source: rtems-graphics-toolkit/jpeg-8d/jmemmgr.c @ 86b99f7

Last change on this file since 86b99f7 was 86b99f7, checked in by Alexandru-Sever Horin <alex.sever.h@…>, on 08/01/12 at 22:40:32

Added jpeg-8d version. Made modifications to compile for RTEMS, without man or binaries

  • Property mode set to 100644
File size: 40.1 KB
Line 
1/*
2 * jmemmgr.c
3 *
4 * Copyright (C) 1991-1997, Thomas G. Lane.
5 * Modified 2011 by Guido Vollbeding.
6 * This file is part of the Independent JPEG Group's software.
7 * For conditions of distribution and use, see the accompanying README file.
8 *
9 * This file contains the JPEG system-independent memory management
10 * routines.  This code is usable across a wide variety of machines; most
11 * of the system dependencies have been isolated in a separate file.
12 * The major functions provided here are:
13 *   * pool-based allocation and freeing of memory;
14 *   * policy decisions about how to divide available memory among the
15 *     virtual arrays;
16 *   * control logic for swapping virtual arrays between main memory and
17 *     backing storage.
18 * The separate system-dependent file provides the actual backing-storage
19 * access code, and it contains the policy decision about how much total
20 * main memory to use.
21 * This file is system-dependent in the sense that some of its functions
22 * are unnecessary in some systems.  For example, if there is enough virtual
23 * memory so that backing storage will never be used, much of the virtual
24 * array control logic could be removed.  (Of course, if you have that much
25 * memory then you shouldn't care about a little bit of unused code...)
26 */
27
28#define JPEG_INTERNALS
29#define AM_MEMORY_MANAGER       /* we define jvirt_Xarray_control structs */
30#include "jinclude.h"
31#include "jpeglib.h"
32#include "jmemsys.h"            /* import the system-dependent declarations */
33
34#ifndef NO_GETENV
35#ifndef HAVE_STDLIB_H           /* <stdlib.h> should declare getenv() */
36extern char * getenv JPP((const char * name));
37#endif
38#endif
39
40
41/*
42 * Some important notes:
43 *   The allocation routines provided here must never return NULL.
44 *   They should exit to error_exit if unsuccessful.
45 *
46 *   It's not a good idea to try to merge the sarray and barray routines,
47 *   even though they are textually almost the same, because samples are
48 *   usually stored as bytes while coefficients are shorts or ints.  Thus,
49 *   in machines where byte pointers have a different representation from
50 *   word pointers, the resulting machine code could not be the same.
51 */
52
53
54/*
55 * Many machines require storage alignment: longs must start on 4-byte
56 * boundaries, doubles on 8-byte boundaries, etc.  On such machines, malloc()
57 * always returns pointers that are multiples of the worst-case alignment
58 * requirement, and we had better do so too.
59 * There isn't any really portable way to determine the worst-case alignment
60 * requirement.  This module assumes that the alignment requirement is
61 * multiples of sizeof(ALIGN_TYPE).
62 * By default, we define ALIGN_TYPE as double.  This is necessary on some
63 * workstations (where doubles really do need 8-byte alignment) and will work
64 * fine on nearly everything.  If your machine has lesser alignment needs,
65 * you can save a few bytes by making ALIGN_TYPE smaller.
66 * The only place I know of where this will NOT work is certain Macintosh
67 * 680x0 compilers that define double as a 10-byte IEEE extended float.
68 * Doing 10-byte alignment is counterproductive because longwords won't be
69 * aligned well.  Put "#define ALIGN_TYPE long" in jconfig.h if you have
70 * such a compiler.
71 */
72
73#ifndef ALIGN_TYPE              /* so can override from jconfig.h */
74#define ALIGN_TYPE  double
75#endif
76
77
78/*
79 * We allocate objects from "pools", where each pool is gotten with a single
80 * request to jpeg_get_small() or jpeg_get_large().  There is no per-object
81 * overhead within a pool, except for alignment padding.  Each pool has a
82 * header with a link to the next pool of the same class.
83 * Small and large pool headers are identical except that the latter's
84 * link pointer must be FAR on 80x86 machines.
85 * Notice that the "real" header fields are union'ed with a dummy ALIGN_TYPE
86 * field.  This forces the compiler to make SIZEOF(small_pool_hdr) a multiple
87 * of the alignment requirement of ALIGN_TYPE.
