source: rtems-libbsd/freebsd/sys/kern/kern_timeout.c @ a85d900

55-freebsd-126-freebsd-12
Last change on this file since a85d900 was a85d900, checked in by Sebastian Huber <sebastian.huber@…>, on 08/04/17 at 12:32:19

Optimize callout handline via static timer wheel

The number of callouts is a compile-time constant in libbsd. Use this
in struct callout_cpu and avoid dynamic allocation of tables. This
signficantly reduces the count of load instructions in the callout
handling.

  • Property mode set to 100644
File size: 51.6 KB
Line 
1#include <machine/rtems-bsd-kernel-space.h>
2
3/*-
4 * Copyright (c) 1982, 1986, 1991, 1993
5 *      The Regents of the University of California.  All rights reserved.
6 * (c) UNIX System Laboratories, Inc.
7 * All or some portions of this file are derived from material licensed
8 * to the University of California by American Telephone and Telegraph
9 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
10 * the permission of UNIX System Laboratories, Inc.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 *    notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 *    notice, this list of conditions and the following disclaimer in the
19 *    documentation and/or other materials provided with the distribution.
20 * 3. Neither the name of the University nor the names of its contributors
21 *    may be used to endorse or promote products derived from this software
22 *    without specific prior written permission.
23 *
24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34 * SUCH DAMAGE.
35 *
36 *      From: @(#)kern_clock.c  8.5 (Berkeley) 1/21/94
37 */
38
39#include <sys/cdefs.h>
40__FBSDID("$FreeBSD$");
41
42#include <rtems/bsd/local/opt_callout_profiling.h>
43#include <rtems/bsd/local/opt_ddb.h>
44#if defined(__arm__) || defined(__rtems__)
45#include <rtems/bsd/local/opt_timer.h>
46#endif
47#include <rtems/bsd/local/opt_rss.h>
48
49#include <sys/param.h>
50#include <sys/systm.h>
51#include <sys/bus.h>
52#include <sys/callout.h>
53#include <sys/file.h>
54#include <sys/interrupt.h>
55#include <sys/kernel.h>
56#include <sys/ktr.h>
57#include <sys/lock.h>
58#include <sys/malloc.h>
59#include <sys/mutex.h>
60#include <sys/proc.h>
61#include <sys/sdt.h>
62#include <sys/sleepqueue.h>
63#include <sys/sysctl.h>
64#include <sys/smp.h>
65
66#ifdef DDB
67#include <ddb/ddb.h>
68#include <machine/_inttypes.h>
69#endif
70
71#ifdef SMP
72#include <machine/cpu.h>
73#endif
74
75#ifndef NO_EVENTTIMERS
76DPCPU_DECLARE(sbintime_t, hardclocktime);
77#endif
78
79SDT_PROVIDER_DEFINE(callout_execute);
80SDT_PROBE_DEFINE1(callout_execute, , , callout__start, "struct callout *");
81SDT_PROBE_DEFINE1(callout_execute, , , callout__end, "struct callout *");
82
83#ifdef CALLOUT_PROFILING
84static int avg_depth;
85SYSCTL_INT(_debug, OID_AUTO, to_avg_depth, CTLFLAG_RD, &avg_depth, 0,
86    "Average number of items examined per softclock call. Units = 1/1000");
87static int avg_gcalls;
88SYSCTL_INT(_debug, OID_AUTO, to_avg_gcalls, CTLFLAG_RD, &avg_gcalls, 0,
89    "Average number of Giant callouts made per softclock call. Units = 1/1000");
90static int avg_lockcalls;
91SYSCTL_INT(_debug, OID_AUTO, to_avg_lockcalls, CTLFLAG_RD, &avg_lockcalls, 0,
92    "Average number of lock callouts made per softclock call. Units = 1/1000");
93static int avg_mpcalls;
94SYSCTL_INT(_debug, OID_AUTO, to_avg_mpcalls, CTLFLAG_RD, &avg_mpcalls, 0,
95    "Average number of MP callouts made per softclock call. Units = 1/1000");
96static int avg_depth_dir;
97SYSCTL_INT(_debug, OID_AUTO, to_avg_depth_dir, CTLFLAG_RD, &avg_depth_dir, 0,
98    "Average number of direct callouts examined per callout_process call. "
99    "Units = 1/1000");
100static int avg_lockcalls_dir;
101SYSCTL_INT(_debug, OID_AUTO, to_avg_lockcalls_dir, CTLFLAG_RD,
102    &avg_lockcalls_dir, 0, "Average number of lock direct callouts made per "
103    "callout_process call. Units = 1/1000");
104static int avg_mpcalls_dir;
105SYSCTL_INT(_debug, OID_AUTO, to_avg_mpcalls_dir, CTLFLAG_RD, &avg_mpcalls_dir,
106    0, "Average number of MP direct callouts made per callout_process call. "
107    "Units = 1/1000");
108#endif
109
110#ifndef __rtems__
111static int ncallout;
112SYSCTL_INT(_kern, OID_AUTO, ncallout, CTLFLAG_RDTUN | CTLFLAG_NOFETCH, &ncallout, 0,
113    "Number of entries in callwheel and size of timeout() preallocation");
114#else /* __rtems__ */
115#define ncallout 16
116#endif /* __rtems__ */
117
118#ifdef  RSS
119static int pin_default_swi = 1;
120static int pin_pcpu_swi = 1;
121#else
122static int pin_default_swi = 0;
123static int pin_pcpu_swi = 0;
124#endif
125
126SYSCTL_INT(_kern, OID_AUTO, pin_default_swi, CTLFLAG_RDTUN | CTLFLAG_NOFETCH, &pin_default_swi,
127    0, "Pin the default (non-per-cpu) swi (shared with PCPU 0 swi)");
128SYSCTL_INT(_kern, OID_AUTO, pin_pcpu_swi, CTLFLAG_RDTUN | CTLFLAG_NOFETCH, &pin_pcpu_swi,
129    0, "Pin the per-CPU swis (except PCPU 0, which is also default");
130
131#ifndef __rtems__
132/*
133 * TODO:
134 *      allocate more timeout table slots when table overflows.
135 */
136u_int callwheelsize, callwheelmask;
137#else /* __rtems__ */
138#define callwheelsize (2 * ncallout)
139#define callwheelmask (callwheelsize - 1)
140#endif /* __rtems__ */
141
142/*
143 * The callout cpu exec entities represent informations necessary for
144 * describing the state of callouts currently running on the CPU and the ones
145 * necessary for migrating callouts to the new callout cpu. In particular,
146 * the first entry of the array cc_exec_entity holds informations for callout
147 * running in SWI thread context, while the second one holds informations
148 * for callout running directly from hardware interrupt context.
149 * The cached informations are very important for deferring migration when
150 * the migrating callout is already running.
151 */
152struct cc_exec {
153        struct callout          *cc_curr;
154        void                    (*cc_drain)(void *);
155#ifdef SMP
156        void                    (*ce_migration_func)(void *);
157        void                    *ce_migration_arg;
158        int                     ce_migration_cpu;
159        sbintime_t              ce_migration_time;
160        sbintime_t              ce_migration_prec;
161#endif
162        bool                    cc_cancel;
163        bool                    cc_waiting;
164};
165
166/*
167 * There is one struct callout_cpu per cpu, holding all relevant
168 * state for the callout processing thread on the individual CPU.
169 */
170struct callout_cpu {
171        struct mtx_padalign     cc_lock;
172#ifndef __rtems__
173        struct cc_exec          cc_exec_entity[2];
174#else /* __rtems__ */
175        struct cc_exec          cc_exec_entity;
176#endif /* __rtems__ */
177        struct callout          *cc_next;
178#ifndef __rtems__
179        struct callout          *cc_callout;
180        struct callout_list     *cc_callwheel;
181        struct callout_tailq    cc_expireq;
182#else /* __rtems__ */
183        struct callout          cc_callout[ncallout];
184        struct callout_list     cc_callwheel[callwheelsize];
185#endif /* __rtems__ */
186        struct callout_slist    cc_callfree;
187        sbintime_t              cc_firstevent;
188        sbintime_t              cc_lastscan;
189        void                    *cc_cookie;
190        u_int                   cc_bucket;
191        u_int                   cc_inited;
192        char                    cc_ktr_event_name[20];
193};
194
195#ifndef __rtems__
196#define callout_migrating(c)    ((c)->c_iflags & CALLOUT_DFRMIGRATION)
197#endif /* __rtems__ */
198
199#ifndef __rtems__
200#define cc_exec_curr(cc, dir)           cc->cc_exec_entity[dir].cc_curr
201#define cc_exec_drain(cc, dir)          cc->cc_exec_entity[dir].cc_drain
202#else /* __rtems__ */
203#define cc_exec_curr(cc, dir)           cc->cc_exec_entity.cc_curr
204#define cc_exec_drain(cc, dir)          cc->cc_exec_entity.cc_drain
205#endif /* __rtems__ */
206#define cc_exec_next(cc)                cc->cc_next
207#ifndef __rtems__
208#define cc_exec_cancel(cc, dir)         cc->cc_exec_entity[dir].cc_cancel
209#define cc_exec_waiting(cc, dir)        cc->cc_exec_entity[dir].cc_waiting
210#else /* __rtems__ */
211#define cc_exec_cancel(cc, dir)         cc->cc_exec_entity.cc_cancel
212#define cc_exec_waiting(cc, dir)        cc->cc_exec_entity.cc_waiting
213#endif /* __rtems__ */
214#ifdef SMP
215#define cc_migration_func(cc, dir)      cc->cc_exec_entity[dir].ce_migration_func
216#define cc_migration_arg(cc, dir)       cc->cc_exec_entity[dir].ce_migration_arg
217#define cc_migration_cpu(cc, dir)       cc->cc_exec_entity[dir].ce_migration_cpu
218#define cc_migration_time(cc, dir)      cc->cc_exec_entity[dir].ce_migration_time
219#define cc_migration_prec(cc, dir)      cc->cc_exec_entity[dir].ce_migration_prec
220
221struct callout_cpu cc_cpu[MAXCPU];
222#define CPUBLOCK        MAXCPU
223#define CC_CPU(cpu)     (&cc_cpu[(cpu)])
224#define CC_SELF()       CC_CPU(PCPU_GET(cpuid))
225#else
226struct callout_cpu cc_cpu;
227#define CC_CPU(cpu)     &cc_cpu
228#define CC_SELF()       &cc_cpu
229#endif
230#define CC_LOCK(cc)     mtx_lock_spin(&(cc)->cc_lock)
231#define CC_UNLOCK(cc)   mtx_unlock_spin(&(cc)->cc_lock)
232#define CC_LOCK_ASSERT(cc)      mtx_assert(&(cc)->cc_lock, MA_OWNED)
233
234#ifndef __rtems__
235static int timeout_cpu;
236#else /* __rtems__ */
237#define timeout_cpu 0
238#endif /* __rtems__ */
239
240static void     callout_cpu_init(struct callout_cpu *cc, int cpu);
241static void     softclock_call_cc(struct callout *c, struct callout_cpu *cc,
242#ifdef CALLOUT_PROFILING
243                    int *mpcalls, int *lockcalls, int *gcalls,
244#endif
245                    int direct);
246
247static MALLOC_DEFINE(M_CALLOUT, "callout", "Callout datastructures");
248
249/**
250 * Locked by cc_lock:
251 *   cc_curr         - If a callout is in progress, it is cc_curr.
