source: rtems-libbsd/freebsd/sys/dev/nvme/nvme_qpair.c @ 53145c7

5
Last change on this file since 53145c7 was 53145c7, checked in by Sebastian Huber <sebastian.huber@…>, on 09/03/18 at 12:21:14

NVME(4): Port to RTEMS

Update #3821.

  • Property mode set to 100644
File size: 39.2 KB
Line 
1#include <machine/rtems-bsd-kernel-space.h>
2
3/*-
4 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
5 *
6 * Copyright (C) 2012-2014 Intel Corporation
7 * All rights reserved.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 *    notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 *    notice, this list of conditions and the following disclaimer in the
16 *    documentation and/or other materials provided with the distribution.
17 *
18 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
19 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
20 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
21 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
22 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
23 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
24 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
25 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
26 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
27 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
28 * SUCH DAMAGE.
29 */
30
31#include <sys/cdefs.h>
32__FBSDID("$FreeBSD$");
33
34#include <sys/param.h>
35#include <sys/bus.h>
36#include <sys/conf.h>
37#include <sys/domainset.h>
38#include <sys/proc.h>
39
40#include <dev/pci/pcivar.h>
41
42#include "nvme_private.h"
43
44typedef enum error_print { ERROR_PRINT_NONE, ERROR_PRINT_NO_RETRY, ERROR_PRINT_ALL } error_print_t;
45#define DO_NOT_RETRY    1
46
47static void     _nvme_qpair_submit_request(struct nvme_qpair *qpair,
48                                           struct nvme_request *req);
49static void     nvme_qpair_destroy(struct nvme_qpair *qpair);
50
51struct nvme_opcode_string {
52
53        uint16_t        opc;
54        const char *    str;
55};
56
57static struct nvme_opcode_string admin_opcode[] = {
58        { NVME_OPC_DELETE_IO_SQ, "DELETE IO SQ" },
59        { NVME_OPC_CREATE_IO_SQ, "CREATE IO SQ" },
60        { NVME_OPC_GET_LOG_PAGE, "GET LOG PAGE" },
61        { NVME_OPC_DELETE_IO_CQ, "DELETE IO CQ" },
62        { NVME_OPC_CREATE_IO_CQ, "CREATE IO CQ" },
63        { NVME_OPC_IDENTIFY, "IDENTIFY" },
64        { NVME_OPC_ABORT, "ABORT" },
65        { NVME_OPC_SET_FEATURES, "SET FEATURES" },
66        { NVME_OPC_GET_FEATURES, "GET FEATURES" },
67        { NVME_OPC_ASYNC_EVENT_REQUEST, "ASYNC EVENT REQUEST" },
68        { NVME_OPC_FIRMWARE_ACTIVATE, "FIRMWARE ACTIVATE" },
69        { NVME_OPC_FIRMWARE_IMAGE_DOWNLOAD, "FIRMWARE IMAGE DOWNLOAD" },
70        { NVME_OPC_DEVICE_SELF_TEST, "DEVICE SELF-TEST" },
71        { NVME_OPC_NAMESPACE_ATTACHMENT, "NAMESPACE ATTACHMENT" },
72        { NVME_OPC_KEEP_ALIVE, "KEEP ALIVE" },
73        { NVME_OPC_DIRECTIVE_SEND, "DIRECTIVE SEND" },
74        { NVME_OPC_DIRECTIVE_RECEIVE, "DIRECTIVE RECEIVE" },
75        { NVME_OPC_VIRTUALIZATION_MANAGEMENT, "VIRTUALIZATION MANAGEMENT" },
76        { NVME_OPC_NVME_MI_SEND, "NVME-MI SEND" },
77        { NVME_OPC_NVME_MI_RECEIVE, "NVME-MI RECEIVE" },
78        { NVME_OPC_DOORBELL_BUFFER_CONFIG, "DOORBELL BUFFER CONFIG" },
79        { NVME_OPC_FORMAT_NVM, "FORMAT NVM" },
80        { NVME_OPC_SECURITY_SEND, "SECURITY SEND" },
81        { NVME_OPC_SECURITY_RECEIVE, "SECURITY RECEIVE" },
82        { NVME_OPC_SANITIZE, "SANITIZE" },
83        { NVME_OPC_GET_LBA_STATUS, "GET LBA STATUS" },
84        { 0xFFFF, "ADMIN COMMAND" }
85};
86
87static struct nvme_opcode_string io_opcode[] = {
88        { NVME_OPC_FLUSH, "FLUSH" },
89        { NVME_OPC_WRITE, "WRITE" },
90        { NVME_OPC_READ, "READ" },
91        { NVME_OPC_WRITE_UNCORRECTABLE, "WRITE UNCORRECTABLE" },
92        { NVME_OPC_COMPARE, "COMPARE" },
93        { NVME_OPC_WRITE_ZEROES, "WRITE ZEROES" },
94        { NVME_OPC_DATASET_MANAGEMENT, "DATASET MANAGEMENT" },
95        { NVME_OPC_VERIFY, "VERIFY" },
96        { NVME_OPC_RESERVATION_REGISTER, "RESERVATION REGISTER" },
97        { NVME_OPC_RESERVATION_REPORT, "RESERVATION REPORT" },
98        { NVME_OPC_RESERVATION_ACQUIRE, "RESERVATION ACQUIRE" },
99        { NVME_OPC_RESERVATION_RELEASE, "RESERVATION RELEASE" },
100        { 0xFFFF, "IO COMMAND" }
101};
102
103static const char *
104get_admin_opcode_string(uint16_t opc)
105{
106        struct nvme_opcode_string *entry;
107
108        entry = admin_opcode;
109
110        while (entry->opc != 0xFFFF) {
111                if (entry->opc == opc)
112                        return (entry->str);
113                entry++;
114        }
115        return (entry->str);
116}
117
118static const char *
119get_io_opcode_string(uint16_t opc)
120{
121        struct nvme_opcode_string *entry;
122
123        entry = io_opcode;
124
125        while (entry->opc != 0xFFFF) {
126                if (entry->opc == opc)
127                        return (entry->str);
128                entry++;
129        }
130        return (entry->str);
131}
132
133
134static void
135nvme_admin_qpair_print_command(struct nvme_qpair *qpair,
136    struct nvme_command *cmd)
137{
138
139        nvme_printf(qpair->ctrlr, "%s (%02x) sqid:%d cid:%d nsid:%x "
140            "cdw10:%08x cdw11:%08x\n",
141            get_admin_opcode_string(cmd->opc), cmd->opc, qpair->id, cmd->cid,
142            le32toh(cmd->nsid), le32toh(cmd->cdw10), le32toh(cmd->cdw11));
143}
144
145static void
146nvme_io_qpair_print_command(struct nvme_qpair *qpair,
147    struct nvme_command *cmd)
148{
149
150        switch (cmd->opc) {
151        case NVME_OPC_WRITE:
152        case NVME_OPC_READ:
153        case NVME_OPC_WRITE_UNCORRECTABLE:
154        case NVME_OPC_COMPARE:
155        case NVME_OPC_WRITE_ZEROES:
