source: rtems-libbsd/freebsd/sys/kern/kern_timeout.c @ 3c967ca

5-freebsd-12
Last change on this file since 3c967ca was 3c967ca, checked in by Sebastian Huber <sebastian.huber@…>, on Jun 8, 2017 at 11:15:12 AM

Use <sys/lock.h> provided by Newlib

  • Property mode set to 100644
File size: 49.7 KB
Line 
1#include <machine/rtems-bsd-kernel-space.h>
2
3/*-
4 * Copyright (c) 1982, 1986, 1991, 1993
5 *      The Regents of the University of California.  All rights reserved.
6 * (c) UNIX System Laboratories, Inc.
7 * All or some portions of this file are derived from material licensed
8 * to the University of California by American Telephone and Telegraph
9 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
10 * the permission of UNIX System Laboratories, Inc.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 *    notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 *    notice, this list of conditions and the following disclaimer in the
19 *    documentation and/or other materials provided with the distribution.
20 * 3. Neither the name of the University nor the names of its contributors
21 *    may be used to endorse or promote products derived from this software
22 *    without specific prior written permission.
23 *
24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34 * SUCH DAMAGE.
35 *
36 *      From: @(#)kern_clock.c  8.5 (Berkeley) 1/21/94
37 */
38
39#include <sys/cdefs.h>
40__FBSDID("$FreeBSD$");
41
42#include <rtems/bsd/local/opt_callout_profiling.h>
43#include <rtems/bsd/local/opt_ddb.h>
44#if defined(__arm__) || defined(__rtems__)
45#include <rtems/bsd/local/opt_timer.h>
46#endif
47#include <rtems/bsd/local/opt_rss.h>
48
49#include <sys/param.h>
50#include <sys/systm.h>
51#include <sys/bus.h>
52#include <sys/callout.h>
53#include <sys/file.h>
54#include <sys/interrupt.h>
55#include <sys/kernel.h>
56#include <sys/ktr.h>
57#include <sys/lock.h>
58#include <sys/malloc.h>
59#include <sys/mutex.h>
60#include <sys/proc.h>
61#include <sys/sdt.h>
62#include <sys/sleepqueue.h>
63#include <sys/sysctl.h>
64#include <sys/smp.h>
65
66#ifdef DDB
67#include <ddb/ddb.h>
68#include <machine/_inttypes.h>
69#endif
70
71#ifdef SMP
72#include <machine/cpu.h>
73#endif
74
75#ifndef NO_EVENTTIMERS
76DPCPU_DECLARE(sbintime_t, hardclocktime);
77#endif
78
79SDT_PROVIDER_DEFINE(callout_execute);
80SDT_PROBE_DEFINE1(callout_execute, , , callout__start, "struct callout *");
81SDT_PROBE_DEFINE1(callout_execute, , , callout__end, "struct callout *");
82
83#ifdef CALLOUT_PROFILING
84static int avg_depth;
85SYSCTL_INT(_debug, OID_AUTO, to_avg_depth, CTLFLAG_RD, &avg_depth, 0,
86    "Average number of items examined per softclock call. Units = 1/1000");
87static int avg_gcalls;
88SYSCTL_INT(_debug, OID_AUTO, to_avg_gcalls, CTLFLAG_RD, &avg_gcalls, 0,
89    "Average number of Giant callouts made per softclock call. Units = 1/1000");
90static int avg_lockcalls;
91SYSCTL_INT(_debug, OID_AUTO, to_avg_lockcalls, CTLFLAG_RD, &avg_lockcalls, 0,
92    "Average number of lock callouts made per softclock call. Units = 1/1000");
93static int avg_mpcalls;
94SYSCTL_INT(_debug, OID_AUTO, to_avg_mpcalls, CTLFLAG_RD, &avg_mpcalls, 0,
95    "Average number of MP callouts made per softclock call. Units = 1/1000");
96static int avg_depth_dir;
97SYSCTL_INT(_debug, OID_AUTO, to_avg_depth_dir, CTLFLAG_RD, &avg_depth_dir, 0,
98    "Average number of direct callouts examined per callout_process call. "
99    "Units = 1/1000");
100static int avg_lockcalls_dir;
101SYSCTL_INT(_debug, OID_AUTO, to_avg_lockcalls_dir, CTLFLAG_RD,
102    &avg_lockcalls_dir, 0, "Average number of lock direct callouts made per "
103    "callout_process call. Units = 1/1000");
104static int avg_mpcalls_dir;
105SYSCTL_INT(_debug, OID_AUTO, to_avg_mpcalls_dir, CTLFLAG_RD, &avg_mpcalls_dir,
106    0, "Average number of MP direct callouts made per callout_process call. "
107    "Units = 1/1000");
108#endif
109
110#ifndef __rtems__
111static int ncallout;
112SYSCTL_INT(_kern, OID_AUTO, ncallout, CTLFLAG_RDTUN | CTLFLAG_NOFETCH, &ncallout, 0,
113    "Number of entries in callwheel and size of timeout() preallocation");
114#else /* __rtems__ */
115#define ncallout 16
116#endif /* __rtems__ */
117
118#ifdef  RSS
119static int pin_default_swi = 1;
120static int pin_pcpu_swi = 1;
121#else
122static int pin_default_swi = 0;
123static int pin_pcpu_swi = 0;
124#endif
125
126SYSCTL_INT(_kern, OID_AUTO, pin_default_swi, CTLFLAG_RDTUN | CTLFLAG_NOFETCH, &pin_default_swi,
127    0, "Pin the default (non-per-cpu) swi (shared with PCPU 0 swi)");
128SYSCTL_INT(_kern, OID_AUTO, pin_pcpu_swi, CTLFLAG_RDTUN | CTLFLAG_NOFETCH, &pin_pcpu_swi,
129    0, "Pin the per-CPU swis (except PCPU 0, which is also default");
130
131/*
132 * TODO:
133 *      allocate more timeout table slots when table overflows.
134 */
135u_int callwheelsize, callwheelmask;
136
137/*
138 * The callout cpu exec entities represent informations necessary for
139 * describing the state of callouts currently running on the CPU and the ones
140 * necessary for migrating callouts to the new callout cpu. In particular,
141 * the first entry of the array cc_exec_entity holds informations for callout
142 * running in SWI thread context, while the second one holds informations
143 * for callout running directly from hardware interrupt context.
144 * The cached informations are very important for deferring migration when
145 * the migrating callout is already running.
146 */
147struct cc_exec {
148        struct callout          *cc_curr;
149        void                    (*cc_drain)(void *);
150#ifdef SMP
151        void                    (*ce_migration_func)(void *);
152        void                    *ce_migration_arg;
153        int                     ce_migration_cpu;
154        sbintime_t              ce_migration_time;
155        sbintime_t              ce_migration_prec;
156#endif
157        bool                    cc_cancel;
158        bool                    cc_waiting;
159};
160
161/*
162 * There is one struct callout_cpu per cpu, holding all relevant
163 * state for the callout processing thread on the individual CPU.
164 */
165struct callout_cpu {
166        struct mtx_padalign     cc_lock;
167        struct cc_exec          cc_exec_entity[2];
168        struct callout          *cc_next;
169        struct callout          *cc_callout;
170        struct callout_list     *cc_callwheel;
171#ifndef __rtems__
172        struct callout_tailq    cc_expireq;
173#endif /* __rtems__ */
174        struct callout_slist    cc_callfree;
175        sbintime_t              cc_firstevent;
176        sbintime_t              cc_lastscan;
177        void                    *cc_cookie;
178        u_int                   cc_bucket;
179        u_int                   cc_inited;
180        char                    cc_ktr_event_name[20];
181};
182
183#define callout_migrating(c)    ((c)->c_iflags & CALLOUT_DFRMIGRATION)
184
185#define cc_exec_curr(cc, dir)           cc->cc_exec_entity[dir].cc_curr
186#define cc_exec_drain(cc, dir)          cc->cc_exec_entity[dir].cc_drain
187#define cc_exec_next(cc)                cc->cc_next
188#define cc_exec_cancel(cc, dir)         cc->cc_exec_entity[dir].cc_cancel
189#define cc_exec_waiting(cc, dir)        cc->cc_exec_entity[dir].cc_waiting
190#ifdef SMP
191#define cc_migration_func(cc, dir)      cc->cc_exec_entity[dir].ce_migration_func
192#define cc_migration_arg(cc, dir)       cc->cc_exec_entity[dir].ce_migration_arg
193#define cc_migration_cpu(cc, dir)       cc->cc_exec_entity[dir].ce_migration_cpu
194#define cc_migration_time(cc, dir)      cc->cc_exec_entity[dir].ce_migration_time
195#define cc_migration_prec(cc, dir)      cc->cc_exec_entity[dir].ce_migration_prec
196
197struct callout_cpu cc_cpu[MAXCPU];
198#define CPUBLOCK        MAXCPU
199#define CC_CPU(cpu)     (&cc_cpu[(cpu)])
200#define CC_SELF()       CC_CPU(PCPU_GET(cpuid))
201#else
202struct callout_cpu cc_cpu;
203#define CC_CPU(cpu)     &cc_cpu
204#define CC_SELF()       &cc_cpu
205#endif
206#define CC_LOCK(cc)     mtx_lock_spin(&(cc)->cc_lock)
207#define CC_UNLOCK(cc)   mtx_unlock_spin(&(cc)->cc_lock)
208#define CC_LOCK_ASSERT(cc)      mtx_assert(&(cc)->cc_lock, MA_OWNED)
209
210static int timeout_cpu;
211
212static void     callout_cpu_init(struct callout_cpu *cc, int cpu);
213static void     softclock_call_cc(struct callout *c, struct callout_cpu *cc,
214#ifdef CALLOUT_PROFILING
215                    int *mpcalls, int *lockcalls, int *gcalls,
216#endif
217                    int direct);
218
219static MALLOC_DEFINE(M_CALLOUT, "callout", "Callout datastructures");
220
221/**
222 * Locked by cc_lock:
223 *   cc_curr         - If a callout is in progress, it is cc_curr.