88 */
89
90typedef union small_pool_struct * small_pool_ptr;
91
92typedef union small_pool_struct {
93  struct {
94    small_pool_ptr next;        /* next in list of pools */
95    size_t bytes_used;          /* how many bytes already used within pool */
96    size_t bytes_left;          /* bytes still available in this pool */
97  } hdr;
98  ALIGN_TYPE dummy;             /* included in union to ensure alignment */
99} small_pool_hdr;
100
101typedef union large_pool_struct FAR * large_pool_ptr;
102
103typedef union large_pool_struct {
104  struct {
105    large_pool_ptr next;        /* next in list of pools */
106    size_t bytes_used;          /* how many bytes already used within pool */
107    size_t bytes_left;          /* bytes still available in this pool */
108  } hdr;
109  ALIGN_TYPE dummy;             /* included in union to ensure alignment */
110} large_pool_hdr;
111
112
113/*
114 * Here is the full definition of a memory manager object.
115 */
116
117typedef struct {
118  struct jpeg_memory_mgr pub;   /* public fields */
119
120  /* Each pool identifier (lifetime class) names a linked list of pools. */
121  small_pool_ptr small_list[JPOOL_NUMPOOLS];
122  large_pool_ptr large_list[JPOOL_NUMPOOLS];
123
124  /* Since we only have one lifetime class of virtual arrays, only one
125   * linked list is necessary (for each datatype).  Note that the virtual
126   * array control blocks being linked together are actually stored somewhere
127   * in the small-pool list.
128   */
129  jvirt_sarray_ptr virt_sarray_list;
130  jvirt_barray_ptr virt_barray_list;
131
132  /* This counts total space obtained from jpeg_get_small/large */
133  long total_space_allocated;
134
135  /* alloc_sarray and alloc_barray set this value for use by virtual
136   * array routines.
137   */
138  JDIMENSION last_rowsperchunk; /* from most recent alloc_sarray/barray */
139} my_memory_mgr;
140
141typedef my_memory_mgr * my_mem_ptr;
142
143
144/*
145 * The control blocks for virtual arrays.
146 * Note that these blocks are allocated in the "small" pool area.
147 * System-dependent info for the associated backing store (if any) is hidden
148 * inside the backing_store_info struct.
149 */
150
151struct jvirt_sarray_control {
152  JSAMPARRAY mem_buffer;        /* => the in-memory buffer */
153  JDIMENSION rows_in_array;     /* total virtual array height */
154  JDIMENSION samplesperrow;     /* width of array (and of memory buffer) */
155  JDIMENSION maxaccess;         /* max rows accessed by access_virt_sarray */
156  JDIMENSION rows_in_mem;       /* height of memory buffer */
157  JDIMENSION rowsperchunk;      /* allocation chunk size in mem_buffer */
158  JDIMENSION cur_start_row;     /* first logical row # in the buffer */
159  JDIMENSION first_undef_row;   /* row # of first uninitialized row */
160  boolean pre_zero;             /* pre-zero mode requested? */
161  boolean dirty;                /* do current buffer contents need written? */
162  boolean b_s_open;             /* is backing-store data valid? */
163  jvirt_sarray_ptr next;        /* link to next virtual sarray control block */
164  backing_store_info b_s_info;  /* System-dependent control info */
165};
166
167struct jvirt_barray_control {
168  JBLOCKARRAY mem_buffer;       /* => the in-memory buffer */
169  JDIMENSION rows_in_array;     /* total virtual array height */
170  JDIMENSION blocksperrow;      /* width of array (and of memory buffer) */
171  JDIMENSION maxaccess;         /* max rows accessed by access_virt_barray */
172  JDIMENSION rows_in_mem;       /* height of memory buffer */
173  JDIMENSION rowsperchunk;      /* allocation chunk size in mem_buffer */
174  JDIMENSION cur_start_row;     /* first logical row # in the buffer */
175  JDIMENSION first_undef_row;   /* row # of first uninitialized row */
176  boolean pre_zero;             /* pre-zero mode requested? */
177  boolean dirty;                /* do current buffer contents need written? */
178  boolean b_s_open;             /* is backing-store data valid? */
179  jvirt_barray_ptr next;        /* link to next virtual barray control block */
180  backing_store_info b_s_info;  /* System-dependent control info */
181};
182
183
184#ifdef MEM_STATS                /* optional extra stuff for statistics */
185
186LOCAL(void)
187print_mem_stats (j_common_ptr cinfo, int pool_id)
188{
189  my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
190  small_pool_ptr shdr_ptr;
191  large_pool_ptr lhdr_ptr;
192
193  /* Since this is only a debugging stub, we can cheat a little by using
194   * fprintf directly rather than going through the trace message code.