156        case NVME_OPC_VERIFY:
157                nvme_printf(qpair->ctrlr, "%s sqid:%d cid:%d nsid:%d "
158                    "lba:%llu len:%d\n",
159                    get_io_opcode_string(cmd->opc), qpair->id, cmd->cid, le32toh(cmd->nsid),
160                    ((unsigned long long)le32toh(cmd->cdw11) << 32) + le32toh(cmd->cdw10),
161                    (le32toh(cmd->cdw12) & 0xFFFF) + 1);
162                break;
163        case NVME_OPC_FLUSH:
164        case NVME_OPC_DATASET_MANAGEMENT:
165        case NVME_OPC_RESERVATION_REGISTER:
166        case NVME_OPC_RESERVATION_REPORT:
167        case NVME_OPC_RESERVATION_ACQUIRE:
168        case NVME_OPC_RESERVATION_RELEASE:
169                nvme_printf(qpair->ctrlr, "%s sqid:%d cid:%d nsid:%d\n",
170                    get_io_opcode_string(cmd->opc), qpair->id, cmd->cid, le32toh(cmd->nsid));
171                break;
172        default:
173                nvme_printf(qpair->ctrlr, "%s (%02x) sqid:%d cid:%d nsid:%d\n",
174                    get_io_opcode_string(cmd->opc), cmd->opc, qpair->id,
175                    cmd->cid, le32toh(cmd->nsid));
176                break;
177        }
178}
179
180static void
181nvme_qpair_print_command(struct nvme_qpair *qpair, struct nvme_command *cmd)
182{
183        if (qpair->id == 0)
184                nvme_admin_qpair_print_command(qpair, cmd);
185        else
186                nvme_io_qpair_print_command(qpair, cmd);
187        if (nvme_verbose_cmd_dump) {
188                nvme_printf(qpair->ctrlr,
189                    "nsid:%#x rsvd2:%#x rsvd3:%#x mptr:%#jx prp1:%#jx prp2:%#jx\n",
190                    cmd->nsid, cmd->rsvd2, cmd->rsvd3, (uintmax_t)cmd->mptr,
191                    (uintmax_t)cmd->prp1, (uintmax_t)cmd->prp2);
192                nvme_printf(qpair->ctrlr,
193                    "cdw10: %#x cdw11:%#x cdw12:%#x cdw13:%#x cdw14:%#x cdw15:%#x\n",
194                    cmd->cdw10, cmd->cdw11, cmd->cdw12, cmd->cdw13, cmd->cdw14,
195                    cmd->cdw15);
196        }
197}
198
199struct nvme_status_string {
200
201        uint16_t        sc;
202        const char *    str;
203};
204
205static struct nvme_status_string generic_status[] = {
206        { NVME_SC_SUCCESS, "SUCCESS" },
207        { NVME_SC_INVALID_OPCODE, "INVALID OPCODE" },
208        { NVME_SC_INVALID_FIELD, "INVALID_FIELD" },
209        { NVME_SC_COMMAND_ID_CONFLICT, "COMMAND ID CONFLICT" },
210        { NVME_SC_DATA_TRANSFER_ERROR, "DATA TRANSFER ERROR" },
211        { NVME_SC_ABORTED_POWER_LOSS, "ABORTED - POWER LOSS" },
212        { NVME_SC_INTERNAL_DEVICE_ERROR, "INTERNAL DEVICE ERROR" },
213        { NVME_SC_ABORTED_BY_REQUEST, "ABORTED - BY REQUEST" },
214        { NVME_SC_ABORTED_SQ_DELETION, "ABORTED - SQ DELETION" },
215        { NVME_SC_ABORTED_FAILED_FUSED, "ABORTED - FAILED FUSED" },
216        { NVME_SC_ABORTED_MISSING_FUSED, "ABORTED - MISSING FUSED" },
217        { NVME_SC_INVALID_NAMESPACE_OR_FORMAT, "INVALID NAMESPACE OR FORMAT" },
218        { NVME_SC_COMMAND_SEQUENCE_ERROR, "COMMAND SEQUENCE ERROR" },
219        { NVME_SC_INVALID_SGL_SEGMENT_DESCR, "INVALID SGL SEGMENT DESCRIPTOR" },
220        { NVME_SC_INVALID_NUMBER_OF_SGL_DESCR, "INVALID NUMBER OF SGL DESCRIPTORS" },
221        { NVME_SC_DATA_SGL_LENGTH_INVALID, "DATA SGL LENGTH INVALID" },
222        { NVME_SC_METADATA_SGL_LENGTH_INVALID, "METADATA SGL LENGTH INVALID" },
223        { NVME_SC_SGL_DESCRIPTOR_TYPE_INVALID, "SGL DESCRIPTOR TYPE INVALID" },
224        { NVME_SC_INVALID_USE_OF_CMB, "INVALID USE OF CONTROLLER MEMORY BUFFER" },
225        { NVME_SC_PRP_OFFET_INVALID, "PRP OFFET INVALID" },
226        { NVME_SC_ATOMIC_WRITE_UNIT_EXCEEDED, "ATOMIC WRITE UNIT EXCEEDED" },
227        { NVME_SC_OPERATION_DENIED, "OPERATION DENIED" },
228        { NVME_SC_SGL_OFFSET_INVALID, "SGL OFFSET INVALID" },
229        { NVME_SC_HOST_ID_INCONSISTENT_FORMAT, "HOST IDENTIFIER INCONSISTENT FORMAT" },
230        { NVME_SC_KEEP_ALIVE_TIMEOUT_EXPIRED, "KEEP ALIVE TIMEOUT EXPIRED" },
231        { NVME_SC_KEEP_ALIVE_TIMEOUT_INVALID, "KEEP ALIVE TIMEOUT INVALID" },
232        { NVME_SC_ABORTED_DUE_TO_PREEMPT, "COMMAND ABORTED DUE TO PREEMPT AND ABORT" },
233        { NVME_SC_SANITIZE_FAILED, "SANITIZE FAILED" },
234        { NVME_SC_SANITIZE_IN_PROGRESS, "SANITIZE IN PROGRESS" },
235        { NVME_SC_SGL_DATA_BLOCK_GRAN_INVALID, "SGL_DATA_BLOCK_GRANULARITY_INVALID" },
236        { NVME_SC_NOT_SUPPORTED_IN_CMB, "COMMAND NOT SUPPORTED FOR QUEUE IN CMB" },
237        { NVME_SC_NAMESPACE_IS_WRITE_PROTECTED, "NAMESPACE IS WRITE PROTECTED" },
238        { NVME_SC_COMMAND_INTERRUPTED, "COMMAND INTERRUPTED" },
239        { NVME_SC_TRANSIENT_TRANSPORT_ERROR, "TRANSIENT TRANSPORT ERROR" },
240
241        { NVME_SC_LBA_OUT_OF_RANGE, "LBA OUT OF RANGE" },
242        { NVME_SC_CAPACITY_EXCEEDED, "CAPACITY EXCEEDED" },
243        { NVME_SC_NAMESPACE_NOT_READY, "NAMESPACE NOT READY" },
244        { NVME_SC_RESERVATION_CONFLICT, "RESERVATION CONFLICT" },
245        { NVME_SC_FORMAT_IN_PROGRESS, "FORMAT IN PROGRESS" },
246        { 0xFFFF, "GENERIC" }
247};
248
249static struct nvme_status_string command_specific_status[] = {
250        { NVME_SC_COMPLETION_QUEUE_INVALID, "INVALID COMPLETION QUEUE" },
251        { NVME_SC_INVALID_QUEUE_IDENTIFIER, "INVALID QUEUE IDENTIFIER" },
252        { NVME_SC_MAXIMUM_QUEUE_SIZE_EXCEEDED, "MAX QUEUE SIZE EXCEEDED" },
253        { NVME_SC_ABORT_COMMAND_LIMIT_EXCEEDED, "ABORT CMD LIMIT EXCEEDED" },
254        { NVME_SC_ASYNC_EVENT_REQUEST_LIMIT_EXCEEDED, "ASYNC LIMIT EXCEEDED" },
255        { NVME_SC_INVALID_FIRMWARE_SLOT, "INVALID FIRMWARE SLOT" },
256        { NVME_SC_INVALID_FIRMWARE_IMAGE, "INVALID FIRMWARE IMAGE" },
257        { NVME_SC_INVALID_INTERRUPT_VECTOR, "INVALID INTERRUPT VECTOR" },
258        { NVME_SC_INVALID_LOG_PAGE, "INVALID LOG PAGE" },