224 *                     If cc_curr is non-NULL, threads waiting in
225 *                     callout_drain() will be woken up as soon as the
226 *                     relevant callout completes.
227 *   cc_cancel       - Changing to 1 with both callout_lock and cc_lock held
228 *                     guarantees that the current callout will not run.
229 *                     The softclock() function sets this to 0 before it
230 *                     drops callout_lock to acquire c_lock, and it calls
231 *                     the handler only if curr_cancelled is still 0 after
232 *                     cc_lock is successfully acquired.
233 *   cc_waiting      - If a thread is waiting in callout_drain(), then
234 *                     callout_wait is nonzero.  Set only when
235 *                     cc_curr is non-NULL.
236 */
237
238/*
239 * Resets the execution entity tied to a specific callout cpu.
240 */
241static void
242cc_cce_cleanup(struct callout_cpu *cc, int direct)
243{
244
245        cc_exec_curr(cc, direct) = NULL;
246        cc_exec_cancel(cc, direct) = false;
247        cc_exec_waiting(cc, direct) = false;
248#ifdef SMP
249        cc_migration_cpu(cc, direct) = CPUBLOCK;
250        cc_migration_time(cc, direct) = 0;
251        cc_migration_prec(cc, direct) = 0;
252        cc_migration_func(cc, direct) = NULL;
253        cc_migration_arg(cc, direct) = NULL;
254#endif
255}
256
257/*
258 * Checks if migration is requested by a specific callout cpu.
259 */
260static int
261cc_cce_migrating(struct callout_cpu *cc, int direct)
262{
263
264#ifdef SMP
265        return (cc_migration_cpu(cc, direct) != CPUBLOCK);
266#else
267        return (0);
268#endif
269}
270
271/*
272 * Kernel low level callwheel initialization
273 * called on cpu0 during kernel startup.
274 */
275#ifdef __rtems__
276static void rtems_bsd_timeout_init_early(void *);
277
278static void
279rtems_bsd_callout_timer(rtems_id id, void *arg)
280{
281        rtems_status_code sc;
282
283        (void) arg;
284
285        sc = rtems_timer_reset(id);
286        BSD_ASSERT(sc == RTEMS_SUCCESSFUL);
287
288        callout_process(sbinuptime());
289}
290
291static void
292rtems_bsd_timeout_init_late(void *unused)
293{
294        rtems_status_code sc;
295        rtems_id id;
296
297        (void) unused;
298
299        sc = rtems_timer_create(rtems_build_name('_', 'C', 'L', 'O'), &id);
300        BSD_ASSERT(sc == RTEMS_SUCCESSFUL);
301
302        sc = rtems_timer_server_fire_after(id, 1, rtems_bsd_callout_timer, NULL);
303        BSD_ASSERT(sc == RTEMS_SUCCESSFUL);
304}
305
306SYSINIT(rtems_bsd_timeout_early, SI_SUB_VM, SI_ORDER_FIRST,
307    rtems_bsd_timeout_init_early, NULL);
308
309SYSINIT(rtems_bsd_timeout_late, SI_SUB_LAST, SI_ORDER_FIRST,
310    rtems_bsd_timeout_init_late, NULL);
311
312static void
313rtems_bsd_timeout_init_early(void *dummy)
314#else /* __rtems__ */
315static void
316callout_callwheel_init(void *dummy)
317#endif /* __rtems__ */
318{
319        struct callout_cpu *cc;
320#ifdef __rtems__
321        (void) dummy;
322#endif /* __rtems__ */
323
324        /*
325         * Calculate the size of the callout wheel and the preallocated
326         * timeout() structures.
327         * XXX: Clip callout to result of previous function of maxusers
328         * maximum 384.  This is still huge, but acceptable.
329         */
330        memset(CC_CPU(0), 0, sizeof(cc_cpu));
331#ifndef __rtems__
332        ncallout = imin(16 + maxproc + maxfiles, 18508);
333        TUNABLE_INT_FETCH("kern.ncallout", &ncallout);
334#endif /* __rtems__ */
335
336        /*
337         * Calculate callout wheel size, should be next power of two higher
338         * than 'ncallout'.
339         */
340        callwheelsize = 1 << fls(ncallout);
341        callwheelmask = callwheelsize - 1;
342
343#ifndef __rtems__
344        /*
345         * Fetch whether we're pinning the swi's or not.
346         */
347        TUNABLE_INT_FETCH("kern.pin_default_swi", &pin_default_swi);
348        TUNABLE_INT_FETCH("kern.pin_pcpu_swi", &pin_pcpu_swi);
349#endif /* __rtems__ */
350
351        /*
352         * Only cpu0 handles timeout(9) and receives a preallocation.
353         *
354         * XXX: Once all timeout(9) consumers are converted this can
355         * be removed.
356         */
357        timeout_cpu = PCPU_GET(cpuid);
358        cc = CC_CPU(timeout_cpu);
359        cc->cc_callout = malloc(ncallout * sizeof(struct callout),
360            M_CALLOUT, M_WAITOK);
361        callout_cpu_init(cc, timeout_cpu);
362}
363#ifndef __rtems__
364SYSINIT(callwheel_init, SI_SUB_CPU, SI_ORDER_ANY, callout_callwheel_init, NULL);
365#endif /* __rtems__ */
366
367/*
368 * Initialize the per-cpu callout structures.
369 */
370static void
371callout_cpu_init(struct callout_cpu *cc, int cpu)
372{
373        struct callout *c;
374        int i;
375
376        mtx_init(&cc->cc_lock, "callout", NULL, MTX_SPIN | MTX_RECURSE);
377        SLIST_INIT(&cc->cc_callfree);
378        cc->cc_inited = 1;
379        cc->cc_callwheel = malloc(sizeof(struct callout_list) * callwheelsize,
380            M_CALLOUT, M_WAITOK);
381        for (i = 0; i < callwheelsize; i++)
382                LIST_INIT(&cc->cc_callwheel[i]);
383#ifndef __rtems__
384        TAILQ_INIT(&cc->cc_expireq);
385#endif /* __rtems__ */
386        cc->cc_firstevent = SBT_MAX;
387        for (i = 0; i < 2; i++)
388                cc_cce_cleanup(cc, i);
389        snprintf(cc->cc_ktr_event_name, sizeof(cc->cc_ktr_event_name),
390            "callwheel cpu %d", cpu);
391        if (cc->cc_callout == NULL)     /* Only cpu0 handles timeout(9) */
392                return;
393        for (i = 0; i < ncallout; i++) {
394                c = &cc->cc_callout[i];
395                callout_init(c, 0);
396                c->c_iflags = CALLOUT_LOCAL_ALLOC;
397                SLIST_INSERT_HEAD(&cc->cc_callfree, c, c_links.sle);
398        }
399}
400
401#ifdef SMP
402/*
403 * Switches the cpu tied to a specific callout.
404 * The function expects a locked incoming callout cpu and returns with
405 * locked outcoming callout cpu.
406 */
407static struct callout_cpu *
408callout_cpu_switch(struct callout *c, struct callout_cpu *cc, int new_cpu)
409{
410        struct callout_cpu *new_cc;
411
412        MPASS(c != NULL && cc != NULL);
413        CC_LOCK_ASSERT(cc);
414
415        /*
416         * Avoid interrupts and preemption firing after the callout cpu
417         * is blocked in order to avoid deadlocks as the new thread
418         * may be willing to acquire the callout cpu lock.
419         */
420        c->c_cpu = CPUBLOCK;
421        spinlock_enter();
422        CC_UNLOCK(cc);
423        new_cc = CC_CPU(new_cpu);
424        CC_LOCK(new_cc);
425        spinlock_exit();
426        c->c_cpu = new_cpu;
427        return (new_cc);
428}
429#endif
430
431#ifndef __rtems__
432/*
433 * Start standard softclock thread.