195   * This is helpful because message parm array can't handle longs.
196   */
197  fprintf(stderr, "Freeing pool %d, total space = %ld\n",
198          pool_id, mem->total_space_allocated);
199
200  for (lhdr_ptr = mem->large_list[pool_id]; lhdr_ptr != NULL;
201       lhdr_ptr = lhdr_ptr->hdr.next) {
202    fprintf(stderr, "  Large chunk used %ld\n",
203            (long) lhdr_ptr->hdr.bytes_used);
204  }
205
206  for (shdr_ptr = mem->small_list[pool_id]; shdr_ptr != NULL;
207       shdr_ptr = shdr_ptr->hdr.next) {
208    fprintf(stderr, "  Small chunk used %ld free %ld\n",
209            (long) shdr_ptr->hdr.bytes_used,
210            (long) shdr_ptr->hdr.bytes_left);
211  }
212}
213
214#endif /* MEM_STATS */
215
216
217LOCAL(void)
218out_of_memory (j_common_ptr cinfo, int which)
219/* Report an out-of-memory error and stop execution */
220/* If we compiled MEM_STATS support, report alloc requests before dying */
221{
222#ifdef MEM_STATS
223  cinfo->err->trace_level = 2;  /* force self_destruct to report stats */
224#endif
225  ERREXIT1(cinfo, JERR_OUT_OF_MEMORY, which);
226}
227
228
229/*
230 * Allocation of "small" objects.
231 *
232 * For these, we use pooled storage.  When a new pool must be created,
233 * we try to get enough space for the current request plus a "slop" factor,
234 * where the slop will be the amount of leftover space in the new pool.
235 * The speed vs. space tradeoff is largely determined by the slop values.
236 * A different slop value is provided for each pool class (lifetime),
237 * and we also distinguish the first pool of a class from later ones.
238 * NOTE: the values given work fairly well on both 16- and 32-bit-int
239 * machines, but may be too small if longs are 64 bits or more.
240 */
241
242static const size_t first_pool_slop[JPOOL_NUMPOOLS] =
243{
244        1600,                   /* first PERMANENT pool */
245        16000                   /* first IMAGE pool */
246};
247
248static const size_t extra_pool_slop[JPOOL_NUMPOOLS] =
249{
250        0,                      /* additional PERMANENT pools */
251        5000                    /* additional IMAGE pools */
252};
253
254#define MIN_SLOP  50            /* greater than 0 to avoid futile looping */
255
256
257METHODDEF(void *)
258alloc_small (j_common_ptr cinfo, int pool_id, size_t sizeofobject)
259/* Allocate a "small" object */
260{
261  my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
262  small_pool_ptr hdr_ptr, prev_hdr_ptr;
263  char * data_ptr;
264  size_t odd_bytes, min_request, slop;
265
266  /* Check for unsatisfiable request (do now to ensure no overflow below) */
267  if (sizeofobject > (size_t) (MAX_ALLOC_CHUNK-SIZEOF(small_pool_hdr)))
268    out_of_memory(cinfo, 1);    /* request exceeds malloc's ability */
269
270  /* Round up the requested size to a multiple of SIZEOF(ALIGN_TYPE) */
271  odd_bytes = sizeofobject % SIZEOF(ALIGN_TYPE);
272  if (odd_bytes > 0)
273    sizeofobject += SIZEOF(ALIGN_TYPE) - odd_bytes;
274
275  /* See if space is available in any existing pool */
276  if (pool_id < 0 || pool_id >= JPOOL_NUMPOOLS)
277    ERREXIT1(cinfo, JERR_BAD_POOL_ID, pool_id); /* safety check */
278  prev_hdr_ptr = NULL;
279  hdr_ptr = mem->small_list[pool_id];
280  while (hdr_ptr != NULL) {
281    if (hdr_ptr->hdr.bytes_left >= sizeofobject)
282      break;                    /* found pool with enough space */
283    prev_hdr_ptr = hdr_ptr;
284    hdr_ptr = hdr_ptr->hdr.next;
285  }
286
287  /* Time to make a new pool? */
288  if (hdr_ptr == NULL) {
289    /* min_request is what we need now, slop is what will be leftover */