259        { NVME_SC_INVALID_FORMAT, "INVALID FORMAT" },
260        { NVME_SC_FIRMWARE_REQUIRES_RESET, "FIRMWARE REQUIRES RESET" },
261        { NVME_SC_INVALID_QUEUE_DELETION, "INVALID QUEUE DELETION" },
262        { NVME_SC_FEATURE_NOT_SAVEABLE, "FEATURE IDENTIFIER NOT SAVEABLE" },
263        { NVME_SC_FEATURE_NOT_CHANGEABLE, "FEATURE NOT CHANGEABLE" },
264        { NVME_SC_FEATURE_NOT_NS_SPECIFIC, "FEATURE NOT NAMESPACE SPECIFIC" },
265        { NVME_SC_FW_ACT_REQUIRES_NVMS_RESET, "FIRMWARE ACTIVATION REQUIRES NVM SUBSYSTEM RESET" },
266        { NVME_SC_FW_ACT_REQUIRES_RESET, "FIRMWARE ACTIVATION REQUIRES RESET" },
267        { NVME_SC_FW_ACT_REQUIRES_TIME, "FIRMWARE ACTIVATION REQUIRES MAXIMUM TIME VIOLATION" },
268        { NVME_SC_FW_ACT_PROHIBITED, "FIRMWARE ACTIVATION PROHIBITED" },
269        { NVME_SC_OVERLAPPING_RANGE, "OVERLAPPING RANGE" },
270        { NVME_SC_NS_INSUFFICIENT_CAPACITY, "NAMESPACE INSUFFICIENT CAPACITY" },
271        { NVME_SC_NS_ID_UNAVAILABLE, "NAMESPACE IDENTIFIER UNAVAILABLE" },
272        { NVME_SC_NS_ALREADY_ATTACHED, "NAMESPACE ALREADY ATTACHED" },
273        { NVME_SC_NS_IS_PRIVATE, "NAMESPACE IS PRIVATE" },
274        { NVME_SC_NS_NOT_ATTACHED, "NS NOT ATTACHED" },
275        { NVME_SC_THIN_PROV_NOT_SUPPORTED, "THIN PROVISIONING NOT SUPPORTED" },
276        { NVME_SC_CTRLR_LIST_INVALID, "CONTROLLER LIST INVALID" },
277        { NVME_SC_SELT_TEST_IN_PROGRESS, "DEVICE SELT-TEST IN PROGRESS" },
278        { NVME_SC_BOOT_PART_WRITE_PROHIB, "BOOT PARTITION WRITE PROHIBITED" },
279        { NVME_SC_INVALID_CTRLR_ID, "INVALID CONTROLLER IDENTIFIER" },
280        { NVME_SC_INVALID_SEC_CTRLR_STATE, "INVALID SECONDARY CONTROLLER STATE" },
281        { NVME_SC_INVALID_NUM_OF_CTRLR_RESRC, "INVALID NUMBER OF CONTROLLER RESOURCES" },
282        { NVME_SC_INVALID_RESOURCE_ID, "INVALID RESOURCE IDENTIFIER" },
283        { NVME_SC_SANITIZE_PROHIBITED_WPMRE, "SANITIZE PROHIBITED WRITE PERSISTENT MEMORY REGION ENABLED" },
284        { NVME_SC_ANA_GROUP_ID_INVALID, "ANA GROUP IDENTIFIED INVALID" },
285        { NVME_SC_ANA_ATTACH_FAILED, "ANA ATTACH FAILED" },
286
287        { NVME_SC_CONFLICTING_ATTRIBUTES, "CONFLICTING ATTRIBUTES" },
288        { NVME_SC_INVALID_PROTECTION_INFO, "INVALID PROTECTION INFO" },
289        { NVME_SC_ATTEMPTED_WRITE_TO_RO_PAGE, "WRITE TO RO PAGE" },
290        { 0xFFFF, "COMMAND SPECIFIC" }
291};
292
293static struct nvme_status_string media_error_status[] = {
294        { NVME_SC_WRITE_FAULTS, "WRITE FAULTS" },
295        { NVME_SC_UNRECOVERED_READ_ERROR, "UNRECOVERED READ ERROR" },
296        { NVME_SC_GUARD_CHECK_ERROR, "GUARD CHECK ERROR" },
297        { NVME_SC_APPLICATION_TAG_CHECK_ERROR, "APPLICATION TAG CHECK ERROR" },
298        { NVME_SC_REFERENCE_TAG_CHECK_ERROR, "REFERENCE TAG CHECK ERROR" },
299        { NVME_SC_COMPARE_FAILURE, "COMPARE FAILURE" },
300        { NVME_SC_ACCESS_DENIED, "ACCESS DENIED" },
301        { NVME_SC_DEALLOCATED_OR_UNWRITTEN, "DEALLOCATED OR UNWRITTEN LOGICAL BLOCK" },
302        { 0xFFFF, "MEDIA ERROR" }
303};
304
305static struct nvme_status_string path_related_status[] = {
306        { NVME_SC_INTERNAL_PATH_ERROR, "INTERNAL PATH ERROR" },
307        { NVME_SC_ASYMMETRIC_ACCESS_PERSISTENT_LOSS, "ASYMMETRIC ACCESS PERSISTENT LOSS" },
308        { NVME_SC_ASYMMETRIC_ACCESS_INACCESSIBLE, "ASYMMETRIC ACCESS INACCESSIBLE" },
309        { NVME_SC_ASYMMETRIC_ACCESS_TRANSITION, "ASYMMETRIC ACCESS TRANSITION" },
310        { NVME_SC_CONTROLLER_PATHING_ERROR, "CONTROLLER PATHING ERROR" },
311        { NVME_SC_HOST_PATHING_ERROR, "HOST PATHING ERROR" },
312        { NVME_SC_COMMAND_ABOTHED_BY_HOST, "COMMAND ABOTHED BY HOST" },
313        { 0xFFFF, "PATH RELATED" },
314};
315
316static const char *
317get_status_string(uint16_t sct, uint16_t sc)
318{
319        struct nvme_status_string *entry;
320
321        switch (sct) {
322        case NVME_SCT_GENERIC:
323                entry = generic_status;
324                break;
325        case NVME_SCT_COMMAND_SPECIFIC:
326                entry = command_specific_status;
327                break;
328        case NVME_SCT_MEDIA_ERROR:
329                entry = media_error_status;
330                break;
331        case NVME_SCT_PATH_RELATED:
332                entry = path_related_status;
333                break;
334        case NVME_SCT_VENDOR_SPECIFIC:
335                return ("VENDOR SPECIFIC");
336        default:
337                return ("RESERVED");
338        }
339
340        while (entry->sc != 0xFFFF) {
341                if (entry->sc == sc)
342                        return (entry->str);
343                entry++;
344        }
345        return (entry->str);
346}
347
348static void
349nvme_qpair_print_completion(struct nvme_qpair *qpair,
350    struct nvme_completion *cpl)
351{
352        uint16_t sct, sc;
353
354        sct = NVME_STATUS_GET_SCT(cpl->status);
355        sc = NVME_STATUS_GET_SC(cpl->status);
356
357        nvme_printf(qpair->ctrlr, "%s (%02x/%02x) sqid:%d cid:%d cdw0:%x\n",
358            get_status_string(sct, sc), sct, sc, cpl->sqid, cpl->cid,
359            cpl->cdw0);
360}
361
362static boolean_t
363nvme_completion_is_retry(const struct nvme_completion *cpl)
364{
365        uint8_t sct, sc, dnr;
366
367        sct = NVME_STATUS_GET_SCT(cpl->status);
368        sc = NVME_STATUS_GET_SC(cpl->status);
369        dnr = NVME_STATUS_GET_DNR(cpl->status); /* Do Not Retry Bit */
370
371        /*
372         * TODO: spec is not clear how commands that are aborted due
373         *  to TLER will be marked.  So for now, it seems
374         *  NAMESPACE_NOT_READY is the only case where we should
375         *  look at the DNR bit. Requests failed with ABORTED_BY_REQUEST
376         *  set the DNR bit correctly since the driver controls that.