434 */
435static void
436start_softclock(void *dummy)
437{
438        struct callout_cpu *cc;
439        char name[MAXCOMLEN];
440#ifdef SMP
441        int cpu;
442        struct intr_event *ie;
443#endif
444
445        cc = CC_CPU(timeout_cpu);
446        snprintf(name, sizeof(name), "clock (%d)", timeout_cpu);
447        if (swi_add(&clk_intr_event, name, softclock, cc, SWI_CLOCK,
448            INTR_MPSAFE, &cc->cc_cookie))
449                panic("died while creating standard software ithreads");
450        if (pin_default_swi &&
451            (intr_event_bind(clk_intr_event, timeout_cpu) != 0)) {
452                printf("%s: timeout clock couldn't be pinned to cpu %d\n",
453                    __func__,
454                    timeout_cpu);
455        }
456
457#ifdef SMP
458        CPU_FOREACH(cpu) {
459                if (cpu == timeout_cpu)
460                        continue;
461                cc = CC_CPU(cpu);
462                cc->cc_callout = NULL;  /* Only cpu0 handles timeout(9). */
463                callout_cpu_init(cc, cpu);
464                snprintf(name, sizeof(name), "clock (%d)", cpu);
465                ie = NULL;
466                if (swi_add(&ie, name, softclock, cc, SWI_CLOCK,
467                    INTR_MPSAFE, &cc->cc_cookie))
468                        panic("died while creating standard software ithreads");
469                if (pin_pcpu_swi && (intr_event_bind(ie, cpu) != 0)) {
470                        printf("%s: per-cpu clock couldn't be pinned to "
471                            "cpu %d\n",
472                            __func__,
473                            cpu);
474                }
475        }
476#endif
477}
478SYSINIT(start_softclock, SI_SUB_SOFTINTR, SI_ORDER_FIRST, start_softclock, NULL);
479#endif /* __rtems__ */
480
481#define CC_HASH_SHIFT   8
482
483static inline u_int
484callout_hash(sbintime_t sbt)
485{
486
487        return (sbt >> (32 - CC_HASH_SHIFT));
488}
489
490static inline u_int
491callout_get_bucket(sbintime_t sbt)
492{
493
494        return (callout_hash(sbt) & callwheelmask);
495}
496
497void
498callout_process(sbintime_t now)
499{
500        struct callout *tmp, *tmpn;
501        struct callout_cpu *cc;
502        struct callout_list *sc;
503        sbintime_t first, last, max, tmp_max;
504        uint32_t lookahead;
505        u_int firstb, lastb, nowb;
506#ifdef CALLOUT_PROFILING
507        int depth_dir = 0, mpcalls_dir = 0, lockcalls_dir = 0;
508#endif
509
510        cc = CC_SELF();
511        mtx_lock_spin_flags(&cc->cc_lock, MTX_QUIET);
512
513        /* Compute the buckets of the last scan and present times. */
514        firstb = callout_hash(cc->cc_lastscan);
515        cc->cc_lastscan = now;
516        nowb = callout_hash(now);
517
518        /* Compute the last bucket and minimum time of the bucket after it. */
519        if (nowb == firstb)
520                lookahead = (SBT_1S / 16);
521        else if (nowb - firstb == 1)
522                lookahead = (SBT_1S / 8);
523        else
524                lookahead = (SBT_1S / 2);
525        first = last = now;
526        first += (lookahead / 2);
527        last += lookahead;
528        last &= (0xffffffffffffffffLLU << (32 - CC_HASH_SHIFT));
529        lastb = callout_hash(last) - 1;
530        max = last;
531
532        /*
533         * Check if we wrapped around the entire wheel from the last scan.
534         * In case, we need to scan entirely the wheel for pending callouts.
535         */
536        if (lastb - firstb >= callwheelsize) {
537                lastb = firstb + callwheelsize - 1;
538                if (nowb - firstb >= callwheelsize)
539                        nowb = lastb;
540        }
541
542        /* Iterate callwheel from firstb to nowb and then up to lastb. */
543        do {
544                sc = &cc->cc_callwheel[firstb & callwheelmask];
545                tmp = LIST_FIRST(sc);
546                while (tmp != NULL) {
547                        /* Run the callout if present time within allowed. */
548                        if (tmp->c_time <= now) {
549#ifndef __rtems__
550                                /*
551                                 * Consumer told us the callout may be run
552                                 * directly from hardware interrupt context.
553                                 */
554                                if (tmp->c_iflags & CALLOUT_DIRECT) {
555#endif /* __rtems__ */
556#ifdef CALLOUT_PROFILING
557                                        ++depth_dir;
558#endif
559                                        cc_exec_next(cc) =
560                                            LIST_NEXT(tmp, c_links.le);
561                                        cc->cc_bucket = firstb & callwheelmask;
562                                        LIST_REMOVE(tmp, c_links.le);
563                                        softclock_call_cc(tmp, cc,
564#ifdef CALLOUT_PROFILING
565                                            &mpcalls_dir, &lockcalls_dir, NULL,
566#endif
567                                            1);
568                                        tmp = cc_exec_next(cc);
569                                        cc_exec_next(cc) = NULL;
570#ifndef __rtems__
571                                } else {
572                                        tmpn = LIST_NEXT(tmp, c_links.le);
573                                        LIST_REMOVE(tmp, c_links.le);
574                                        TAILQ_INSERT_TAIL(&cc->cc_expireq,
575                                            tmp, c_links.tqe);
576                                        tmp->c_iflags |= CALLOUT_PROCESSED;
577                                        tmp = tmpn;
578                                }
579#endif /* __rtems__ */
580                                continue;
581                        }
582                        /* Skip events from distant future. */
583                        if (tmp->c_time >= max)
584                                goto next;
585                        /*
586                         * Event minimal time is bigger than present maximal
587                         * time, so it cannot be aggregated.
588                         */
589                        if (tmp->c_time > last) {
590                                lastb = nowb;
591                                goto next;
592                        }
593                        /* Update first and last time, respecting this event. */
594                        if (tmp->c_time < first)
595                                first = tmp->c_time;
596                        tmp_max = tmp->c_time + tmp->c_precision;
597                        if (tmp_max < last)
598                                last = tmp_max;
599next:
600                        tmp = LIST_NEXT(tmp, c_links.le);
601                }
602                /* Proceed with the next bucket. */
603                firstb++;
604                /*
605                 * Stop if we looked after present time and found
606                 * some event we can't execute at now.
607                 * Stop if we looked far enough into the future.
608                 */
609        } while (((int)(firstb - lastb)) <= 0);
610        cc->cc_firstevent = last;
611#ifndef NO_EVENTTIMERS
612        cpu_new_callout(curcpu, last, first);
613#endif
614#ifdef CALLOUT_PROFILING
615        avg_depth_dir += (depth_dir * 1000 - avg_depth_dir) >> 8;
616        avg_mpcalls_dir += (mpcalls_dir * 1000 - avg_mpcalls_dir) >> 8;
617        avg_lockcalls_dir += (lockcalls_dir * 1000 - avg_lockcalls_dir) >> 8;
618#endif
619        mtx_unlock_spin_flags(&cc->cc_lock, MTX_QUIET);
620#ifndef __rtems__
621        /*
622         * swi_sched acquires the thread lock, so we don't want to call it
623         * with cc_lock held; incorrect locking order.
624         */
625        if (!TAILQ_EMPTY(&cc->cc_expireq))
626                swi_sched(cc->cc_cookie, 0);
627#endif /* __rtems__ */
628}
629
630static struct callout_cpu *
631callout_lock(struct callout *c)
632{
633        struct callout_cpu *cc;
634        int cpu;
635
636        for (;;) {
637                cpu = c->c_cpu;
638#ifdef SMP
639                if (cpu == CPUBLOCK) {
640                        while (c->c_cpu == CPUBLOCK)
641                                cpu_spinwait();
642                        continue;
643                }
644#endif
645                cc = CC_CPU(cpu);
646                CC_LOCK(cc);
647                if (cpu == c->c_cpu)
648                        break;
649                CC_UNLOCK(cc);
650        }
651        return (cc);
652}
653
654static void
655callout_cc_add(struct callout *c, struct callout_cpu *cc,
656    sbintime_t sbt, sbintime_t precision, void (*func)(void *),
657    void *arg, int cpu, int flags)
658{
659        int bucket;
660
661        CC_LOCK_ASSERT(cc);
662        if (sbt < cc->cc_lastscan)
663                sbt = cc->cc_lastscan;
664        c->c_arg = arg;
665        c->c_iflags |= CALLOUT_PENDING;
666        c->c_iflags &= ~CALLOUT_PROCESSED;
667        c->c_flags |= CALLOUT_ACTIVE;
668        if (flags & C_DIRECT_EXEC)
669                c->c_iflags |= CALLOUT_DIRECT;
670        c->c_func = func;
671        c->c_time = sbt;
672        c->c_precision = precision;
673        bucket = callout_get_bucket(c->c_time);
674        CTR3(KTR_CALLOUT, "precision set for %p: %d.%08x",
675            c, (int)(c->c_precision >> 32),
676            (u_int)(c->c_precision & 0xffffffff));
677        LIST_INSERT_HEAD(&cc->cc_callwheel[bucket], c, c_links.le);
678        if (cc->cc_bucket == bucket)
679                cc_exec_next(cc) = c;
680#ifndef NO_EVENTTIMERS
681        /*
682         * Inform the eventtimers(4) subsystem there's a new callout
683         * that has been inserted, but only if really required.
