#include /*- * Copyright (c) 2006 Bernd Walter. All rights reserved. * Copyright (c) 2006 M. Warner Losh. All rights reserved. * Copyright (c) 2010 Greg Ansley. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #include #include __FBSDID("$FreeBSD$"); #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef FDT #include #include #endif #include #include #ifdef __rtems__ #include #endif /* __rtems__ */ #if defined(__rtems__) && defined(LIBBSP_ARM_ATSAM_BSP_H) #ifdef __rtems__ #include #include #define AT91_MCI_HAS_4WIRE 1 #define at91_master_clock BOARD_MCK static sXdmad *pXdmad = &XDMAD_Instance; #endif /* __rtems__ */ /* * About running the MCI bus above 25MHz * * Historically, the MCI bus has been run at 30MHz on systems with a 60MHz * master clock, in part due to a bug in dev/mmc.c making always request * 30MHz, and in part over clocking the bus because 15MHz was too slow. * Fixing that bug causes the mmc driver to request a 25MHz clock (as it * should) and the logic in at91_mci_update_ios() picks the highest speed that * doesn't exceed that limit. With a 60MHz MCK that would be 15MHz, and * that's a real performance buzzkill when you've been getting away with 30MHz * all along. * * By defining AT91_MCI_ALLOW_OVERCLOCK (or setting the allow_overclock=1 * device hint or sysctl) you can enable logic in at91_mci_update_ios() to * overlcock the SD bus a little by running it at MCK / 2 when the requested * speed is 25MHz and the next highest speed is 15MHz or less. This appears * to work on virtually all SD cards, since it is what this driver has been * doing prior to the introduction of this option, where the overclocking vs * underclocking decision was automatically "overclock". Modern SD cards can * run at 45mhz/1-bit in standard mode (high speed mode enable commands not * sent) without problems. * * Speaking of high-speed mode, the rm9200 manual says the MCI device supports * the SD v1.0 specification and can run up to 50MHz. This is interesting in * that the SD v1.0 spec caps the speed at 25MHz; high speed mode was added in * the v1.10 spec. Furthermore, high speed mode doesn't just crank up the * clock, it alters the signal timing. The rm9200 MCI device doesn't support * these altered timings. So while speeds over 25MHz may work, they only work * in what the SD spec calls "default" speed mode, and it amounts to violating * the spec by overclocking the bus. * * If you also enable 4-wire mode it's possible transfers faster than 25MHz * will fail. On the AT91RM9200, due to bugs in the bus contention logic, if * you have the USB host device and OHCI driver enabled will fail. Even * underclocking to 15MHz, intermittant overrun and underrun errors occur. * Note that you don't even need to have usb devices attached to the system, * the errors begin to occur as soon as the OHCI driver sets the register bit * to enable periodic transfers. It appears (based on brief investigation) * that the usb host controller uses so much ASB bandwidth that sometimes the * DMA for MCI transfers doesn't get a bus grant in time and data gets * dropped. Adding even a modicum of network activity changes the symptom * from intermittant to very frequent. Members of the AT91SAM9 family have * corrected this problem, or are at least better about their use of the bus. */ #ifndef AT91_MCI_ALLOW_OVERCLOCK #define AT91_MCI_ALLOW_OVERCLOCK 1 #endif /* * Allocate 2 bounce buffers we'll use to endian-swap the data due to the rm9200 * erratum. We use a pair of buffers because when reading that lets us begin * endian-swapping the data in the first buffer while the DMA is reading into * the second buffer. (We can't use the same trick for writing because we might * not get all the data in the 2nd buffer swapped before the hardware needs it; * dealing with that would add complexity to the driver.) * * The buffers are sized at 16K each due to the way the busdma cache sync * operations work on arm. A dcache_inv_range() operation on a range larger * than 16K gets turned into a dcache_wbinv_all(). That needlessly flushes the * entire data cache, impacting overall system performance. */ #ifndef __rtems__ #define BBCOUNT 2 #define BBSIZE (32*1024) #define MAX_BLOCKS ((BBSIZE)/512) /* FIXME: It would be better to split the DMA up in that case like in the * original driver. But that would need some rework. */ #else /* __rtems__ */ #define MAX_BLOCKS 32 #endif /* __rtems__ */ #ifndef __rtems__ static int mci_debug; #else /* __rtems__ */ #define mci_debug 0 #endif /* __rtems__ */ struct at91_mci_softc { void *intrhand; /* Interrupt handle */ device_t dev; int sc_cap; #define CAP_HAS_4WIRE 1 /* Has 4 wire bus */ #define CAP_NEEDS_BYTESWAP 2 /* broken hardware needing bounce */ #define CAP_MCI1_REV2XX 4 /* MCI 1 rev 2.x */ int flags; #define PENDING_CMD 0x01 #define PENDING_STOP 0x02 #define CMD_MULTIREAD 0x10 #define CMD_MULTIWRITE 0x20 int has_4wire; int allow_overclock; struct resource *irq_res; /* IRQ resource */ struct resource *mem_res; /* Memory resource */ struct mtx sc_mtx; #ifdef __rtems__ RTEMS_INTERRUPT_LOCK_MEMBER(sc_lock) #endif /* __rtems__ */ #ifndef __rtems__ bus_dma_tag_t dmatag; #endif /* __rtems__ */ struct mmc_host host; int bus_busy; struct mmc_request *req; struct mmc_command *curcmd; #ifndef __rtems__ bus_dmamap_t bbuf_map[BBCOUNT]; char * bbuf_vaddr[BBCOUNT]; /* bounce bufs in KVA space */ uint32_t bbuf_len[BBCOUNT]; /* len currently queued for bounce buf */ uint32_t bbuf_curidx; /* which bbuf is the active DMA buffer */ uint32_t xfer_offset; /* offset so far into caller's buf */ #else /* __rtems__ */ uint32_t xdma_tx_channel; uint32_t xdma_rx_channel; uint8_t xdma_tx_perid; uint8_t xdma_rx_perid; sXdmadCfg xdma_tx_cfg; sXdmadCfg xdma_rx_cfg; #endif /* __rtems__ */ }; /* bus entry points */ static int at91_mci_probe(device_t dev); static int at91_mci_attach(device_t dev); static int at91_mci_detach(device_t dev); static