252 *                     If cc_curr is non-NULL, threads waiting in
253 *                     callout_drain() will be woken up as soon as the
254 *                     relevant callout completes.
255 *   cc_cancel       - Changing to 1 with both callout_lock and cc_lock held
256 *                     guarantees that the current callout will not run.
257 *                     The softclock() function sets this to 0 before it
258 *                     drops callout_lock to acquire c_lock, and it calls
259 *                     the handler only if curr_cancelled is still 0 after
260 *                     cc_lock is successfully acquired.
261 *   cc_waiting      - If a thread is waiting in callout_drain(), then
262 *                     callout_wait is nonzero.  Set only when
263 *                     cc_curr is non-NULL.
264 */
265
266/*
267 * Resets the execution entity tied to a specific callout cpu.
268 */
269static void
270cc_cce_cleanup(struct callout_cpu *cc, int direct)
271{
272
273        cc_exec_curr(cc, direct) = NULL;
274        cc_exec_cancel(cc, direct) = false;
275        cc_exec_waiting(cc, direct) = false;
276#ifdef SMP
277        cc_migration_cpu(cc, direct) = CPUBLOCK;
278        cc_migration_time(cc, direct) = 0;
279        cc_migration_prec(cc, direct) = 0;
280        cc_migration_func(cc, direct) = NULL;
281        cc_migration_arg(cc, direct) = NULL;
282#endif
283}
284
285#ifndef __rtems__
286/*
287 * Checks if migration is requested by a specific callout cpu.
288 */
289static int
290cc_cce_migrating(struct callout_cpu *cc, int direct)
291{
292
293#ifdef SMP
294        return (cc_migration_cpu(cc, direct) != CPUBLOCK);
295#else
296        return (0);
297#endif
298}
299#endif /* __rtems__ */
300
301/*
302 * Kernel low level callwheel initialization
303 * called on cpu0 during kernel startup.
304 */
305#ifdef __rtems__
306static void rtems_bsd_timeout_init_early(void *);
307
308static void
309rtems_bsd_callout_timer(rtems_id id, void *arg)
310{
311        rtems_status_code sc;
312
313        (void) arg;
314
315        sc = rtems_timer_reset(id);
316        BSD_ASSERT(sc == RTEMS_SUCCESSFUL);
317
318        callout_process(sbinuptime());
319}
320
321static void
322rtems_bsd_timeout_init_late(void *unused)
323{
324        rtems_status_code sc;
325        rtems_id id;
326
327        (void) unused;
328
329        sc = rtems_timer_create(rtems_build_name('_', 'C', 'L', 'O'), &id);
330        BSD_ASSERT(sc == RTEMS_SUCCESSFUL);
331
332        sc = rtems_timer_server_fire_after(id, 1, rtems_bsd_callout_timer, NULL);
333        BSD_ASSERT(sc == RTEMS_SUCCESSFUL);
334}
335
336SYSINIT(rtems_bsd_timeout_early, SI_SUB_VM, SI_ORDER_FIRST,
337    rtems_bsd_timeout_init_early, NULL);
338
339SYSINIT(rtems_bsd_timeout_late, SI_SUB_LAST, SI_ORDER_FIRST,
340    rtems_bsd_timeout_init_late, NULL);
341
342static void
343rtems_bsd_timeout_init_early(void *dummy)
344#else /* __rtems__ */
345static void
346callout_callwheel_init(void *dummy)
347#endif /* __rtems__ */
348{
349        struct callout_cpu *cc;
350#ifdef __rtems__
351        (void) dummy;
352#endif /* __rtems__ */
353
354        /*
355         * Calculate the size of the callout wheel and the preallocated
356         * timeout() structures.
357         * XXX: Clip callout to result of previous function of maxusers
358         * maximum 384.  This is still huge, but acceptable.
359         */
360        memset(CC_CPU(0), 0, sizeof(cc_cpu));
361#ifndef __rtems__
362        ncallout = imin(16 + maxproc + maxfiles, 18508);
363        TUNABLE_INT_FETCH("kern.ncallout", &ncallout);
364#endif /* __rtems__ */
365
366        /*
367         * Calculate callout wheel size, should be next power of two higher
368         * than 'ncallout'.
369         */
370#ifndef __rtems__
371        callwheelsize = 1 << fls(ncallout);
372        callwheelmask = callwheelsize - 1;
373#endif /* __rtems__ */
374
375#ifndef __rtems__
376        /*
377         * Fetch whether we're pinning the swi's or not.
378         */
379        TUNABLE_INT_FETCH("kern.pin_default_swi", &pin_default_swi);
380        TUNABLE_INT_FETCH("kern.pin_pcpu_swi", &pin_pcpu_swi);
381#endif /* __rtems__ */
382
383        /*
384         * Only cpu0 handles timeout(9) and receives a preallocation.
385         *
386         * XXX: Once all timeout(9) consumers are converted this can
387         * be removed.
388         */
389#ifndef __rtems__
390        timeout_cpu = PCPU_GET(cpuid);
391#endif /* __rtems__ */
392        cc = CC_CPU(timeout_cpu);
393#ifndef __rtems__
394        cc->cc_callout = malloc(ncallout * sizeof(struct callout),
395            M_CALLOUT, M_WAITOK);
396#endif /* __rtems__ */
397        callout_cpu_init(cc, timeout_cpu);
398}
399#ifndef __rtems__
400SYSINIT(callwheel_init, SI_SUB_CPU, SI_ORDER_ANY, callout_callwheel_init, NULL);
401#endif /* __rtems__ */
402
403/*
404 * Initialize the per-cpu callout structures.
405 */
406static void
407callout_cpu_init(struct callout_cpu *cc, int cpu)
408{
409        struct callout *c;
410        int i;
411
412        mtx_init(&cc->cc_lock, "callout", NULL, MTX_SPIN | MTX_RECURSE);
413        SLIST_INIT(&cc->cc_callfree);
414        cc->cc_inited = 1;
415#ifndef __rtems__
416        cc->cc_callwheel = malloc(sizeof(struct callout_list) * callwheelsize,
417            M_CALLOUT, M_WAITOK);
418#endif /* __rtems__ */
419        for (i = 0; i < callwheelsize; i++)
420                LIST_INIT(&cc->cc_callwheel[i]);
421#ifndef __rtems__
422        TAILQ_INIT(&cc->cc_expireq);
423#endif /* __rtems__ */
424        cc->cc_firstevent = SBT_MAX;
425        for (i = 0; i < 2; i++)
426                cc_cce_cleanup(cc, i);
427        snprintf(cc->cc_ktr_event_name, sizeof(cc->cc_ktr_event_name),
428            "callwheel cpu %d", cpu);
429#ifndef __rtems__
430        if (cc->cc_callout == NULL)     /* Only cpu0 handles timeout(9) */
431                return;
432#endif /* __rtems__ */
433        for (i = 0; i < ncallout; i++) {
434                c = &cc->cc_callout[i];
435                callout_init(c, 0);
436                c->c_iflags = CALLOUT_LOCAL_ALLOC;
437                SLIST_INSERT_HEAD(&cc->cc_callfree, c, c_links.sle);
438        }
439}
440
441#ifdef SMP
442/*
443 * Switches the cpu tied to a specific callout.
444 * The function expects a locked incoming callout cpu and returns with
445 * locked outcoming callout cpu.
446 */
447static struct callout_cpu *
448callout_cpu_switch(struct callout *c, struct callout_cpu *cc, int new_cpu)
449{
450        struct callout_cpu *new_cc;
451
452        MPASS(c != NULL && cc != NULL);
453        CC_LOCK_ASSERT(cc);
454
455        /*
456         * Avoid interrupts and preemption firing after the callout cpu
457         * is blocked in order to avoid deadlocks as the new thread
458         * may be willing to acquire the callout cpu lock.
