source: rtems-libbsd/freebsd/sys/arm/at91/at91_mci.c @ ea5880a

55-freebsd-126-freebsd-12
Last change on this file since ea5880a was ea5880a, checked in by Sebastian Huber <sebastian.huber@…>, on 08/23/16 at 11:16:53

at91_mci: Import from FreeBSD

  • Property mode set to 100644
File size: 41.3 KB
Line 
1#include <machine/rtems-bsd-kernel-space.h>
2
3/*-
4 * Copyright (c) 2006 Bernd Walter.  All rights reserved.
5 * Copyright (c) 2006 M. Warner Losh.  All rights reserved.
6 * Copyright (c) 2010 Greg Ansley.  All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 *    notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 *    notice, this list of conditions and the following disclaimer in the
15 *    documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 * ARE DISCLAIMED.  IN NO EVENT SHALL AUTHOR OR CONTRIBUTORS BE LIABLE
21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27 * SUCH DAMAGE.
28 */
29
30#include <rtems/bsd/local/opt_platform.h>
31
32#include <sys/cdefs.h>
33__FBSDID("$FreeBSD$");
34
35#include <rtems/bsd/sys/param.h>
36#include <sys/systm.h>
37#include <sys/bus.h>
38#include <sys/endian.h>
39#include <sys/kernel.h>
40#include <sys/lock.h>
41#include <sys/malloc.h>
42#include <sys/module.h>
43#include <sys/mutex.h>
44#include <rtems/bsd/sys/resource.h>
45#include <sys/rman.h>
46#include <sys/sysctl.h>
47
48#include <machine/bus.h>
49#include <machine/resource.h>
50#include <machine/intr.h>
51
52#include <arm/at91/at91var.h>
53#include <arm/at91/at91_mcireg.h>
54#include <arm/at91/at91_pdcreg.h>
55
56#include <dev/mmc/bridge.h>
57#include <dev/mmc/mmcbrvar.h>
58
59#ifdef FDT
60#include <dev/ofw/ofw_bus.h>
61#include <dev/ofw/ofw_bus_subr.h>
62#endif
63
64#include <rtems/bsd/local/mmcbr_if.h>
65
66#include <rtems/bsd/local/opt_at91.h>
67
68/*
69 * About running the MCI bus above 25MHz
70 *
71 * Historically, the MCI bus has been run at 30MHz on systems with a 60MHz
72 * master clock, in part due to a bug in dev/mmc.c making always request
73 * 30MHz, and in part over clocking the bus because 15MHz was too slow.
74 * Fixing that bug causes the mmc driver to request a 25MHz clock (as it
75 * should) and the logic in at91_mci_update_ios() picks the highest speed that
76 * doesn't exceed that limit.  With a 60MHz MCK that would be 15MHz, and
77 * that's a real performance buzzkill when you've been getting away with 30MHz
78 * all along.
79 *
80 * By defining AT91_MCI_ALLOW_OVERCLOCK (or setting the allow_overclock=1
81 * device hint or sysctl) you can enable logic in at91_mci_update_ios() to
82 * overlcock the SD bus a little by running it at MCK / 2 when the requested
83 * speed is 25MHz and the next highest speed is 15MHz or less.  This appears
84 * to work on virtually all SD cards, since it is what this driver has been
85 * doing prior to the introduction of this option, where the overclocking vs
86 * underclocking decision was automatically "overclock".  Modern SD cards can
87 * run at 45mhz/1-bit in standard mode (high speed mode enable commands not
88 * sent) without problems.
89 *
90 * Speaking of high-speed mode, the rm9200 manual says the MCI device supports
91 * the SD v1.0 specification and can run up to 50MHz.  This is interesting in
92 * that the SD v1.0 spec caps the speed at 25MHz; high speed mode was added in
93 * the v1.10 spec.  Furthermore, high speed mode doesn't just crank up the
94 * clock, it alters the signal timing.  The rm9200 MCI device doesn't support
95 * these altered timings.  So while speeds over 25MHz may work, they only work
96 * in what the SD spec calls "default" speed mode, and it amounts to violating
97 * the spec by overclocking the bus.
98 *
99 * If you also enable 4-wire mode it's possible transfers faster than 25MHz
100 * will fail.  On the AT91RM9200, due to bugs in the bus contention logic, if
101 * you have the USB host device and OHCI driver enabled will fail.  Even
102 * underclocking to 15MHz, intermittant overrun and underrun errors occur.
103 * Note that you don't even need to have usb devices attached to the system,
104 * the errors begin to occur as soon as the OHCI driver sets the register bit
105 * to enable periodic transfers.  It appears (based on brief investigation)
106 * that the usb host controller uses so much ASB bandwidth that sometimes the
107 * DMA for MCI transfers doesn't get a bus grant in time and data gets
108 * dropped.  Adding even a modicum of network activity changes the symptom
109 * from intermittant to very frequent.  Members of the AT91SAM9 family have
110 * corrected this problem, or are at least better about their use of the bus.
111 */
112#ifndef AT91_MCI_ALLOW_OVERCLOCK
113#define AT91_MCI_ALLOW_OVERCLOCK 1
114#endif
115
116/*
117 * Allocate 2 bounce buffers we'll use to endian-swap the data due to the rm9200
118 * erratum.  We use a pair of buffers because when reading that lets us begin
119 * endian-swapping the data in the first buffer while the DMA is reading into
120 * the second buffer.  (We can't use the same trick for writing because we might
121 * not get all the data in the 2nd buffer swapped before the hardware needs it;
122 * dealing with that would add complexity to the driver.)
123 *
124 * The buffers are sized at 16K each due to the way the busdma cache sync
125 * operations work on arm.  A dcache_inv_range() operation on a range larger
126 * than 16K gets turned into a dcache_wbinv_all().  That needlessly flushes the
127 * entire data cache, impacting overall system performance.