377         */
378        switch (sct) {
379        case NVME_SCT_GENERIC:
380                switch (sc) {
381                case NVME_SC_ABORTED_BY_REQUEST:
382                case NVME_SC_NAMESPACE_NOT_READY:
383                        if (dnr)
384                                return (0);
385                        else
386                                return (1);
387                case NVME_SC_INVALID_OPCODE:
388                case NVME_SC_INVALID_FIELD:
389                case NVME_SC_COMMAND_ID_CONFLICT:
390                case NVME_SC_DATA_TRANSFER_ERROR:
391                case NVME_SC_ABORTED_POWER_LOSS:
392                case NVME_SC_INTERNAL_DEVICE_ERROR:
393                case NVME_SC_ABORTED_SQ_DELETION:
394                case NVME_SC_ABORTED_FAILED_FUSED:
395                case NVME_SC_ABORTED_MISSING_FUSED:
396                case NVME_SC_INVALID_NAMESPACE_OR_FORMAT:
397                case NVME_SC_COMMAND_SEQUENCE_ERROR:
398                case NVME_SC_LBA_OUT_OF_RANGE:
399                case NVME_SC_CAPACITY_EXCEEDED:
400                default:
401                        return (0);
402                }
403        case NVME_SCT_COMMAND_SPECIFIC:
404        case NVME_SCT_MEDIA_ERROR:
405                return (0);
406        case NVME_SCT_PATH_RELATED:
407                switch (sc) {
408                case NVME_SC_INTERNAL_PATH_ERROR:
409                        if (dnr)
410                                return (0);
411                        else
412                                return (1);
413                default:
414                        return (0);
415                }
416        case NVME_SCT_VENDOR_SPECIFIC:
417        default:
418                return (0);
419        }
420}
421
422static void
423nvme_qpair_complete_tracker(struct nvme_qpair *qpair, struct nvme_tracker *tr,
424    struct nvme_completion *cpl, error_print_t print_on_error)
425{
426        struct nvme_request     *req;
427        boolean_t               retry, error, retriable;
428
429        req = tr->req;
430        error = nvme_completion_is_error(cpl);
431        retriable = nvme_completion_is_retry(cpl);
432        retry = error && retriable && req->retries < nvme_retry_count;
433        if (retry)
434                qpair->num_retries++;
435        if (error && req->retries >= nvme_retry_count && retriable)
436                qpair->num_failures++;
437
438        if (error && (print_on_error == ERROR_PRINT_ALL ||
439                (!retry && print_on_error == ERROR_PRINT_NO_RETRY))) {
440                nvme_qpair_print_command(qpair, &req->cmd);
441                nvme_qpair_print_completion(qpair, cpl);
442        }
443
444        qpair->act_tr[cpl->cid] = NULL;
445
446        KASSERT(cpl->cid == req->cmd.cid, ("cpl cid does not match cmd cid\n"));
447
448        if (req->cb_fn && !retry)
449                req->cb_fn(req->cb_arg, cpl);
450
451        mtx_lock(&qpair->lock);
452        callout_stop(&tr->timer);
453
454        if (retry) {
455                req->retries++;
456                nvme_qpair_submit_tracker(qpair, tr);
457        } else {
458                if (req->type != NVME_REQUEST_NULL) {
459                        bus_dmamap_sync(qpair->dma_tag_payload,
460                            tr->payload_dma_map,
461                            BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
462                        bus_dmamap_unload(qpair->dma_tag_payload,
463                            tr->payload_dma_map);
464                }
465
466                nvme_free_request(req);
467                tr->req = NULL;
468
469                TAILQ_REMOVE(&qpair->outstanding_tr, tr, tailq);
470                TAILQ_INSERT_HEAD(&qpair->free_tr, tr, tailq);
471
472                /*
473                 * If the controller is in the middle of resetting, don't
474                 *  try to submit queued requests here - let the reset logic
475                 *  handle that instead.
476                 */
477                if (!STAILQ_EMPTY(&qpair->queued_req) &&
478                    !qpair->ctrlr->is_resetting) {
479                        req = STAILQ_FIRST(&qpair->queued_req);
480                        STAILQ_REMOVE_HEAD(&qpair->queued_req, stailq);
481                        _nvme_qpair_submit_request(qpair, req);
482                }
483        }
484
485        mtx_unlock(&qpair->lock);
486}
487
488static void
489nvme_qpair_manual_complete_tracker(struct nvme_qpair *qpair,
490    struct nvme_tracker *tr, uint32_t sct, uint32_t sc, uint32_t dnr,
491    error_print_t print_on_error)
492{
493        struct nvme_completion  cpl;
494
495        memset(&cpl, 0, sizeof(cpl));
496        cpl.sqid = qpair->id;
497        cpl.cid = tr->cid;
498        cpl.status |= (sct & NVME_STATUS_SCT_MASK) << NVME_STATUS_SCT_SHIFT;
499        cpl.status |= (sc & NVME_STATUS_SC_MASK) << NVME_STATUS_SC_SHIFT;
500        cpl.status |= (dnr & NVME_STATUS_DNR_MASK) << NVME_STATUS_DNR_SHIFT;
501        nvme_qpair_complete_tracker(qpair, tr, &cpl, print_on_error);
502}
503
504void
505nvme_qpair_manual_complete_request(struct nvme_qpair *qpair,
506    struct nvme_request *req, uint32_t sct, uint32_t sc)
507{
508        struct nvme_completion  cpl;
509        boolean_t               error;
510
511        memset(&cpl, 0, sizeof(cpl));
512        cpl.sqid = qpair->id;
513        cpl.status |= (sct & NVME_STATUS_SCT_MASK) << NVME_STATUS_SCT_SHIFT;
514        cpl.status |= (sc & NVME_STATUS_SC_MASK) << NVME_STATUS_SC_SHIFT;
515
516        error = nvme_completion_is_error(&cpl);
517
518        if (error) {
519                nvme_qpair_print_command(qpair, &req->cmd);
520                nvme_qpair_print_completion(qpair, &cpl);
521        }
522
523        if (req->cb_fn)
524                req->cb_fn(req->cb_arg, &cpl);
525
526        nvme_free_request(req);
527}
528
529bool
530nvme_qpair_process_completions(struct nvme_qpair *qpair)
531{
532        struct nvme_tracker     *tr;
533        struct nvme_completion  cpl;
534        int done = 0;
535        bool in_panic = dumping || SCHEDULER_STOPPED();
536
537        qpair->num_intr_handler_calls++;
538
539        /*
540         * qpair is not enabled, likely because a controller reset is is in
541         * progress.  Ignore the interrupt - any I/O that was associated with
542         * this interrupt will get retried when the reset is complete.
543         */
544        if (!qpair->is_enabled)
545                return (false);
546
547        /*
548         * A panic can stop the CPU this routine is running on at any point.  If
549         * we're called during a panic, complete the sq_head wrap protocol for
550         * the case where we are interrupted just after the increment at 1
551         * below, but before we can reset cq_head to zero at 2. Also cope with
552         * the case where we do the zero at 2, but may or may not have done the
553         * phase adjustment at step 3. The panic machinery flushes all pending
554         * memory writes, so we can make these strong ordering assumptions
555         * that would otherwise be unwise if we were racing in real time.