684         */
685        if (SBT_MAX - c->c_time < c->c_precision)
686                c->c_precision = SBT_MAX - c->c_time;
687        sbt = c->c_time + c->c_precision;
688        if (sbt < cc->cc_firstevent) {
689                cc->cc_firstevent = sbt;
690                cpu_new_callout(cpu, sbt, c->c_time);
691        }
692#endif
693}
694
695static void
696callout_cc_del(struct callout *c, struct callout_cpu *cc)
697{
698
699        if ((c->c_iflags & CALLOUT_LOCAL_ALLOC) == 0)
700                return;
701        c->c_func = NULL;
702        SLIST_INSERT_HEAD(&cc->cc_callfree, c, c_links.sle);
703}
704
705static void
706softclock_call_cc(struct callout *c, struct callout_cpu *cc,
707#ifdef CALLOUT_PROFILING
708    int *mpcalls, int *lockcalls, int *gcalls,
709#endif
710    int direct)
711{
712#ifndef __rtems__
713        struct rm_priotracker tracker;
714#endif /* __rtems__ */
715        void (*c_func)(void *);
716        void *c_arg;
717        struct lock_class *class;
718        struct lock_object *c_lock;
719        uintptr_t lock_status;
720        int c_iflags;
721#ifdef SMP
722        struct callout_cpu *new_cc;
723        void (*new_func)(void *);
724        void *new_arg;
725        int flags, new_cpu;
726        sbintime_t new_prec, new_time;
727#endif
728#if defined(DIAGNOSTIC) || defined(CALLOUT_PROFILING)
729        sbintime_t sbt1, sbt2;
730        struct timespec ts2;
731        static sbintime_t maxdt = 2 * SBT_1MS;  /* 2 msec */
732        static timeout_t *lastfunc;
733#endif
734
735        KASSERT((c->c_iflags & CALLOUT_PENDING) == CALLOUT_PENDING,
736            ("softclock_call_cc: pend %p %x", c, c->c_iflags));
737        KASSERT((c->c_flags & CALLOUT_ACTIVE) == CALLOUT_ACTIVE,
738            ("softclock_call_cc: act %p %x", c, c->c_flags));
739        class = (c->c_lock != NULL) ? LOCK_CLASS(c->c_lock) : NULL;
740        lock_status = 0;
741        if (c->c_flags & CALLOUT_SHAREDLOCK) {
742#ifndef __rtems__
743                if (class == &lock_class_rm)
744                        lock_status = (uintptr_t)&tracker;
745                else
746#endif /* __rtems__ */
747                        lock_status = 1;
748        }
749        c_lock = c->c_lock;
750        c_func = c->c_func;
751        c_arg = c->c_arg;
752        c_iflags = c->c_iflags;
753        if (c->c_iflags & CALLOUT_LOCAL_ALLOC)
754                c->c_iflags = CALLOUT_LOCAL_ALLOC;
755        else
756                c->c_iflags &= ~CALLOUT_PENDING;
757       
758        cc_exec_curr(cc, direct) = c;
759        cc_exec_cancel(cc, direct) = false;
760        cc_exec_drain(cc, direct) = NULL;
761        CC_UNLOCK(cc);
762        if (c_lock != NULL) {
763                class->lc_lock(c_lock, lock_status);
764                /*
765                 * The callout may have been cancelled
766                 * while we switched locks.
767                 */
768                if (cc_exec_cancel(cc, direct)) {
769                        class->lc_unlock(c_lock);
770                        goto skip;
771                }
772                /* The callout cannot be stopped now. */
773                cc_exec_cancel(cc, direct) = true;
774                if (c_lock == &Giant.lock_object) {
775#ifdef CALLOUT_PROFILING
776                        (*gcalls)++;
777#endif
778                        CTR3(KTR_CALLOUT, "callout giant %p func %p arg %p",
779                            c, c_func, c_arg);
780                } else {
781#ifdef CALLOUT_PROFILING
782                        (*lockcalls)++;
783#endif
784                        CTR3(KTR_CALLOUT, "callout lock %p func %p arg %p",
785                            c, c_func, c_arg);
786                }
787        } else {
788#ifdef CALLOUT_PROFILING
789                (*mpcalls)++;
790#endif
791                CTR3(KTR_CALLOUT, "callout %p func %p arg %p",
792                    c, c_func, c_arg);
793        }
794        KTR_STATE3(KTR_SCHED, "callout", cc->cc_ktr_event_name, "running",
795            "func:%p", c_func, "arg:%p", c_arg, "direct:%d", direct);
796#if defined(DIAGNOSTIC) || defined(CALLOUT_PROFILING)
797        sbt1 = sbinuptime();
798#endif
799#ifndef __rtems__
800        THREAD_NO_SLEEPING();
801        SDT_PROBE1(callout_execute, , , callout__start, c);
802#endif /* __rtems__ */
803        c_func(c_arg);
804#ifndef __rtems__
805        SDT_PROBE1(callout_execute, , , callout__end, c);
806        THREAD_SLEEPING_OK();
807#endif /* __rtems__ */
808#if defined(DIAGNOSTIC) || defined(CALLOUT_PROFILING)
809        sbt2 = sbinuptime();
810        sbt2 -= sbt1;
811        if (sbt2 > maxdt) {
812                if (lastfunc != c_func || sbt2 > maxdt * 2) {
813                        ts2 = sbttots(sbt2);
814                        printf(
815                "Expensive timeout(9) function: %p(%p) %jd.%09ld s\n",
816                            c_func, c_arg, (intmax_t)ts2.tv_sec, ts2.tv_nsec);
817                }
818                maxdt = sbt2;
819                lastfunc = c_func;
820        }
821#endif
822        KTR_STATE0(KTR_SCHED, "callout", cc->cc_ktr_event_name, "idle");
823        CTR1(KTR_CALLOUT, "callout %p finished", c);
824        if ((c_iflags & CALLOUT_RETURNUNLOCKED) == 0)
825                class->lc_unlock(c_lock);
826skip:
827        CC_LOCK(cc);
828        KASSERT(cc_exec_curr(cc, direct) == c, ("mishandled cc_curr"));
829        cc_exec_curr(cc, direct) = NULL;
830        if (cc_exec_drain(cc, direct)) {
831                void (*drain)(void *);
832               
833                drain = cc_exec_drain(cc, direct);
834                cc_exec_drain(cc, direct) = NULL;
835                CC_UNLOCK(cc);
836                drain(c_arg);
837                CC_LOCK(cc);
838        }
839        if (cc_exec_waiting(cc, direct)) {
840                /*
841                 * There is someone waiting for the
842                 * callout to complete.
843                 * If the callout was scheduled for
844                 * migration just cancel it.
845                 */
846                if (cc_cce_migrating(cc, direct)) {
847                        cc_cce_cleanup(cc, direct);
848
849                        /*
850                         * It should be assert here that the callout is not
851                         * destroyed but that is not easy.
852                         */
853                        c->c_iflags &= ~CALLOUT_DFRMIGRATION;
854                }
855                cc_exec_waiting(cc, direct) = false;
856                CC_UNLOCK(cc);
857                wakeup(&cc_exec_waiting(cc, direct));
858                CC_LOCK(cc);
859        } else if (cc_cce_migrating(cc, direct)) {
860                KASSERT((c_iflags & CALLOUT_LOCAL_ALLOC) == 0,
861                    ("Migrating legacy callout %p", c));
862#ifdef SMP
863                /*
864                 * If the callout was scheduled for
865                 * migration just perform it now.
866                 */
867                new_cpu = cc_migration_cpu(cc, direct);
868                new_time = cc_migration_time(cc, direct);
869                new_prec = cc_migration_prec(cc, direct);
870                new_func = cc_migration_func(cc, direct);
871                new_arg = cc_migration_arg(cc, direct);
872                cc_cce_cleanup(cc, direct);
873
874                /*
875                 * It should be assert here that the callout is not destroyed
876                 * but that is not easy.
877                 *
878                 * As first thing, handle deferred callout stops.
879                 */
880                if (!callout_migrating(c)) {
881                        CTR3(KTR_CALLOUT,
882                             "deferred cancelled %p func %p arg %p",
883                             c, new_func, new_arg);
884                        callout_cc_del(c, cc);
885                        return;
886                }
887                c->c_iflags &= ~CALLOUT_DFRMIGRATION;
888
889                new_cc = callout_cpu_switch(c, cc, new_cpu);
890                flags = (direct) ? C_DIRECT_EXEC : 0;
891                callout_cc_add(c, new_cc, new_time, new_prec, new_func,
892                    new_arg, new_cpu, flags);
893                CC_UNLOCK(new_cc);
894                CC_LOCK(cc);
895#else
896                panic("migration should not happen");
897#endif
898        }
899        /*
900         * If the current callout is locally allocated (from
901         * timeout(9)) then put it on the freelist.
902         *
903         * Note: we need to check the cached copy of c_iflags because
904         * if it was not local, then it's not safe to deref the
905         * callout pointer.