128 */
129#define BBCOUNT     2
130#define BBSIZE      (16*1024)
131#define MAX_BLOCKS  ((BBSIZE*BBCOUNT)/512)
132
133static int mci_debug;
134
135struct at91_mci_softc {
136        void *intrhand;                 /* Interrupt handle */
137        device_t dev;
138        int sc_cap;
139#define CAP_HAS_4WIRE           1       /* Has 4 wire bus */
140#define CAP_NEEDS_BYTESWAP      2       /* broken hardware needing bounce */
141#define CAP_MCI1_REV2XX         4       /* MCI 1 rev 2.x */
142        int flags;
143#define PENDING_CMD     0x01
144#define PENDING_STOP    0x02
145#define CMD_MULTIREAD   0x10
146#define CMD_MULTIWRITE  0x20
147        int has_4wire;
148        int allow_overclock;
149        struct resource *irq_res;       /* IRQ resource */
150        struct resource *mem_res;       /* Memory resource */
151        struct mtx sc_mtx;
152        bus_dma_tag_t dmatag;
153        struct mmc_host host;
154        int bus_busy;
155        struct mmc_request *req;
156        struct mmc_command *curcmd;
157        bus_dmamap_t bbuf_map[BBCOUNT];
158        char      *  bbuf_vaddr[BBCOUNT]; /* bounce bufs in KVA space */
159        uint32_t     bbuf_len[BBCOUNT];   /* len currently queued for bounce buf */
160        uint32_t     bbuf_curidx;         /* which bbuf is the active DMA buffer */
161        uint32_t     xfer_offset;         /* offset so far into caller's buf */
162};
163
164/* bus entry points */
165static int at91_mci_probe(device_t dev);
166static int at91_mci_attach(device_t dev);
167static int at91_mci_detach(device_t dev);
168static void at91_mci_intr(void *);
169
170/* helper routines */
171static int at91_mci_activate(device_t dev);
172static void at91_mci_deactivate(device_t dev);
173static int at91_mci_is_mci1rev2xx(void);
174
175#define AT91_MCI_LOCK(_sc)              mtx_lock(&(_sc)->sc_mtx)
176#define AT91_MCI_UNLOCK(_sc)            mtx_unlock(&(_sc)->sc_mtx)
177#define AT91_MCI_LOCK_INIT(_sc) \
178        mtx_init(&_sc->sc_mtx, device_get_nameunit(_sc->dev), \
179            "mci", MTX_DEF)
180#define AT91_MCI_LOCK_DESTROY(_sc)      mtx_destroy(&_sc->sc_mtx);
181#define AT91_MCI_ASSERT_LOCKED(_sc)     mtx_assert(&_sc->sc_mtx, MA_OWNED);
182#define AT91_MCI_ASSERT_UNLOCKED(_sc) mtx_assert(&_sc->sc_mtx, MA_NOTOWNED);
183
184static inline uint32_t
185RD4(struct at91_mci_softc *sc, bus_size_t off)
186{
187        return (bus_read_4(sc->mem_res, off));
188}
189
190static inline void
191WR4(struct at91_mci_softc *sc, bus_size_t off, uint32_t val)
192{
193        bus_write_4(sc->mem_res, off, val);
194}
195
196static void
197at91_bswap_buf(struct at91_mci_softc *sc, void * dptr, void * sptr, uint32_t memsize)
198{
199        uint32_t * dst = (uint32_t *)dptr;
200        uint32_t * src = (uint32_t *)sptr;
201        uint32_t   i;
202
203        /*
204         * If the hardware doesn't need byte-swapping, let bcopy() do the
205         * work.  Use bounce buffer even if we don't need byteswap, since
206         * buffer may straddle a page boundary, and we don't handle
207         * multi-segment transfers in hardware.  Seen from 'bsdlabel -w' which
208         * uses raw geom access to the volume.  Greg Ansley (gja (at)
209         * ansley.com)
210         */
211        if (!(sc->sc_cap & CAP_NEEDS_BYTESWAP)) {
212                memcpy(dptr, sptr, memsize);
213                return;
214        }
215
216        /*
217         * Nice performance boost for slightly unrolling this loop.
218         * (But very little extra boost for further unrolling it.)
219         */
220        for (i = 0; i < memsize; i += 16) {
221                *dst++ = bswap32(*src++);
222                *dst++ = bswap32(*src++);
223                *dst++ = bswap32(*src++);
224                *dst++ = bswap32(*src++);
225        }
226
227        /* Mop up the last 1-3 words, if any. */
228        for (i = 0; i < (memsize & 0x0F); i += 4) {
229                *dst++ = bswap32(*src++);
230        }
231}
232
233static void
234at91_mci_getaddr(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
235{
236        if (error != 0)
237                return;
238        *(bus_addr_t *)arg = segs[0].ds_addr;
239}
240
241static void
242at91_mci_pdc_disable(struct at91_mci_softc *sc)
243{
244        WR4(sc, PDC_PTCR, PDC_PTCR_TXTDIS | PDC_PTCR_RXTDIS);
245        WR4(sc, PDC_RPR, 0);
246        WR4(sc, PDC_RCR, 0);
247        WR4(sc, PDC_RNPR, 0);
248        WR4(sc, PDC_RNCR, 0);
249        WR4(sc, PDC_TPR, 0);
250        WR4(sc, PDC_TCR, 0);
251        WR4(sc, PDC_TNPR, 0);
252        WR4(sc, PDC_TNCR, 0);
253}
254
255/*
256 * Reset the controller, then restore most of the current state.
257 *
258 * This is called after detecting an error.  It's also called after stopping a
259 * multi-block write, to un-wedge the device so that it will handle the NOTBUSY
260 * signal correctly.  See comments in at91_mci_stop_done() for more details.
261 */
262static void at91_mci_reset(struct at91_mci_softc *sc)
263{
264        uint32_t mr;
265        uint32_t sdcr;
266        uint32_t dtor;
267        uint32_t imr;
268
269        at91_mci_pdc_disable(sc);
270
271        /* save current state */
272
273        imr  = RD4(sc, MCI_IMR);
274        mr   = RD4(sc, MCI_MR) & 0x7fff;
275        sdcr = RD4(sc, MCI_SDCR);
276        dtor = RD4(sc, MCI_DTOR);
277
278        /* reset the controller */
279
280        WR4(sc, MCI_IDR, 0xffffffff);
281        WR4(sc, MCI_CR, MCI_CR_MCIDIS | MCI_CR_SWRST);
282
283        /* restore state */
284
285        WR4(sc, MCI_CR, MCI_CR_MCIEN|MCI_CR_PWSEN);
286        WR4(sc, MCI_MR, mr);
287        WR4(sc, MCI_SDCR, sdcr);
288        WR4(sc, MCI_DTOR, dtor);
289        WR4(sc, MCI_IER, imr);
290
291        /*
292         * Make sure sdio interrupts will fire.  Not sure why reading
293         * SR ensures that, but this is in the linux driver.
294         */
295
296        RD4(sc, MCI_SR);
297}
298
299static void
300at91_mci_init(device_t dev)
301{
302        struct at91_mci_softc *sc = device_get_softc(dev);
303        uint32_t val;
304
305        WR4(sc, MCI_CR, MCI_CR_MCIDIS | MCI_CR_SWRST); /* device into reset */
306        WR4(sc, MCI_IDR, 0xffffffff);           /* Turn off interrupts */
307        WR4(sc, MCI_DTOR, MCI_DTOR_DTOMUL_1M | 1);
308        val = MCI_MR_PDCMODE;
309        val |= 0x34a;                           /* PWSDIV = 3; CLKDIV = 74 */
310//      if (sc->sc_cap & CAP_MCI1_REV2XX)
311//              val |= MCI_MR_RDPROOF | MCI_MR_WRPROOF;
312        WR4(sc, MCI_MR, val);
313#ifndef  AT91_MCI_SLOT_B
314        WR4(sc, MCI_SDCR, 0);                   /* SLOT A, 1 bit bus */
315#else
316        /*
317         * XXX Really should add second "unit" but nobody using using
318         * a two slot card that we know of. XXX
319         */
320        WR4(sc, MCI_SDCR, 1);                   /* SLOT B, 1 bit bus */
321#endif
322        /*
323         * Enable controller, including power-save.  The slower clock
324         * of the power-save mode is only in effect when there is no
325         * transfer in progress, so it can be left in this mode all
326         * the time.