290    min_request = sizeofobject + SIZEOF(small_pool_hdr);
291    if (prev_hdr_ptr == NULL)   /* first pool in class? */
292      slop = first_pool_slop[pool_id];
293    else
294      slop = extra_pool_slop[pool_id];
295    /* Don't ask for more than MAX_ALLOC_CHUNK */
296    if (slop > (size_t) (MAX_ALLOC_CHUNK-min_request))
297      slop = (size_t) (MAX_ALLOC_CHUNK-min_request);
298    /* Try to get space, if fail reduce slop and try again */
299    for (;;) {
300      hdr_ptr = (small_pool_ptr) jpeg_get_small(cinfo, min_request + slop);
301      if (hdr_ptr != NULL)
302        break;
303      slop /= 2;
304      if (slop < MIN_SLOP)      /* give up when it gets real small */
305        out_of_memory(cinfo, 2); /* jpeg_get_small failed */
306    }
307    mem->total_space_allocated += min_request + slop;
308    /* Success, initialize the new pool header and add to end of list */
309    hdr_ptr->hdr.next = NULL;
310    hdr_ptr->hdr.bytes_used = 0;
311    hdr_ptr->hdr.bytes_left = sizeofobject + slop;
312    if (prev_hdr_ptr == NULL)   /* first pool in class? */
313      mem->small_list[pool_id] = hdr_ptr;
314    else
315      prev_hdr_ptr->hdr.next = hdr_ptr;
316  }
317
318  /* OK, allocate the object from the current pool */
319  data_ptr = (char *) (hdr_ptr + 1); /* point to first data byte in pool */
320  data_ptr += hdr_ptr->hdr.bytes_used; /* point to place for object */
321  hdr_ptr->hdr.bytes_used += sizeofobject;
322  hdr_ptr->hdr.bytes_left -= sizeofobject;
323
324  return (void *) data_ptr;
325}
326
327
328/*
329 * Allocation of "large" objects.
330 *
331 * The external semantics of these are the same as "small" objects,
332 * except that FAR pointers are used on 80x86.  However the pool
333 * management heuristics are quite different.  We assume that each
334 * request is large enough that it may as well be passed directly to
335 * jpeg_get_large; the pool management just links everything together
336 * so that we can free it all on demand.
337 * Note: the major use of "large" objects is in JSAMPARRAY and JBLOCKARRAY
338 * structures.  The routines that create these structures (see below)
339 * deliberately bunch rows together to ensure a large request size.
340 */
341
342METHODDEF(void FAR *)
343alloc_large (j_common_ptr cinfo, int pool_id, size_t sizeofobject)
344/* Allocate a "large" object */
345{
346  my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
347  large_pool_ptr hdr_ptr;
348  size_t odd_bytes;
349
350  /* Check for unsatisfiable request (do now to ensure no overflow below) */
351  if (sizeofobject > (size_t) (MAX_ALLOC_CHUNK-SIZEOF(large_pool_hdr)))
352    out_of_memory(cinfo, 3);    /* request exceeds malloc's ability */
353
354  /* Round up the requested size to a multiple of SIZEOF(ALIGN_TYPE) */
355  odd_bytes = sizeofobject % SIZEOF(ALIGN_TYPE);
356  if (odd_bytes > 0)
357    sizeofobject += SIZEOF(ALIGN_TYPE) - odd_bytes;
358
359  /* Always make a new pool */
360  if (pool_id < 0 || pool_id >= JPOOL_NUMPOOLS)
361    ERREXIT1(cinfo, JERR_BAD_POOL_ID, pool_id); /* safety check */
362
363  hdr_ptr = (large_pool_ptr) jpeg_get_large(cinfo, sizeofobject +
364                                            SIZEOF(large_pool_hdr));
365  if (hdr_ptr == NULL)
366    out_of_memory(cinfo, 4);    /* jpeg_get_large failed */
367  mem->total_space_allocated += sizeofobject + SIZEOF(large_pool_hdr);
368
369  /* Success, initialize the new pool header and add to list */
370  hdr_ptr->hdr.next = mem->large_list[pool_id];
371  /* We maintain space counts in each pool header for statistical purposes,
372   * even though they are not needed for allocation.