556         */
557        if (__predict_false(in_panic)) {
558                if (qpair->cq_head == qpair->num_entries) {
559                        /*
560                         * Here we know that we need to zero cq_head and then negate
561                         * the phase, which hasn't been assigned if cq_head isn't
562                         * zero due to the atomic_store_rel.
563                         */
564                        qpair->cq_head = 0;
565                        qpair->phase = !qpair->phase;
566                } else if (qpair->cq_head == 0) {
567                        /*
568                         * In this case, we know that the assignment at 2
569                         * happened below, but we don't know if it 3 happened or
570                         * not. To do this, we look at the last completion
571                         * entry and set the phase to the opposite phase
572                         * that it has. This gets us back in sync
573                         */
574                        cpl = qpair->cpl[qpair->num_entries - 1];
575                        nvme_completion_swapbytes(&cpl);
576                        qpair->phase = !NVME_STATUS_GET_P(cpl.status);
577                }
578        }
579
580        bus_dmamap_sync(qpair->dma_tag, qpair->queuemem_map,
581            BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
582        while (1) {
583                cpl = qpair->cpl[qpair->cq_head];
584
585                /* Convert to host endian */
586                nvme_completion_swapbytes(&cpl);
587
588                if (NVME_STATUS_GET_P(cpl.status) != qpair->phase)
589                        break;
590
591                tr = qpair->act_tr[cpl.cid];
592
593                if (tr != NULL) {
594                        nvme_qpair_complete_tracker(qpair, tr, &cpl, ERROR_PRINT_ALL);
595                        qpair->sq_head = cpl.sqhd;
596                        done++;
597                } else if (!in_panic) {
598                        /*
599                         * A missing tracker is normally an error.  However, a
600                         * panic can stop the CPU this routine is running on
601                         * after completing an I/O but before updating
602                         * qpair->cq_head at 1 below.  Later, we re-enter this
603                         * routine to poll I/O associated with the kernel
604                         * dump. We find that the tr has been set to null before
605                         * calling the completion routine.  If it hasn't
606                         * completed (or it triggers a panic), then '1' below
607                         * won't have updated cq_head. Rather than panic again,
608                         * ignore this condition because it's not unexpected.
609                         */
610                        nvme_printf(qpair->ctrlr,
611                            "cpl does not map to outstanding cmd\n");
612                        /* nvme_dump_completion expects device endianess */
613                        nvme_dump_completion(&qpair->cpl[qpair->cq_head]);
614                        KASSERT(0, ("received completion for unknown cmd"));
615                }
616
617                /*
618                 * There's a number of races with the following (see above) when
619                 * the system panics. We compensate for each one of them by
620                 * using the atomic store to force strong ordering (at least when
621                 * viewed in the aftermath of a panic).
622                 */
623                if (++qpair->cq_head == qpair->num_entries) {           /* 1 */
624                        atomic_store_rel_int(&qpair->cq_head, 0);       /* 2 */
625                        qpair->phase = !qpair->phase;                   /* 3 */
626                }
627
628                bus_space_write_4(qpair->ctrlr->bus_tag, qpair->ctrlr->bus_handle,
629                    qpair->cq_hdbl_off, qpair->cq_head);
630        }
631        return (done != 0);
632}
633
634static void
635nvme_qpair_msix_handler(void *arg)
636{
637        struct nvme_qpair *qpair = arg;
638
639        nvme_qpair_process_completions(qpair);
640}
641
642int
643nvme_qpair_construct(struct nvme_qpair *qpair,
644    uint32_t num_entries, uint32_t num_trackers,
645    struct nvme_controller *ctrlr)
646{
647        struct nvme_tracker     *tr;
648        size_t                  cmdsz, cplsz, prpsz, allocsz, prpmemsz;
649        uint64_t                queuemem_phys, prpmem_phys, list_phys;
650        uint8_t                 *queuemem, *prpmem, *prp_list;
651        int                     i, err;
652
653        qpair->vector = ctrlr->msix_enabled ? qpair->id : 0;
654        qpair->num_entries = num_entries;
655        qpair->num_trackers = num_trackers;
656        qpair->ctrlr = ctrlr;
657
658        if (ctrlr->msix_enabled) {
659
660                /*
661                 * MSI-X vector resource IDs start at 1, so we add one to
662                 *  the queue's vector to get the corresponding rid to use.
663                 */
664                qpair->rid = qpair->vector + 1;
665
666                qpair->res = bus_alloc_resource_any(ctrlr->dev, SYS_RES_IRQ,
667                    &qpair->rid, RF_ACTIVE);
668                bus_setup_intr(ctrlr->dev, qpair->res,
669                    INTR_TYPE_MISC | INTR_MPSAFE, NULL,
670                    nvme_qpair_msix_handler, qpair, &qpair->tag);
671                if (qpair->id == 0) {
672                        bus_describe_intr(ctrlr->dev, qpair->res, qpair->tag,
673                            "admin");
674                } else {
675                        bus_describe_intr(ctrlr->dev, qpair->res, qpair->tag,
676                            "io%d", qpair->id - 1);
677                }
678        }
679
680        mtx_init(&qpair->lock, "nvme qpair lock", NULL, MTX_DEF);
681
682        /* Note: NVMe PRP format is restricted to 4-byte alignment. */
683        err = bus_dma_tag_create(bus_get_dma_tag(ctrlr->dev),
684            4, PAGE_SIZE, BUS_SPACE_MAXADDR,
685            BUS_SPACE_MAXADDR, NULL, NULL, NVME_MAX_XFER_SIZE,
686            (NVME_MAX_XFER_SIZE/PAGE_SIZE)+1, PAGE_SIZE, 0,
687            NULL, NULL, &qpair->dma_tag_payload);
688        if (err != 0) {
689                nvme_printf(ctrlr, "payload tag create failed %d\n", err);
690                goto out;
691        }
692
693        /*
694         * Each component must be page aligned, and individual PRP lists
695         * cannot cross a page boundary.
696         */
697        cmdsz = qpair->num_entries * sizeof(struct nvme_command);
698        cmdsz = roundup2(cmdsz, PAGE_SIZE);
699        cplsz = qpair->num_entries * sizeof(struct nvme_completion);
700        cplsz = roundup2(cplsz, PAGE_SIZE);
701        prpsz = sizeof(uint64_t) * NVME_MAX_PRP_LIST_ENTRIES;;
702        prpmemsz = qpair->num_trackers * prpsz;
703        allocsz = cmdsz + cplsz + prpmemsz;
704
705        err = bus_dma_tag_create(bus_get_dma_tag(ctrlr->dev),
706            PAGE_SIZE, 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL,
707            allocsz, 1, allocsz, 0, NULL, NULL, &qpair->dma_tag);
708        if (err != 0) {
709                nvme_printf(ctrlr, "tag create failed %d\n", err);
710                goto out;
711        }
712#ifndef __rtems__
713        bus_dma_tag_set_domain(qpair->dma_tag, qpair->domain);
714#endif /* __rtems__ */
715
716        if (bus_dmamem_alloc(qpair->dma_tag, (void **)&queuemem,
717            BUS_DMA_NOWAIT, &qpair->queuemem_map)) {
718                nvme_printf(ctrlr, "failed to alloc qpair memory\n");
719                goto out;
720        }
721
722        if (bus_dmamap_load(qpair->dma_tag, qpair->queuemem_map,
723            queuemem, allocsz, nvme_single_map, &queuemem_phys, 0) != 0) {
724                nvme_printf(ctrlr, "failed to load qpair memory\n");
725                goto out;
726        }
727
728        qpair->num_cmds = 0;
729        qpair->num_intr_handler_calls = 0;
730        qpair->num_retries = 0;
731        qpair->num_failures = 0;
732        qpair->cmd = (struct nvme_command *)queuemem;
733        qpair->cpl = (struct nvme_completion *)(queuemem + cmdsz);
734        prpmem = (uint8_t *)(queuemem + cmdsz + cplsz);
735        qpair->cmd_bus_addr = queuemem_phys;
736        qpair->cpl_bus_addr = queuemem_phys + cmdsz;
737        prpmem_phys = queuemem_phys + cmdsz + cplsz;
738
739        /*
740         * Calcuate the stride of the doorbell register. Many emulators set this
741         * value to correspond to a cache line. However, some hardware has set
742         * it to various small values.