327         */
328        WR4(sc, MCI_CR, MCI_CR_MCIEN|MCI_CR_PWSEN);
329}
330
331static void
332at91_mci_fini(device_t dev)
333{
334        struct at91_mci_softc *sc = device_get_softc(dev);
335
336        WR4(sc, MCI_IDR, 0xffffffff);           /* Turn off interrupts */
337        at91_mci_pdc_disable(sc);
338        WR4(sc, MCI_CR, MCI_CR_MCIDIS | MCI_CR_SWRST); /* device into reset */
339}
340
341static int
342at91_mci_probe(device_t dev)
343{
344#ifdef FDT
345        if (!ofw_bus_is_compatible(dev, "atmel,hsmci"))
346                return (ENXIO);
347#endif
348        device_set_desc(dev, "MCI mmc/sd host bridge");
349        return (0);
350}
351
352static int
353at91_mci_attach(device_t dev)
354{
355        struct at91_mci_softc *sc = device_get_softc(dev);
356        struct sysctl_ctx_list *sctx;
357        struct sysctl_oid *soid;
358        device_t child;
359        int err, i;
360
361        sctx = device_get_sysctl_ctx(dev);
362        soid = device_get_sysctl_tree(dev);
363
364        sc->dev = dev;
365        sc->sc_cap = 0;
366        if (at91_is_rm92())
367                sc->sc_cap |= CAP_NEEDS_BYTESWAP;
368        /*
369         * MCI1 Rev 2 controllers need some workarounds, flag if so.
370         */
371        if (at91_mci_is_mci1rev2xx())
372                sc->sc_cap |= CAP_MCI1_REV2XX;
373
374        err = at91_mci_activate(dev);
375        if (err)
376                goto out;
377
378        AT91_MCI_LOCK_INIT(sc);
379
380        at91_mci_fini(dev);
381        at91_mci_init(dev);
382
383        /*
384         * Allocate DMA tags and maps and bounce buffers.
385         *
386         * The parms in the tag_create call cause the dmamem_alloc call to
387         * create each bounce buffer as a single contiguous buffer of BBSIZE
388         * bytes aligned to a 4096 byte boundary.
389         *
390         * Do not use DMA_COHERENT for these buffers because that maps the
391         * memory as non-cachable, which prevents cache line burst fills/writes,
392         * which is something we need since we're trying to overlap the
393         * byte-swapping with the DMA operations.
394         */
395        err = bus_dma_tag_create(bus_get_dma_tag(dev), 4096, 0,
396            BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL,
397            BBSIZE, 1, BBSIZE, 0, NULL, NULL, &sc->dmatag);
398        if (err != 0)
399                goto out;
400
401        for (i = 0; i < BBCOUNT; ++i) {
402                err = bus_dmamem_alloc(sc->dmatag, (void **)&sc->bbuf_vaddr[i],
403                    BUS_DMA_NOWAIT, &sc->bbuf_map[i]);
404                if (err != 0)
405                        goto out;
406        }
407
408        /*
409         * Activate the interrupt
410         */
411        err = bus_setup_intr(dev, sc->irq_res, INTR_TYPE_MISC | INTR_MPSAFE,
412            NULL, at91_mci_intr, sc, &sc->intrhand);
413        if (err) {
414                AT91_MCI_LOCK_DESTROY(sc);
415                goto out;
416        }
417
418        /*
419         * Allow 4-wire to be initially set via #define.
420         * Allow a device hint to override that.
421         * Allow a sysctl to override that.
422         */
423#if defined(AT91_MCI_HAS_4WIRE) && AT91_MCI_HAS_4WIRE != 0
424        sc->has_4wire = 1;
425#endif
426        resource_int_value(device_get_name(dev), device_get_unit(dev),
427                           "4wire", &sc->has_4wire);
428        SYSCTL_ADD_UINT(sctx, SYSCTL_CHILDREN(soid), OID_AUTO, "4wire",
429            CTLFLAG_RW, &sc->has_4wire, 0, "has 4 wire SD Card bus");
430        if (sc->has_4wire)
431                sc->sc_cap |= CAP_HAS_4WIRE;
432
433        sc->allow_overclock = AT91_MCI_ALLOW_OVERCLOCK;
434        resource_int_value(device_get_name(dev), device_get_unit(dev),
435                           "allow_overclock", &sc->allow_overclock);
436        SYSCTL_ADD_UINT(sctx, SYSCTL_CHILDREN(soid), OID_AUTO, "allow_overclock",
437            CTLFLAG_RW, &sc->allow_overclock, 0,
438            "Allow up to 30MHz clock for 25MHz request when next highest speed 15MHz or less.");
439
440        SYSCTL_ADD_UINT(sctx, SYSCTL_CHILDREN(soid), OID_AUTO, "debug",
441            CTLFLAG_RWTUN, &mci_debug, 0, "enable debug output");
442
443        /*
444         * Our real min freq is master_clock/512, but upper driver layers are
445         * going to set the min speed during card discovery, and the right speed
446         * for that is 400kHz, so advertise a safe value just under that.
447         *
448         * For max speed, while the rm9200 manual says the max is 50mhz, it also
449         * says it supports only the SD v1.0 spec, which means the real limit is
450         * 25mhz. On the other hand, historical use has been to slightly violate
451         * the standard by running the bus at 30MHz.  For more information on
452         * that, see the comments at the top of this file.
453         */
454        sc->host.f_min = 375000;
455        sc->host.f_max = at91_master_clock / 2;
456        if (sc->host.f_max > 25000000)
457                sc->host.f_max = 25000000;
458        sc->host.host_ocr = MMC_OCR_320_330 | MMC_OCR_330_340;
459        sc->host.caps = 0;
460        if (sc->sc_cap & CAP_HAS_4WIRE)
461                sc->host.caps |= MMC_CAP_4_BIT_DATA;
462
463        child = device_add_child(dev, "mmc", 0);
464        device_set_ivars(dev, &sc->host);
465        err = bus_generic_attach(dev);
466out:
467        if (err)
468                at91_mci_deactivate(dev);
469        return (err);
470}
471
472static int
473at91_mci_detach(device_t dev)
474{
475        struct at91_mci_softc *sc = device_get_softc(dev);
476
477        at91_mci_fini(dev);
478        at91_mci_deactivate(dev);
479
480        bus_dmamem_free(sc->dmatag, sc->bbuf_vaddr[0], sc->bbuf_map[0]);
481        bus_dmamem_free(sc->dmatag, sc->bbuf_vaddr[1], sc->bbuf_map[1]);
482        bus_dma_tag_destroy(sc->dmatag);
483
484        return (EBUSY); /* XXX */
485}
486
487static int
488at91_mci_activate(device_t dev)
489{
490        struct at91_mci_softc *sc;
491        int rid;
492
493        sc = device_get_softc(dev);
494        rid = 0;
495        sc->mem_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid,
496            RF_ACTIVE);
497        if (sc->mem_res == NULL)
498                goto errout;
499
500        rid = 0;
501        sc->irq_res = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
502            RF_ACTIVE);
503        if (sc->irq_res == NULL)
504                goto errout;
505
506        return (0);
507errout:
508        at91_mci_deactivate(dev);
509        return (ENOMEM);
510}
511
512static void
513at91_mci_deactivate(device_t dev)
514{
515        struct at91_mci_softc *sc;
516
517        sc = device_get_softc(dev);
518        if (sc->intrhand)
519                bus_teardown_intr(dev, sc->irq_res, sc->intrhand);
520        sc->intrhand = NULL;
521        bus_generic_detach(sc->dev);
522        if (sc->mem_res)
523                bus_release_resource(dev, SYS_RES_MEMORY,
524                    rman_get_rid(sc->mem_res), sc->mem_res);
525        sc->mem_res = NULL;
526        if (sc->irq_res)
527                bus_release_resource(dev, SYS_RES_IRQ,
528                    rman_get_rid(sc->irq_res), sc->irq_res);
529        sc->irq_res = NULL;
530        return;
531}
532
533static int
534at91_mci_is_mci1rev2xx(void)
535{
536
537        switch (soc_info.type) {
538        case AT91_T_SAM9260:
539        case AT91_T_SAM9263:
540        case AT91_T_CAP9:
541        case AT91_T_SAM9G10:
542        case AT91_T_SAM9G20:
543        case AT91_T_SAM9RL:
544                return(1);
545        default:
546                return (0);
547        }
548}
549
550static int
551at91_mci_update_ios(device_t brdev, device_t reqdev)
552{
553        struct at91_mci_softc *sc;
554        struct mmc_ios *ios;
555        uint32_t clkdiv;
556        uint32_t freq;
557
558        sc = device_get_softc(brdev);
559        ios = &sc->host.ios;
560
561        /*
562         * Calculate our closest available clock speed that doesn't exceed the
563         * requested speed.