373   */
374  hdr_ptr->hdr.bytes_used = sizeofobject;
375  hdr_ptr->hdr.bytes_left = 0;
376  mem->large_list[pool_id] = hdr_ptr;
377
378  return (void FAR *) (hdr_ptr + 1); /* point to first data byte in pool */
379}
380
381
382/*
383 * Creation of 2-D sample arrays.
384 * The pointers are in near heap, the samples themselves in FAR heap.
385 *
386 * To minimize allocation overhead and to allow I/O of large contiguous
387 * blocks, we allocate the sample rows in groups of as many rows as possible
388 * without exceeding MAX_ALLOC_CHUNK total bytes per allocation request.
389 * NB: the virtual array control routines, later in this file, know about
390 * this chunking of rows.  The rowsperchunk value is left in the mem manager
391 * object so that it can be saved away if this sarray is the workspace for
392 * a virtual array.
393 */
394
395METHODDEF(JSAMPARRAY)
396alloc_sarray (j_common_ptr cinfo, int pool_id,
397              JDIMENSION samplesperrow, JDIMENSION numrows)
398/* Allocate a 2-D sample array */
399{
400  my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
401  JSAMPARRAY result;
402  JSAMPROW workspace;
403  JDIMENSION rowsperchunk, currow, i;
404  long ltemp;
405
406  /* Calculate max # of rows allowed in one allocation chunk */
407  ltemp = (MAX_ALLOC_CHUNK-SIZEOF(large_pool_hdr)) /
408          ((long) samplesperrow * SIZEOF(JSAMPLE));
409  if (ltemp <= 0)
410    ERREXIT(cinfo, JERR_WIDTH_OVERFLOW);
411  if (ltemp < (long) numrows)
412    rowsperchunk = (JDIMENSION) ltemp;
413  else
414    rowsperchunk = numrows;
415  mem->last_rowsperchunk = rowsperchunk;
416
417  /* Get space for row pointers (small object) */
418  result = (JSAMPARRAY) alloc_small(cinfo, pool_id,
419                                    (size_t) (numrows * SIZEOF(JSAMPROW)));
420
421  /* Get the rows themselves (large objects) */
422  currow = 0;
423  while (currow < numrows) {
424    rowsperchunk = MIN(rowsperchunk, numrows - currow);
425    workspace = (JSAMPROW) alloc_large(cinfo, pool_id,
426        (size_t) ((size_t) rowsperchunk * (size_t) samplesperrow
427                  * SIZEOF(JSAMPLE)));
428    for (i = rowsperchunk; i > 0; i--) {
429      result[currow++] = workspace;
430      workspace += samplesperrow;
431    }
432  }
433
434  return result;
435}
436
437
438/*
439 * Creation of 2-D coefficient-block arrays.
440 * This is essentially the same as the code for sample arrays, above.
441 */
442
443METHODDEF(JBLOCKARRAY)
444alloc_barray (j_common_ptr cinfo, int pool_id,
445              JDIMENSION blocksperrow, JDIMENSION numrows)
446/* Allocate a 2-D coefficient-block array */
447{
448  my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
449  JBLOCKARRAY result;
450  JBLOCKROW workspace;
451  JDIMENSION rowsperchunk, currow, i;
452  long ltemp;
453
454  /* Calculate max # of rows allowed in one allocation chunk */
455  ltemp = (MAX_ALLOC_CHUNK-SIZEOF(large_pool_hdr)) /
456          ((long) blocksperrow * SIZEOF(JBLOCK));
457  if (ltemp <= 0)
458    ERREXIT(cinfo, JERR_WIDTH_OVERFLOW);
459  if (ltemp < (long) numrows)
460    rowsperchunk = (JDIMENSION) ltemp;
461  else
462    rowsperchunk = numrows;
463  mem->last_rowsperchunk = rowsperchunk;
464
465  /* Get space for row pointers (small object) */
466  result = (JBLOCKARRAY) alloc_small(cinfo, pool_id,
467                                     (size_t) (numrows * SIZEOF(JBLOCKROW)));
468
469  /* Get the rows themselves (large objects) */
470  currow = 0;
471  while (currow < numrows) {
472    rowsperchunk = MIN(rowsperchunk, numrows - currow);
473    workspace = (JBLOCKROW) alloc_large(cinfo, pool_id,
474        (size_t) ((size_t) rowsperchunk * (size_t) blocksperrow
475                  * SIZEOF(JBLOCK)));
476    for (i = rowsperchunk; i > 0; i--) {
477      result[currow++] = workspace;
478      workspace += blocksperrow;
479    }
480  }
481
482  return result;
483}
484
485
486/*
487 * About virtual array management:
488 *
489 * The above "normal" array routines are only used to allocate strip buffers
490 * (as wide as the image, but just a few rows high).  Full-image-sized buffers
491 * are handled as "virtual" arrays.  The array is still accessed a strip at a
492 * time, but the memory manager must save the whole array for repeated
493 * accesses.  The intended implementation is that there is a strip buffer in
494 * memory (as high as is possible given the desired memory limit), plus a
495 * backing file that holds the rest of the array.