743         */
744        qpair->sq_tdbl_off = nvme_mmio_offsetof(doorbell[0]) +
745            (qpair->id << (ctrlr->dstrd + 1));
746        qpair->cq_hdbl_off = nvme_mmio_offsetof(doorbell[0]) +
747            (qpair->id << (ctrlr->dstrd + 1)) + (1 << ctrlr->dstrd);
748
749        TAILQ_INIT(&qpair->free_tr);
750        TAILQ_INIT(&qpair->outstanding_tr);
751        STAILQ_INIT(&qpair->queued_req);
752
753        list_phys = prpmem_phys;
754        prp_list = prpmem;
755        for (i = 0; i < qpair->num_trackers; i++) {
756
757                if (list_phys + prpsz > prpmem_phys + prpmemsz) {
758                        qpair->num_trackers = i;
759                        break;
760                }
761
762                /*
763                 * Make sure that the PRP list for this tracker doesn't
764                 * overflow to another page.
765                 */
766                if (trunc_page(list_phys) !=
767                    trunc_page(list_phys + prpsz - 1)) {
768                        list_phys = roundup2(list_phys, PAGE_SIZE);
769                        prp_list =
770                            (uint8_t *)roundup2((uintptr_t)prp_list, PAGE_SIZE);
771                }
772
773                tr = malloc_domainset(sizeof(*tr), M_NVME,
774                    DOMAINSET_PREF(qpair->domain), M_ZERO | M_WAITOK);
775                bus_dmamap_create(qpair->dma_tag_payload, 0,
776                    &tr->payload_dma_map);
777                callout_init(&tr->timer, 1);
778                tr->cid = i;
779                tr->qpair = qpair;
780                tr->prp = (uint64_t *)prp_list;
781                tr->prp_bus_addr = list_phys;
782                TAILQ_INSERT_HEAD(&qpair->free_tr, tr, tailq);
783                list_phys += prpsz;
784                prp_list += prpsz;
785        }
786
787        if (qpair->num_trackers == 0) {
788                nvme_printf(ctrlr, "failed to allocate enough trackers\n");
789                goto out;
790        }
791
792        qpair->act_tr = malloc_domainset(sizeof(struct nvme_tracker *) *
793            qpair->num_entries, M_NVME, DOMAINSET_PREF(qpair->domain),
794            M_ZERO | M_WAITOK);
795        return (0);
796
797out:
798        nvme_qpair_destroy(qpair);
799        return (ENOMEM);
800}
801
802static void
803nvme_qpair_destroy(struct nvme_qpair *qpair)
804{
805        struct nvme_tracker     *tr;
806
807        if (qpair->tag)
808                bus_teardown_intr(qpair->ctrlr->dev, qpair->res, qpair->tag);
809
810        if (mtx_initialized(&qpair->lock))
811                mtx_destroy(&qpair->lock);
812
813        if (qpair->res)
814                bus_release_resource(qpair->ctrlr->dev, SYS_RES_IRQ,
815                    rman_get_rid(qpair->res), qpair->res);
816
817        if (qpair->cmd != NULL) {
818                bus_dmamap_unload(qpair->dma_tag, qpair->queuemem_map);
819                bus_dmamem_free(qpair->dma_tag, qpair->cmd,
820                    qpair->queuemem_map);
821        }
822
823        if (qpair->act_tr)
824                free_domain(qpair->act_tr, M_NVME);
825
826        while (!TAILQ_EMPTY(&qpair->free_tr)) {
827                tr = TAILQ_FIRST(&qpair->free_tr);
828                TAILQ_REMOVE(&qpair->free_tr, tr, tailq);
829                bus_dmamap_destroy(qpair->dma_tag_payload,
830                    tr->payload_dma_map);
831                free_domain(tr, M_NVME);
832        }
833
834        if (qpair->dma_tag)
835                bus_dma_tag_destroy(qpair->dma_tag);
836
837        if (qpair->dma_tag_payload)
838                bus_dma_tag_destroy(qpair->dma_tag_payload);
839}
840
841static void
842nvme_admin_qpair_abort_aers(struct nvme_qpair *qpair)
843{
844        struct nvme_tracker     *tr;
845
846        tr = TAILQ_FIRST(&qpair->outstanding_tr);
847        while (tr != NULL) {
848                if (tr->req->cmd.opc == NVME_OPC_ASYNC_EVENT_REQUEST) {
849                        nvme_qpair_manual_complete_tracker(qpair, tr,
850                            NVME_SCT_GENERIC, NVME_SC_ABORTED_SQ_DELETION, 0,
851                            ERROR_PRINT_NONE);
852                        tr = TAILQ_FIRST(&qpair->outstanding_tr);
853                } else {
854                        tr = TAILQ_NEXT(tr, tailq);
855                }
856        }
857}
858
859void
860nvme_admin_qpair_destroy(struct nvme_qpair *qpair)
861{
862
863        nvme_admin_qpair_abort_aers(qpair);
864        nvme_qpair_destroy(qpair);
865}
866
867void
868nvme_io_qpair_destroy(struct nvme_qpair *qpair)
869{
870
871        nvme_qpair_destroy(qpair);
872}
873
874static void
875nvme_abort_complete(void *arg, const struct nvme_completion *status)
876{
877        struct nvme_tracker     *tr = arg;
878
879        /*
880         * If cdw0 == 1, the controller was not able to abort the command
881         *  we requested.  We still need to check the active tracker array,
882         *  to cover race where I/O timed out at same time controller was
883         *  completing the I/O.
884         */
885        if (status->cdw0 == 1 && tr->qpair->act_tr[tr->cid] != NULL) {
886                /*
887                 * An I/O has timed out, and the controller was unable to
888                 *  abort it for some reason.  Construct a fake completion
889                 *  status, and then complete the I/O's tracker manually.
890                 */
891                nvme_printf(tr->qpair->ctrlr,
892                    "abort command failed, aborting command manually\n");
893                nvme_qpair_manual_complete_tracker(tr->qpair, tr,
894                    NVME_SCT_GENERIC, NVME_SC_ABORTED_BY_REQUEST, 0, ERROR_PRINT_ALL);
895        }
896}
897
898static void
899nvme_timeout(void *arg)
900{
901        struct nvme_tracker     *tr = arg;
902        struct nvme_qpair       *qpair = tr->qpair;
903        struct nvme_controller  *ctrlr = qpair->ctrlr;
904        uint32_t                csts;
905        uint8_t                 cfs;
906
907        /*
908         * Read csts to get value of cfs - controller fatal status.
909         * If no fatal status, try to call the completion routine, and
910         * if completes transactions, report a missed interrupt and
911         * return (this may need to be rate limited). Otherwise, if
912         * aborts are enabled and the controller is not reporting
913         * fatal status, abort the command. Otherwise, just reset the
914         * controller and hope for the best.