564         *
565         * When overclocking is allowed, the requested clock is 25MHz, the
566         * computed frequency is 15MHz or smaller and clockdiv is 1, use
567         * clockdiv of 0 to double that.  If less than 12.5MHz, double
568         * regardless of the overclocking setting.
569         *
570         * Whatever we come up with, store it back into ios->clock so that the
571         * upper layer drivers can report the actual speed of the bus.
572         */
573        if (ios->clock == 0) {
574                WR4(sc, MCI_CR, MCI_CR_MCIDIS);
575                clkdiv = 0;
576        } else {
577                WR4(sc, MCI_CR, MCI_CR_MCIEN|MCI_CR_PWSEN);
578                if ((at91_master_clock % (ios->clock * 2)) == 0)
579                        clkdiv = ((at91_master_clock / ios->clock) / 2) - 1;
580                else
581                        clkdiv = (at91_master_clock / ios->clock) / 2;
582                freq = at91_master_clock / ((clkdiv+1) * 2);
583                if (clkdiv == 1 && ios->clock == 25000000 && freq <= 15000000) {
584                        if (sc->allow_overclock || freq <= 12500000) {
585                                clkdiv = 0;
586                                freq = at91_master_clock / ((clkdiv+1) * 2);
587                        }
588                }
589                ios->clock = freq;
590        }
591        if (ios->bus_width == bus_width_4)
592                WR4(sc, MCI_SDCR, RD4(sc, MCI_SDCR) | MCI_SDCR_SDCBUS);
593        else
594                WR4(sc, MCI_SDCR, RD4(sc, MCI_SDCR) & ~MCI_SDCR_SDCBUS);
595        WR4(sc, MCI_MR, (RD4(sc, MCI_MR) & ~MCI_MR_CLKDIV) | clkdiv);
596        /* Do we need a settle time here? */
597        /* XXX We need to turn the device on/off here with a GPIO pin */
598        return (0);
599}
600
601static void
602at91_mci_start_cmd(struct at91_mci_softc *sc, struct mmc_command *cmd)
603{
604        uint32_t cmdr, mr;
605        struct mmc_data *data;
606
607        sc->curcmd = cmd;
608        data = cmd->data;
609
610        /* XXX Upper layers don't always set this */
611        cmd->mrq = sc->req;
612
613        /* Begin setting up command register. */
614
615        cmdr = cmd->opcode;
616
617        if (sc->host.ios.bus_mode == opendrain)
618                cmdr |= MCI_CMDR_OPDCMD;
619
620        /* Set up response handling.  Allow max timeout for responses. */
621
622        if (MMC_RSP(cmd->flags) == MMC_RSP_NONE)
623                cmdr |= MCI_CMDR_RSPTYP_NO;
624        else {
625                cmdr |= MCI_CMDR_MAXLAT;
626                if (cmd->flags & MMC_RSP_136)
627                        cmdr |= MCI_CMDR_RSPTYP_136;
628                else
629                        cmdr |= MCI_CMDR_RSPTYP_48;
630        }
631
632        /*
633         * If there is no data transfer, just set up the right interrupt mask
634         * and start the command.
635         *
636         * The interrupt mask needs to be CMDRDY plus all non-data-transfer
637         * errors. It's important to leave the transfer-related errors out, to
638         * avoid spurious timeout or crc errors on a STOP command following a
639         * multiblock read.  When a multiblock read is in progress, sending a
640         * STOP in the middle of a block occasionally triggers such errors, but
641         * we're totally disinterested in them because we've already gotten all
642         * the data we wanted without error before sending the STOP command.
643         */
644
645        if (data == NULL) {
646                uint32_t ier = MCI_SR_CMDRDY |
647                    MCI_SR_RTOE | MCI_SR_RENDE |
648                    MCI_SR_RCRCE | MCI_SR_RDIRE | MCI_SR_RINDE;
649
650                at91_mci_pdc_disable(sc);
651
652                if (cmd->opcode == MMC_STOP_TRANSMISSION)
653                        cmdr |= MCI_CMDR_TRCMD_STOP;
654
655                /* Ignore response CRC on CMD2 and ACMD41, per standard. */
656
657                if (cmd->opcode == MMC_SEND_OP_COND ||
658                    cmd->opcode == ACMD_SD_SEND_OP_COND)
659                        ier &= ~MCI_SR_RCRCE;
660
661                if (mci_debug)
662                        printf("CMDR %x (opcode %d) ARGR %x no data\n",
663                            cmdr, cmd->opcode, cmd->arg);
664
665                WR4(sc, MCI_ARGR, cmd->arg);
666                WR4(sc, MCI_CMDR, cmdr);
667                WR4(sc, MCI_IDR, 0xffffffff);
668                WR4(sc, MCI_IER, ier);
669                return;
670        }
671
672        /* There is data, set up the transfer-related parts of the command. */
673
674        if (data->flags & MMC_DATA_READ)
675                cmdr |= MCI_CMDR_TRDIR;
676
677        if (data->flags & (MMC_DATA_READ | MMC_DATA_WRITE))
678                cmdr |= MCI_CMDR_TRCMD_START;
679
680        if (data->flags & MMC_DATA_STREAM)
681                cmdr |= MCI_CMDR_TRTYP_STREAM;
682        else if (data->flags & MMC_DATA_MULTI) {
683                cmdr |= MCI_CMDR_TRTYP_MULTIPLE;
684                sc->flags |= (data->flags & MMC_DATA_READ) ?
685                    CMD_MULTIREAD : CMD_MULTIWRITE;
686        }
687
688        /*
689         * Disable PDC until we're ready.
690         *
691         * Set block size and turn on PDC mode for dma xfer.
692         * Note that the block size is the smaller of the amount of data to be
693         * transferred, or 512 bytes.  The 512 size is fixed by the standard;
694         * smaller blocks are possible, but never larger.
695         */
696
697        WR4(sc, PDC_PTCR, PDC_PTCR_RXTDIS | PDC_PTCR_TXTDIS);
698
699        mr = RD4(sc,MCI_MR) & ~MCI_MR_BLKLEN;
700        mr |=  min(data->len, 512) << 16;
701        WR4(sc, MCI_MR, mr | MCI_MR_PDCMODE|MCI_MR_PDCPADV);
702
703        /*
704         * Set up DMA.
705         *
706         * Use bounce buffers even if we don't need to byteswap, because doing
707         * multi-block IO with large DMA buffers is way fast (compared to
708         * single-block IO), even after incurring the overhead of also copying
709         * from/to the caller's buffers (which may be in non-contiguous physical
710         * pages).