459         */
460        c->c_cpu = CPUBLOCK;
461        spinlock_enter();
462        CC_UNLOCK(cc);
463        new_cc = CC_CPU(new_cpu);
464        CC_LOCK(new_cc);
465        spinlock_exit();
466        c->c_cpu = new_cpu;
467        return (new_cc);
468}
469#endif
470
471#ifndef __rtems__
472/*
473 * Start standard softclock thread.
474 */
475static void
476start_softclock(void *dummy)
477{
478        struct callout_cpu *cc;
479        char name[MAXCOMLEN];
480#ifdef SMP
481        int cpu;
482        struct intr_event *ie;
483#endif
484
485        cc = CC_CPU(timeout_cpu);
486        snprintf(name, sizeof(name), "clock (%d)", timeout_cpu);
487        if (swi_add(&clk_intr_event, name, softclock, cc, SWI_CLOCK,
488            INTR_MPSAFE, &cc->cc_cookie))
489                panic("died while creating standard software ithreads");
490        if (pin_default_swi &&
491            (intr_event_bind(clk_intr_event, timeout_cpu) != 0)) {
492                printf("%s: timeout clock couldn't be pinned to cpu %d\n",
493                    __func__,
494                    timeout_cpu);
495        }
496
497#ifdef SMP
498        CPU_FOREACH(cpu) {
499                if (cpu == timeout_cpu)
500                        continue;
501                cc = CC_CPU(cpu);
502                cc->cc_callout = NULL;  /* Only cpu0 handles timeout(9). */
503                callout_cpu_init(cc, cpu);
504                snprintf(name, sizeof(name), "clock (%d)", cpu);
505                ie = NULL;
506                if (swi_add(&ie, name, softclock, cc, SWI_CLOCK,
507                    INTR_MPSAFE, &cc->cc_cookie))
508                        panic("died while creating standard software ithreads");
509                if (pin_pcpu_swi && (intr_event_bind(ie, cpu) != 0)) {
510                        printf("%s: per-cpu clock couldn't be pinned to "
511                            "cpu %d\n",
512                            __func__,
513                            cpu);
514                }
515        }
516#endif
517}
518SYSINIT(start_softclock, SI_SUB_SOFTINTR, SI_ORDER_FIRST, start_softclock, NULL);
519#endif /* __rtems__ */
520
521#define CC_HASH_SHIFT   8
522
523static inline u_int
524callout_hash(sbintime_t sbt)
525{
526
527        return (sbt >> (32 - CC_HASH_SHIFT));
528}
529
530static inline u_int
531callout_get_bucket(sbintime_t sbt)
532{
533
534        return (callout_hash(sbt) & callwheelmask);
535}
536
537void
538callout_process(sbintime_t now)
539{
540#ifndef __rtems__
541        struct callout *tmp, *tmpn;
542#else /* __rtems__ */
543        struct callout *tmp;
544#endif /* __rtems__ */
545        struct callout_cpu *cc;
546        struct callout_list *sc;
547        sbintime_t first, last, max, tmp_max;
548        uint32_t lookahead;
549        u_int firstb, lastb, nowb;
550#ifdef CALLOUT_PROFILING
551        int depth_dir = 0, mpcalls_dir = 0, lockcalls_dir = 0;
552#endif
553
554        cc = CC_SELF();
555        mtx_lock_spin_flags(&cc->cc_lock, MTX_QUIET);
556
557        /* Compute the buckets of the last scan and present times. */
558        firstb = callout_hash(cc->cc_lastscan);
559        cc->cc_lastscan = now;
560        nowb = callout_hash(now);
561
562        /* Compute the last bucket and minimum time of the bucket after it. */
563        if (nowb == firstb)
564                lookahead = (SBT_1S / 16);
565        else if (nowb - firstb == 1)
566                lookahead = (SBT_1S / 8);
567        else
568                lookahead = (SBT_1S / 2);
569        first = last = now;
570        first += (lookahead / 2);
571        last += lookahead;
572        last &= (0xffffffffffffffffLLU << (32 - CC_HASH_SHIFT));
573        lastb = callout_hash(last) - 1;
574        max = last;
575
576        /*
577         * Check if we wrapped around the entire wheel from the last scan.
578         * In case, we need to scan entirely the wheel for pending callouts.
579         */
580        if (lastb - firstb >= callwheelsize) {
581                lastb = firstb + callwheelsize - 1;
582                if (nowb - firstb >= callwheelsize)
583                        nowb = lastb;
584        }
585
586        /* Iterate callwheel from firstb to nowb and then up to lastb. */
587        do {
588                sc = &cc->cc_callwheel[firstb & callwheelmask];
589                tmp = LIST_FIRST(sc);
590                while (tmp != NULL) {
591                        /* Run the callout if present time within allowed. */
592                        if (tmp->c_time <= now) {
593#ifndef __rtems__
594                                /*
595                                 * Consumer told us the callout may be run
596                                 * directly from hardware interrupt context.
597                                 */
598                                if (tmp->c_iflags & CALLOUT_DIRECT) {
599#endif /* __rtems__ */
600#ifdef CALLOUT_PROFILING
601                                        ++depth_dir;
602#endif
603                                        cc_exec_next(cc) =
604                                            LIST_NEXT(tmp, c_links.le);
605                                        cc->cc_bucket = firstb & callwheelmask;
606                                        LIST_REMOVE(tmp, c_links.le);
607                                        softclock_call_cc(tmp, cc,
608#ifdef CALLOUT_PROFILING
609                                            &mpcalls_dir, &lockcalls_dir, NULL,
610#endif
611                                            1);
612                                        tmp = cc_exec_next(cc);
613                                        cc_exec_next(cc) = NULL;
614#ifndef __rtems__
615                                } else {
616                                        tmpn = LIST_NEXT(tmp, c_links.le);
617                                        LIST_REMOVE(tmp, c_links.le);
618                                        TAILQ_INSERT_TAIL(&cc->cc_expireq,
619                                            tmp, c_links.tqe);
620                                        tmp->c_iflags |= CALLOUT_PROCESSED;
621                                        tmp = tmpn;
622                                }
623#endif /* __rtems__ */
624                                continue;
625                        }
626                        /* Skip events from distant future. */
627                        if (tmp->c_time >= max)
628                                goto next;
629                        /*
630                         * Event minimal time is bigger than present maximal
631                         * time, so it cannot be aggregated.
632                         */
633                        if (tmp->c_time > last) {
634                                lastb = nowb;
635                                goto next;
636                        }
637                        /* Update first and last time, respecting this event. */
638                        if (tmp->c_time < first)
639                                first = tmp->c_time;
640                        tmp_max = tmp->c_time + tmp->c_precision;
641                        if (tmp_max < last)
642                                last = tmp_max;
643next:
644                        tmp = LIST_NEXT(tmp, c_links.le);
645                }
646                /* Proceed with the next bucket. */
647                firstb++;
648                /*
649                 * Stop if we looked after present time and found
650                 * some event we can't execute at now.
651                 * Stop if we looked far enough into the future.
652                 */
653        } while (((int)(firstb - lastb)) <= 0);
654        cc->cc_firstevent = last;
655#ifndef NO_EVENTTIMERS
656        cpu_new_callout(curcpu, last, first);
657#endif
658#ifdef CALLOUT_PROFILING
659        avg_depth_dir += (depth_dir * 1000 - avg_depth_dir) >> 8;
660        avg_mpcalls_dir += (mpcalls_dir * 1000 - avg_mpcalls_dir) >> 8;
661        avg_lockcalls_dir += (lockcalls_dir * 1000 - avg_lockcalls_dir) >> 8;
662#endif
663        mtx_unlock_spin_flags(&cc->cc_lock, MTX_QUIET);
664#ifndef __rtems__
665        /*
666         * swi_sched acquires the thread lock, so we don't want to call it
667         * with cc_lock held; incorrect locking order.
668         */
669        if (!TAILQ_EMPTY(&cc->cc_expireq))
670                swi_sched(cc->cc_cookie, 0);
671#endif /* __rtems__ */
672}
673
674static struct callout_cpu *
675callout_lock(struct callout *c)
676{
677        struct callout_cpu *cc;
678#ifndef __rtems__
679        int cpu;
680
681        for (;;) {
682                cpu = c->c_cpu;
683#ifdef SMP
684                if (cpu == CPUBLOCK) {
685                        while (c->c_cpu == CPUBLOCK)
686                                cpu_spinwait();
687                        continue;
688                }
689#endif
690#endif /* __rtems__ */
691                cc = CC_CPU(cpu);
692                CC_LOCK(cc);
693#ifndef __rtems__
694                if (cpu == c->c_cpu)
695                        break;
696                CC_UNLOCK(cc);
697        }
698#endif /* __rtems__ */
699        return (cc);
700}
701
702static void
703callout_cc_add(struct callout *c, struct callout_cpu *cc,
704    sbintime_t sbt, sbintime_t precision, void (*func)(void *),
705    void *arg, int cpu, int flags)
706{
707        int bucket;
708
709        CC_LOCK_ASSERT(cc);
710        if (sbt < cc->cc_lastscan)
711                sbt = cc->cc_lastscan;
712        c->c_arg = arg;
713        c->c_iflags |= CALLOUT_PENDING;
714#ifndef __rtems__
715        c->c_iflags &= ~CALLOUT_PROCESSED;
716#endif /* __rtems__ */
717        c->c_flags |= CALLOUT_ACTIVE;
718#ifndef __rtems__
719        if (flags & C_DIRECT_EXEC)
720                c->c_iflags |= CALLOUT_DIRECT;
721#endif /* __rtems__ */
722        c->c_func = func;
723        c->c_time = sbt;
724        c->c_precision = precision;
725        bucket = callout_get_bucket(c->c_time);
726        CTR3(KTR_CALLOUT, "precision set for %p: %d.%08x",
727            c, (int)(c->c_precision >> 32),
728            (u_int)(c->c_precision & 0xffffffff));
729        LIST_INSERT_HEAD(&cc->cc_callwheel[bucket], c, c_links.le);
730        if (cc->cc_bucket == bucket)
731                cc_exec_next(cc) = c;
732#ifndef NO_EVENTTIMERS
733        /*
734         * Inform the eventtimers(4) subsystem there's a new callout
735         * that has been inserted, but only if really required.