906         */
907        KASSERT((c_iflags & CALLOUT_LOCAL_ALLOC) == 0 ||
908            c->c_iflags == CALLOUT_LOCAL_ALLOC,
909            ("corrupted callout"));
910        if (c_iflags & CALLOUT_LOCAL_ALLOC)
911                callout_cc_del(c, cc);
912}
913
914/*
915 * The callout mechanism is based on the work of Adam M. Costello and
916 * George Varghese, published in a technical report entitled "Redesigning
917 * the BSD Callout and Timer Facilities" and modified slightly for inclusion
918 * in FreeBSD by Justin T. Gibbs.  The original work on the data structures
919 * used in this implementation was published by G. Varghese and T. Lauck in
920 * the paper "Hashed and Hierarchical Timing Wheels: Data Structures for
921 * the Efficient Implementation of a Timer Facility" in the Proceedings of
922 * the 11th ACM Annual Symposium on Operating Systems Principles,
923 * Austin, Texas Nov 1987.
924 */
925
926#ifndef __rtems__
927/*
928 * Software (low priority) clock interrupt.
929 * Run periodic events from timeout queue.
930 */
931void
932softclock(void *arg)
933{
934        struct callout_cpu *cc;
935        struct callout *c;
936#ifdef CALLOUT_PROFILING
937        int depth = 0, gcalls = 0, lockcalls = 0, mpcalls = 0;
938#endif
939
940        cc = (struct callout_cpu *)arg;
941        CC_LOCK(cc);
942        while ((c = TAILQ_FIRST(&cc->cc_expireq)) != NULL) {
943                TAILQ_REMOVE(&cc->cc_expireq, c, c_links.tqe);
944                softclock_call_cc(c, cc,
945#ifdef CALLOUT_PROFILING
946                    &mpcalls, &lockcalls, &gcalls,
947#endif
948                    0);
949#ifdef CALLOUT_PROFILING
950                ++depth;
951#endif
952        }
953#ifdef CALLOUT_PROFILING
954        avg_depth += (depth * 1000 - avg_depth) >> 8;
955        avg_mpcalls += (mpcalls * 1000 - avg_mpcalls) >> 8;
956        avg_lockcalls += (lockcalls * 1000 - avg_lockcalls) >> 8;
957        avg_gcalls += (gcalls * 1000 - avg_gcalls) >> 8;
958#endif
959        CC_UNLOCK(cc);
960}
961#endif /* __rtems__ */
962
963/*
964 * timeout --
965 *      Execute a function after a specified length of time.
966 *
967 * untimeout --
968 *      Cancel previous timeout function call.
969 *
970 * callout_handle_init --
971 *      Initialize a handle so that using it with untimeout is benign.
972 *
973 *      See AT&T BCI Driver Reference Manual for specification.  This
974 *      implementation differs from that one in that although an
975 *      identification value is returned from timeout, the original
976 *      arguments to timeout as well as the identifier are used to
977 *      identify entries for untimeout.
978 */
979struct callout_handle
980timeout(timeout_t *ftn, void *arg, int to_ticks)
981{
982        struct callout_cpu *cc;
983        struct callout *new;
984        struct callout_handle handle;
985
986        cc = CC_CPU(timeout_cpu);
987        CC_LOCK(cc);
988        /* Fill in the next free callout structure. */
989        new = SLIST_FIRST(&cc->cc_callfree);
990        if (new == NULL)
991                /* XXX Attempt to malloc first */
992                panic("timeout table full");
993        SLIST_REMOVE_HEAD(&cc->cc_callfree, c_links.sle);
994        callout_reset(new, to_ticks, ftn, arg);
995        handle.callout = new;
996        CC_UNLOCK(cc);
997
998        return (handle);
999}
1000
1001void
1002untimeout(timeout_t *ftn, void *arg, struct callout_handle handle)
1003{
1004        struct callout_cpu *cc;
1005
1006        /*
1007         * Check for a handle that was initialized
1008         * by callout_handle_init, but never used
1009         * for a real timeout.
1010         */
1011        if (handle.callout == NULL)
1012                return;
1013
1014        cc = callout_lock(handle.callout);
1015        if (handle.callout->c_func == ftn && handle.callout->c_arg == arg)
1016                callout_stop(handle.callout);
1017        CC_UNLOCK(cc);
1018}
1019
1020void
1021callout_handle_init(struct callout_handle *handle)
1022{
1023        handle->callout = NULL;
1024}
1025
1026void
1027callout_when(sbintime_t sbt, sbintime_t precision, int flags,
1028    sbintime_t *res, sbintime_t *prec_res)
1029{
1030        sbintime_t to_sbt, to_pr;
1031
1032        if ((flags & (C_ABSOLUTE | C_PRECALC)) != 0) {
1033                *res = sbt;
1034                *prec_res = precision;
1035                return;
1036        }
1037        if ((flags & C_HARDCLOCK) != 0 && sbt < tick_sbt)
1038                sbt = tick_sbt;
1039        if ((flags & C_HARDCLOCK) != 0 ||
1040#ifdef NO_EVENTTIMERS
1041            sbt >= sbt_timethreshold) {
1042                to_sbt = getsbinuptime();
1043
1044                /* Add safety belt for the case of hz > 1000. */
1045                to_sbt += tc_tick_sbt - tick_sbt;
1046#else
1047            sbt >= sbt_tickthreshold) {
1048                /*
1049                 * Obtain the time of the last hardclock() call on
1050                 * this CPU directly from the kern_clocksource.c.
1051                 * This value is per-CPU, but it is equal for all
1052                 * active ones.
1053                 */
1054#ifdef __LP64__
1055                to_sbt = DPCPU_GET(hardclocktime);
1056#else
1057                spinlock_enter();
1058                to_sbt = DPCPU_GET(hardclocktime);
1059                spinlock_exit();
1060#endif
1061#endif
1062                if (cold && to_sbt == 0)
1063                        to_sbt = sbinuptime();
1064                if ((flags & C_HARDCLOCK) == 0)
1065                        to_sbt += tick_sbt;
1066        } else
1067                to_sbt = sbinuptime();
1068        if (SBT_MAX - to_sbt < sbt)
1069                to_sbt = SBT_MAX;
1070        else
1071                to_sbt += sbt;
1072        *res = to_sbt;
1073        to_pr = ((C_PRELGET(flags) < 0) ? sbt >> tc_precexp :
1074            sbt >> C_PRELGET(flags));
1075        *prec_res = to_pr > precision ? to_pr : precision;
1076}
1077
1078/*
1079 * New interface; clients allocate their own callout structures.
1080 *
1081 * callout_reset() - establish or change a timeout
1082 * callout_stop() - disestablish a timeout
1083 * callout_init() - initialize a callout structure so that it can
1084 *      safely be passed to callout_reset() and callout_stop()
1085 *
1086 * <sys/callout.h> defines three convenience macros:
1087 *
1088 * callout_active() - returns truth if callout has not been stopped,
1089 *      drained, or deactivated since the last time the callout was
1090 *      reset.
1091 * callout_pending() - returns truth if callout is still waiting for timeout
1092 * callout_deactivate() - marks the callout as having been serviced
1093 */
1094int
1095callout_reset_sbt_on(struct callout *c, sbintime_t sbt, sbintime_t prec,
1096    void (*ftn)(void *), void *arg, int cpu, int flags)
1097{
1098        sbintime_t to_sbt, precision;
1099        struct callout_cpu *cc;
1100        int cancelled, direct;
1101        int ignore_cpu=0;
1102
1103        cancelled = 0;
1104        if (cpu == -1) {
1105                ignore_cpu = 1;
1106        } else if ((cpu >= MAXCPU) ||
1107                   ((CC_CPU(cpu))->cc_inited == 0)) {
1108                /* Invalid CPU spec */
1109                panic("Invalid CPU in callout %d", cpu);
1110        }
1111        callout_when(sbt, prec, flags, &to_sbt, &precision);
1112
1113        /*
1114         * This flag used to be added by callout_cc_add, but the
1115         * first time you call this we could end up with the
1116         * wrong direct flag if we don't do it before we add.
1117         */
1118        if (flags & C_DIRECT_EXEC) {
1119                direct = 1;
1120        } else {
1121                direct = 0;
1122        }
1123        KASSERT(!direct || c->c_lock == NULL,
1124            ("%s: direct callout %p has lock", __func__, c));
1125        cc = callout_lock(c);
1126        /*
1127         * Don't allow migration of pre-allocated callouts lest they
1128         * become unbalanced or handle the case where the user does
1129         * not care.
1130         */
1131        if ((c->c_iflags & CALLOUT_LOCAL_ALLOC) ||
1132            ignore_cpu) {
1133                cpu = c->c_cpu;
1134        }
1135
1136        if (cc_exec_curr(cc, direct) == c) {
1137                /*
1138                 * We're being asked to reschedule a callout which is
1139                 * currently in progress.  If there is a lock then we
1140                 * can cancel the callout if it has not really started.
1141                 */
1142                if (c->c_lock != NULL && !cc_exec_cancel(cc, direct))
1143                        cancelled = cc_exec_cancel(cc, direct) = true;
1144                if (cc_exec_waiting(cc, direct) || cc_exec_drain(cc, direct)) {
1145                        /*
1146                         * Someone has called callout_drain to kill this
1147                         * callout.  Don't reschedule.