711         *
712         * In an ideal non-byteswap world we could create a dma tag that allows
713         * for discontiguous segments and do the IO directly from/to the
714         * caller's buffer(s), using ENDRX/ENDTX interrupts to chain the
715         * discontiguous buffers through the PDC. Someday.
716         *
717         * If a read is bigger than 2k, split it in half so that we can start
718         * byte-swapping the first half while the second half is on the wire.
719         * It would be best if we could split it into 8k chunks, but we can't
720         * always keep up with the byte-swapping due to other system activity,
721         * and if an RXBUFF interrupt happens while we're still handling the
722         * byte-swap from the prior buffer (IE, we haven't returned from
723         * handling the prior interrupt yet), then data will get dropped on the
724         * floor and we can't easily recover from that.  The right fix for that
725         * would be to have the interrupt handling only keep the DMA flowing and
726         * enqueue filled buffers to be byte-swapped in a non-interrupt context.
727         * Even that won't work on the write side of things though; in that
728         * context we have to have all the data ready to go before starting the
729         * dma.
730         *
731         * XXX what about stream transfers?
732         */
733        sc->xfer_offset = 0;
734        sc->bbuf_curidx = 0;
735
736        if (data->flags & (MMC_DATA_READ | MMC_DATA_WRITE)) {
737                uint32_t len;
738                uint32_t remaining = data->len;
739                bus_addr_t paddr;
740                int err;
741
742                if (remaining > (BBCOUNT*BBSIZE))
743                        panic("IO read size exceeds MAXDATA\n");
744
745                if (data->flags & MMC_DATA_READ) {
746                        if (remaining > 2048) // XXX
747                                len = remaining / 2;
748                        else
749                                len = remaining;
750                        err = bus_dmamap_load(sc->dmatag, sc->bbuf_map[0],
751                            sc->bbuf_vaddr[0], len, at91_mci_getaddr,
752                            &paddr, BUS_DMA_NOWAIT);
753                        if (err != 0)
754                                panic("IO read dmamap_load failed\n");
755                        bus_dmamap_sync(sc->dmatag, sc->bbuf_map[0],
756                            BUS_DMASYNC_PREREAD);
757                        WR4(sc, PDC_RPR, paddr);
758                        WR4(sc, PDC_RCR, len / 4);
759                        sc->bbuf_len[0] = len;
760                        remaining -= len;
761                        if (remaining == 0) {
762                                sc->bbuf_len[1] = 0;
763                        } else {
764                                len = remaining;
765                                err = bus_dmamap_load(sc->dmatag, sc->bbuf_map[1],
766                                    sc->bbuf_vaddr[1], len, at91_mci_getaddr,
767                                    &paddr, BUS_DMA_NOWAIT);
768                                if (err != 0)
769                                        panic("IO read dmamap_load failed\n");
770                                bus_dmamap_sync(sc->dmatag, sc->bbuf_map[1],
771                                    BUS_DMASYNC_PREREAD);
772                                WR4(sc, PDC_RNPR, paddr);
773                                WR4(sc, PDC_RNCR, len / 4);
774                                sc->bbuf_len[1] = len;
775                                remaining -= len;
776                        }
777                        WR4(sc, PDC_PTCR, PDC_PTCR_RXTEN);
778                } else {
779                        len = min(BBSIZE, remaining);
780                        at91_bswap_buf(sc, sc->bbuf_vaddr[0], data->data, len);
781                        err = bus_dmamap_load(sc->dmatag, sc->bbuf_map[0],
782                            sc->bbuf_vaddr[0], len, at91_mci_getaddr,
783                            &paddr, BUS_DMA_NOWAIT);
784                        if (err != 0)
785                                panic("IO write dmamap_load failed\n");
786                        bus_dmamap_sync(sc->dmatag, sc->bbuf_map[0],
787                            BUS_DMASYNC_PREWRITE);
788                        /*
789                         * Erratum workaround:  PDC transfer length on a write
790                         * must not be smaller than 12 bytes (3 words); only
791                         * blklen bytes (set above) are actually transferred.
792                         */
793                        WR4(sc, PDC_TPR,paddr);
794                        WR4(sc, PDC_TCR, (len < 12) ? 3 : len / 4);
795                        sc->bbuf_len[0] = len;
796                        remaining -= len;
797                        if (remaining == 0) {
798                                sc->bbuf_len[1] = 0;
799                        } else {
800                                len = remaining;
801                                at91_bswap_buf(sc, sc->bbuf_vaddr[1],
802                                    ((char *)data->data)+BBSIZE, len);
803                                err = bus_dmamap_load(sc->dmatag, sc->bbuf_map[1],
804                                    sc->bbuf_vaddr[1], len, at91_mci_getaddr,
805                                    &paddr, BUS_DMA_NOWAIT);
806                                if (err != 0)
807                                        panic("IO write dmamap_load failed\n");
808                                bus_dmamap_sync(sc->dmatag, sc->bbuf_map[1],
809                                    BUS_DMASYNC_PREWRITE);
810                                WR4(sc, PDC_TNPR, paddr);
811                                WR4(sc, PDC_TNCR, (len < 12) ? 3 : len / 4);
812                                sc->bbuf_len[1] = len;
813                                remaining -= len;
814                        }
815                        /* do not enable PDC xfer until CMDRDY asserted */
816                }
817                data->xfer_len = 0; /* XXX what's this? appears to be unused. */
818        }
819
820        if (mci_debug)
821                printf("CMDR %x (opcode %d) ARGR %x with data len %d\n",
822                       cmdr, cmd->opcode, cmd->arg, cmd->data->len);
823
824        WR4(sc, MCI_ARGR, cmd->arg);
825        WR4(sc, MCI_CMDR, cmdr);
826        WR4(sc, MCI_IER, MCI_SR_ERROR | MCI_SR_CMDRDY);
827}
828
829static void
830at91_mci_next_operation(struct at91_mci_softc *sc)
831{
832        struct mmc_request *req;
833
834        req = sc->req;
835        if (req == NULL)
836                return;
837
838        if (sc->flags & PENDING_CMD) {
839                sc->flags &= ~PENDING_CMD;
840                at91_mci_start_cmd(sc, req->cmd);
841                return;
842        } else if (sc->flags & PENDING_STOP) {
843                sc->flags &= ~PENDING_STOP;
844                at91_mci_start_cmd(sc, req->stop);
845                return;
846        }
847
848        WR4(sc, MCI_IDR, 0xffffffff);
849        sc->req = NULL;
850        sc->curcmd = NULL;
851        //printf("req done\n");
852        req->done(req);
853}
854
855static int
856at91_mci_request(device_t brdev, device_t reqdev, struct mmc_request *req)
857{
858        struct at91_mci_softc *sc = device_get_softc(brdev);
859
860        AT91_MCI_LOCK(sc);
861        if (sc->req != NULL) {
862                AT91_MCI_UNLOCK(sc);
863                return (EBUSY);
864        }
865        //printf("new req\n");
866        sc->req = req;
867        sc->flags = PENDING_CMD;
868        if (sc->req->stop)
869                sc->flags |= PENDING_STOP;
870        at91_mci_next_operation(sc);
871        AT91_MCI_UNLOCK(sc);
872        return (0);
873}
874
875static int
876at91_mci_get_ro(device_t brdev, device_t reqdev)
877{
878        return (0);
879}
880
881static int
882at91_mci_acquire_host(device_t brdev, device_t reqdev)
883{
884        struct at91_mci_softc *sc = device_get_softc(brdev);
885        int err = 0;
886
887        AT91_MCI_LOCK(sc);
888        while (sc->bus_busy)
889                msleep(sc, &sc->sc_mtx, PZERO, "mciah", hz / 5);
890        sc->bus_busy++;
891        AT91_MCI_UNLOCK(sc);
892        return (err);
893}
894
895static int
896at91_mci_release_host(device_t brdev, device_t reqdev)
897{
898        struct at91_mci_softc *sc = device_get_softc(brdev);
899
900        AT91_MCI_LOCK(sc);
901        sc->bus_busy--;
902        wakeup(sc);
903        AT91_MCI_UNLOCK(sc);
904        return (0);
905}
906
907static void
908at91_mci_read_done(struct at91_mci_softc *sc, uint32_t sr)
909{
910        struct mmc_command *cmd = sc->curcmd;
911        char * dataptr = (char *)cmd->data->data;
912        uint32_t curidx = sc->bbuf_curidx;
913        uint32_t len = sc->bbuf_len[curidx];
914
915        /*
916         * We arrive here when a DMA transfer for a read is done, whether it's
917         * a single or multi-block read.