void at91_mci_intr(void *); /* helper routines */ static int at91_mci_activate(device_t dev); static void at91_mci_deactivate(device_t dev); static int at91_mci_is_mci1rev2xx(void); #ifndef __rtems__ static void at91_mci_read_done(struct at91_mci_softc *sc, uint32_t sr); #endif /* __rtems__ */ static void at91_mci_write_done(struct at91_mci_softc *sc, uint32_t sr); #ifndef __rtems__ #define AT91_MCI_LOCK(_sc) mtx_lock(&(_sc)->sc_mtx) #define AT91_MCI_UNLOCK(_sc) mtx_unlock(&(_sc)->sc_mtx) #define AT91_MCI_LOCK_INIT(_sc) \ mtx_init(&_sc->sc_mtx, device_get_nameunit(_sc->dev), \ "mci", MTX_DEF) #define AT91_MCI_LOCK_DESTROY(_sc) mtx_destroy(&_sc->sc_mtx); #define AT91_MCI_ASSERT_LOCKED(_sc) mtx_assert(&_sc->sc_mtx, MA_OWNED); #define AT91_MCI_ASSERT_UNLOCKED(_sc) mtx_assert(&_sc->sc_mtx, MA_NOTOWNED); #else /* __rtems__ */ #define AT91_MCI_LOCK(_sc) \ rtems_interrupt_lock_context at91_mci_lock_context; \ rtems_interrupt_lock_acquire(&(_sc)->sc_lock, &at91_mci_lock_context) #define AT91_MCI_UNLOCK(_sc) \ rtems_interrupt_lock_release(&(_sc)->sc_lock, &at91_mci_lock_context) #define AT91_MCI_LOCK_INIT(_sc) \ rtems_interrupt_lock_initialize(&(_sc)->sc_lock, \ device_get_nameunit((_sc)->dev)) #define AT91_MCI_LOCK_DESTROY(_sc) \ rtems_interrupt_lock_destroy(&(_sc)->sc_mtx) #define AT91_MCI_BUS_LOCK(_sc) mtx_lock(&(_sc)->sc_mtx) #define AT91_MCI_BUS_UNLOCK(_sc) mtx_unlock(&(_sc)->sc_mtx) #define AT91_MCI_BUS_LOCK_INIT(_sc) \ mtx_init(&_sc->sc_mtx, device_get_nameunit((_sc)->dev), \ "mci", MTX_DEF) #endif /* __rtems__ */ static inline uint32_t RD4(struct at91_mci_softc *sc, bus_size_t off) { return (bus_read_4(sc->mem_res, off)); } static inline void WR4(struct at91_mci_softc *sc, bus_size_t off, uint32_t val) { bus_write_4(sc->mem_res, off, val); } #ifndef __rtems__ static void at91_bswap_buf(struct at91_mci_softc *sc, void * dptr, void * sptr, uint32_t memsize) { uint32_t * dst = (uint32_t *)dptr; uint32_t * src = (uint32_t *)sptr; uint32_t i; /* * If the hardware doesn't need byte-swapping, let bcopy() do the * work. Use bounce buffer even if we don't need byteswap, since * buffer may straddle a page boundary, and we don't handle * multi-segment transfers in hardware. Seen from 'bsdlabel -w' which * uses raw geom access to the volume. Greg Ansley (gja (at) * ansley.com) */ if (!(sc->sc_cap & CAP_NEEDS_BYTESWAP)) { memcpy(dptr, sptr, memsize); return; } /* * Nice performance boost for slightly unrolling this loop. * (But very little extra boost for further unrolling it.) */ for (i = 0; i < memsize; i += 16) { *dst++ = bswap32(*src++); *dst++ = bswap32(*src++); *dst++ = bswap32(*src++); *dst++ = bswap32(*src++); } /* Mop up the last 1-3 words, if any. */ for (i = 0; i < (memsize & 0x0F); i += 4) { *dst++ = bswap32(*src++); } } static void at91_mci_getaddr(void *arg, bus_dma_segment_t *segs, int nsegs, int error) { if (error != 0) return; *(bus_addr_t *)arg = segs[0].ds_addr; } #endif /* __rtems__ */ static void at91_mci_pdc_disable(struct at91_mci_softc *sc) { #ifndef __rtems__ WR4(sc, PDC_PTCR, PDC_PTCR_TXTDIS | PDC_PTCR_RXTDIS); WR4(sc, PDC_RPR, 0); WR4(sc, PDC_RCR, 0); WR4(sc, PDC_RNPR, 0); WR4(sc, PDC_RNCR, 0); WR4(sc, PDC_TPR, 0); WR4(sc, PDC_TCR, 0); WR4(sc, PDC_TNPR, 0); WR4(sc, PDC_TNCR, 0); #else /* __rtems__ */ /* On SAMV71 there is no PDC but a DMAC */ XDMAD_StopTransfer(pXdmad, sc->xdma_rx_channel); XDMAD_StopTransfer(pXdmad, sc->xdma_tx_channel); WR4(sc, MCI_DMA, 0); #endif /* __rtems__ */ } /* * Reset the controller, then restore most of the current state. * * This is called after detecting an error. It's also called after stopping a * multi-block write, to un-wedge the device so that it will handle the NOTBUSY * signal correctly. See comments in at91_mci_stop_done() for more details. */ static void at91_mci_reset(struct at91_mci_softc *sc) { uint32_t mr; uint32_t sdcr; uint32_t dtor; uint32_t imr; at91_mci_pdc_disable(sc); /* save current state */ imr = RD4(sc, MCI_IMR); #ifndef __rtems__ mr = RD4(sc, MCI_MR) & 0x7fff; #else /* __rtems__ */ mr = RD4(sc, MCI_MR); #endif /* __rtems__ */ sdcr = RD4(sc, MCI_SDCR); dtor = RD4(sc, MCI_DTOR); /* reset the controller */ WR4(sc, MCI_IDR, 0xffffffff); WR4(sc, MCI_CR, MCI_CR_MCIDIS | MCI_CR_SWRST); /* restore state */ WR4(sc, MCI_CR, MCI_CR_MCIEN|MCI_CR_PWSEN); WR4(sc, MCI_MR, mr); WR4(sc, MCI_SDCR, sdcr); WR4(sc, MCI_DTOR, dtor); WR4(sc, MCI_IER, imr); /* * Make sure sdio interrupts will fire. Not sure why reading * SR ensures that, but this is in the linux driver. */ RD4(sc, MCI_SR); } static void at91_mci_init(device_t dev) { struct at91_mci_softc *sc = device_get_softc(dev); uint32_t val; WR4(sc, MCI_CR, MCI_CR_MCIDIS | MCI_CR_SWRST); /* device into reset */ WR4(sc, MCI_IDR, 0xffffffff); /* Turn off interrupts */ WR4(sc, MCI_DTOR, MCI_DTOR_DTOMUL_1M | 1); #ifndef __rtems__ val = MCI_MR_PDCMODE; #else /* __rtems__ */ val = 0; val |= MCI_MR_RDPROOF | MCI_MR_WRPROOF; #endif /* __rtems__ */ val |= 0x34a; /* PWSDIV = 3; CLKDIV = 74 */ // if (sc->sc_cap & CAP_MCI1_REV2XX) // val |= MCI_MR_RDPROOF | MCI_MR_WRPROOF; WR4(sc, MCI_MR, val); #ifndef AT91_MCI_SLOT_B WR4(sc, MCI_SDCR, 0); /* SLOT A, 1 bit bus */ #else /* * XXX Really should add second "unit" but nobody using using * a two slot card that we know of. XXX */ WR4(sc, MCI_SDCR, 1); /* SLOT B, 1 bit bus */ #endif /* * Enable controller, including power-save. The slower clock * of the power-save mode is only in effect when there is no * transfer in progress, so it can be left in this mode all * the time. */ WR4(sc, MCI_CR, MCI_CR_MCIEN|MCI_CR_PWSEN); } static void at91_mci_fini(device_t dev) { struct at91_mci_softc *sc = device_get_softc(dev); WR4(sc, MCI_IDR, 0xffffffff); /* Turn off interrupts */ at91_mci_pdc_disable(sc); WR4(sc, MCI_CR, MCI_CR_MCIDIS | MCI_CR_SWRST); /* device into reset */ } static int at91_mci_probe(device_t dev) { #ifdef FDT if (!ofw_bus_is_compatible(dev, "atmel,hsmci")) return (ENXIO); #endif device_set_desc(dev, "MCI mmc/sd host bridge"); return (0); } static int at91_mci_attach(device_t dev) { struct at91_mci_softc *sc = device_get_softc(dev); struct sysctl_ctx_list *sctx; struct sysctl_oid *soid; device_t child; #ifndef __rtems__ int err, i; #else /* __rtems__ */ int err; #endif /* __rtems__ */ #ifdef __rtems__ #ifdef LIBBSP_ARM_ATSAM_BSP_H PMC_EnablePeripheral(ID_HSMCI); sc->xdma_tx_channel = XDMAD_ALLOC_FAILED; sc->xdma_rx_channel = XDMAD_ALLOC_FAILED; #endif /* LIBBSP_ARM_ATSAM_BSP_H */ #endif /* __rtems__ */ sctx = device_get_sysctl_ctx(dev); soid = device_get_sysctl_tree(dev); sc->dev = dev; sc->sc_cap = 0; #ifndef __rtems__ if (at91_is_rm92()) sc->sc_cap |= CAP_NEEDS_BYTESWAP; #endif /* __rtems__ */ /* * MCI1 Rev 2 controllers need some workarounds, flag if so. */ if (at91_mci_is_mci1rev2xx()) sc->sc_cap |= CAP_MCI1_REV2XX; err = at91_mci_activate(dev); if (err) goto out; #ifdef __rtems__ eXdmadRC rc; /* Prepare some configurations so they don't have to be fetched on every * setup */ sc->xdma_rx_perid = XDMAIF_Get_ChannelNumber(ID_HSMCI, XDMAD_TRANSFER_RX); sc->xdma_tx_perid = XDMAIF_Get_ChannelNumber(ID_HSMCI, XDMAD_TRANSFER_TX); memset(&sc->xdma_rx_cfg, 0, sizeof(sc->xdma_rx_cfg)); sc->xdma_rx_cfg.mbr_cfg = XDMAC_CC_TYPE_PER_TRAN | XDMAC_CC_MBSIZE_SINGLE | XDMAC_CC_DSYNC_PER2MEM | XDMAC_CC_SWREQ_HWR_CONNECTED | XDMAC_CC_MEMSET_NORMAL_MODE | XDMAC_CC_CSIZE_CHK_1 | XDMAC_CC_DWIDTH_WORD | XDMAC_CC_SIF_AHB_IF1 | XDMAC_CC_DIF_AHB_IF1 | XDMAC_CC_SAM_FIXED_AM | XDMAC_CC_DAM_INCREMENTED_AM | XDMAC_CC_PERID( XDMAIF_Get_ChannelNumber(ID_HSMCI,XDMAD_TRANSFER_RX)); memset(&sc->xdma_tx_cfg, 0, sizeof(sc->xdma_tx_cfg)); sc->xdma_tx_cfg.mbr_cfg = XDMAC_CC_TYPE_PER_TRAN | XDMAC_CC_MBSIZE_SINGLE | XDMAC_CC_DSYNC_MEM2PER | XDMAC_CC_SWREQ_HWR_CONNECTED | XDMAC_CC_MEMSET_NORMAL_MODE | XDMAC_CC_CSIZE_CHK_1 | XDMAC_CC_DWIDTH_WORD | XDMAC_CC_SIF_AHB_IF1 | XDMAC_CC_DIF_AHB_IF1 | XDMAC_CC_SAM_INCREMENTED_AM | XDMAC_CC_DAM_FIXED_AM | XDMAC_CC_PERID( XDMAIF_Get_ChannelNumber(ID_HSMCI,XDMAD_TRANSFER_TX)); sc->xdma_tx_channel = XDMAD_AllocateChannel(pXdmad, XDMAD_TRANSFER_MEMORY, ID_HSMCI); if (sc->xdma_tx_channel == XDMAD_ALLOC_FAILED) goto out; /* FIXME: The two DMA channels are not really necessary for the driver. * But the XDMAD interface does not allow to allocate one and use it * into two directions. The current (2017-07-11) implementation of * the XDMAD interface should work with it. So we might could try it. */ sc->xdma_rx_channel = XDMAD_AllocateChannel(pXdmad, ID_HSMCI, XDMAD_TRANSFER_MEMORY); if (sc->xdma_rx_channel == XDMAD_ALLOC_FAILED) goto out; rc = XDMAD_PrepareChannel(pXdmad, sc->xdma_rx_channel); if (rc != XDMAD_OK) goto out; rc = XDMAD_PrepareChannel(pXdmad, sc->xdma_tx_channel); if (rc != XDMAD_OK) goto out; AT91_MCI_BUS_LOCK_INIT(sc); #endif /* __rtems__ */ AT91_MCI_LOCK_INIT(sc); at91_mci_fini(dev); at91_mci_init(dev); #ifndef __rtems__ /* * Allocate DMA tags and maps and bounce buffers. * * The parms in the tag_create call cause the dmamem_alloc call to * create each bounce buffer as a single contiguous buffer of BBSIZE * bytes aligned to a 4096 byte boundary. * * Do not use DMA_COHERENT for these buffers because that maps the * memory as non-cachable, which prevents cache line burst fills/writes, * which is something we need since we're trying to overlap the * byte-swapping with the DMA operations. */ err = bus_dma_tag_create(bus_get_dma_tag(dev), 4096, 0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, BBSIZE, 1, BBSIZE, 0, NULL, NULL, &sc->dmatag); if (err != 0) goto out; for (i = 0; i < BBCOUNT; ++i) { err = bus_dmamem_alloc(sc->dmatag, (void **)&sc->bbuf_vaddr[i], BUS_DMA_NOWAIT, &sc->bbuf_map[i]); if (err != 0) goto out; } /* * Activate the interrupt */ err = bus_setup_intr(dev, sc->irq_res, INTR_TYPE_MISC | INTR_MPSAFE, NULL, at91_mci_intr, sc, &sc->intrhand); #else /* __rtems__ */ err = rtems_interrupt_handler_install(rman_get_start(sc->irq_res), device_get_nameunit(dev), RTEMS_INTERRUPT_SHARED, at91_mci_intr, sc); #endif /* __rtems__ */ if (err) { AT91_MCI_LOCK_DESTROY(sc); goto out; } /* * Allow 4-wire to be initially set via #define. * Allow a device hint to override that. * Allow a sysctl to override that. */ #if defined(AT91_MCI_HAS_4WIRE) && AT91_MCI_HAS_4WIRE != 0 sc->has_4wire = 1; #endif resource_int_value(device_get_name(dev), device_get_unit(dev), "4wire", &sc->has_4wire); SYSCTL_ADD_UINT(sctx, SYSCTL_CHILDREN(soid), OID_AUTO, "4wire", CTLFLAG_RW, &sc->has_4wire, 0, "has 4 wire SD Card bus"); if (sc->has_4wire) sc->sc_cap |= CAP_HAS_4WIRE; sc->allow_overclock = AT91_MCI_ALLOW_OVERCLOCK; resource_int_value(device_get_name(dev), device_get_unit(dev), "allow_overclock", &sc->allow_overclock); SYSCTL_ADD_UINT(sctx, SYSCTL_CHILDREN(soid), OID_AUTO, "allow_overclock", CTLFLAG_RW, &sc->allow_overclock, 0, "Allow up to 30MHz clock for 25MHz request when next highest speed 15MHz or less."); #ifndef __rtems__ SYSCTL_ADD_UINT(sctx, SYSCTL_CHILDREN(soid), OID_AUTO, "debug", CTLFLAG_RWTUN, &mci_debug, 0, "enable debug output"); #endif /* __rtems__ */ /* * Our real min freq is master_clock/512, but upper driver layers are * going to set the min speed during card discovery, and the right speed * for that is 400kHz, so advertise a safe value just under that. * * For max speed, while the rm9200 manual says the max is 50mhz, it also * says it supports only the SD v1.0 spec, which means the real limit is * 25mhz. On the other hand, historical use has been to slightly violate * the standard by running the bus at 30MHz. For more information on * that, see the comments at the top of this file. */ sc->host.f_min = 375000; sc->host.f_max = at91_master_clock / 2; if (sc->host.f_max > 25000000) sc->host.f_max = 25000000; sc->host.host_ocr = MMC_OCR_320_330 | MMC_OCR_330_340; sc->host.caps = 0; if (sc->sc_cap & CAP_HAS_4WIRE) sc->host.caps |= MMC_CAP_4_BIT_DATA; child = device_add_child(dev, "mmc", 0); #ifdef __rtems__ (void)child; #endif /* __rtems__ */ device_set_ivars(dev, &sc->host); err = bus_generic_attach(dev); out: if (err) at91_mci_deactivate(dev); return (err); } static int at91_mci_detach(device_t dev) { #ifndef __rtems__ struct at91_mci_softc *sc = device_get_softc(dev); #endif /* __rtems__ */ at91_mci_fini(dev); at91_mci_deactivate(dev); #ifndef __rtems__ bus_dmamem_free(sc->dmatag, sc->bbuf_vaddr[0], sc->bbuf_map[0]); bus_dmamem_free(sc->dmatag, sc->bbuf_vaddr[1], sc->bbuf_map[1]); bus_dma_tag_destroy(sc->dmatag); #endif /* __rtems__ */ return (EBUSY); /* XXX */ } static int at91_mci_activate(device_t dev) { struct at91_mci_softc *sc; int rid; sc = device_get_softc(dev); rid = 0; sc->mem_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid, RF_ACTIVE); if (sc->mem_res == NULL) goto errout; rid = 0; sc->irq_res = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid, RF_ACTIVE); if (sc->irq_res == NULL) goto errout; return (0); errout: at91_mci_deactivate(dev); return (ENOMEM); } static void at91_mci_deactivate(device_t dev) { struct at91_mci_softc *sc; sc = device_get_softc(dev); if (sc->intrhand) bus_teardown_intr(dev, sc->irq_res, sc->intrhand); sc->intrhand = NULL; bus_generic_detach(sc->dev); if (sc->mem_res) bus_release_resource(dev, SYS_RES_MEMORY, rman_get_rid(sc->mem_res), sc->mem_res); sc->mem_res = NULL; if (sc->irq_res) bus_release_resource(dev, SYS_RES_IRQ, rman_get_rid(sc->irq_res), sc->irq_res); sc->irq_res = NULL; #ifdef __rtems__ if (sc->xdma_rx_channel != XDMAD_ALLOC_FAILED) { XDMAD_FreeChannel(pXdmad, sc->xdma_rx_channel); } if (sc->xdma_tx_channel != XDMAD_ALLOC_FAILED) { XDMAD_FreeChannel(pXdmad, sc->xdma_tx_channel); } #endif /* __rtems__ */ return; } static int at91_mci_is_mci1rev2xx(void) { #ifndef __rtems__ switch (soc_info.type) { case AT91_T_SAM9260: case AT91_T_SAM9263: case AT91_T_CAP9: case AT91_T_SAM9G10: case AT91_T_SAM9G20: case AT91_T_SAM9RL: return(1); default: return (0); } #else /* __rtems__ */ /* Currently only supports the SAM V71 */ return (1); #endif /* __rtems__ */ } static int at91_mci_update_ios(device_t brdev, device_t reqdev) { struct at91_mci_softc *sc; struct mmc_ios *ios; uint32_t clkdiv; uint32_t freq; sc = device_get_softc(brdev); ios = &sc->host.ios; /* * Calculate our closest available clock speed that doesn't exceed the * requested speed. * * When overclocking is allowed, the requested clock is 25MHz, the * computed frequency is 15MHz or smaller and clockdiv is 1, use * clockdiv of 0 to double that. If less than 12.5MHz, double * regardless of the overclocking setting. * * Whatever we come up with, store it back into ios->clock so that the * upper layer drivers can report the actual speed of the bus. */ if (ios->clock == 0) { WR4(sc, MCI_CR, MCI_CR_MCIDIS); clkdiv = 0; } else { WR4(sc, MCI_CR, MCI_CR_MCIEN|MCI_CR_PWSEN); if ((at91_master_clock % (ios->clock * 2)) == 0) clkdiv = ((at91_master_clock / ios->clock) / 2) - 1; else clkdiv = (at91_master_clock / ios->clock) / 2; freq = at91_master_clock / ((clkdiv+1) * 2); if (clkdiv == 1 && ios->clock == 25000000 && freq <= 15000000) { if (sc->allow_overclock || freq <= 12500000) { clkdiv = 0; freq = at91_master_clock / ((clkdiv+1) * 2); } } ios->clock = freq; } if (ios->bus_width == bus_width_4) WR4(sc, MCI_SDCR, RD4(sc, MCI_SDCR) | MCI_SDCR_SDCBUS); else WR4(sc, MCI_SDCR, RD4(sc, MCI_SDCR) & ~MCI_SDCR_SDCBUS); WR4(sc, MCI_MR, (RD4(sc, MCI_MR) & ~MCI_MR_CLKDIV) | clkdiv); /* Do we need a settle time here? */ /* XXX We need to turn the device on/off here with a GPIO pin */ return (0); } #ifdef __rtems__ static LinkedListDescriporView1 dma_desc[MAX_BLOCKS]; static void at91_mci_setup_xdma(struct at91_mci_softc *sc, bool read, uint32_t block_size, uint32_t block_count, void *data, uint32_t len) { sXdmadCfg *xdma_cfg; uint32_t xdma_channel; const uint32_t xdma_cndc = XDMAC_CNDC_NDVIEW_NDV1 | XDMAC_CNDC_NDE_DSCR_FETCH_EN | XDMAC_CNDC_NDSUP_SRC_PARAMS_UPDATED | XDMAC_CNDC_NDDUP_DST_PARAMS_UPDATED; const uint32_t sa_rdr = (uint32_t)(sc->mem_res->r_bushandle + MCI_RDR); const uint32_t da_tdr = (uint32_t)(sc->mem_res->r_bushandle + MCI_TDR); const uint32_t xdma_interrupt = XDMAC_CIE_BIE | XDMAC_CIE_DIE | XDMAC_CIE_FIE | XDMAC_CIE_RBIE | XDMAC_CIE_WBIE | XDMAC_CIE_ROIE; eXdmadRC rc; size_t i; if (read) { xdma_cfg = &sc->xdma_rx_cfg; xdma_channel = sc->xdma_rx_channel; } else { xdma_cfg = &sc->xdma_tx_cfg; xdma_channel = sc->xdma_tx_channel; } for (i = 0; i < block_count; ++i) { if (read) { dma_desc[i].mbr_sa = sa_rdr; dma_desc[i].mbr_da = ((uint32_t)data) + i * block_size; } else { dma_desc[i].mbr_sa = ((uint32_t)data) + i * block_size; dma_desc[i].mbr_da = da_tdr; } dma_desc[i].mbr_ubc = XDMA_UBC_NVIEW_NDV1 | XDMA_UBC_NDEN_UPDATED | (block_size/4); if (i == block_count - 1) { dma_desc[i].mbr_ubc |= XDMA_UBC_NDE_FETCH_DIS; dma_desc[i].mbr_nda = 0; } else { dma_desc[i].mbr_ubc |= XDMA_UBC_NDE_FETCH_EN; dma_desc[i].mbr_nda = (uint32_t) &dma_desc[i+1]; } } rc = XDMAD_ConfigureTransfer(pXdmad, xdma_channel, xdma_cfg, xdma_cndc, (uint32_t)dma_desc, xdma_interrupt); if (rc != XDMAD_OK) panic("Could not configure XDMA: %d.", rc); /* FIXME: Is that correct? */ if (read) { rtems_cache_invalidate_multiple_data_lines(data, len); } else { rtems_cache_flush_multiple_data_lines(data, len); } rtems_cache_flush_multiple_data_lines(dma_desc, sizeof(dma_desc)); rc = XDMAD_StartTransfer(pXdmad, xdma_channel); if (rc != XDMAD_OK) panic("Could not start XDMA: %d.", rc); } #endif /* __rtems__ */ static void at91_mci_start_cmd(struct at91_mci_softc *sc, struct mmc_command *cmd) { uint32_t cmdr, mr; struct mmc_data *data; #ifdef __rtems__ uint32_t block_count; uint32_t block_size; #endif /* __rtems__ */ sc->curcmd = cmd; data = cmd->data; /* XXX Upper layers don't always set this */ cmd->mrq = sc->req; /* Begin setting up command register. */ cmdr = cmd->opcode; if (sc->host.ios.bus_mode == opendrain) cmdr |= MCI_CMDR_OPDCMD; /* Set up response handling. Allow max timeout for responses. */ if (MMC_RSP(cmd->flags) == MMC_RSP_NONE) cmdr |= MCI_CMDR_RSPTYP_NO; else { cmdr |= MCI_CMDR_MAXLAT; if (cmd->flags & MMC_RSP_136) cmdr |= MCI_CMDR_RSPTYP_136; else cmdr |= MCI_CMDR_RSPTYP_48; } /* * If there is no data transfer, just set up the right interrupt mask * and start the command. * * The interrupt mask needs to be CMDRDY plus all non-data-transfer * errors. It's important to leave the transfer-related errors out, to * avoid spurious timeout or crc errors on a STOP command following a * multiblock read. When a multiblock read is in progress, sending a * STOP in the middle of a block occasionally triggers such errors, but * we're totally disinterested in them because we've already gotten all * the data we wanted without error before sending the STOP command. */ if (data == NULL) { uint32_t ier = MCI_SR_CMDRDY | MCI_SR_RTOE | MCI_SR_RENDE | MCI_SR_RCRCE | MCI_SR_RDIRE | MCI_SR_RINDE; at91_mci_pdc_disable(sc); if (cmd->opcode == MMC_STOP_TRANSMISSION) cmdr |= MCI_CMDR_TRCMD_STOP; /* Ignore response CRC on CMD2 and ACMD41, per standard. */ if (cmd->opcode == MMC_SEND_OP_COND || cmd->opcode == ACMD_SD_SEND_OP_COND) ier &= ~MCI_SR_RCRCE; if (mci_debug) printf("CMDR %x (opcode %d) ARGR %x no data\n", cmdr, cmd->opcode, cmd->arg); WR4(sc, MCI_ARGR, cmd->arg); WR4(sc, MCI_CMDR, cmdr); WR4(sc, MCI_IDR, 0xffffffff); WR4(sc, MCI_IER, ier); return; } /* There is data, set up the transfer-related parts of the command. */ if (data->flags & MMC_DATA_READ) cmdr |= MCI_CMDR_TRDIR; if (data->flags & (MMC_DATA_READ | MMC_DATA_WRITE)) cmdr |= MCI_CMDR_TRCMD_START; if (data->flags & MMC_DATA_STREAM) cmdr |= MCI_CMDR_TRTYP_STREAM; else if (data->flags & MMC_DATA_MULTI) { cmdr |= MCI_CMDR_TRTYP_MULTIPLE; sc->flags |= (data->flags & MMC_DATA_READ) ? CMD_MULTIREAD : CMD_MULTIWRITE; } /* * Disable PDC until we're ready. * * Set block size and turn on PDC mode for dma xfer. * Note that the block size is the smaller of the amount of data to be * transferred, or 512 bytes. The 512 size is fixed by the standard; * smaller blocks are possible, but never larger. */ #ifndef __rtems__ WR4(sc, PDC_PTCR, PDC_PTCR_RXTDIS | PDC_PTCR_TXTDIS); mr = RD4(sc,MCI_MR) & ~MCI_MR_BLKLEN; mr |= min(data->len, 512) << 16; WR4(sc, MCI_MR, mr | MCI_MR_PDCMODE|MCI_MR_PDCPADV); /* * Set up DMA. * * Use bounce buffers even if we don't need to byteswap, because doing * multi-block IO with large DMA buffers is way fast (compared to * single-block IO), even after incurring the overhead of also copying * from/to the caller's buffers (which may be in non-contiguous physical * pages). * * In an ideal non-byteswap world we could create a dma tag that allows * for discontiguous segments and do the IO directly from/to the * caller's buffer(s), using ENDRX/ENDTX interrupts to chain the * discontiguous buffers through the PDC. Someday. * * If a read is bigger than 2k, split it in half so that we can start * byte-swapping the first half while the second half is on the wire. * It would be best if we could split it into 8k chunks, but we can't * always keep up with the byte-swapping due to other system activity, * and if an RXBUFF interrupt happens while we're still handling the * byte-swap from the prior buffer (IE, we haven't returned from * handling the prior interrupt yet), then data will get dropped on the * floor and we can't easily recover from that. The right fix for that * would be to have the interrupt handling only keep the DMA flowing and * enqueue filled buffers to be byte-swapped in a non-interrupt context. * Even that won't work on the write side of things though; in that * context we have to have all the data ready to go before starting the * dma. * * XXX what about stream transfers? */ sc->xfer_offset = 0; sc->bbuf_curidx = 0; #else /* __rtems__ */ mr = RD4(sc,MCI_MR); WR4(sc, MCI_MR, mr | MCI_MR_PDCPADV); WR4(sc, MCI_DMA, MCI_DMA_DMAEN | MCI_DMA_CHKSIZE_1); block_size = min(data->len, 512); block_count = data->len / block_size; WR4(sc, MCI_BLKR, (block_size << 16) | block_count); #endif /* __rtems__ */ if (data->flags & (MMC_DATA_READ | MMC_DATA_WRITE)) { #ifndef __rtems__ uint32_t len; uint32_t remaining = data->len; bus_addr_t paddr; int err; if (remaining > (BBCOUNT*BBSIZE)) panic("IO read size exceeds MAXDATA\n"); #endif /* __rtems__ */ if (data->flags & MMC_DATA_READ) { #ifndef __rtems__ if (remaining > 2048) // XXX len = remaining / 2; else len = remaining; err = bus_dmamap_load(sc->dmatag, sc->bbuf_map[0], sc->bbuf_vaddr[0], len, at91_mci_getaddr, &paddr, BUS_DMA_NOWAIT); if (err != 0) panic("IO read dmamap_load failed\n"); bus_dmamap_sync(sc->dmatag, sc->bbuf_map[0], BUS_DMASYNC_PREREAD); WR4(sc, PDC_RPR, paddr); WR4(sc, PDC_RCR, len / 4); sc->bbuf_len[0] = len; remaining -= len; if (remaining == 0) { sc->bbuf_len[1] = 0; } else { len = remaining; err = bus_dmamap_load(sc->dmatag, sc->bbuf_map[1], sc->bbuf_vaddr[1], len, at91_mci_getaddr, &paddr, BUS_DMA_NOWAIT); if (err != 0) panic("IO read dmamap_load failed\n"); bus_dmamap_sync(sc->dmatag, sc->bbuf_map[1], BUS_DMASYNC_PREREAD); WR4(sc, PDC_RNPR, paddr); WR4(sc, PDC_RNCR, len / 4); sc->bbuf_len[1] = len; remaining -= len; } WR4(sc, PDC_PTCR, PDC_PTCR_RXTEN); #else /* __rtems__ */ at91_mci_setup_xdma(sc, true, block_size, block_count, data->data, data->len); #endif /* __rtems__ */ } else { #ifndef __rtems__ len = min(BBSIZE, remaining); at91_bswap_buf(sc, sc->bbuf_vaddr[0], data->data, len); err = bus_dmamap_load(sc->dmatag, sc->bbuf_map[0], sc->bbuf_vaddr[0], len, at91_mci_getaddr, &paddr, BUS_DMA_NOWAIT); if (err != 0) panic("IO write dmamap_load failed\n"); bus_dmamap_sync(sc->dmatag, sc->bbuf_map[0], BUS_DMASYNC_PREWRITE); /* * Erratum workaround: PDC transfer length on a write * must not be smaller than 12 bytes (3 words); only * blklen bytes (set above) are actually transferred. */ WR4(sc, PDC_TPR,paddr); WR4(sc, PDC_TCR, (len < 12) ? 