915         */
916        csts = nvme_mmio_read_4(ctrlr, csts);
917        cfs = (csts >> NVME_CSTS_REG_CFS_SHIFT) & NVME_CSTS_REG_CFS_MASK;
918        if (cfs == 0 && nvme_qpair_process_completions(qpair)) {
919                nvme_printf(ctrlr, "Missing interrupt\n");
920                return;
921        }
922        if (ctrlr->enable_aborts && cfs == 0) {
923                nvme_printf(ctrlr, "Aborting command due to a timeout.\n");
924                nvme_ctrlr_cmd_abort(ctrlr, tr->cid, qpair->id,
925                    nvme_abort_complete, tr);
926        } else {
927                nvme_printf(ctrlr, "Resetting controller due to a timeout%s.\n",
928                    (csts == 0xffffffff) ? " and possible hot unplug" :
929                    (cfs ? " and fatal error status" : ""));
930                nvme_ctrlr_reset(ctrlr);
931        }
932}
933
934void
935nvme_qpair_submit_tracker(struct nvme_qpair *qpair, struct nvme_tracker *tr)
936{
937        struct nvme_request     *req;
938        struct nvme_controller  *ctrlr;
939
940        mtx_assert(&qpair->lock, MA_OWNED);
941
942        req = tr->req;
943        req->cmd.cid = tr->cid;
944        qpair->act_tr[tr->cid] = tr;
945        ctrlr = qpair->ctrlr;
946
947        if (req->timeout)
948#ifndef __rtems__
949                callout_reset_on(&tr->timer, ctrlr->timeout_period * hz,
950                    nvme_timeout, tr, qpair->cpu);
951#else /* __rtems__ */
952                callout_reset_on(&tr->timer, ctrlr->timeout_period * hz,
953                    nvme_timeout, tr, -1);
954#endif /* __rtems__ */
955
956        /* Copy the command from the tracker to the submission queue. */
957        memcpy(&qpair->cmd[qpair->sq_tail], &req->cmd, sizeof(req->cmd));
958
959        if (++qpair->sq_tail == qpair->num_entries)
960                qpair->sq_tail = 0;
961
962        bus_dmamap_sync(qpair->dma_tag, qpair->queuemem_map,
963            BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
964#ifndef __powerpc__
965        /*
966         * powerpc's bus_dmamap_sync() already includes a heavyweight sync, but
967         * no other archs do.
968         */
969        wmb();
970#endif
971
972        bus_space_write_4(qpair->ctrlr->bus_tag, qpair->ctrlr->bus_handle,
973            qpair->sq_tdbl_off, qpair->sq_tail);
974        qpair->num_cmds++;
975}
976
977static void
978nvme_payload_map(void *arg, bus_dma_segment_t *seg, int nseg, int error)
979{
980        struct nvme_tracker     *tr = arg;
981        uint32_t                cur_nseg;
982
983        /*
984         * If the mapping operation failed, return immediately.  The caller
985         *  is responsible for detecting the error status and failing the
986         *  tracker manually.
987         */
988        if (error != 0) {
989                nvme_printf(tr->qpair->ctrlr,
990                    "nvme_payload_map err %d\n", error);
991                return;
992        }
993
994        /*
995         * Note that we specified PAGE_SIZE for alignment and max
996         *  segment size when creating the bus dma tags.  So here
997         *  we can safely just transfer each segment to its
998         *  associated PRP entry.
999         */
1000        tr->req->cmd.prp1 = htole64(seg[0].ds_addr);
1001
1002        if (nseg == 2) {
1003                tr->req->cmd.prp2 = htole64(seg[1].ds_addr);
1004        } else if (nseg > 2) {
1005                cur_nseg = 1;
1006                tr->req->cmd.prp2 = htole64((uint64_t)tr->prp_bus_addr);
1007                while (cur_nseg < nseg) {
1008                        tr->prp[cur_nseg-1] =
1009                            htole64((uint64_t)seg[cur_nseg].ds_addr);
1010                        cur_nseg++;
1011                }
1012        } else {
1013                /*
1014                 * prp2 should not be used by the controller
1015                 *  since there is only one segment, but set
1016                 *  to 0 just to be safe.
1017                 */
1018                tr->req->cmd.prp2 = 0;
1019        }
1020
1021        bus_dmamap_sync(tr->qpair->dma_tag_payload, tr->payload_dma_map,
1022            BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1023        nvme_qpair_submit_tracker(tr->qpair, tr);
1024}
1025
1026static void
1027_nvme_qpair_submit_request(struct nvme_qpair *qpair, struct nvme_request *req)
1028{
1029        struct nvme_tracker     *tr;
1030        int                     err = 0;
1031
1032        mtx_assert(&qpair->lock, MA_OWNED);
1033
1034        tr = TAILQ_FIRST(&qpair->free_tr);
1035        req->qpair = qpair;
1036
1037        if (tr == NULL || !qpair->is_enabled) {
1038                /*
1039                 * No tracker is available, or the qpair is disabled due to
1040                 *  an in-progress controller-level reset or controller
1041                 *  failure.
1042                 */
1043
1044                if (qpair->ctrlr->is_failed) {
1045                        /*
1046                         * The controller has failed.  Post the request to a
1047                         *  task where it will be aborted, so that we do not
1048                         *  invoke the request's callback in the context
1049                         *  of the submission.
1050                         */
1051                        nvme_ctrlr_post_failed_request(qpair->ctrlr, req);
1052                } else {
1053                        /*
1054                         * Put the request on the qpair's request queue to be
1055                         *  processed when a tracker frees up via a command
1056                         *  completion or when the controller reset is
1057                         *  completed.
1058                         */
1059                        STAILQ_INSERT_TAIL(&qpair->queued_req, req, stailq);
1060                }
1061                return;
1062        }
1063
1064        TAILQ_REMOVE(&qpair->free_tr, tr, tailq);
1065        TAILQ_INSERT_TAIL(&qpair->outstanding_tr, tr, tailq);
1066        tr->req = req;
1067
1068        switch (req->type) {
1069        case NVME_REQUEST_VADDR:
1070                KASSERT(req->payload_size <= qpair->ctrlr->max_xfer_size,
1071                    ("payload_size (%d) exceeds max_xfer_size (%d)\n",
1072                    req->payload_size, qpair->ctrlr->max_xfer_size));
1073                err = bus_dmamap_load(tr->qpair->dma_tag_payload,
1074                    tr->payload_dma_map, req->u.payload, req->payload_size,
1075                    nvme_payload_map, tr, 0);
1076                if (err != 0)
1077                        nvme_printf(qpair->ctrlr,
1078                            "bus_dmamap_load returned 0x%x!\n", err);
1079                break;
1080        case NVME_REQUEST_NULL:
1081                nvme_qpair_submit_tracker(tr->qpair, tr);
1082                break;
1083#ifndef __rtems__
1084        case NVME_REQUEST_BIO:
1085                KASSERT(req->u.bio->bio_bcount <= qpair->ctrlr->max_xfer_size,
1086                    ("bio->bio_bcount (%jd) exceeds max_xfer_size (%d)\n",
1087                    (intmax_t)req->u.bio->bio_bcount,
1088                    qpair->ctrlr->max_xfer_size));
1089                err = bus_dmamap_load_bio(tr->qpair->dma_tag_payload,
1090                    tr->payload_dma_map, req->u.bio, nvme_payload_map, tr, 0);
1091                if (err != 0)
1092                        nvme_printf(qpair->ctrlr,
1093                            "bus_dmamap_load_bio returned 0x%x!\n", err);
1094                break;
1095        case NVME_REQUEST_CCB:
1096                err = bus_dmamap_load_ccb(tr->qpair->dma_tag_payload,
1097                    tr->payload_dma_map, req->u.payload,
1098                    nvme_payload_map, tr, 0);
1099                if (err != 0)
1100                        nvme_printf(qpair->ctrlr,
1101                            "bus_dmamap_load_ccb returned 0x%x!\n", err);
1102                break;
1103#endif /* __rtems__ */
1104        default:
1105                panic("unknown nvme request type 0x%x\n", req->type);
1106                break;
1107        }
1108
1109        if (err != 0) {
1110                /*
1111                 * The dmamap operation failed, so we manually fail the
1112                 *  tracker here with DATA_TRANSFER_ERROR status.