736         */
737        if (SBT_MAX - c->c_time < c->c_precision)
738                c->c_precision = SBT_MAX - c->c_time;
739        sbt = c->c_time + c->c_precision;
740        if (sbt < cc->cc_firstevent) {
741                cc->cc_firstevent = sbt;
742                cpu_new_callout(cpu, sbt, c->c_time);
743        }
744#endif
745}
746
747static void
748callout_cc_del(struct callout *c, struct callout_cpu *cc)
749{
750
751        if ((c->c_iflags & CALLOUT_LOCAL_ALLOC) == 0)
752                return;
753        c->c_func = NULL;
754        SLIST_INSERT_HEAD(&cc->cc_callfree, c, c_links.sle);
755}
756
757static void
758softclock_call_cc(struct callout *c, struct callout_cpu *cc,
759#ifdef CALLOUT_PROFILING
760    int *mpcalls, int *lockcalls, int *gcalls,
761#endif
762    int direct)
763{
764#ifndef __rtems__
765        struct rm_priotracker tracker;
766#endif /* __rtems__ */
767        void (*c_func)(void *);
768        void *c_arg;
769        struct lock_class *class;
770        struct lock_object *c_lock;
771        uintptr_t lock_status;
772        int c_iflags;
773#ifdef SMP
774        struct callout_cpu *new_cc;
775        void (*new_func)(void *);
776        void *new_arg;
777        int flags, new_cpu;
778        sbintime_t new_prec, new_time;
779#endif
780#if defined(DIAGNOSTIC) || defined(CALLOUT_PROFILING)
781        sbintime_t sbt1, sbt2;
782        struct timespec ts2;
783        static sbintime_t maxdt = 2 * SBT_1MS;  /* 2 msec */
784        static timeout_t *lastfunc;
785#endif
786
787        KASSERT((c->c_iflags & CALLOUT_PENDING) == CALLOUT_PENDING,
788            ("softclock_call_cc: pend %p %x", c, c->c_iflags));
789        KASSERT((c->c_flags & CALLOUT_ACTIVE) == CALLOUT_ACTIVE,
790            ("softclock_call_cc: act %p %x", c, c->c_flags));
791        class = (c->c_lock != NULL) ? LOCK_CLASS(c->c_lock) : NULL;
792        lock_status = 0;
793        if (c->c_flags & CALLOUT_SHAREDLOCK) {
794#ifndef __rtems__
795                if (class == &lock_class_rm)
796                        lock_status = (uintptr_t)&tracker;
797                else
798#endif /* __rtems__ */
799                        lock_status = 1;
800        }
801        c_lock = c->c_lock;
802        c_func = c->c_func;
803        c_arg = c->c_arg;
804        c_iflags = c->c_iflags;
805        if (c->c_iflags & CALLOUT_LOCAL_ALLOC)
806                c->c_iflags = CALLOUT_LOCAL_ALLOC;
807        else
808                c->c_iflags &= ~CALLOUT_PENDING;
809       
810        cc_exec_curr(cc, direct) = c;
811        cc_exec_cancel(cc, direct) = false;
812        cc_exec_drain(cc, direct) = NULL;
813        CC_UNLOCK(cc);
814        if (c_lock != NULL) {
815                class->lc_lock(c_lock, lock_status);
816                /*
817                 * The callout may have been cancelled
818                 * while we switched locks.
819                 */
820                if (cc_exec_cancel(cc, direct)) {
821                        class->lc_unlock(c_lock);
822                        goto skip;
823                }
824                /* The callout cannot be stopped now. */
825                cc_exec_cancel(cc, direct) = true;
826                if (c_lock == &Giant.lock_object) {
827#ifdef CALLOUT_PROFILING
828                        (*gcalls)++;
829#endif
830                        CTR3(KTR_CALLOUT, "callout giant %p func %p arg %p",
831                            c, c_func, c_arg);
832                } else {
833#ifdef CALLOUT_PROFILING
834                        (*lockcalls)++;
835#endif
836                        CTR3(KTR_CALLOUT, "callout lock %p func %p arg %p",
837                            c, c_func, c_arg);
838                }
839        } else {
840#ifdef CALLOUT_PROFILING
841                (*mpcalls)++;
842#endif
843                CTR3(KTR_CALLOUT, "callout %p func %p arg %p",
844                    c, c_func, c_arg);
845        }
846        KTR_STATE3(KTR_SCHED, "callout", cc->cc_ktr_event_name, "running",
847            "func:%p", c_func, "arg:%p", c_arg, "direct:%d", direct);
848#if defined(DIAGNOSTIC) || defined(CALLOUT_PROFILING)
849        sbt1 = sbinuptime();
850#endif
851#ifndef __rtems__
852        THREAD_NO_SLEEPING();
853        SDT_PROBE1(callout_execute, , , callout__start, c);
854#endif /* __rtems__ */
855        c_func(c_arg);
856#ifndef __rtems__
857        SDT_PROBE1(callout_execute, , , callout__end, c);
858        THREAD_SLEEPING_OK();
859#endif /* __rtems__ */
860#if defined(DIAGNOSTIC) || defined(CALLOUT_PROFILING)
861        sbt2 = sbinuptime();
862        sbt2 -= sbt1;
863        if (sbt2 > maxdt) {
864                if (lastfunc != c_func || sbt2 > maxdt * 2) {
865                        ts2 = sbttots(sbt2);
866                        printf(
867                "Expensive timeout(9) function: %p(%p) %jd.%09ld s\n",
868                            c_func, c_arg, (intmax_t)ts2.tv_sec, ts2.tv_nsec);
869                }
870                maxdt = sbt2;
871                lastfunc = c_func;
872        }
873#endif
874        KTR_STATE0(KTR_SCHED, "callout", cc->cc_ktr_event_name, "idle");
875        CTR1(KTR_CALLOUT, "callout %p finished", c);
876        if ((c_iflags & CALLOUT_RETURNUNLOCKED) == 0)
877                class->lc_unlock(c_lock);
878skip:
879        CC_LOCK(cc);
880        KASSERT(cc_exec_curr(cc, direct) == c, ("mishandled cc_curr"));
881        cc_exec_curr(cc, direct) = NULL;
882        if (cc_exec_drain(cc, direct)) {
883                void (*drain)(void *);
884               
885                drain = cc_exec_drain(cc, direct);
886                cc_exec_drain(cc, direct) = NULL;
887                CC_UNLOCK(cc);
888                drain(c_arg);
889                CC_LOCK(cc);
890        }
891        if (cc_exec_waiting(cc, direct)) {
892#ifndef __rtems__
893                /*
894                 * There is someone waiting for the
895                 * callout to complete.
896                 * If the callout was scheduled for
897                 * migration just cancel it.
898                 */
899                if (cc_cce_migrating(cc, direct)) {
900                        cc_cce_cleanup(cc, direct);
901
902                        /*
903                         * It should be assert here that the callout is not
904                         * destroyed but that is not easy.
905                         */
906                        c->c_iflags &= ~CALLOUT_DFRMIGRATION;
907                }
908#endif /* __rtems__ */
909                cc_exec_waiting(cc, direct) = false;
910                CC_UNLOCK(cc);
911                wakeup(&cc_exec_waiting(cc, direct));
912                CC_LOCK(cc);
913#ifndef __rtems__
914        } else if (cc_cce_migrating(cc, direct)) {
915                KASSERT((c_iflags & CALLOUT_LOCAL_ALLOC) == 0,
916                    ("Migrating legacy callout %p", c));
917#ifdef SMP
918                /*
919                 * If the callout was scheduled for
920                 * migration just perform it now.
921                 */
922                new_cpu = cc_migration_cpu(cc, direct);
923                new_time = cc_migration_time(cc, direct);
924                new_prec = cc_migration_prec(cc, direct);
925                new_func = cc_migration_func(cc, direct);
926                new_arg = cc_migration_arg(cc, direct);
927                cc_cce_cleanup(cc, direct);
928
929                /*
930                 * It should be assert here that the callout is not destroyed
931                 * but that is not easy.
932                 *
933                 * As first thing, handle deferred callout stops.
934                 */
935                if (!callout_migrating(c)) {
936                        CTR3(KTR_CALLOUT,
937                             "deferred cancelled %p func %p arg %p",
938                             c, new_func, new_arg);
939                        callout_cc_del(c, cc);
940                        return;
941                }
942                c->c_iflags &= ~CALLOUT_DFRMIGRATION;
943
944                new_cc = callout_cpu_switch(c, cc, new_cpu);
945                flags = (direct) ? C_DIRECT_EXEC : 0;
946                callout_cc_add(c, new_cc, new_time, new_prec, new_func,
947                    new_arg, new_cpu, flags);
948                CC_UNLOCK(new_cc);
949                CC_LOCK(cc);
950#else
951                panic("migration should not happen");
952#endif
953#endif /* __rtems__ */
954        }
955        /*
956         * If the current callout is locally allocated (from
957         * timeout(9)) then put it on the freelist.