918         *
919         * We byte-swap the buffer that just completed, and if that is the
920         * last buffer that's part of this read then we move on to the next
921         * operation, otherwise we wait for another ENDRX for the next bufer.
922         */
923
924        bus_dmamap_sync(sc->dmatag, sc->bbuf_map[curidx], BUS_DMASYNC_POSTREAD);
925        bus_dmamap_unload(sc->dmatag, sc->bbuf_map[curidx]);
926
927        at91_bswap_buf(sc, dataptr + sc->xfer_offset, sc->bbuf_vaddr[curidx], len);
928
929        if (mci_debug) {
930                printf("read done sr %x curidx %d len %d xfer_offset %d\n",
931                       sr, curidx, len, sc->xfer_offset);
932        }
933
934        sc->xfer_offset += len;
935        sc->bbuf_curidx = !curidx; /* swap buffers */
936
937        /*
938         * If we've transferred all the data, move on to the next operation.
939         *
940         * If we're still transferring the last buffer, RNCR is already zero but
941         * we have to write a zero anyway to clear the ENDRX status so we don't
942         * re-interrupt until the last buffer is done.
943         */
944        if (sc->xfer_offset == cmd->data->len) {
945                WR4(sc, PDC_PTCR, PDC_PTCR_RXTDIS | PDC_PTCR_TXTDIS);
946                cmd->error = MMC_ERR_NONE;
947                at91_mci_next_operation(sc);
948        } else {
949                WR4(sc, PDC_RNCR, 0);
950                WR4(sc, MCI_IER, MCI_SR_ERROR | MCI_SR_ENDRX);
951        }
952}
953
954static void
955at91_mci_write_done(struct at91_mci_softc *sc, uint32_t sr)
956{
957        struct mmc_command *cmd = sc->curcmd;
958
959        /*
960         * We arrive here when the entire DMA transfer for a write is done,
961         * whether it's a single or multi-block write.  If it's multi-block we
962         * have to immediately move on to the next operation which is to send
963         * the stop command.  If it's a single-block transfer we need to wait
964         * for NOTBUSY, but if that's already asserted we can avoid another
965         * interrupt and just move on to completing the request right away.
966         */
967
968        WR4(sc, PDC_PTCR, PDC_PTCR_RXTDIS | PDC_PTCR_TXTDIS);
969
970        bus_dmamap_sync(sc->dmatag, sc->bbuf_map[sc->bbuf_curidx],
971            BUS_DMASYNC_POSTWRITE);
972        bus_dmamap_unload(sc->dmatag, sc->bbuf_map[sc->bbuf_curidx]);
973
974        if ((cmd->data->flags & MMC_DATA_MULTI) || (sr & MCI_SR_NOTBUSY)) {
975                cmd->error = MMC_ERR_NONE;
976                at91_mci_next_operation(sc);
977        } else {
978                WR4(sc, MCI_IER, MCI_SR_ERROR | MCI_SR_NOTBUSY);
979        }
980}
981
982static void
983at91_mci_notbusy(struct at91_mci_softc *sc)
984{
985        struct mmc_command *cmd = sc->curcmd;
986
987        /*
988         * We arrive here by either completion of a single-block write, or
989         * completion of the stop command that ended a multi-block write (and,
990         * I suppose, after a card-select or erase, but I haven't tested
991         * those).  Anyway, we're done and it's time to move on to the next
992         * command.
993         */
994
995        cmd->error = MMC_ERR_NONE;
996        at91_mci_next_operation(sc);
997}
998
999static void
1000at91_mci_stop_done(struct at91_mci_softc *sc, uint32_t sr)
1001{
1002        struct mmc_command *cmd = sc->curcmd;
1003
1004        /*
1005         * We arrive here after receiving CMDRDY for a MMC_STOP_TRANSMISSION
1006         * command.  Depending on the operation being stopped, we may have to
1007         * do some unusual things to work around hardware bugs.
1008         */
1009
1010        /*
1011         * This is known to be true of at91rm9200 hardware; it may or may not
1012         * apply to more recent chips:
1013         *
1014         * After stopping a multi-block write, the NOTBUSY bit in MCI_SR does
1015         * not properly reflect the actual busy state of the card as signaled
1016         * on the DAT0 line; it always claims the card is not-busy.  If we
1017         * believe that and let operations continue, following commands will
1018         * fail with response timeouts (except of course MMC_SEND_STATUS -- it
1019         * indicates the card is busy in the PRG state, which was the smoking
1020         * gun that showed MCI_SR NOTBUSY was not tracking DAT0 correctly).
1021         *
1022         * The atmel docs are emphatic: "This flag [NOTBUSY] must be used only
1023         * for Write Operations."  I guess technically since we sent a stop
1024         * it's not a write operation anymore.  But then just what did they
1025         * think it meant for the stop command to have "...an optional busy
1026         * signal transmitted on the data line" according to the SD spec?
1027         *
1028         * I tried a variety of things to un-wedge the MCI and get the status
1029         * register to reflect NOTBUSY correctly again, but the only thing
1030         * that worked was a full device reset.  It feels like an awfully big
1031         * hammer, but doing a full reset after every multiblock write is
1032         * still faster than doing single-block IO (by almost two orders of
1033         * magnitude: 20KB/sec improves to about 1.8MB/sec best case).
1034         *
1035         * After doing the reset, wait for a NOTBUSY interrupt before
1036         * continuing with the next operation.
1037         *
1038         * This workaround breaks multiwrite on the rev2xx parts, but some other
1039         * workaround is needed.
1040         */
1041        if ((sc->flags & CMD_MULTIWRITE) && (sc->sc_cap & CAP_NEEDS_BYTESWAP)) {
1042                at91_mci_reset(sc);
1043                WR4(sc, MCI_IER, MCI_SR_ERROR | MCI_SR_NOTBUSY);
1044                return;
1045        }
1046
1047        /*
1048         * This is known to be true of at91rm9200 hardware; it may or may not
1049         * apply to more recent chips:
1050         *
1051         * After stopping a multi-block read, loop to read and discard any
1052         * data that coasts in after we sent the stop command.  The docs don't
1053         * say anything about it, but empirical testing shows that 1-3
1054         * additional words of data get buffered up in some unmentioned
1055         * internal fifo and if we don't read and discard them here they end
1056         * up on the front of the next read DMA transfer we do.