496 *
497 * The request_virt_array routines are told the total size of the image and
498 * the maximum number of rows that will be accessed at once.  The in-memory
499 * buffer must be at least as large as the maxaccess value.
500 *
501 * The request routines create control blocks but not the in-memory buffers.
502 * That is postponed until realize_virt_arrays is called.  At that time the
503 * total amount of space needed is known (approximately, anyway), so free
504 * memory can be divided up fairly.
505 *
506 * The access_virt_array routines are responsible for making a specific strip
507 * area accessible (after reading or writing the backing file, if necessary).
508 * Note that the access routines are told whether the caller intends to modify
509 * the accessed strip; during a read-only pass this saves having to rewrite
510 * data to disk.  The access routines are also responsible for pre-zeroing
511 * any newly accessed rows, if pre-zeroing was requested.
512 *
513 * In current usage, the access requests are usually for nonoverlapping
514 * strips; that is, successive access start_row numbers differ by exactly
515 * num_rows = maxaccess.  This means we can get good performance with simple
516 * buffer dump/reload logic, by making the in-memory buffer be a multiple
517 * of the access height; then there will never be accesses across bufferload
518 * boundaries.  The code will still work with overlapping access requests,
519 * but it doesn't handle bufferload overlaps very efficiently.
520 */
521
522
523METHODDEF(jvirt_sarray_ptr)
524request_virt_sarray (j_common_ptr cinfo, int pool_id, boolean pre_zero,
525                     JDIMENSION samplesperrow, JDIMENSION numrows,
526                     JDIMENSION maxaccess)
527/* Request a virtual 2-D sample array */
528{
529  my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
530  jvirt_sarray_ptr result;
531
532  /* Only IMAGE-lifetime virtual arrays are currently supported */
533  if (pool_id != JPOOL_IMAGE)
534    ERREXIT1(cinfo, JERR_BAD_POOL_ID, pool_id); /* safety check */
535
536  /* get control block */
537  result = (jvirt_sarray_ptr) alloc_small(cinfo, pool_id,
538                                          SIZEOF(struct jvirt_sarray_control));
539
540  result->mem_buffer = NULL;    /* marks array not yet realized */
541  result->rows_in_array = numrows;
542  result->samplesperrow = samplesperrow;
543  result->maxaccess = maxaccess;
544  result->pre_zero = pre_zero;
545  result->b_s_open = FALSE;     /* no associated backing-store object */
546  result->next = mem->virt_sarray_list; /* add to list of virtual arrays */
547  mem->virt_sarray_list = result;
548
549  return result;
550}
551
552
553METHODDEF(jvirt_barray_ptr)
554request_virt_barray (j_common_ptr cinfo, int pool_id, boolean pre_zero,
555                     JDIMENSION blocksperrow, JDIMENSION numrows,
556                     JDIMENSION maxaccess)
557/* Request a virtual 2-D coefficient-block array */
558{
559  my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
560  jvirt_barray_ptr result;
561
562  /* Only IMAGE-lifetime virtual arrays are currently supported */
563  if (pool_id != JPOOL_IMAGE)
564    ERREXIT1(cinfo, JERR_BAD_POOL_ID, pool_id); /* safety check */
565
566  /* get control block */
567  result = (jvirt_barray_ptr) alloc_small(cinfo, pool_id,
568                                          SIZEOF(struct jvirt_barray_control));
569
570  result->mem_buffer = NULL;    /* marks array not yet realized */
571  result->rows_in_array = numrows;
572  result->blocksperrow = blocksperrow;
573  result->maxaccess = maxaccess;
574  result->pre_zero = pre_zero;
575  result->b_s_open = FALSE;     /* no associated backing-store object */
576  result->next = mem->virt_barray_list; /* add to list of virtual arrays */
577  mem->virt_barray_list = result;
578
579  return result;
580}
581
582
583METHODDEF(void)
584realize_virt_arrays (j_common_ptr cinfo)
585/* Allocate the in-memory buffers for any unrealized virtual arrays */
586{
587  my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
588  long space_per_minheight, maximum_space, avail_mem;
589  long minheights, max_minheights;
590  jvirt_sarray_ptr sptr;
591  jvirt_barray_ptr bptr;
592
593  /* Compute the minimum space needed (maxaccess rows in each buffer)
594   * and the maximum space needed (full image height in each buffer).