1148                         */
1149                        CTR4(KTR_CALLOUT, "%s %p func %p arg %p",
1150                            cancelled ? "cancelled" : "failed to cancel",
1151                            c, c->c_func, c->c_arg);
1152                        CC_UNLOCK(cc);
1153                        return (cancelled);
1154                }
1155#ifdef SMP
1156                if (callout_migrating(c)) {
1157                        /*
1158                         * This only occurs when a second callout_reset_sbt_on
1159                         * is made after a previous one moved it into
1160                         * deferred migration (below). Note we do *not* change
1161                         * the prev_cpu even though the previous target may
1162                         * be different.
1163                         */
1164                        cc_migration_cpu(cc, direct) = cpu;
1165                        cc_migration_time(cc, direct) = to_sbt;
1166                        cc_migration_prec(cc, direct) = precision;
1167                        cc_migration_func(cc, direct) = ftn;
1168                        cc_migration_arg(cc, direct) = arg;
1169                        cancelled = 1;
1170                        CC_UNLOCK(cc);
1171                        return (cancelled);
1172                }
1173#endif
1174        }
1175        if (c->c_iflags & CALLOUT_PENDING) {
1176#ifndef __rtems__
1177                if ((c->c_iflags & CALLOUT_PROCESSED) == 0) {
1178#endif /* __rtems__ */
1179                        if (cc_exec_next(cc) == c)
1180                                cc_exec_next(cc) = LIST_NEXT(c, c_links.le);
1181                        LIST_REMOVE(c, c_links.le);
1182#ifndef __rtems__
1183                } else {
1184                        TAILQ_REMOVE(&cc->cc_expireq, c, c_links.tqe);
1185                }
1186#endif /* __rtems__ */
1187                cancelled = 1;
1188                c->c_iflags &= ~ CALLOUT_PENDING;
1189                c->c_flags &= ~ CALLOUT_ACTIVE;
1190        }
1191
1192#ifdef SMP
1193        /*
1194         * If the callout must migrate try to perform it immediately.
1195         * If the callout is currently running, just defer the migration
1196         * to a more appropriate moment.
1197         */
1198        if (c->c_cpu != cpu) {
1199                if (cc_exec_curr(cc, direct) == c) {
1200                        /*
1201                         * Pending will have been removed since we are
1202                         * actually executing the callout on another
1203                         * CPU. That callout should be waiting on the
1204                         * lock the caller holds. If we set both
1205                         * active/and/pending after we return and the
1206                         * lock on the executing callout proceeds, it
1207                         * will then see pending is true and return.
1208                         * At the return from the actual callout execution
1209                         * the migration will occur in softclock_call_cc
1210                         * and this new callout will be placed on the
1211                         * new CPU via a call to callout_cpu_switch() which
1212                         * will get the lock on the right CPU followed
1213                         * by a call callout_cc_add() which will add it there.
1214                         * (see above in softclock_call_cc()).
1215                         */
1216                        cc_migration_cpu(cc, direct) = cpu;
1217                        cc_migration_time(cc, direct) = to_sbt;
1218                        cc_migration_prec(cc, direct) = precision;
1219                        cc_migration_func(cc, direct) = ftn;
1220                        cc_migration_arg(cc, direct) = arg;
1221                        c->c_iflags |= (CALLOUT_DFRMIGRATION | CALLOUT_PENDING);
1222                        c->c_flags |= CALLOUT_ACTIVE;
1223                        CTR6(KTR_CALLOUT,
1224                    "migration of %p func %p arg %p in %d.%08x to %u deferred",
1225                            c, c->c_func, c->c_arg, (int)(to_sbt >> 32),
1226                            (u_int)(to_sbt & 0xffffffff), cpu);
1227                        CC_UNLOCK(cc);
1228                        return (cancelled);
1229                }
1230                cc = callout_cpu_switch(c, cc, cpu);
1231        }
1232#endif
1233
1234        callout_cc_add(c, cc, to_sbt, precision, ftn, arg, cpu, flags);
1235        CTR6(KTR_CALLOUT, "%sscheduled %p func %p arg %p in %d.%08x",
1236            cancelled ? "re" : "", c, c->c_func, c->c_arg, (int)(to_sbt >> 32),
1237            (u_int)(to_sbt & 0xffffffff));
1238        CC_UNLOCK(cc);
1239
1240        return (cancelled);
1241}
1242
1243/*
1244 * Common idioms that can be optimized in the future.
1245 */
1246int
1247callout_schedule_on(struct callout *c, int to_ticks, int cpu)
1248{
1249        return callout_reset_on(c, to_ticks, c->c_func, c->c_arg, cpu);
1250}
1251
1252int
1253callout_schedule(struct callout *c, int to_ticks)
1254{
1255        return callout_reset_on(c, to_ticks, c->c_func, c->c_arg, c->c_cpu);
1256}
1257
1258int
1259_callout_stop_safe(struct callout *c, int flags, void (*drain)(void *))
1260{
1261        struct callout_cpu *cc, *old_cc;
1262        struct lock_class *class;
1263        int direct, sq_locked, use_lock;
1264        int cancelled, not_on_a_list;
1265#ifdef __rtems__
1266        (void)old_cc;
1267        (void)sq_locked;
1268#endif /* __rtems__ */
1269
1270        if ((flags & CS_DRAIN) != 0)
1271                WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, c->c_lock,
1272                    "calling %s", __func__);
1273
1274        /*
1275         * Some old subsystems don't hold Giant while running a callout_stop(),
1276         * so just discard this check for the moment.
1277         */
1278        if ((flags & CS_DRAIN) == 0 && c->c_lock != NULL) {
1279                if (c->c_lock == &Giant.lock_object)
1280                        use_lock = mtx_owned(&Giant);
1281                else {
1282                        use_lock = 1;
1283                        class = LOCK_CLASS(c->c_lock);
1284                        class->lc_assert(c->c_lock, LA_XLOCKED);
1285                }
1286        } else
1287                use_lock = 0;
1288        if (c->c_iflags & CALLOUT_DIRECT) {
1289                direct = 1;
1290        } else {
1291                direct = 0;
1292        }
1293
1294#ifndef __rtems__
1295        sq_locked = 0;
1296        old_cc = NULL;
1297again:
1298#endif /* __rtems__ */
1299        cc = callout_lock(c);
1300
1301        if ((c->c_iflags & (CALLOUT_DFRMIGRATION | CALLOUT_PENDING)) ==
1302            (CALLOUT_DFRMIGRATION | CALLOUT_PENDING) &&
1303            ((c->c_flags & CALLOUT_ACTIVE) == CALLOUT_ACTIVE)) {
1304                /*
1305                 * Special case where this slipped in while we
1306                 * were migrating *as* the callout is about to
1307                 * execute. The caller probably holds the lock
1308                 * the callout wants.
1309                 *
1310                 * Get rid of the migration first. Then set
1311                 * the flag that tells this code *not* to
1312                 * try to remove it from any lists (its not
1313                 * on one yet). When the callout wheel runs,
1314                 * it will ignore this callout.
1315                 */
1316                c->c_iflags &= ~CALLOUT_PENDING;
1317                c->c_flags &= ~CALLOUT_ACTIVE;
1318                not_on_a_list = 1;
1319        } else {
1320                not_on_a_list = 0;
1321        }
1322
1323#ifndef __rtems__
1324        /*
1325         * If the callout was migrating while the callout cpu lock was
1326         * dropped,  just drop the sleepqueue lock and check the states
1327         * again.
1328         */
1329        if (sq_locked != 0 && cc != old_cc) {
1330#ifdef SMP
1331                CC_UNLOCK(cc);
1332                sleepq_release(&cc_exec_waiting(old_cc, direct));
1333                sq_locked = 0;
1334                old_cc = NULL;
1335                goto again;
1336#else
1337                panic("migration should not happen");
1338#endif
1339        }
1340#endif /* __rtems__ */
1341
1342        /*
1343         * If the callout is running, try to stop it or drain it.
1344         */
1345        if (cc_exec_curr(cc, direct) == c) {
1346                /*
1347                 * Succeed we to stop it or not, we must clear the
1348                 * active flag - this is what API users expect.  If we're
1349                 * draining and the callout is currently executing, first wait
1350                 * until it finishes.
1351                 */
1352                if ((flags & CS_DRAIN) == 0)
1353                        c->c_flags &= ~CALLOUT_ACTIVE;
1354
1355                if ((flags & CS_DRAIN) != 0) {
1356                        /*
1357                         * The current callout is running (or just
1358                         * about to run) and blocking is allowed, so
1359                         * just wait for the current invocation to
1360                         * finish.
1361                         */
1362                        while (cc_exec_curr(cc, direct) == c) {
1363#ifndef __rtems__
1364
1365                                /*
1366                                 * Use direct calls to sleepqueue interface
1367                                 * instead of cv/msleep in order to avoid
1368                                 * a LOR between cc_lock and sleepqueue
1369                                 * chain spinlocks.  This piece of code
1370                                 * emulates a msleep_spin() call actually.