958         *
959         * Note: we need to check the cached copy of c_iflags because
960         * if it was not local, then it's not safe to deref the
961         * callout pointer.
962         */
963        KASSERT((c_iflags & CALLOUT_LOCAL_ALLOC) == 0 ||
964            c->c_iflags == CALLOUT_LOCAL_ALLOC,
965            ("corrupted callout"));
966        if (c_iflags & CALLOUT_LOCAL_ALLOC)
967                callout_cc_del(c, cc);
968}
969
970/*
971 * The callout mechanism is based on the work of Adam M. Costello and
972 * George Varghese, published in a technical report entitled "Redesigning
973 * the BSD Callout and Timer Facilities" and modified slightly for inclusion
974 * in FreeBSD by Justin T. Gibbs.  The original work on the data structures
975 * used in this implementation was published by G. Varghese and T. Lauck in
976 * the paper "Hashed and Hierarchical Timing Wheels: Data Structures for
977 * the Efficient Implementation of a Timer Facility" in the Proceedings of
978 * the 11th ACM Annual Symposium on Operating Systems Principles,
979 * Austin, Texas Nov 1987.
980 */
981
982#ifndef __rtems__
983/*
984 * Software (low priority) clock interrupt.
985 * Run periodic events from timeout queue.
986 */
987void
988softclock(void *arg)
989{
990        struct callout_cpu *cc;
991        struct callout *c;
992#ifdef CALLOUT_PROFILING
993        int depth = 0, gcalls = 0, lockcalls = 0, mpcalls = 0;
994#endif
995
996        cc = (struct callout_cpu *)arg;
997        CC_LOCK(cc);
998        while ((c = TAILQ_FIRST(&cc->cc_expireq)) != NULL) {
999                TAILQ_REMOVE(&cc->cc_expireq, c, c_links.tqe);
1000                softclock_call_cc(c, cc,
1001#ifdef CALLOUT_PROFILING
1002                    &mpcalls, &lockcalls, &gcalls,
1003#endif
1004                    0);
1005#ifdef CALLOUT_PROFILING
1006                ++depth;
1007#endif
1008        }
1009#ifdef CALLOUT_PROFILING
1010        avg_depth += (depth * 1000 - avg_depth) >> 8;
1011        avg_mpcalls += (mpcalls * 1000 - avg_mpcalls) >> 8;
1012        avg_lockcalls += (lockcalls * 1000 - avg_lockcalls) >> 8;
1013        avg_gcalls += (gcalls * 1000 - avg_gcalls) >> 8;
1014#endif
1015        CC_UNLOCK(cc);
1016}
1017#endif /* __rtems__ */
1018
1019/*
1020 * timeout --
1021 *      Execute a function after a specified length of time.
1022 *
1023 * untimeout --
1024 *      Cancel previous timeout function call.
1025 *
1026 * callout_handle_init --
1027 *      Initialize a handle so that using it with untimeout is benign.
1028 *
1029 *      See AT&T BCI Driver Reference Manual for specification.  This
1030 *      implementation differs from that one in that although an
1031 *      identification value is returned from timeout, the original
1032 *      arguments to timeout as well as the identifier are used to
1033 *      identify entries for untimeout.
1034 */
1035struct callout_handle
1036timeout(timeout_t *ftn, void *arg, int to_ticks)
1037{
1038        struct callout_cpu *cc;
1039        struct callout *new;
1040        struct callout_handle handle;
1041
1042        cc = CC_CPU(timeout_cpu);
1043        CC_LOCK(cc);
1044        /* Fill in the next free callout structure. */
1045        new = SLIST_FIRST(&cc->cc_callfree);
1046        if (new == NULL)
1047                /* XXX Attempt to malloc first */
1048                panic("timeout table full");
1049        SLIST_REMOVE_HEAD(&cc->cc_callfree, c_links.sle);
1050        callout_reset(new, to_ticks, ftn, arg);
1051        handle.callout = new;
1052        CC_UNLOCK(cc);
1053
1054        return (handle);
1055}
1056
1057void
1058untimeout(timeout_t *ftn, void *arg, struct callout_handle handle)
1059{
1060        struct callout_cpu *cc;
1061
1062        /*
1063         * Check for a handle that was initialized
1064         * by callout_handle_init, but never used
1065         * for a real timeout.
1066         */
1067        if (handle.callout == NULL)
1068                return;
1069
1070        cc = callout_lock(handle.callout);
1071        if (handle.callout->c_func == ftn && handle.callout->c_arg == arg)
1072                callout_stop(handle.callout);
1073        CC_UNLOCK(cc);
1074}
1075
1076void
1077callout_handle_init(struct callout_handle *handle)
1078{
1079        handle->callout = NULL;
1080}
1081
1082void
1083callout_when(sbintime_t sbt, sbintime_t precision, int flags,
1084    sbintime_t *res, sbintime_t *prec_res)
1085{
1086        sbintime_t to_sbt, to_pr;
1087
1088        if ((flags & (C_ABSOLUTE | C_PRECALC)) != 0) {
1089                *res = sbt;
1090                *prec_res = precision;
1091                return;
1092        }
1093        if ((flags & C_HARDCLOCK) != 0 && sbt < tick_sbt)
1094                sbt = tick_sbt;
1095        if ((flags & C_HARDCLOCK) != 0 ||
1096#ifdef NO_EVENTTIMERS
1097            sbt >= sbt_timethreshold) {
1098                to_sbt = getsbinuptime();
1099
1100                /* Add safety belt for the case of hz > 1000. */
1101                to_sbt += tc_tick_sbt - tick_sbt;
1102#else
1103            sbt >= sbt_tickthreshold) {
1104                /*
1105                 * Obtain the time of the last hardclock() call on
1106                 * this CPU directly from the kern_clocksource.c.
1107                 * This value is per-CPU, but it is equal for all
1108                 * active ones.
1109                 */
1110#ifdef __LP64__
1111                to_sbt = DPCPU_GET(hardclocktime);
1112#else
1113                spinlock_enter();
1114                to_sbt = DPCPU_GET(hardclocktime);
1115                spinlock_exit();
1116#endif
1117#endif
1118                if (cold && to_sbt == 0)
1119                        to_sbt = sbinuptime();
1120                if ((flags & C_HARDCLOCK) == 0)
1121                        to_sbt += tick_sbt;
1122        } else
1123                to_sbt = sbinuptime();
1124        if (SBT_MAX - to_sbt < sbt)
1125                to_sbt = SBT_MAX;
1126        else
1127                to_sbt += sbt;
1128        *res = to_sbt;
1129        to_pr = ((C_PRELGET(flags) < 0) ? sbt >> tc_precexp :
1130            sbt >> C_PRELGET(flags));
1131        *prec_res = to_pr > precision ? to_pr : precision;
1132}
1133
1134/*
1135 * New interface; clients allocate their own callout structures.
1136 *
1137 * callout_reset() - establish or change a timeout
1138 * callout_stop() - disestablish a timeout
1139 * callout_init() - initialize a callout structure so that it can
1140 *      safely be passed to callout_reset() and callout_stop()
1141 *
1142 * <sys/callout.h> defines three convenience macros:
1143 *
1144 * callout_active() - returns truth if callout has not been stopped,
1145 *      drained, or deactivated since the last time the callout was
1146 *      reset.
1147 * callout_pending() - returns truth if callout is still waiting for timeout
1148 * callout_deactivate() - marks the callout as having been serviced
1149 */
1150int
1151callout_reset_sbt_on(struct callout *c, sbintime_t sbt, sbintime_t prec,
1152    void (*ftn)(void *), void *arg, int cpu, int flags)
1153{
1154        sbintime_t to_sbt, precision;
1155        struct callout_cpu *cc;
1156#ifndef __rtems__
1157        int cancelled, direct;
1158        int ignore_cpu=0;
1159#else /* __rtems__ */
1160        int cancelled;
1161#endif /* __rtems__ */
1162
1163        cancelled = 0;
1164#ifndef __rtems__
1165        if (cpu == -1) {
1166                ignore_cpu = 1;
1167        } else if ((cpu >= MAXCPU) ||
1168                   ((CC_CPU(cpu))->cc_inited == 0)) {
1169                /* Invalid CPU spec */
1170                panic("Invalid CPU in callout %d", cpu);
1171        }
1172#endif /* __rtems__ */
1173        callout_when(sbt, prec, flags, &to_sbt, &precision);
1174
1175#ifndef __rtems__
1176        /*
1177         * This flag used to be added by callout_cc_add, but the
1178         * first time you call this we could end up with the
1179         * wrong direct flag if we don't do it before we add.
1180         */
1181        if (flags & C_DIRECT_EXEC) {
1182                direct = 1;
1183        } else {
1184                direct = 0;
1185        }
1186        KASSERT(!direct || c->c_lock == NULL,
1187            ("%s: direct callout %p has lock", __func__, c));
1188#endif /* __rtems__ */
1189        cc = callout_lock(c);
1190#ifndef __rtems__
1191        /*
1192         * Don't allow migration of pre-allocated callouts lest they
1193         * become unbalanced or handle the case where the user does
1194         * not care.