1057         *
1058         * This appears to be unnecessary for rev2xx parts.
1059         */
1060        if ((sc->flags & CMD_MULTIREAD) && (sc->sc_cap & CAP_NEEDS_BYTESWAP)) {
1061                uint32_t sr;
1062                int count = 0;
1063
1064                do {
1065                        sr = RD4(sc, MCI_SR);
1066                        if (sr & MCI_SR_RXRDY) {
1067                                RD4(sc,  MCI_RDR);
1068                                ++count;
1069                        }
1070                } while (sr & MCI_SR_RXRDY);
1071                at91_mci_reset(sc);
1072        }
1073
1074        cmd->error = MMC_ERR_NONE;
1075        at91_mci_next_operation(sc);
1076
1077}
1078
1079static void
1080at91_mci_cmdrdy(struct at91_mci_softc *sc, uint32_t sr)
1081{
1082        struct mmc_command *cmd = sc->curcmd;
1083        int i;
1084
1085        if (cmd == NULL)
1086                return;
1087
1088        /*
1089         * We get here at the end of EVERY command.  We retrieve the command
1090         * response (if any) then decide what to do next based on the command.
1091         */
1092
1093        if (cmd->flags & MMC_RSP_PRESENT) {
1094                for (i = 0; i < ((cmd->flags & MMC_RSP_136) ? 4 : 1); i++) {
1095                        cmd->resp[i] = RD4(sc, MCI_RSPR + i * 4);
1096                        if (mci_debug)
1097                                printf("RSPR[%d] = %x sr=%x\n", i, cmd->resp[i],  sr);
1098                }
1099        }
1100
1101        /*
1102         * If this was a stop command, go handle the various special
1103         * conditions (read: bugs) that have to be dealt with following a stop.
1104         */
1105        if (cmd->opcode == MMC_STOP_TRANSMISSION) {
1106                at91_mci_stop_done(sc, sr);
1107                return;
1108        }
1109
1110        /*
1111         * If this command can continue to assert BUSY beyond the response then
1112         * we need to wait for NOTBUSY before the command is really done.
1113         *
1114         * Note that this may not work properly on the at91rm9200.  It certainly
1115         * doesn't work for the STOP command that follows a multi-block write,
1116         * so post-stop CMDRDY is handled separately; see the special handling
1117         * in at91_mci_stop_done().
1118         *
1119         * Beside STOP, there are other R1B-type commands that use the busy
1120         * signal after CMDRDY: CMD7 (card select), CMD28-29 (write protect),
1121         * CMD38 (erase). I haven't tested any of them, but I rather expect
1122         * them all to have the same sort of problem with MCI_SR not actually
1123         * reflecting the state of the DAT0-line busy indicator.  So this code
1124         * may need to grow some sort of special handling for them too. (This
1125         * just in: CMD7 isn't a problem right now because dev/mmc.c incorrectly
1126         * sets the response flags to R1 rather than R1B.) XXX
1127         */
1128        if ((cmd->flags & MMC_RSP_BUSY)) {
1129                WR4(sc, MCI_IER, MCI_SR_ERROR | MCI_SR_NOTBUSY);
1130                return;
1131        }
1132
1133        /*
1134         * If there is a data transfer with this command, then...
1135         * - If it's a read, we need to wait for ENDRX.
1136         * - If it's a write, now is the time to enable the PDC, and we need
1137         *   to wait for a BLKE that follows a TXBUFE, because if we're doing
1138         *   a split transfer we get a BLKE after the first half (when TPR/TCR
1139         *   get loaded from TNPR/TNCR).  So first we wait for the TXBUFE, and
1140         *   the handling for that interrupt will then invoke the wait for the
1141         *   subsequent BLKE which indicates actual completion.
1142         */
1143        if (cmd->data) {
1144                uint32_t ier;
1145                if (cmd->data->flags & MMC_DATA_READ) {
1146                        ier = MCI_SR_ENDRX;
1147                } else {
1148                        ier = MCI_SR_TXBUFE;
1149                        WR4(sc, PDC_PTCR, PDC_PTCR_TXTEN);
1150                }
1151                WR4(sc, MCI_IER, MCI_SR_ERROR | ier);
1152                return;
1153        }
1154
1155        /*
1156         * If we made it to here, we don't need to wait for anything more for
1157         * the current command, move on to the next command (will complete the
1158         * request if there is no next command).
1159         */
1160        cmd->error = MMC_ERR_NONE;
1161        at91_mci_next_operation(sc);
1162}
1163
1164static void
1165at91_mci_intr(void *arg)
1166{
1167        struct at91_mci_softc *sc = (struct at91_mci_softc*)arg;
1168        struct mmc_command *cmd = sc->curcmd;
1169        uint32_t sr, isr;
1170
1171        AT91_MCI_LOCK(sc);
1172
1173        sr = RD4(sc, MCI_SR);
1174        isr = sr & RD4(sc, MCI_IMR);
1175
1176        if (mci_debug)
1177                printf("i 0x%x sr 0x%x\n", isr, sr);
1178
1179        /*
1180         * All interrupts are one-shot; disable it now.
1181         * The next operation will re-enable whatever interrupts it wants.
1182         */
1183        WR4(sc, MCI_IDR, isr);
1184        if (isr & MCI_SR_ERROR) {
1185                if (isr & (MCI_SR_RTOE | MCI_SR_DTOE))
1186                        cmd->error = MMC_ERR_TIMEOUT;
1187                else if (isr & (MCI_SR_RCRCE | MCI_SR_DCRCE))
1188                        cmd->error = MMC_ERR_BADCRC;
1189                else if (isr & (MCI_SR_OVRE | MCI_SR_UNRE))
1190                        cmd->error = MMC_ERR_FIFO;
1191                else
1192                        cmd->error = MMC_ERR_FAILED;
1193                /*
1194                 * CMD8 is used to probe for SDHC cards, a standard SD card
1195                 * will get a response timeout; don't report it because it's a
1196                 * normal and expected condition.  One might argue that all
1197                 * error reporting should be left to higher levels, but when
1198                 * they report at all it's always EIO, which isn't very
1199                 * helpful. XXX bootverbose?
1200                 */
1201                if (cmd->opcode != 8) {
1202                        device_printf(sc->dev,
1203                            "IO error; status MCI_SR = 0x%b cmd opcode = %d%s\n",
1204                            sr, MCI_SR_BITSTRING, cmd->opcode,
1205                            (cmd->opcode != 12) ? "" :
1206                            (sc->flags & CMD_MULTIREAD) ? " after read" : " after write");
1207                        /* XXX not sure RTOE needs a full reset, just a retry */
1208                        at91_mci_reset(sc);
1209                }
1210                at91_mci_next_operation(sc);
1211        } else {
1212                if (isr & MCI_SR_TXBUFE) {
1213//                      printf("TXBUFE\n");
1214                        /*
1215                         * We need to wait for a BLKE that follows TXBUFE
1216                         * (intermediate BLKEs might happen after ENDTXes if
1217                         * we're chaining multiple buffers).  If BLKE is also
1218                         * asserted at the time we get TXBUFE, we can avoid
1219                         * another interrupt and process it right away, below.