1371                                 *
1372                                 * If we already have the sleepqueue chain
1373                                 * locked, then we can safely block.  If we
1374                                 * don't already have it locked, however,
1375                                 * we have to drop the cc_lock to lock
1376                                 * it.  This opens several races, so we
1377                                 * restart at the beginning once we have
1378                                 * both locks.  If nothing has changed, then
1379                                 * we will end up back here with sq_locked
1380                                 * set.
1381                                 */
1382                                if (!sq_locked) {
1383                                        CC_UNLOCK(cc);
1384                                        sleepq_lock(
1385                                            &cc_exec_waiting(cc, direct));
1386                                        sq_locked = 1;
1387                                        old_cc = cc;
1388                                        goto again;
1389                                }
1390
1391                                /*
1392                                 * Migration could be cancelled here, but
1393                                 * as long as it is still not sure when it
1394                                 * will be packed up, just let softclock()
1395                                 * take care of it.
1396                                 */
1397                                cc_exec_waiting(cc, direct) = true;
1398                                DROP_GIANT();
1399                                CC_UNLOCK(cc);
1400                                sleepq_add(
1401                                    &cc_exec_waiting(cc, direct),
1402                                    &cc->cc_lock.lock_object, "codrain",
1403                                    SLEEPQ_SLEEP, 0);
1404                                sleepq_wait(
1405                                    &cc_exec_waiting(cc, direct),
1406                                             0);
1407                                sq_locked = 0;
1408                                old_cc = NULL;
1409
1410                                /* Reacquire locks previously released. */
1411                                PICKUP_GIANT();
1412                                CC_LOCK(cc);
1413#else /* __rtems__ */
1414                                /*
1415                                 * On RTEMS the LOR problem above does not
1416                                 * exist since here we do not use
1417                                 * sleepq_set_timeout() and instead use the
1418                                 * RTEMS watchdog.
1419                                 */
1420                                cc_exec_waiting(cc, direct) = true;
1421                                msleep_spin(&cc_exec_waiting(cc, direct),
1422                                    &cc->cc_lock, "codrain", 0);
1423#endif /* __rtems__ */
1424                        }
1425                        c->c_flags &= ~CALLOUT_ACTIVE;
1426                } else if (use_lock &&
1427                           !cc_exec_cancel(cc, direct) && (drain == NULL)) {
1428                       
1429                        /*
1430                         * The current callout is waiting for its
1431                         * lock which we hold.  Cancel the callout
1432                         * and return.  After our caller drops the
1433                         * lock, the callout will be skipped in
1434                         * softclock(). This *only* works with a
1435                         * callout_stop() *not* callout_drain() or
1436                         * callout_async_drain().
1437                         */
1438                        cc_exec_cancel(cc, direct) = true;
1439                        CTR3(KTR_CALLOUT, "cancelled %p func %p arg %p",
1440                            c, c->c_func, c->c_arg);
1441                        KASSERT(!cc_cce_migrating(cc, direct),
1442                            ("callout wrongly scheduled for migration"));
1443                        if (callout_migrating(c)) {
1444                                c->c_iflags &= ~CALLOUT_DFRMIGRATION;
1445#ifdef SMP
1446                                cc_migration_cpu(cc, direct) = CPUBLOCK;
1447                                cc_migration_time(cc, direct) = 0;
1448                                cc_migration_prec(cc, direct) = 0;
1449                                cc_migration_func(cc, direct) = NULL;
1450                                cc_migration_arg(cc, direct) = NULL;
1451#endif
1452                        }
1453                        CC_UNLOCK(cc);
1454#ifndef __rtems__
1455                        KASSERT(!sq_locked, ("sleepqueue chain locked"));
1456#endif /* __rtems__ */
1457                        return (1);
1458                } else if (callout_migrating(c)) {
1459                        /*
1460                         * The callout is currently being serviced
1461                         * and the "next" callout is scheduled at
1462                         * its completion with a migration. We remove
1463                         * the migration flag so it *won't* get rescheduled,
1464                         * but we can't stop the one thats running so
1465                         * we return 0.
1466                         */
1467                        c->c_iflags &= ~CALLOUT_DFRMIGRATION;
1468#ifdef SMP
1469                        /*
1470                         * We can't call cc_cce_cleanup here since
1471                         * if we do it will remove .ce_curr and
1472                         * its still running. This will prevent a
1473                         * reschedule of the callout when the
1474                         * execution completes.
1475                         */
1476                        cc_migration_cpu(cc, direct) = CPUBLOCK;
1477                        cc_migration_time(cc, direct) = 0;
1478                        cc_migration_prec(cc, direct) = 0;
1479                        cc_migration_func(cc, direct) = NULL;
1480                        cc_migration_arg(cc, direct) = NULL;
1481#endif
1482                        CTR3(KTR_CALLOUT, "postponing stop %p func %p arg %p",
1483                            c, c->c_func, c->c_arg);
1484                        if (drain) {
1485                                cc_exec_drain(cc, direct) = drain;
1486                        }
1487                        CC_UNLOCK(cc);
1488                        return ((flags & CS_EXECUTING) != 0);
1489                }
1490                CTR3(KTR_CALLOUT, "failed to stop %p func %p arg %p",
1491                    c, c->c_func, c->c_arg);
1492                if (drain) {
1493                        cc_exec_drain(cc, direct) = drain;
1494                }
1495#ifndef __rtems__
1496                KASSERT(!sq_locked, ("sleepqueue chain still locked"));
1497#endif /* __rtems__ */
1498                cancelled = ((flags & CS_EXECUTING) != 0);
1499        } else
1500                cancelled = 1;
1501
1502#ifndef __rtems__
1503        if (sq_locked)
1504                sleepq_release(&cc_exec_waiting(cc, direct));
1505#endif /* __rtems__ */
1506
1507        if ((c->c_iflags & CALLOUT_PENDING) == 0) {
1508                CTR3(KTR_CALLOUT, "failed to stop %p func %p arg %p",
1509                    c, c->c_func, c->c_arg);
1510                /*
1511                 * For not scheduled and not executing callout return
1512                 * negative value.
1513                 */
1514                if (cc_exec_curr(cc, direct) != c)
1515                        cancelled = -1;
1516                CC_UNLOCK(cc);
1517                return (cancelled);
1518        }
1519
1520        c->c_iflags &= ~CALLOUT_PENDING;
1521        c->c_flags &= ~CALLOUT_ACTIVE;
1522
1523        CTR3(KTR_CALLOUT, "cancelled %p func %p arg %p",
1524            c, c->c_func, c->c_arg);
1525        if (not_on_a_list == 0) {
1526#ifndef __rtems__
1527                if ((c->c_iflags & CALLOUT_PROCESSED) == 0) {
1528#endif /* __rtems__ */
1529                        if (cc_exec_next(cc) == c)
1530                                cc_exec_next(cc) = LIST_NEXT(c, c_links.le);
1531                        LIST_REMOVE(c, c_links.le);
1532#ifndef __rtems__
1533                } else {
1534                        TAILQ_REMOVE(&cc->cc_expireq, c, c_links.tqe);
1535                }
1536#endif /* __rtems__ */
1537        }
1538        callout_cc_del(c, cc);
1539        CC_UNLOCK(cc);
1540        return (cancelled);
1541}
1542
1543void
1544callout_init(struct callout *c, int mpsafe)
1545{
1546        bzero(c, sizeof *c);
1547        if (mpsafe) {
1548                c->c_lock = NULL;
1549                c->c_iflags = CALLOUT_RETURNUNLOCKED;
1550        } else {
1551                c->c_lock = &Giant.lock_object;
1552                c->c_iflags = 0;
1553        }
1554        c->c_cpu = timeout_cpu;
1555}
1556
1557void
1558_callout_init_lock(struct callout *c, struct lock_object *lock, int flags)
1559{
1560        bzero(c, sizeof *c);
1561        c->c_lock = lock;
1562        KASSERT((flags & ~(CALLOUT_RETURNUNLOCKED | CALLOUT_SHAREDLOCK)) == 0,
1563            ("callout_init_lock: bad flags %d", flags));
1564        KASSERT(lock != NULL || (flags & CALLOUT_RETURNUNLOCKED) == 0,
1565            ("callout_init_lock: CALLOUT_RETURNUNLOCKED with no lock"));
1566        KASSERT(lock == NULL || !(LOCK_CLASS(lock)->lc_flags &
1567            (LC_SPINLOCK | LC_SLEEPABLE)), ("%s: invalid lock class",
1568            __func__));
1569        c->c_iflags = flags & (CALLOUT_RETURNUNLOCKED | CALLOUT_SHAREDLOCK);
1570        c->c_cpu = timeout_cpu;
1571}
1572
1573#ifdef APM_FIXUP_CALLTODO
1574/*
1575 * Adjust the kernel calltodo timeout list.  This routine is used after
1576 * an APM resume to recalculate the calltodo timer list values with the
1577 * number of hz's we have been sleeping.  The next hardclock() will detect
1578 * that there are fired timers and run softclock() to execute them.