1195         */
1196        if ((c->c_iflags & CALLOUT_LOCAL_ALLOC) ||
1197            ignore_cpu) {
1198                cpu = c->c_cpu;
1199        }
1200#endif /* __rtems__ */
1201
1202        if (cc_exec_curr(cc, direct) == c) {
1203                /*
1204                 * We're being asked to reschedule a callout which is
1205                 * currently in progress.  If there is a lock then we
1206                 * can cancel the callout if it has not really started.
1207                 */
1208                if (c->c_lock != NULL && !cc_exec_cancel(cc, direct))
1209                        cancelled = cc_exec_cancel(cc, direct) = true;
1210                if (cc_exec_waiting(cc, direct) || cc_exec_drain(cc, direct)) {
1211                        /*
1212                         * Someone has called callout_drain to kill this
1213                         * callout.  Don't reschedule.
1214                         */
1215                        CTR4(KTR_CALLOUT, "%s %p func %p arg %p",
1216                            cancelled ? "cancelled" : "failed to cancel",
1217                            c, c->c_func, c->c_arg);
1218                        CC_UNLOCK(cc);
1219                        return (cancelled);
1220                }
1221#ifdef SMP
1222                if (callout_migrating(c)) {
1223                        /*
1224                         * This only occurs when a second callout_reset_sbt_on
1225                         * is made after a previous one moved it into
1226                         * deferred migration (below). Note we do *not* change
1227                         * the prev_cpu even though the previous target may
1228                         * be different.
1229                         */
1230                        cc_migration_cpu(cc, direct) = cpu;
1231                        cc_migration_time(cc, direct) = to_sbt;
1232                        cc_migration_prec(cc, direct) = precision;
1233                        cc_migration_func(cc, direct) = ftn;
1234                        cc_migration_arg(cc, direct) = arg;
1235                        cancelled = 1;
1236                        CC_UNLOCK(cc);
1237                        return (cancelled);
1238                }
1239#endif
1240        }
1241        if (c->c_iflags & CALLOUT_PENDING) {
1242#ifndef __rtems__
1243                if ((c->c_iflags & CALLOUT_PROCESSED) == 0) {
1244#endif /* __rtems__ */
1245                        if (cc_exec_next(cc) == c)
1246                                cc_exec_next(cc) = LIST_NEXT(c, c_links.le);
1247                        LIST_REMOVE(c, c_links.le);
1248#ifndef __rtems__
1249                } else {
1250                        TAILQ_REMOVE(&cc->cc_expireq, c, c_links.tqe);
1251                }
1252#endif /* __rtems__ */
1253                cancelled = 1;
1254                c->c_iflags &= ~ CALLOUT_PENDING;
1255                c->c_flags &= ~ CALLOUT_ACTIVE;
1256        }
1257
1258#ifdef SMP
1259        /*
1260         * If the callout must migrate try to perform it immediately.
1261         * If the callout is currently running, just defer the migration
1262         * to a more appropriate moment.
1263         */
1264        if (c->c_cpu != cpu) {
1265                if (cc_exec_curr(cc, direct) == c) {
1266                        /*
1267                         * Pending will have been removed since we are
1268                         * actually executing the callout on another
1269                         * CPU. That callout should be waiting on the
1270                         * lock the caller holds. If we set both
1271                         * active/and/pending after we return and the
1272                         * lock on the executing callout proceeds, it
1273                         * will then see pending is true and return.
1274                         * At the return from the actual callout execution
1275                         * the migration will occur in softclock_call_cc
1276                         * and this new callout will be placed on the
1277                         * new CPU via a call to callout_cpu_switch() which
1278                         * will get the lock on the right CPU followed
1279                         * by a call callout_cc_add() which will add it there.
1280                         * (see above in softclock_call_cc()).
1281                         */
1282                        cc_migration_cpu(cc, direct) = cpu;
1283                        cc_migration_time(cc, direct) = to_sbt;
1284                        cc_migration_prec(cc, direct) = precision;
1285                        cc_migration_func(cc, direct) = ftn;
1286                        cc_migration_arg(cc, direct) = arg;
1287                        c->c_iflags |= (CALLOUT_DFRMIGRATION | CALLOUT_PENDING);
1288                        c->c_flags |= CALLOUT_ACTIVE;
1289                        CTR6(KTR_CALLOUT,
1290                    "migration of %p func %p arg %p in %d.%08x to %u deferred",
1291                            c, c->c_func, c->c_arg, (int)(to_sbt >> 32),
1292                            (u_int)(to_sbt & 0xffffffff), cpu);
1293                        CC_UNLOCK(cc);
1294                        return (cancelled);
1295                }
1296                cc = callout_cpu_switch(c, cc, cpu);
1297        }
1298#endif
1299
1300        callout_cc_add(c, cc, to_sbt, precision, ftn, arg, cpu, flags);
1301        CTR6(KTR_CALLOUT, "%sscheduled %p func %p arg %p in %d.%08x",
1302            cancelled ? "re" : "", c, c->c_func, c->c_arg, (int)(to_sbt >> 32),
1303            (u_int)(to_sbt & 0xffffffff));
1304        CC_UNLOCK(cc);
1305
1306        return (cancelled);
1307}
1308
1309/*
1310 * Common idioms that can be optimized in the future.
1311 */
1312int
1313callout_schedule_on(struct callout *c, int to_ticks, int cpu)
1314{
1315        return callout_reset_on(c, to_ticks, c->c_func, c->c_arg, cpu);
1316}
1317
1318int
1319callout_schedule(struct callout *c, int to_ticks)
1320{
1321#ifndef __rtems__
1322        return callout_reset_on(c, to_ticks, c->c_func, c->c_arg, c->c_cpu);
1323#else /* __rtems__ */
1324        return callout_reset_on(c, to_ticks, c->c_func, c->c_arg, 0);
1325#endif /* __rtems__ */
1326}
1327
1328int
1329_callout_stop_safe(struct callout *c, int flags, void (*drain)(void *))
1330{
1331#ifndef __rtems__
1332        struct callout_cpu *cc, *old_cc;
1333        struct lock_class *class;
1334        int direct, sq_locked, use_lock;
1335        int cancelled, not_on_a_list;
1336#else /* __rtems__ */
1337        struct callout_cpu *cc;
1338        struct lock_class *class;
1339        int use_lock;
1340        int cancelled;
1341#endif /* __rtems__ */
1342
1343        if ((flags & CS_DRAIN) != 0)
1344                WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, c->c_lock,
1345                    "calling %s", __func__);
1346
1347        /*
1348         * Some old subsystems don't hold Giant while running a callout_stop(),
1349         * so just discard this check for the moment.
1350         */
1351        if ((flags & CS_DRAIN) == 0 && c->c_lock != NULL) {
1352                if (c->c_lock == &Giant.lock_object)
1353                        use_lock = mtx_owned(&Giant);
1354                else {
1355                        use_lock = 1;
1356                        class = LOCK_CLASS(c->c_lock);
1357                        class->lc_assert(c->c_lock, LA_XLOCKED);
1358                }
1359        } else
1360                use_lock = 0;
1361#ifndef __rtems__
1362        if (c->c_iflags & CALLOUT_DIRECT) {
1363                direct = 1;
1364        } else {
1365                direct = 0;
1366        }
1367
1368        sq_locked = 0;
1369        old_cc = NULL;
1370again:
1371#endif /* __rtems__ */
1372        cc = callout_lock(c);
1373
1374#ifndef __rtems__
1375        if ((c->c_iflags & (CALLOUT_DFRMIGRATION | CALLOUT_PENDING)) ==
1376            (CALLOUT_DFRMIGRATION | CALLOUT_PENDING) &&
1377            ((c->c_flags & CALLOUT_ACTIVE) == CALLOUT_ACTIVE)) {
1378                /*
1379                 * Special case where this slipped in while we
1380                 * were migrating *as* the callout is about to
1381                 * execute. The caller probably holds the lock
1382                 * the callout wants.
1383                 *
1384                 * Get rid of the migration first. Then set
1385                 * the flag that tells this code *not* to
1386                 * try to remove it from any lists (its not
1387                 * on one yet). When the callout wheel runs,
1388                 * it will ignore this callout.
1389                 */
1390                c->c_iflags &= ~CALLOUT_PENDING;
1391                c->c_flags &= ~CALLOUT_ACTIVE;
1392                not_on_a_list = 1;
1393        } else {
1394                not_on_a_list = 0;
1395        }
1396
1397        /*
1398         * If the callout was migrating while the callout cpu lock was
1399         * dropped,  just drop the sleepqueue lock and check the states
1400         * again.
1401         */
1402        if (sq_locked != 0 && cc != old_cc) {
1403#ifdef SMP
1404                CC_UNLOCK(cc);
1405                sleepq_release(&cc_exec_waiting(old_cc, direct));
1406                sq_locked = 0;
1407                old_cc = NULL;
1408                goto again;
1409#else
1410                panic("migration should not happen");
1411#endif
1412        }
1413#endif /* __rtems__ */
1414
1415        /*
1416         * If the callout is running, try to stop it or drain it.
1417         */
1418        if (cc_exec_curr(cc, direct) == c) {
1419                /*
1420                 * Succeed we to stop it or not, we must clear the
1421                 * active flag - this is what API users expect.  If we're
1422                 * draining and the callout is currently executing, first wait
1423                 * until it finishes.