1113                 *
1114                 * nvme_qpair_manual_complete_tracker must not be called
1115                 *  with the qpair lock held.
1116                 */
1117                mtx_unlock(&qpair->lock);
1118                nvme_qpair_manual_complete_tracker(qpair, tr, NVME_SCT_GENERIC,
1119                    NVME_SC_DATA_TRANSFER_ERROR, DO_NOT_RETRY, ERROR_PRINT_ALL);
1120                mtx_lock(&qpair->lock);
1121        }
1122}
1123
1124void
1125nvme_qpair_submit_request(struct nvme_qpair *qpair, struct nvme_request *req)
1126{
1127
1128        mtx_lock(&qpair->lock);
1129        _nvme_qpair_submit_request(qpair, req);
1130        mtx_unlock(&qpair->lock);
1131}
1132
1133static void
1134nvme_qpair_enable(struct nvme_qpair *qpair)
1135{
1136
1137        qpair->is_enabled = TRUE;
1138}
1139
1140void
1141nvme_qpair_reset(struct nvme_qpair *qpair)
1142{
1143
1144        qpair->sq_head = qpair->sq_tail = qpair->cq_head = 0;
1145
1146        /*
1147         * First time through the completion queue, HW will set phase
1148         *  bit on completions to 1.  So set this to 1 here, indicating
1149         *  we're looking for a 1 to know which entries have completed.
1150         *  we'll toggle the bit each time when the completion queue
1151         *  rolls over.
1152         */
1153        qpair->phase = 1;
1154
1155        memset(qpair->cmd, 0,
1156            qpair->num_entries * sizeof(struct nvme_command));
1157        memset(qpair->cpl, 0,
1158            qpair->num_entries * sizeof(struct nvme_completion));
1159}
1160
1161void
1162nvme_admin_qpair_enable(struct nvme_qpair *qpair)
1163{
1164        struct nvme_tracker             *tr;
1165        struct nvme_tracker             *tr_temp;
1166
1167        /*
1168         * Manually abort each outstanding admin command.  Do not retry
1169         *  admin commands found here, since they will be left over from
1170         *  a controller reset and its likely the context in which the
1171         *  command was issued no longer applies.
1172         */
1173        TAILQ_FOREACH_SAFE(tr, &qpair->outstanding_tr, tailq, tr_temp) {
1174                nvme_printf(qpair->ctrlr,
1175                    "aborting outstanding admin command\n");
1176                nvme_qpair_manual_complete_tracker(qpair, tr, NVME_SCT_GENERIC,
1177                    NVME_SC_ABORTED_BY_REQUEST, DO_NOT_RETRY, ERROR_PRINT_ALL);
1178        }
1179
1180        nvme_qpair_enable(qpair);
1181}
1182
1183void
1184nvme_io_qpair_enable(struct nvme_qpair *qpair)
1185{
1186        STAILQ_HEAD(, nvme_request)     temp;
1187        struct nvme_tracker             *tr;
1188        struct nvme_tracker             *tr_temp;
1189        struct nvme_request             *req;
1190
1191        /*
1192         * Manually abort each outstanding I/O.  This normally results in a
1193         *  retry, unless the retry count on the associated request has
1194         *  reached its limit.
1195         */
1196        TAILQ_FOREACH_SAFE(tr, &qpair->outstanding_tr, tailq, tr_temp) {
1197                nvme_printf(qpair->ctrlr, "aborting outstanding i/o\n");
1198                nvme_qpair_manual_complete_tracker(qpair, tr, NVME_SCT_GENERIC,
1199                    NVME_SC_ABORTED_BY_REQUEST, 0, ERROR_PRINT_NO_RETRY);
1200        }
1201
1202        mtx_lock(&qpair->lock);
1203
1204        nvme_qpair_enable(qpair);
1205
1206        STAILQ_INIT(&temp);
1207        STAILQ_SWAP(&qpair->queued_req, &temp, nvme_request);
1208
1209        while (!STAILQ_EMPTY(&temp)) {
1210                req = STAILQ_FIRST(&temp);
1211                STAILQ_REMOVE_HEAD(&temp, stailq);
1212                nvme_printf(qpair->ctrlr, "resubmitting queued i/o\n");
1213                nvme_qpair_print_command(qpair, &req->cmd);
1214                _nvme_qpair_submit_request(qpair, req);
1215        }
1216
1217        mtx_unlock(&qpair->lock);
1218}
1219
1220static void
1221nvme_qpair_disable(struct nvme_qpair *qpair)
1222{
1223        struct nvme_tracker *tr;
1224
1225        qpair->is_enabled = FALSE;
1226        mtx_lock(&qpair->lock);
1227        TAILQ_FOREACH(tr, &qpair->outstanding_tr, tailq)
1228                callout_stop(&tr->timer);
1229        mtx_unlock(&qpair->lock);
1230}
1231
1232void
1233nvme_admin_qpair_disable(struct nvme_qpair *qpair)
1234{
1235
1236        nvme_qpair_disable(qpair);
1237        nvme_admin_qpair_abort_aers(qpair);
1238}
1239
1240void
1241nvme_io_qpair_disable(struct nvme_qpair *qpair)
1242{
1243
1244        nvme_qpair_disable(qpair);
1245}
1246
1247void
1248nvme_qpair_fail(struct nvme_qpair *qpair)
1249{
1250        struct nvme_tracker             *tr;
1251        struct nvme_request             *req;
1252
1253        if (!mtx_initialized(&qpair->lock))
1254                return;
1255
1256        mtx_lock(&qpair->lock);
1257
1258        while (!STAILQ_EMPTY(&qpair->queued_req)) {
1259                req = STAILQ_FIRST(&qpair->queued_req);
1260                STAILQ_REMOVE_HEAD(&qpair->queued_req, stailq);
1261                nvme_printf(qpair->ctrlr, "failing queued i/o\n");
1262                mtx_unlock(&qpair->lock);
1263                nvme_qpair_manual_complete_request(qpair, req, NVME_SCT_GENERIC,
1264                    NVME_SC_ABORTED_BY_REQUEST);
1265                mtx_lock(&qpair->lock);
1266        }
1267
1268        /* Manually abort each outstanding I/O. */
1269        while (!TAILQ_EMPTY(&qpair->outstanding_tr)) {
1270                tr = TAILQ_FIRST(&qpair->outstanding_tr);
1271                /*
1272                 * Do not remove the tracker.  The abort_tracker path will
1273                 *  do that for us.
1274                 */
1275                nvme_printf(qpair->ctrlr, "failing outstanding i/o\n");
1276                mtx_unlock(&qpair->lock);
1277                nvme_qpair_manual_complete_tracker(qpair, tr, NVME_SCT_GENERIC,
1278                    NVME_SC_ABORTED_BY_REQUEST, DO_NOT_RETRY, ERROR_PRINT_ALL);
1279                mtx_lock(&qpair->lock);
1280        }
1281
1282        mtx_unlock(&qpair->lock);
1283}
1284
Note: See TracBrowser for help on using the repository browser.