1579 *
1580 * Please note, I have not done an exhaustive analysis of what code this
1581 * might break.  I am motivated to have my select()'s and alarm()'s that
1582 * have expired during suspend firing upon resume so that the applications
1583 * which set the timer can do the maintanence the timer was for as close
1584 * as possible to the originally intended time.  Testing this code for a
1585 * week showed that resuming from a suspend resulted in 22 to 25 timers
1586 * firing, which seemed independent on whether the suspend was 2 hours or
1587 * 2 days.  Your milage may vary.   - Ken Key <key@cs.utk.edu>
1588 */
1589void
1590adjust_timeout_calltodo(struct timeval *time_change)
1591{
1592        register struct callout *p;
1593        unsigned long delta_ticks;
1594
1595        /*
1596         * How many ticks were we asleep?
1597         * (stolen from tvtohz()).
1598         */
1599
1600        /* Don't do anything */
1601        if (time_change->tv_sec < 0)
1602                return;
1603        else if (time_change->tv_sec <= LONG_MAX / 1000000)
1604                delta_ticks = howmany(time_change->tv_sec * 1000000 +
1605                    time_change->tv_usec, tick) + 1;
1606        else if (time_change->tv_sec <= LONG_MAX / hz)
1607                delta_ticks = time_change->tv_sec * hz +
1608                    howmany(time_change->tv_usec, tick) + 1;
1609        else
1610                delta_ticks = LONG_MAX;
1611
1612        if (delta_ticks > INT_MAX)
1613                delta_ticks = INT_MAX;
1614
1615        /*
1616         * Now rip through the timer calltodo list looking for timers
1617         * to expire.
1618         */
1619
1620        /* don't collide with softclock() */
1621        CC_LOCK(cc);
1622        for (p = calltodo.c_next; p != NULL; p = p->c_next) {
1623                p->c_time -= delta_ticks;
1624
1625                /* Break if the timer had more time on it than delta_ticks */
1626                if (p->c_time > 0)
1627                        break;
1628
1629                /* take back the ticks the timer didn't use (p->c_time <= 0) */
1630                delta_ticks = -p->c_time;
1631        }
1632        CC_UNLOCK(cc);
1633
1634        return;
1635}
1636#endif /* APM_FIXUP_CALLTODO */
1637
1638static int
1639flssbt(sbintime_t sbt)
1640{
1641
1642        sbt += (uint64_t)sbt >> 1;
1643        if (sizeof(long) >= sizeof(sbintime_t))
1644                return (flsl(sbt));
1645        if (sbt >= SBT_1S)
1646                return (flsl(((uint64_t)sbt) >> 32) + 32);
1647        return (flsl(sbt));
1648}
1649
1650/*
1651 * Dump immediate statistic snapshot of the scheduled callouts.
1652 */
1653static int
1654sysctl_kern_callout_stat(SYSCTL_HANDLER_ARGS)
1655{
1656        struct callout *tmp;
1657        struct callout_cpu *cc;
1658        struct callout_list *sc;
1659        sbintime_t maxpr, maxt, medpr, medt, now, spr, st, t;
1660        int ct[64], cpr[64], ccpbk[32];
1661        int error, val, i, count, tcum, pcum, maxc, c, medc;
1662#ifdef SMP
1663        int cpu;
1664#endif
1665
1666        val = 0;
1667        error = sysctl_handle_int(oidp, &val, 0, req);
1668        if (error != 0 || req->newptr == NULL)
1669                return (error);
1670        count = maxc = 0;
1671        st = spr = maxt = maxpr = 0;
1672        bzero(ccpbk, sizeof(ccpbk));
1673        bzero(ct, sizeof(ct));
1674        bzero(cpr, sizeof(cpr));
1675        now = sbinuptime();
1676#ifdef SMP
1677        CPU_FOREACH(cpu) {
1678                cc = CC_CPU(cpu);
1679#else
1680                cc = CC_CPU(timeout_cpu);
1681#endif
1682                CC_LOCK(cc);
1683                for (i = 0; i < callwheelsize; i++) {
1684                        sc = &cc->cc_callwheel[i];
1685                        c = 0;
1686                        LIST_FOREACH(tmp, sc, c_links.le) {
1687                                c++;
1688                                t = tmp->c_time - now;
1689                                if (t < 0)
1690                                        t = 0;
1691                                st += t / SBT_1US;
1692                                spr += tmp->c_precision / SBT_1US;
1693                                if (t > maxt)
1694                                        maxt = t;
1695                                if (tmp->c_precision > maxpr)
1696                                        maxpr = tmp->c_precision;
1697                                ct[flssbt(t)]++;
1698                                cpr[flssbt(tmp->c_precision)]++;
1699                        }
1700                        if (c > maxc)
1701                                maxc = c;
1702                        ccpbk[fls(c + c / 2)]++;
1703                        count += c;
1704                }
1705                CC_UNLOCK(cc);
1706#ifdef SMP
1707        }
1708#endif
1709
1710        for (i = 0, tcum = 0; i < 64 && tcum < count / 2; i++)
1711                tcum += ct[i];
1712        medt = (i >= 2) ? (((sbintime_t)1) << (i - 2)) : 0;
1713        for (i = 0, pcum = 0; i < 64 && pcum < count / 2; i++)
1714                pcum += cpr[i];
1715        medpr = (i >= 2) ? (((sbintime_t)1) << (i - 2)) : 0;
1716        for (i = 0, c = 0; i < 32 && c < count / 2; i++)
1717                c += ccpbk[i];
1718        medc = (i >= 2) ? (1 << (i - 2)) : 0;
1719
1720        printf("Scheduled callouts statistic snapshot:\n");
1721        printf("  Callouts: %6d  Buckets: %6d*%-3d  Bucket size: 0.%06ds\n",
1722            count, callwheelsize, mp_ncpus, 1000000 >> CC_HASH_SHIFT);
1723        printf("  C/Bk: med %5d         avg %6d.%06jd  max %6d\n",
1724            medc,
1725            count / callwheelsize / mp_ncpus,
1726            (uint64_t)count * 1000000 / callwheelsize / mp_ncpus % 1000000,
1727            maxc);
1728        printf("  Time: med %5jd.%06jds avg %6jd.%06jds max %6jd.%06jds\n",
1729            medt / SBT_1S, (medt & 0xffffffff) * 1000000 >> 32,
1730            (st / count) / 1000000, (st / count) % 1000000,
1731            maxt / SBT_1S, (maxt & 0xffffffff) * 1000000 >> 32);
1732        printf("  Prec: med %5jd.%06jds avg %6jd.%06jds max %6jd.%06jds\n",
1733            medpr / SBT_1S, (medpr & 0xffffffff) * 1000000 >> 32,
1734            (spr / count) / 1000000, (spr / count) % 1000000,
1735            maxpr / SBT_1S, (maxpr & 0xffffffff) * 1000000 >> 32);
1736        printf("  Distribution:       \tbuckets\t   time\t   tcum\t"
1737            "   prec\t   pcum\n");
1738        for (i = 0, tcum = pcum = 0; i < 64; i++) {
1739                if (ct[i] == 0 && cpr[i] == 0)
1740                        continue;
1741                t = (i != 0) ? (((sbintime_t)1) << (i - 1)) : 0;
1742                tcum += ct[i];
1743                pcum += cpr[i];
1744                printf("  %10jd.%06jds\t 2**%d\t%7d\t%7d\t%7d\t%7d\n",
1745                    t / SBT_1S, (t & 0xffffffff) * 1000000 >> 32,
1746                    i - 1 - (32 - CC_HASH_SHIFT),
1747                    ct[i], tcum, cpr[i], pcum);
1748        }
1749        return (error);
1750}
1751SYSCTL_PROC(_kern, OID_AUTO, callout_stat,
1752    CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE,
1753    0, 0, sysctl_kern_callout_stat, "I",
1754    "Dump immediate statistic snapshot of the scheduled callouts");
1755
1756#ifdef DDB
1757static void
1758_show_callout(struct callout *c)
1759{
1760
1761        db_printf("callout %p\n", c);
1762#define C_DB_PRINTF(f, e)       db_printf("   %s = " f "\n", #e, c->e);
1763        db_printf("   &c_links = %p\n", &(c->c_links));
1764        C_DB_PRINTF("%" PRId64, c_time);
1765        C_DB_PRINTF("%" PRId64, c_precision);
1766        C_DB_PRINTF("%p",       c_arg);
1767        C_DB_PRINTF("%p",       c_func);
1768        C_DB_PRINTF("%p",       c_lock);
1769        C_DB_PRINTF("%#x",      c_flags);
1770        C_DB_PRINTF("%#x",      c_iflags);
1771        C_DB_PRINTF("%d",       c_cpu);
1772#undef  C_DB_PRINTF
1773}
1774
1775DB_SHOW_COMMAND(callout, db_show_callout)
1776{
1777
1778        if (!have_addr) {
1779                db_printf("usage: show callout <struct callout *>\n");
1780                return;
1781        }
1782
1783        _show_callout((struct callout *)addr);
1784}
1785#endif /* DDB */
Note: See TracBrowser for help on using the repository browser.