2136                        lin = (struct sockaddr_in *)&addrs[1];
2137                        break;
2138                }
2139                error = sa6_embedscope(fin6, V_ip6_use_defzone);
2140                if (error)
2141                        return (error);
2142                error = sa6_embedscope(lin6, V_ip6_use_defzone);
2143                if (error)
2144                        return (error);
2145                break;
2146#endif
2147        case AF_INET:
2148                fin = (struct sockaddr_in *)&addrs[0];
2149                lin = (struct sockaddr_in *)&addrs[1];
2150                if (fin->sin_len != sizeof(struct sockaddr_in) ||
2151                    lin->sin_len != sizeof(struct sockaddr_in))
2152                        return (EINVAL);
2153                break;
2154        default:
2155                return (EINVAL);
2156        }
2157        INP_INFO_WLOCK(&V_tcbinfo);
2158        switch (addrs[0].ss_family) {
2159#ifdef INET6
2160        case AF_INET6:
2161                inp = in6_pcblookup_hash(&V_tcbinfo, &fin6->sin6_addr,
2162                    fin6->sin6_port, &lin6->sin6_addr, lin6->sin6_port, 0,
2163                    NULL);
2164                break;
2165#endif
2166        case AF_INET:
2167                inp = in_pcblookup_hash(&V_tcbinfo, fin->sin_addr,
2168                    fin->sin_port, lin->sin_addr, lin->sin_port, 0, NULL);
2169                break;
2170        }
2171        if (inp != NULL) {
2172                INP_WLOCK(inp);
2173                if (inp->inp_flags & INP_TIMEWAIT) {
2174                        /*
2175                         * XXXRW: There currently exists a state where an
2176                         * inpcb is present, but its timewait state has been
2177                         * discarded.  For now, don't allow dropping of this
2178                         * type of inpcb.
2179                         */
2180                        tw = intotw(inp);
2181                        if (tw != NULL)
2182                                tcp_twclose(tw, 0);
2183                        else
2184                                INP_WUNLOCK(inp);
2185                } else if (!(inp->inp_flags & INP_DROPPED) &&
2186                           !(inp->inp_socket->so_options & SO_ACCEPTCONN)) {
2187                        tp = intotcpcb(inp);
2188                        tp = tcp_drop(tp, ECONNABORTED);
2189                        if (tp != NULL)
2190                                INP_WUNLOCK(inp);
2191                } else
2192                        INP_WUNLOCK(inp);
2193        } else
2194                error = ESRCH;
2195        INP_INFO_WUNLOCK(&V_tcbinfo);
2196        return (error);
2197}
2198
2199SYSCTL_PROC(_net_inet_tcp, TCPCTL_DROP, drop,
2200    CTLTYPE_STRUCT|CTLFLAG_WR|CTLFLAG_SKIP, NULL,
2201    0, sysctl_drop, "", "Drop TCP connection");
2202
2203/*
2204 * Generate a standardized TCP log line for use throughout the
2205 * tcp subsystem.  Memory allocation is done with M_NOWAIT to
2206 * allow use in the interrupt context.
2207 *
2208 * NB: The caller MUST free(s, M_TCPLOG) the returned string.
2209 * NB: The function may return NULL if memory allocation failed.
2210 *
2211 * Due to header inclusion and ordering limitations the struct ip
2212 * and ip6_hdr pointers have to be passed as void pointers.