3 : len / 4); sc->bbuf_len[0] = len; remaining -= len; if (remaining == 0) { sc->bbuf_len[1] = 0; } else { len = remaining; at91_bswap_buf(sc, sc->bbuf_vaddr[1], ((char *)data->data)+BBSIZE, len); err = bus_dmamap_load(sc->dmatag, sc->bbuf_map[1], sc->bbuf_vaddr[1], len, at91_mci_getaddr, &paddr, BUS_DMA_NOWAIT); if (err != 0) panic("IO write dmamap_load failed\n"); bus_dmamap_sync(sc->dmatag, sc->bbuf_map[1], BUS_DMASYNC_PREWRITE); WR4(sc, PDC_TNPR, paddr); WR4(sc, PDC_TNCR, (len < 12) ? 3 : len / 4); sc->bbuf_len[1] = len; remaining -= len; } /* do not enable PDC xfer until CMDRDY asserted */ #else /* __rtems__ */ at91_mci_setup_xdma(sc, false, block_size, block_count, data->data, data->len); #endif /* __rtems__ */ } data->xfer_len = 0; /* XXX what's this? appears to be unused. */ } if (mci_debug) printf("CMDR %x (opcode %d) ARGR %x with data len %d\n", cmdr, cmd->opcode, cmd->arg, cmd->data->len); WR4(sc, MCI_ARGR, cmd->arg); WR4(sc, MCI_CMDR, cmdr); WR4(sc, MCI_IER, MCI_SR_ERROR | MCI_SR_CMDRDY); } static void at91_mci_next_operation(struct at91_mci_softc *sc) { struct mmc_request *req; req = sc->req; if (req == NULL) return; if (sc->flags & PENDING_CMD) { sc->flags &= ~PENDING_CMD; at91_mci_start_cmd(sc, req->cmd); return; } else if (sc->flags & PENDING_STOP) { sc->flags &= ~PENDING_STOP; at91_mci_start_cmd(sc, req->stop); return; } WR4(sc, MCI_IDR, 0xffffffff); sc->req = NULL; sc->curcmd = NULL; //printf("req done\n"); req->done(req); } static int at91_mci_request(device_t brdev, device_t reqdev, struct mmc_request *req) { struct at91_mci_softc *sc = device_get_softc(brdev); AT91_MCI_LOCK(sc); if (sc->req != NULL) { AT91_MCI_UNLOCK(sc); return (EBUSY); } //printf("new req\n"); sc->req = req; sc->flags = PENDING_CMD; if (sc->req->stop) sc->flags |= PENDING_STOP; at91_mci_next_operation(sc); AT91_MCI_UNLOCK(sc); return (0); } static int at91_mci_get_ro(device_t brdev, device_t reqdev) { return (0); } static int at91_mci_acquire_host(device_t brdev, device_t reqdev) { struct at91_mci_softc *sc = device_get_softc(brdev); int err = 0; #ifndef __rtems__ AT91_MCI_LOCK(sc); #else /* __rtems__ */ AT91_MCI_BUS_LOCK(sc); #endif /* __rtems__ */ while (sc->bus_busy) msleep(sc, &sc->sc_mtx, PZERO, "mciah", hz / 5); sc->bus_busy++; #ifndef __rtems__ AT91_MCI_UNLOCK(sc); #else /* __rtems__ */ AT91_MCI_BUS_UNLOCK(sc); #endif /* __rtems__ */ return (err); } static int at91_mci_release_host(device_t brdev, device_t reqdev) { struct at91_mci_softc *sc = device_get_softc(brdev); #ifndef __rtems__ AT91_MCI_LOCK(sc); #else /* __rtems__ */ AT91_MCI_BUS_LOCK(sc); #endif /* __rtems__ */ sc->bus_busy--; wakeup(sc); #ifndef __rtems__ AT91_MCI_UNLOCK(sc); #else /* __rtems__ */ AT91_MCI_BUS_UNLOCK(sc); #endif /* __rtems__ */ return (0); } #ifndef __rtems__ static void at91_mci_read_done(struct at91_mci_softc *sc, uint32_t sr) { struct mmc_command *cmd = sc->curcmd; char * dataptr = (char *)cmd->data->data; uint32_t curidx = sc->bbuf_curidx; uint32_t len = sc->bbuf_len[curidx]; /* * We arrive here when a DMA transfer for a read is done, whether it's * a single or multi-block read. * * We byte-swap the buffer that just completed, and if that is the * last buffer that's part of this read then we move on to the next * operation, otherwise we wait for another ENDRX for the next bufer. */ bus_dmamap_sync(sc->dmatag, sc->bbuf_map[curidx], BUS_DMASYNC_POSTREAD); bus_dmamap_unload(sc->dmatag, sc->bbuf_map[curidx]); at91_bswap_buf(sc, dataptr + sc->xfer_offset, sc->bbuf_vaddr[curidx], len); if (mci_debug) { printf("read done sr %x curidx %d len %d xfer_offset %d\n", sr, curidx, len, sc->xfer_offset); } sc->xfer_offset += len; sc->bbuf_curidx = !curidx; /* swap buffers */ /* * If we've transferred all the data, move on to the next operation. * * If we're still transferring the last buffer, RNCR is already zero but * we have to write a zero anyway to clear the ENDRX status so we don't * re-interrupt until the last buffer is done. */ if (sc->xfer_offset == cmd->data->len) { WR4(sc, PDC_PTCR, PDC_PTCR_RXTDIS | PDC_PTCR_TXTDIS); cmd->error = MMC_ERR_NONE; at91_mci_next_operation(sc); } else { WR4(sc, PDC_RNCR, 0); WR4(sc, MCI_IER, MCI_SR_ERROR | MCI_SR_ENDRX); } } #endif /* __rtems__ */ static void at91_mci_write_done(struct at91_mci_softc *sc, uint32_t sr) { struct mmc_command *cmd = sc->curcmd; /* * We arrive here when the entire DMA transfer for a write is done, * whether it's a single or multi-block write. If it's multi-block we * have to immediately move on to the next operation which is to send * the stop command. If it's a single-block transfer we need to wait * for NOTBUSY, but if that's already asserted we can avoid another * interrupt and just move on to completing the request right away. */ WR4(sc, PDC_PTCR, PDC_PTCR_RXTDIS | PDC_PTCR_TXTDIS); #ifndef __rtems__ bus_dmamap_sync(sc->dmatag, sc->bbuf_map[sc->bbuf_curidx], BUS_DMASYNC_POSTWRITE); bus_dmamap_unload(sc->dmatag, sc->bbuf_map[sc->bbuf_curidx]); #endif /* __rtems__ */ if ((cmd->data->flags & MMC_DATA_MULTI) || (sr & MCI_SR_NOTBUSY)) { cmd->error = MMC_ERR_NONE; at91_mci_next_operation(sc); } else { WR4(sc, MCI_IER, MCI_SR_ERROR | MCI_SR_NOTBUSY); } } static void at91_mci_notbusy(struct at91_mci_softc *sc) { struct mmc_command *cmd = sc->curcmd; /* * We arrive here by either completion of a single-block write, or * completion of the stop command that ended a multi-block write (and, * I suppose, after a card-select or erase, but I haven't tested * those). Anyway, we're done and it's time to move on to the next * command. */ cmd->error = MMC_ERR_NONE; at91_mci_next_operation(sc); } static void at91_mci_stop_done(struct at91_mci_softc *sc, uint32_t sr) { struct mmc_command *cmd = sc->curcmd; /* * We arrive here after receiving CMDRDY for a MMC_STOP_TRANSMISSION * command. Depending on the