595   * These may be of use to the system-dependent jpeg_mem_available routine.
596   */
597  space_per_minheight = 0;
598  maximum_space = 0;
599  for (sptr = mem->virt_sarray_list; sptr != NULL; sptr = sptr->next) {
600    if (sptr->mem_buffer == NULL) { /* if not realized yet */
601      space_per_minheight += (long) sptr->maxaccess *
602                             (long) sptr->samplesperrow * SIZEOF(JSAMPLE);
603      maximum_space += (long) sptr->rows_in_array *
604                       (long) sptr->samplesperrow * SIZEOF(JSAMPLE);
605    }
606  }
607  for (bptr = mem->virt_barray_list; bptr != NULL; bptr = bptr->next) {
608    if (bptr->mem_buffer == NULL) { /* if not realized yet */
609      space_per_minheight += (long) bptr->maxaccess *
610                             (long) bptr->blocksperrow * SIZEOF(JBLOCK);
611      maximum_space += (long) bptr->rows_in_array *
612                       (long) bptr->blocksperrow * SIZEOF(JBLOCK);
613    }
614  }
615
616  if (space_per_minheight <= 0)
617    return;                     /* no unrealized arrays, no work */
618
619  /* Determine amount of memory to actually use; this is system-dependent. */
620  avail_mem = jpeg_mem_available(cinfo, space_per_minheight, maximum_space,
621                                 mem->total_space_allocated);
622
623  /* If the maximum space needed is available, make all the buffers full
624   * height; otherwise parcel it out with the same number of minheights
625   * in each buffer.
626   */
627  if (avail_mem >= maximum_space)
628    max_minheights = 1000000000L;
629  else {
630    max_minheights = avail_mem / space_per_minheight;
631    /* If there doesn't seem to be enough space, try to get the minimum
632     * anyway.  This allows a "stub" implementation of jpeg_mem_available().
633     */
634    if (max_minheights <= 0)
635      max_minheights = 1;
636  }
637
638  /* Allocate the in-memory buffers and initialize backing store as needed. */
639
640  for (sptr = mem->virt_sarray_list; sptr != NULL; sptr = sptr->next) {
641    if (sptr->mem_buffer == NULL) { /* if not realized yet */
642      minheights = ((long) sptr->rows_in_array - 1L) / sptr->maxaccess + 1L;
643      if (minheights <= max_minheights) {
644        /* This buffer fits in memory */
645        sptr->rows_in_mem = sptr->rows_in_array;
646      } else {
647        /* It doesn't fit in memory, create backing store. */
648        sptr->rows_in_mem = (JDIMENSION) (max_minheights * sptr->maxaccess);
649        jpeg_open_backing_store(cinfo, & sptr->b_s_info,
650                                (long) sptr->rows_in_array *
651                                (long) sptr->samplesperrow *
652                                (long) SIZEOF(JSAMPLE));
653        sptr->b_s_open = TRUE;
654      }
655      sptr->mem_buffer = alloc_sarray(cinfo, JPOOL_IMAGE,
656                                      sptr->samplesperrow, sptr->rows_in_mem);
657      sptr->rowsperchunk = mem->last_rowsperchunk;
658      sptr->cur_start_row = 0;
659      sptr->first_undef_row = 0;
660      sptr->dirty = FALSE;
661    }
662  }
663
664  for (bptr = mem->virt_barray_list; bptr != NULL; bptr = bptr->next) {
665    if (bptr->mem_buffer == NULL) { /* if not realized yet */
666      minheights = ((long) bptr->rows_in_array - 1L) / bptr->maxaccess + 1L;
667      if (minheights <= max_minheights) {
668        /* This buffer fits in memory */
669        bptr->rows_in_mem = bptr->rows_in_array;
670      } else {
671        /* It doesn't fit in memory, create backing store. */
672        bptr->rows_in_mem = (JDIMENSION) (max_minheights * bptr->maxaccess);