2213 */
2214char *
2215tcp_log_vain(struct in_conninfo *inc, struct tcphdr *th, void *ip4hdr,
2216    const void *ip6hdr)
2217{
2218
2219        /* Is logging enabled? */
2220        if (tcp_log_in_vain == 0)
2221                return (NULL);
2222
2223        return (tcp_log_addr(inc, th, ip4hdr, ip6hdr));
2224}
2225
2226char *
2227tcp_log_addrs(struct in_conninfo *inc, struct tcphdr *th, void *ip4hdr,
2228    const void *ip6hdr)
2229{
2230
2231        /* Is logging enabled? */
2232        if (tcp_log_debug == 0)
2233                return (NULL);
2234
2235        return (tcp_log_addr(inc, th, ip4hdr, ip6hdr));
2236}
2237
2238static char *
2239tcp_log_addr(struct in_conninfo *inc, struct tcphdr *th, void *ip4hdr,
2240    const void *ip6hdr)
2241{
2242        char *s, *sp;
2243        size_t size;
2244        struct ip *ip;
2245#ifdef INET6
2246        const struct ip6_hdr *ip6;
2247
2248        ip6 = (const struct ip6_hdr *)ip6hdr;
2249#endif /* INET6 */
2250        ip = (struct ip *)ip4hdr;
2251
2252        /*
2253         * The log line looks like this:
2254         * "TCP: [1.2.3.4]:50332 to [1.2.3.4]:80 tcpflags 0x2<SYN>"
2255         */
2256        size = sizeof("TCP: []:12345 to []:12345 tcpflags 0x2<>") +
2257            sizeof(PRINT_TH_FLAGS) + 1 +
2258#ifdef INET6
2259            2 * INET6_ADDRSTRLEN;
2260#else
2261            2 * INET_ADDRSTRLEN;
2262#endif /* INET6 */
2263
2264        s = malloc(size, M_TCPLOG, M_ZERO|M_NOWAIT);
2265        if (s == NULL)
2266                return (NULL);
2267
2268        strcat(s, "TCP: [");
2269        sp = s + strlen(s);
2270
2271        if (inc && ((inc->inc_flags & INC_ISIPV6) == 0)) {
2272                inet_ntoa_r(inc->inc_faddr, sp);
2273                sp = s + strlen(s);
2274                sprintf(sp, "]:%i to [", ntohs(inc->inc_fport));
2275                sp = s + strlen(s);
2276                inet_ntoa_r(inc->inc_laddr, sp);
2277                sp = s + strlen(s);
2278                sprintf(sp, "]:%i", ntohs(inc->inc_lport));
2279#ifdef INET6
2280        } else if (inc) {
2281                ip6_sprintf(sp, &inc->inc6_faddr);
2282                sp = s + strlen(s);
2283                sprintf(sp, "]:%i to [", ntohs(inc->inc_fport));
2284                sp = s + strlen(s);
2285                ip6_sprintf(sp, &inc->inc6_laddr);
2286                sp = s + strlen(s);
2287                sprintf(sp, "]:%i", ntohs(inc->inc_lport));
2288        } else if (ip6 && th) {
2289                ip6_sprintf(sp, &ip6->ip6_src);
2290                sp = s + strlen(s);
2291                sprintf(sp, "]:%i to [", ntohs(th->th_sport));
2292                sp = s + strlen(s);
2293                ip6_sprintf(sp, &ip6->ip6_dst);
2294                sp = s + strlen(s);
2295                sprintf(sp, "]:%i", ntohs(th->th_dport));
2296#endif /* INET6 */
2297        } else if (ip && th) {
2298                inet_ntoa_r(ip->ip_src, sp);
2299                sp = s + strlen(s);
2300                sprintf(sp, "]:%i to [", ntohs(th->th_sport));
2301                sp = s + strlen(s);
2302                inet_ntoa_r(ip->ip_dst, sp);
2303                sp = s + strlen(s);
2304                sprintf(sp, "]:%i", ntohs(th->th_dport));
2305        } else {
2306                free(s, M_TCPLOG);
2307                return (NULL);
2308        }
2309        sp = s + strlen(s);
2310        if (th)
2311                sprintf(sp, " tcpflags 0x%b", th->th_flags, PRINT_TH_FLAGS);
2312        if (*(s + size - 1) != '\0')
2313                panic("%s: string too long", __func__);
2314        return (s);
2315}
Note: See TracBrowser for help on using the repository browser.