operation being stopped, we may have to * do some unusual things to work around hardware bugs. */ /* * This is known to be true of at91rm9200 hardware; it may or may not * apply to more recent chips: * * After stopping a multi-block write, the NOTBUSY bit in MCI_SR does * not properly reflect the actual busy state of the card as signaled * on the DAT0 line; it always claims the card is not-busy. If we * believe that and let operations continue, following commands will * fail with response timeouts (except of course MMC_SEND_STATUS -- it * indicates the card is busy in the PRG state, which was the smoking * gun that showed MCI_SR NOTBUSY was not tracking DAT0 correctly). * * The atmel docs are emphatic: "This flag [NOTBUSY] must be used only * for Write Operations." I guess technically since we sent a stop * it's not a write operation anymore. But then just what did they * think it meant for the stop command to have "...an optional busy * signal transmitted on the data line" according to the SD spec? * * I tried a variety of things to un-wedge the MCI and get the status * register to reflect NOTBUSY correctly again, but the only thing * that worked was a full device reset. It feels like an awfully big * hammer, but doing a full reset after every multiblock write is * still faster than doing single-block IO (by almost two orders of * magnitude: 20KB/sec improves to about 1.8MB/sec best case). * * After doing the reset, wait for a NOTBUSY interrupt before * continuing with the next operation. * * This workaround breaks multiwrite on the rev2xx parts, but some other * workaround is needed. */ if ((sc->flags & CMD_MULTIWRITE) && (sc->sc_cap & CAP_NEEDS_BYTESWAP)) { at91_mci_reset(sc); WR4(sc, MCI_IER, MCI_SR_ERROR | MCI_SR_NOTBUSY); return; } /* * This is known to be true of at91rm9200 hardware; it may or may not * apply to more recent chips: * * After stopping a multi-block read, loop to read and discard any * data that coasts in after we sent the stop command. The docs don't * say anything about it, but empirical testing shows that 1-3 * additional words of data get buffered up in some unmentioned * internal fifo and if we don't read and discard them here they end * up on the front of the next read DMA transfer we do. * * This appears to be unnecessary for rev2xx parts. */ if ((sc->flags & CMD_MULTIREAD) && (sc->sc_cap & CAP_NEEDS_BYTESWAP)) { uint32_t sr; int count = 0; do { sr = RD4(sc, MCI_SR); if (sr & MCI_SR_RXRDY) { RD4(sc, MCI_RDR); ++count; } } while (sr & MCI_SR_RXRDY); at91_mci_reset(sc); } cmd->error = MMC_ERR_NONE; at91_mci_next_operation(sc); } static void at91_mci_cmdrdy(struct at91_mci_softc *sc, uint32_t sr) { struct mmc_command *cmd = sc->curcmd; int i; if (cmd == NULL) return; /* * We get here at the end of EVERY command. We retrieve the command * response (if any) then decide what to do next based on the command. */ if (cmd->flags & MMC_RSP_PRESENT) { for (i = 0; i < ((cmd->flags & MMC_RSP_136) ? 4 : 1); i++) { cmd->resp[i] = RD4(sc, MCI_RSPR + i * 4); if (mci_debug) printf("RSPR[%d] = %x sr=%x\n", i, cmd->resp[i], sr); } } /* * If this was a stop command, go handle the various special * conditions (read: bugs) that have to be dealt with following a stop. */ if (cmd->opcode == MMC_STOP_TRANSMISSION) { at91_mci_stop_done(sc, sr); return; } /* * If this command can continue to assert BUSY beyond the response then * we need to wait for NOTBUSY before the command is really done. * * Note that this may not work properly on the at91rm9200. It certainly * doesn't work for the STOP command that follows a multi-block write, * so post-stop CMDRDY is handled separately; see the special handling * in at91_mci_stop_done(). * * Beside STOP, there are other R1B-type commands that use the busy * signal after CMDRDY: CMD7 (card select), CMD28-29 (write protect), * CMD38 (erase). I haven't tested any of them, but I rather expect * them all to have the same sort of problem with MCI_SR not actually * reflecting the state of the DAT0-line busy indicator. So this code * may need to grow some sort of special handling for them too. (This * just in: CMD7 isn't a problem right now because dev/mmc.c incorrectly * sets the response flags to R1 rather than R1B.) XXX */ if ((cmd->flags & MMC_RSP_BUSY)) { WR4(sc, MCI_IER, MCI_SR_ERROR | MCI_SR_NOTBUSY); return; } /* * If there is a data transfer with this command, then... * - If it's a read, we need to wait for ENDRX. * - If it's a write, now is the time to enable the PDC, and we need * to wait for a BLKE that follows a TXBUFE, because if we're doing * a split transfer we get a BLKE after the first half (when TPR/TCR * get loaded from TNPR/TNCR). So first we wait for the TXBUFE, and * the handling for that interrupt will then invoke the wait for the * subsequent BLKE which indicates actual completion. */ if (cmd->data) { uint32_t ier; #ifndef __rtems__ if (cmd->data->flags & MMC_DATA_READ) { ier = MCI_SR_ENDRX; } else { ier = MCI_SR_TXBUFE; WR4(sc, PDC_PTCR, PDC_PTCR_TXTEN); } #else /* __rtems__ */ ier = MCI_SR_XFRDONE; #endif /* __rtems__ */ WR4(sc, MCI_IER, MCI_SR_ERROR | ier); return; } /* * If we made it to here, we don't need to wait for anything more for * the current command, move on to the next command (will complete the * request if there is no next command). */ cmd->error = MMC_ERR_NONE; at91_mci_next_operation(sc); } static void at91_mci_intr(void *arg) { struct at91_mci_softc *sc = (struct at91_mci_softc*)arg; struct mmc_command *cmd = sc->curcmd; uint32_t sr, isr; AT91_MCI_LOCK(sc); sr = RD4(sc, MCI_SR); isr = sr & RD4(sc, MCI_IMR); if (mci_debug) printf("i 0x%x sr 0x%x\n", isr, sr); /* * All interrupts are one-shot; disable it now. * The next operation will re-enable whatever interrupts it wants. */ WR4(sc, MCI_IDR, isr); if (isr & MCI_SR_ERROR) { if (isr & (MCI_SR_RTOE | MCI_SR_DTOE)) cmd->error = MMC_ERR_TIMEOUT; else if (isr & (MCI_SR_RCRCE | MCI_SR_DCRCE)) cmd->error = MMC_ERR_BADCRC; else if (isr & (MCI_SR_OVRE | MCI_SR_UNRE)) cmd->error = MMC_ERR_FIFO; else cmd->error = MMC_ERR_FAILED; /* * CMD8 is used to probe for SDHC cards, a standard SD card * will get a response timeout; don't report it because it's a * normal and expected condition. One might argue that all * error reporting should be left to higher levels, but when * they report at all it's always EIO, which isn't very * helpful. XXX bootverbose? */ if (cmd->opcode != 8) { device_printf(sc->dev, "IO error; status MCI_SR = 0x%b cmd opcode = %d%s\n", sr, MCI_SR_BITSTRING, cmd->opcode, (cmd->opcode != 12) ? "" : (sc->flags & CMD_MULTIREAD) ? " after read" : " after write"); /* XXX not sure RTOE needs a full reset, just a retry */ at91_mci_reset(sc); } at91_mci_next_operation(sc); } else { #ifndef __rtems__ if (isr & MCI_SR_TXBUFE) { // printf("TXBUFE\n"); /* * We need to wait for a BLKE that follows TXBUFE * (intermediate BLKEs might happen after ENDTXes if * we're chaining multiple buffers). If BLKE is also * asserted at the time we get TXBUFE, we can avoid * another interrupt and process it right away, below. */ if (sr & MCI_SR_BLKE) isr |= MCI_SR_BLKE; else WR4(sc, MCI_IER, MCI_SR_BLKE); } if (isr & MCI_SR_RXBUFF) { // printf("RXBUFF\n"); } if (isr & MCI_SR_ENDTX) { // printf("ENDTX\n"); } if (isr & MCI_SR_ENDRX) { // printf("ENDRX\n"); at91_mci_read_done(sc, sr); } #else /* __rtems__ */ if (isr & MCI_SR_XFRDONE) { if (cmd->data->flags & MMC_DATA_READ) { WR4(sc, PDC_PTCR, PDC_PTCR_RXTDIS | PDC_PTCR_TXTDIS); cmd->error = MMC_ERR_NONE; at91_mci_next_operation(sc); } else { if (sr & MCI_SR_BLKE) isr |= MCI_SR_BLKE; else WR4(sc, MCI_IER, MCI_SR_BLKE); } } #endif /* __rtems__ */ if (isr & MCI_SR_NOTBUSY) { // printf("NOTBUSY\n"); at91_mci_notbusy(sc); } if (isr & MCI_SR_DTIP) { // printf("Data transfer in progress\n"); } if (isr & MCI_SR_BLKE) { // printf("Block transfer end\n"); at91_mci_write_done(sc, sr); } if (isr & MCI_SR_TXRDY) { // printf("Ready to transmit\n"); } if (isr & MCI_SR_RXRDY) { // printf("Ready to receive\n"); } if (isr & MCI_SR_CMDRDY) { // printf("Command ready\n"); at91_mci_cmdrdy(sc, sr); } } AT91_MCI_UNLOCK(sc); } static int at91_mci_read_ivar(device_t bus, device_t child, int which, uintptr_t *result) { struct at91_mci_softc *sc = device_get_softc(bus); switch (which) { default: return (EINVAL); case MMCBR_IVAR_BUS_MODE: *(int *)result = sc->host.ios.bus_mode; break; case MMCBR_IVAR_BUS_WIDTH: *(int *)result = sc->host.ios.bus_width; break; case MMCBR_IVAR_CHIP_SELECT: *(int *)result = sc->host.ios.chip_select; break; case MMCBR_IVAR_CLOCK: *(int *)result = sc->host.ios.clock; break; case MMCBR_IVAR_F_MIN: *(int *)result = sc->host.f_min; break; case MMCBR_IVAR_F_MAX: *(int *)result = sc->host.f_max; break; case MMCBR_IVAR_HOST_OCR: *(int *)result = sc->host.host_ocr; break; case MMCBR_IVAR_MODE: *(int *)result = sc->host.mode; break; case MMCBR_IVAR_OCR: *(int *)result = sc->host.ocr; break; case MMCBR_IVAR_POWER_MODE: *(int *)result = sc->host.ios.power_mode; break; case MMCBR_IVAR_VDD: *(int *)result = sc->host.ios.vdd; break; case MMCBR_IVAR_CAPS: if (sc->has_4wire) { sc->sc_cap |= CAP_HAS_4WIRE; sc->host.caps |= MMC_CAP_4_BIT_DATA; } else { sc->sc_cap &= ~CAP_HAS_4WIRE; sc->host.caps &= ~MMC_CAP_4_BIT_DATA; } *(int *)result = sc->host.caps; break; #ifdef __rtems__ case MMCBR_IVAR_TIMING: *result = sc->host.ios.timing; break; #endif /* __rtems__ */ case MMCBR_IVAR_MAX_DATA: /* * Something is wrong with the 2x parts and multiblock, so * just do 1 block at a time for now, which really kills * performance. */ if (sc->sc_cap & CAP_MCI1_REV2XX) *(int *)result = 1; else *(int *)result = MAX_BLOCKS; break; } return (0); } static int at91_mci_write_ivar(device_t bus, device_t child, int which, uintptr_t value) { struct at91_mci_softc *sc = device_get_softc(bus); switch (which) { default: return (EINVAL); case MMCBR_IVAR_BUS_MODE: sc->host.ios.bus_mode = value; break; case MMCBR_IVAR_BUS_WIDTH: sc->host.ios.bus_width = value; break; case MMCBR_IVAR_CHIP_SELECT: sc->host.ios.chip_select = value; break; case MMCBR_IVAR_CLOCK: sc->host.ios.clock = value; break; case MMCBR_IVAR_MODE: sc->host.mode = value; break; case MMCBR_IVAR_OCR: sc->host.ocr = value; break; case MMCBR_IVAR_POWER_MODE: sc->host.ios.power_mode = value; break; case MMCBR_IVAR_VDD: sc->host.ios.vdd = value; break; #ifdef __rtems__ case MMCBR_IVAR_TIMING: sc->host.ios.timing = value; break; #endif /* __rtems__ */ /* These are read-only */ case MMCBR_IVAR_CAPS: case MMCBR_IVAR_HOST_OCR: case MMCBR_IVAR_F_MIN: case MMCBR_IVAR_F_MAX: case MMCBR_IVAR_MAX_DATA: return (EINVAL); } return (0); } static device_method_t at91_mci_methods[] = { /* device_if */ DEVMETHOD(device_probe, at91_mci_probe), DEVMETHOD(device_attach, at91_mci_attach), DEVMETHOD(device_detach, at91_mci_detach), /* Bus interface */ DEVMETHOD(bus_read_ivar, at91_mci_read_ivar), DEVMETHOD(bus_write_ivar, at91_mci_write_ivar), /* mmcbr_if */ DEVMETHOD(mmcbr_update_ios, at91_mci_update_ios), DEVMETHOD(mmcbr_request, at91_mci_request), DEVMETHOD(mmcbr_get_ro, at91_mci_get_ro), DEVMETHOD(mmcbr_acquire_host, at91_mci_acquire_host), DEVMETHOD(mmcbr_release_host, at91_mci_release_host), DEVMETHOD_END }; static driver_t at91_mci_driver = { "at91_mci", at91_mci_methods, sizeof(struct at91_mci_softc), }; static devclass_t at91_mci_devclass; #ifndef __rtems__ #ifdef FDT DRIVER_MODULE(at91_mci, simplebus, at91_mci_driver, at91_mci_devclass, NULL, NULL); #else DRIVER_MODULE(at91_mci, atmelarm, at91_mci_driver, at91_mci_devclass, NULL, NULL); #endif MMC_DECLARE_BRIDGE(at91_mci); #else /* __rtems__ */ DRIVER_MODULE(at91_mci, nexus, at91_mci_driver, at91_mci_devclass, NULL, NULL); #endif /* __rtems__ */ DRIVER_MODULE(mmc, at91_mci, mmc_driver, mmc_devclass, NULL, NULL); MODULE_DEPEND(at91_mci, mmc, 1, 1, 1); #endif /* __rtems__ && LIBBSP_ARM_ATSAM_BSP_H */