1424                 */
1425                if ((flags & CS_DRAIN) == 0)
1426                        c->c_flags &= ~CALLOUT_ACTIVE;
1427
1428                if ((flags & CS_DRAIN) != 0) {
1429                        /*
1430                         * The current callout is running (or just
1431                         * about to run) and blocking is allowed, so
1432                         * just wait for the current invocation to
1433                         * finish.
1434                         */
1435                        while (cc_exec_curr(cc, direct) == c) {
1436#ifndef __rtems__
1437
1438                                /*
1439                                 * Use direct calls to sleepqueue interface
1440                                 * instead of cv/msleep in order to avoid
1441                                 * a LOR between cc_lock and sleepqueue
1442                                 * chain spinlocks.  This piece of code
1443                                 * emulates a msleep_spin() call actually.
1444                                 *
1445                                 * If we already have the sleepqueue chain
1446                                 * locked, then we can safely block.  If we
1447                                 * don't already have it locked, however,
1448                                 * we have to drop the cc_lock to lock
1449                                 * it.  This opens several races, so we
1450                                 * restart at the beginning once we have
1451                                 * both locks.  If nothing has changed, then
1452                                 * we will end up back here with sq_locked
1453                                 * set.
1454                                 */
1455                                if (!sq_locked) {
1456                                        CC_UNLOCK(cc);
1457                                        sleepq_lock(
1458                                            &cc_exec_waiting(cc, direct));
1459                                        sq_locked = 1;
1460                                        old_cc = cc;
1461                                        goto again;
1462                                }
1463
1464                                /*
1465                                 * Migration could be cancelled here, but
1466                                 * as long as it is still not sure when it
1467                                 * will be packed up, just let softclock()
1468                                 * take care of it.
1469                                 */
1470                                cc_exec_waiting(cc, direct) = true;
1471                                DROP_GIANT();
1472                                CC_UNLOCK(cc);
1473                                sleepq_add(
1474                                    &cc_exec_waiting(cc, direct),
1475                                    &cc->cc_lock.lock_object, "codrain",
1476                                    SLEEPQ_SLEEP, 0);
1477                                sleepq_wait(
1478                                    &cc_exec_waiting(cc, direct),
1479                                             0);
1480                                sq_locked = 0;
1481                                old_cc = NULL;
1482
1483                                /* Reacquire locks previously released. */
1484                                PICKUP_GIANT();
1485                                CC_LOCK(cc);
1486#else /* __rtems__ */
1487                                /*
1488                                 * On RTEMS the LOR problem above does not
1489                                 * exist since here we do not use
1490                                 * sleepq_set_timeout() and instead use the
1491                                 * RTEMS watchdog.
1492                                 */
1493                                cc_exec_waiting(cc, direct) = true;
1494                                msleep_spin(&cc_exec_waiting(cc, direct),
1495                                    &cc->cc_lock, "codrain", 0);
1496#endif /* __rtems__ */
1497                        }
1498                        c->c_flags &= ~CALLOUT_ACTIVE;
1499                } else if (use_lock &&
1500                           !cc_exec_cancel(cc, direct) && (drain == NULL)) {
1501                       
1502                        /*
1503                         * The current callout is waiting for its
1504                         * lock which we hold.  Cancel the callout
1505                         * and return.  After our caller drops the
1506                         * lock, the callout will be skipped in
1507                         * softclock(). This *only* works with a
1508                         * callout_stop() *not* callout_drain() or
1509                         * callout_async_drain().
1510                         */
1511                        cc_exec_cancel(cc, direct) = true;
1512                        CTR3(KTR_CALLOUT, "cancelled %p func %p arg %p",
1513                            c, c->c_func, c->c_arg);
1514#ifndef __rtems__
1515                        KASSERT(!cc_cce_migrating(cc, direct),
1516                            ("callout wrongly scheduled for migration"));
1517                        if (callout_migrating(c)) {
1518                                c->c_iflags &= ~CALLOUT_DFRMIGRATION;
1519#ifdef SMP
1520                                cc_migration_cpu(cc, direct) = CPUBLOCK;
1521                                cc_migration_time(cc, direct) = 0;
1522                                cc_migration_prec(cc, direct) = 0;
1523                                cc_migration_func(cc, direct) = NULL;
1524                                cc_migration_arg(cc, direct) = NULL;
1525#endif
1526                        }
1527#endif /* __rtems__ */
1528                        CC_UNLOCK(cc);
1529#ifndef __rtems__
1530                        KASSERT(!sq_locked, ("sleepqueue chain locked"));
1531#endif /* __rtems__ */
1532                        return (1);
1533#ifndef __rtems__
1534                } else if (callout_migrating(c)) {
1535                        /*
1536                         * The callout is currently being serviced
1537                         * and the "next" callout is scheduled at
1538                         * its completion with a migration. We remove
1539                         * the migration flag so it *won't* get rescheduled,
1540                         * but we can't stop the one thats running so
1541                         * we return 0.
1542                         */
1543                        c->c_iflags &= ~CALLOUT_DFRMIGRATION;
1544#ifdef SMP
1545                        /*
1546                         * We can't call cc_cce_cleanup here since
1547                         * if we do it will remove .ce_curr and
1548                         * its still running. This will prevent a
1549                         * reschedule of the callout when the
1550                         * execution completes.
1551                         */
1552                        cc_migration_cpu(cc, direct) = CPUBLOCK;
1553                        cc_migration_time(cc, direct) = 0;
1554                        cc_migration_prec(cc, direct) = 0;
1555                        cc_migration_func(cc, direct) = NULL;
1556                        cc_migration_arg(cc, direct) = NULL;
1557#endif
1558                        CTR3(KTR_CALLOUT, "postponing stop %p func %p arg %p",
1559                            c, c->c_func, c->c_arg);
1560                        if (drain) {
1561                                cc_exec_drain(cc, direct) = drain;
1562                        }
1563                        CC_UNLOCK(cc);
1564                        return ((flags & CS_EXECUTING) != 0);
1565#endif /* __rtems__ */
1566                }
1567                CTR3(KTR_CALLOUT, "failed to stop %p func %p arg %p",
1568                    c, c->c_func, c->c_arg);
1569                if (drain) {
1570                        cc_exec_drain(cc, direct) = drain;
1571                }
1572#ifndef __rtems__
1573                KASSERT(!sq_locked, ("sleepqueue chain still locked"));
1574#endif /* __rtems__ */
1575                cancelled = ((flags & CS_EXECUTING) != 0);
1576        } else
1577                cancelled = 1;
1578
1579#ifndef __rtems__
1580        if (sq_locked)
1581                sleepq_release(&cc_exec_waiting(cc, direct));
1582#endif /* __rtems__ */
1583
1584        if ((c->c_iflags & CALLOUT_PENDING) == 0) {
1585                CTR3(KTR_CALLOUT, "failed to stop %p func %p arg %p",
1586                    c, c->c_func, c->c_arg);
1587                /*
1588                 * For not scheduled and not executing callout return
1589                 * negative value.
1590                 */
1591                if (cc_exec_curr(cc, direct) != c)
1592                        cancelled = -1;
1593                CC_UNLOCK(cc);
1594                return (cancelled);
1595        }
1596
1597        c->c_iflags &= ~CALLOUT_PENDING;
1598        c->c_flags &= ~CALLOUT_ACTIVE;
1599
1600        CTR3(KTR_CALLOUT, "cancelled %p func %p arg %p",
1601            c, c->c_func, c->c_arg);
1602#ifndef __rtems__
1603        if (not_on_a_list == 0) {
1604                if ((c->c_iflags & CALLOUT_PROCESSED) == 0) {
1605#endif /* __rtems__ */
1606                        if (cc_exec_next(cc) == c)
1607                                cc_exec_next(cc) = LIST_NEXT(c, c_links.le);
1608                        LIST_REMOVE(c, c_links.le);
1609#ifndef __rtems__
1610                } else {
1611                        TAILQ_REMOVE(&cc->cc_expireq, c, c_links.tqe);
1612                }
1613        }
1614#endif /* __rtems__ */
1615        callout_cc_del(c, cc);
1616        CC_UNLOCK(cc);
1617        return (cancelled);
1618}
1619
1620void
1621callout_init(struct callout *c, int mpsafe)
1622{
1623        bzero(c, sizeof *c);
1624        if (mpsafe) {
1625                c->c_lock = NULL;
1626                c->c_iflags = CALLOUT_RETURNUNLOCKED;
1627        } else {
1628                c->c_lock = &Giant.lock_object;
1629                c->c_iflags = 0;
1630        }
1631#ifndef __rtems__
1632        c->c_cpu = timeout_cpu;
1633#endif /* __rtems__ */
1634}
1635
1636void
1637_callout_init_lock(struct callout *c, struct lock_object *lock, int flags)
1638{
1639        bzero(c, sizeof *c);
1640        c->c_lock = lock;
1641        KASSERT((flags & ~(CALLOUT_RETURNUNLOCKED | CALLOUT_SHAREDLOCK)) == 0,
1642            ("callout_init_lock: bad flags %d", flags));
1643        KASSERT(lock != NULL || (flags & CALLOUT_RETURNUNLOCKED) == 0,
1644            ("callout_init_lock: CALLOUT_RETURNUNLOCKED with no lock"));
1645        KASSERT(lock == NULL || !(LOCK_CLASS(lock)->lc_flags &
1646            (LC_SPINLOCK | LC_SLEEPABLE)), ("%s: invalid lock class",
1647            __func__));
1648        c->c_iflags = flags & (CALLOUT_RETURNUNLOCKED | CALLOUT_SHAREDLOCK);
1649#ifndef __rtems__
1650        c->c_cpu = timeout_cpu;
1651#endif /* __rtems__ */
1652}
1653
1654#ifdef APM_FIXUP_CALLTODO
1655/*
1656 * Adjust the kernel calltodo timeout list.  This routine is used after
1657 * an APM resume to recalculate the calltodo timer list values with the
1658 * number of hz's we have been sleeping.  The next hardclock() will detect
1659 * that there are fired timers and run softclock() to execute them.