1220                         */
1221                        if (sr & MCI_SR_BLKE)
1222                                isr |= MCI_SR_BLKE;
1223                        else
1224                                WR4(sc, MCI_IER, MCI_SR_BLKE);
1225                }
1226                if (isr & MCI_SR_RXBUFF) {
1227//                      printf("RXBUFF\n");
1228                }
1229                if (isr & MCI_SR_ENDTX) {
1230//                      printf("ENDTX\n");
1231                }
1232                if (isr & MCI_SR_ENDRX) {
1233//                      printf("ENDRX\n");
1234                        at91_mci_read_done(sc, sr);
1235                }
1236                if (isr & MCI_SR_NOTBUSY) {
1237//                      printf("NOTBUSY\n");
1238                        at91_mci_notbusy(sc);
1239                }
1240                if (isr & MCI_SR_DTIP) {
1241//                      printf("Data transfer in progress\n");
1242                }
1243                if (isr & MCI_SR_BLKE) {
1244//                      printf("Block transfer end\n");
1245                        at91_mci_write_done(sc, sr);
1246                }
1247                if (isr & MCI_SR_TXRDY) {
1248//                      printf("Ready to transmit\n");
1249                }
1250                if (isr & MCI_SR_RXRDY) {
1251//                      printf("Ready to receive\n");
1252                }
1253                if (isr & MCI_SR_CMDRDY) {
1254//                      printf("Command ready\n");
1255                        at91_mci_cmdrdy(sc, sr);
1256                }
1257        }
1258        AT91_MCI_UNLOCK(sc);
1259}
1260
1261static int
1262at91_mci_read_ivar(device_t bus, device_t child, int which, uintptr_t *result)
1263{
1264        struct at91_mci_softc *sc = device_get_softc(bus);
1265
1266        switch (which) {
1267        default:
1268                return (EINVAL);
1269        case MMCBR_IVAR_BUS_MODE:
1270                *(int *)result = sc->host.ios.bus_mode;
1271                break;
1272        case MMCBR_IVAR_BUS_WIDTH:
1273                *(int *)result = sc->host.ios.bus_width;
1274                break;
1275        case MMCBR_IVAR_CHIP_SELECT:
1276                *(int *)result = sc->host.ios.chip_select;
1277                break;
1278        case MMCBR_IVAR_CLOCK:
1279                *(int *)result = sc->host.ios.clock;
1280                break;
1281        case MMCBR_IVAR_F_MIN:
1282                *(int *)result = sc->host.f_min;
1283                break;
1284        case MMCBR_IVAR_F_MAX:
1285                *(int *)result = sc->host.f_max;
1286                break;
1287        case MMCBR_IVAR_HOST_OCR:
1288                *(int *)result = sc->host.host_ocr;
1289                break;
1290        case MMCBR_IVAR_MODE:
1291                *(int *)result = sc->host.mode;
1292                break;
1293        case MMCBR_IVAR_OCR:
1294                *(int *)result = sc->host.ocr;
1295                break;
1296        case MMCBR_IVAR_POWER_MODE:
1297                *(int *)result = sc->host.ios.power_mode;
1298                break;
1299        case MMCBR_IVAR_VDD:
1300                *(int *)result = sc->host.ios.vdd;
1301                break;
1302        case MMCBR_IVAR_CAPS:
1303                if (sc->has_4wire) {
1304                        sc->sc_cap |= CAP_HAS_4WIRE;
1305                        sc->host.caps |= MMC_CAP_4_BIT_DATA;
1306                } else {
1307                        sc->sc_cap &= ~CAP_HAS_4WIRE;
1308                        sc->host.caps &= ~MMC_CAP_4_BIT_DATA;
1309                }
1310                *(int *)result = sc->host.caps;
1311                break;
1312        case MMCBR_IVAR_MAX_DATA:
1313                /*
1314                 * Something is wrong with the 2x parts and multiblock, so
1315                 * just do 1 block at a time for now, which really kills
1316                 * performance.
1317                 */
1318                if (sc->sc_cap & CAP_MCI1_REV2XX)
1319                        *(int *)result = 1;
1320                else
1321                        *(int *)result = MAX_BLOCKS;
1322                break;
1323        }
1324        return (0);
1325}
1326
1327static int
1328at91_mci_write_ivar(device_t bus, device_t child, int which, uintptr_t value)
1329{
1330        struct at91_mci_softc *sc = device_get_softc(bus);
1331
1332        switch (which) {
1333        default:
1334                return (EINVAL);
1335        case MMCBR_IVAR_BUS_MODE:
1336                sc->host.ios.bus_mode = value;
1337                break;
1338        case MMCBR_IVAR_BUS_WIDTH:
1339                sc->host.ios.bus_width = value;
1340                break;
1341        case MMCBR_IVAR_CHIP_SELECT:
1342                sc->host.ios.chip_select = value;
1343                break;
1344        case MMCBR_IVAR_CLOCK:
1345                sc->host.ios.clock = value;
1346                break;
1347        case MMCBR_IVAR_MODE:
1348                sc->host.mode = value;
1349                break;
1350        case MMCBR_IVAR_OCR:
1351                sc->host.ocr = value;
1352                break;
1353        case MMCBR_IVAR_POWER_MODE:
1354                sc->host.ios.power_mode = value;
1355                break;
1356        case MMCBR_IVAR_VDD:
1357                sc->host.ios.vdd = value;
1358                break;
1359        /* These are read-only */
1360        case MMCBR_IVAR_CAPS:
1361        case MMCBR_IVAR_HOST_OCR:
1362        case MMCBR_IVAR_F_MIN:
1363        case MMCBR_IVAR_F_MAX:
1364        case MMCBR_IVAR_MAX_DATA:
1365                return (EINVAL);
1366        }
1367        return (0);
1368}
1369
1370static device_method_t at91_mci_methods[] = {
1371        /* device_if */
1372        DEVMETHOD(device_probe, at91_mci_probe),
1373        DEVMETHOD(device_attach, at91_mci_attach),
1374        DEVMETHOD(device_detach, at91_mci_detach),
1375
1376        /* Bus interface */
1377        DEVMETHOD(bus_read_ivar,        at91_mci_read_ivar),
1378        DEVMETHOD(bus_write_ivar,       at91_mci_write_ivar),
1379
1380        /* mmcbr_if */
1381        DEVMETHOD(mmcbr_update_ios, at91_mci_update_ios),
1382        DEVMETHOD(mmcbr_request, at91_mci_request),
1383        DEVMETHOD(mmcbr_get_ro, at91_mci_get_ro),
1384        DEVMETHOD(mmcbr_acquire_host, at91_mci_acquire_host),
1385        DEVMETHOD(mmcbr_release_host, at91_mci_release_host),
1386
1387        DEVMETHOD_END
1388};
1389
1390static driver_t at91_mci_driver = {
1391        "at91_mci",
1392        at91_mci_methods,
1393        sizeof(struct at91_mci_softc),
1394};
1395
1396static devclass_t at91_mci_devclass;
1397
1398#ifdef FDT
1399DRIVER_MODULE(at91_mci, simplebus, at91_mci_driver, at91_mci_devclass, NULL,
1400    NULL);
1401#else
1402DRIVER_MODULE(at91_mci, atmelarm, at91_mci_driver, at91_mci_devclass, NULL,
1403    NULL);
1404#endif
1405
1406MMC_DECLARE_BRIDGE(at91_mci);
1407DRIVER_MODULE(mmc, at91_mci, mmc_driver, mmc_devclass, NULL, NULL);
1408MODULE_DEPEND(at91_mci, mmc, 1, 1, 1);
Note: See TracBrowser for help on using the repository browser.