1660 *
1661 * Please note, I have not done an exhaustive analysis of what code this
1662 * might break.  I am motivated to have my select()'s and alarm()'s that
1663 * have expired during suspend firing upon resume so that the applications
1664 * which set the timer can do the maintanence the timer was for as close
1665 * as possible to the originally intended time.  Testing this code for a
1666 * week showed that resuming from a suspend resulted in 22 to 25 timers
1667 * firing, which seemed independent on whether the suspend was 2 hours or
1668 * 2 days.  Your milage may vary.   - Ken Key <key@cs.utk.edu>
1669 */
1670void
1671adjust_timeout_calltodo(struct timeval *time_change)
1672{
1673        register struct callout *p;
1674        unsigned long delta_ticks;
1675
1676        /*
1677         * How many ticks were we asleep?
1678         * (stolen from tvtohz()).
1679         */
1680
1681        /* Don't do anything */
1682        if (time_change->tv_sec < 0)
1683                return;
1684        else if (time_change->tv_sec <= LONG_MAX / 1000000)
1685                delta_ticks = howmany(time_change->tv_sec * 1000000 +
1686                    time_change->tv_usec, tick) + 1;
1687        else if (time_change->tv_sec <= LONG_MAX / hz)
1688                delta_ticks = time_change->tv_sec * hz +
1689                    howmany(time_change->tv_usec, tick) + 1;
1690        else
1691                delta_ticks = LONG_MAX;
1692
1693        if (delta_ticks > INT_MAX)
1694                delta_ticks = INT_MAX;
1695
1696        /*
1697         * Now rip through the timer calltodo list looking for timers
1698         * to expire.
1699         */
1700
1701        /* don't collide with softclock() */
1702        CC_LOCK(cc);
1703        for (p = calltodo.c_next; p != NULL; p = p->c_next) {
1704                p->c_time -= delta_ticks;
1705
1706                /* Break if the timer had more time on it than delta_ticks */
1707                if (p->c_time > 0)
1708                        break;
1709
1710                /* take back the ticks the timer didn't use (p->c_time <= 0) */
1711                delta_ticks = -p->c_time;
1712        }
1713        CC_UNLOCK(cc);
1714
1715        return;
1716}
1717#endif /* APM_FIXUP_CALLTODO */
1718
1719static int
1720flssbt(sbintime_t sbt)
1721{
1722
1723        sbt += (uint64_t)sbt >> 1;
1724        if (sizeof(long) >= sizeof(sbintime_t))
1725                return (flsl(sbt));
1726        if (sbt >= SBT_1S)
1727                return (flsl(((uint64_t)sbt) >> 32) + 32);
1728        return (flsl(sbt));
1729}
1730
1731/*
1732 * Dump immediate statistic snapshot of the scheduled callouts.
1733 */
1734static int
1735sysctl_kern_callout_stat(SYSCTL_HANDLER_ARGS)
1736{
1737        struct callout *tmp;
1738        struct callout_cpu *cc;
1739        struct callout_list *sc;
1740        sbintime_t maxpr, maxt, medpr, medt, now, spr, st, t;
1741        int ct[64], cpr[64], ccpbk[32];
1742        int error, val, i, count, tcum, pcum, maxc, c, medc;
1743#ifdef SMP
1744        int cpu;
1745#endif
1746
1747        val = 0;
1748        error = sysctl_handle_int(oidp, &val, 0, req);
1749        if (error != 0 || req->newptr == NULL)
1750                return (error);
1751        count = maxc = 0;
1752        st = spr = maxt = maxpr = 0;
1753        bzero(ccpbk, sizeof(ccpbk));
1754        bzero(ct, sizeof(ct));
1755        bzero(cpr, sizeof(cpr));
1756        now = sbinuptime();
1757#ifdef SMP
1758        CPU_FOREACH(cpu) {
1759                cc = CC_CPU(cpu);
1760#else
1761                cc = CC_CPU(timeout_cpu);
1762#endif
1763                CC_LOCK(cc);
1764                for (i = 0; i < callwheelsize; i++) {
1765                        sc = &cc->cc_callwheel[i];
1766                        c = 0;
1767                        LIST_FOREACH(tmp, sc, c_links.le) {
1768                                c++;
1769                                t = tmp->c_time - now;
1770                                if (t < 0)
1771                                        t = 0;
1772                                st += t / SBT_1US;
1773                                spr += tmp->c_precision / SBT_1US;
1774                                if (t > maxt)
1775                                        maxt = t;
1776                                if (tmp->c_precision > maxpr)
1777                                        maxpr = tmp->c_precision;
1778                                ct[flssbt(t)]++;
1779                                cpr[flssbt(tmp->c_precision)]++;
1780                        }
1781                        if (c > maxc)
1782                                maxc = c;
1783                        ccpbk[fls(c + c / 2)]++;
1784                        count += c;
1785                }
1786                CC_UNLOCK(cc);
1787#ifdef SMP
1788        }
1789#endif
1790
1791        for (i = 0, tcum = 0; i < 64 && tcum < count / 2; i++)
1792                tcum += ct[i];
1793        medt = (i >= 2) ? (((sbintime_t)1) << (i - 2)) : 0;
1794        for (i = 0, pcum = 0; i < 64 && pcum < count / 2; i++)
1795                pcum += cpr[i];
1796        medpr = (i >= 2) ? (((sbintime_t)1) << (i - 2)) : 0;
1797        for (i = 0, c = 0; i < 32 && c < count / 2; i++)
1798                c += ccpbk[i];
1799        medc = (i >= 2) ? (1 << (i - 2)) : 0;
1800
1801        printf("Scheduled callouts statistic snapshot:\n");
1802        printf("  Callouts: %6d  Buckets: %6d*%-3d  Bucket size: 0.%06ds\n",
1803            count, callwheelsize, mp_ncpus, 1000000 >> CC_HASH_SHIFT);
1804        printf("  C/Bk: med %5d         avg %6d.%06jd  max %6d\n",
1805            medc,
1806            count / callwheelsize / mp_ncpus,
1807            (uint64_t)count * 1000000 / callwheelsize / mp_ncpus % 1000000,
1808            maxc);
1809        printf("  Time: med %5jd.%06jds avg %6jd.%06jds max %6jd.%06jds\n",
1810            medt / SBT_1S, (medt & 0xffffffff) * 1000000 >> 32,
1811            (st / count) / 1000000, (st / count) % 1000000,
1812            maxt / SBT_1S, (maxt & 0xffffffff) * 1000000 >> 32);
1813        printf("  Prec: med %5jd.%06jds avg %6jd.%06jds max %6jd.%06jds\n",
1814            medpr / SBT_1S, (medpr & 0xffffffff) * 1000000 >> 32,
1815            (spr / count) / 1000000, (spr / count) % 1000000,
1816            maxpr / SBT_1S, (maxpr & 0xffffffff) * 1000000 >> 32);
1817        printf("  Distribution:       \tbuckets\t   time\t   tcum\t"
1818            "   prec\t   pcum\n");
1819        for (i = 0, tcum = pcum = 0; i < 64; i++) {
1820                if (ct[i] == 0 && cpr[i] == 0)
1821                        continue;
1822                t = (i != 0) ? (((sbintime_t)1) << (i - 1)) : 0;
1823                tcum += ct[i];
1824                pcum += cpr[i];
1825                printf("  %10jd.%06jds\t 2**%d\t%7d\t%7d\t%7d\t%7d\n",
1826                    t / SBT_1S, (t & 0xffffffff) * 1000000 >> 32,
1827                    i - 1 - (32 - CC_HASH_SHIFT),
1828                    ct[i], tcum, cpr[i], pcum);
1829        }
1830        return (error);
1831}
1832SYSCTL_PROC(_kern, OID_AUTO, callout_stat,
1833    CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE,
1834    0, 0, sysctl_kern_callout_stat, "I",
1835    "Dump immediate statistic snapshot of the scheduled callouts");
1836
1837#ifdef DDB
1838static void
1839_show_callout(struct callout *c)
1840{
1841
1842        db_printf("callout %p\n", c);
1843#define C_DB_PRINTF(f, e)       db_printf("   %s = " f "\n", #e, c->e);
1844        db_printf("   &c_links = %p\n", &(c->c_links));
1845        C_DB_PRINTF("%" PRId64, c_time);
1846        C_DB_PRINTF("%" PRId64, c_precision);
1847        C_DB_PRINTF("%p",       c_arg);
1848        C_DB_PRINTF("%p",       c_func);
1849        C_DB_PRINTF("%p",       c_lock);
1850        C_DB_PRINTF("%#x",      c_flags);
1851        C_DB_PRINTF("%#x",      c_iflags);
1852        C_DB_PRINTF("%d",       c_cpu);
1853#undef  C_DB_PRINTF
1854}
1855
1856DB_SHOW_COMMAND(callout, db_show_callout)
1857{
1858
1859        if (!have_addr) {
1860                db_printf("usage: show callout <struct callout *>\n");
1861                return;
1862        }
1863
1864        _show_callout((struct callout *)addr);
1865}
1866#endif /* DDB */
Note: See TracBrowser for help on using the repository browser.