673        jpeg_open_backing_store(cinfo, & bptr->b_s_info,
674                                (long) bptr->rows_in_array *
675                                (long) bptr->blocksperrow *
676                                (long) SIZEOF(JBLOCK));
677        bptr->b_s_open = TRUE;
678      }
679      bptr->mem_buffer = alloc_barray(cinfo, JPOOL_IMAGE,
680                                      bptr->blocksperrow, bptr->rows_in_mem);
681      bptr->rowsperchunk = mem->last_rowsperchunk;
682      bptr->cur_start_row = 0;
683      bptr->first_undef_row = 0;
684      bptr->dirty = FALSE;
685    }
686  }
687}
688
689
690LOCAL(void)
691do_sarray_io (j_common_ptr cinfo, jvirt_sarray_ptr ptr, boolean writing)
692/* Do backing store read or write of a virtual sample array */
693{
694  long bytesperrow, file_offset, byte_count, rows, thisrow, i;
695
696  bytesperrow = (long) ptr->samplesperrow * SIZEOF(JSAMPLE);
697  file_offset = ptr->cur_start_row * bytesperrow;
698  /* Loop to read or write each allocation chunk in mem_buffer */
699  for (i = 0; i < (long) ptr->rows_in_mem; i += ptr->rowsperchunk) {
700    /* One chunk, but check for short chunk at end of buffer */
701    rows = MIN((long) ptr->rowsperchunk, (long) ptr->rows_in_mem - i);
702    /* Transfer no more than is currently defined */
703    thisrow = (long) ptr->cur_start_row + i;
704    rows = MIN(rows, (long) ptr->first_undef_row - thisrow);
705    /* Transfer no more than fits in file */
706    rows = MIN(rows, (long) ptr->rows_in_array - thisrow);
707    if (rows <= 0)              /* this chunk might be past end of file! */
708      break;
709    byte_count = rows * bytesperrow;
710    if (writing)
711      (*ptr->b_s_info.write_backing_store) (cinfo, & ptr->b_s_info,
712                                            (void FAR *) ptr->mem_buffer[i],
713                                            file_offset, byte_count);
714    else
715      (*ptr->b_s_info.read_backing_store) (cinfo, & ptr->b_s_info,
716                                           (void FAR *) ptr->mem_buffer[i],
717                                           file_offset, byte_count);
718    file_offset += byte_count;
719  }
720}
721
722
723LOCAL(void)
724do_barray_io (j_common_ptr cinfo, jvirt_barray_ptr ptr, boolean writing)
725/* Do backing store read or write of a virtual coefficient-block array */
726{
727  long bytesperrow, file_offset, byte_count, rows, thisrow, i;
728
729  bytesperrow = (long) ptr->blocksperrow * SIZEOF(JBLOCK);
730  file_offset = ptr->cur_start_row * bytesperrow;
731  /* Loop to read or write each allocation chunk in mem_buffer */
732  for (i = 0; i < (long) ptr->rows_in_mem; i += ptr->rowsperchunk) {
733    /* One chunk, but check for short chunk at end of buffer */
734    rows = MIN((long) ptr->rowsperchunk, (long) ptr->rows_in_mem - i);
735    /* Transfer no more than is currently defined */
736    thisrow = (long) ptr->cur_start_row + i;
737    rows = MIN(rows, (long) ptr->first_undef_row - thisrow);
738    /* Transfer no more than fits in file */
739    rows = MIN(rows, (long) ptr->rows_in_array - thisrow);
740    if (rows <= 0)              /* this chunk might be past end of file! */
741      break;
742    byte_count = rows * bytesperrow;
743    if (writing)
744      (*ptr->b_s_info.write_backing_store) (cinfo, & ptr->b_s_info,
745                                            (void FAR *) ptr->mem_buffer[i],
746                                            file_offset, byte_count);
747    else
748      (*ptr->b_s_info.read_backing_store) (cinfo, & ptr->b_s_info,
749                                           (void FAR *) ptr->mem_buffer[i],
750                                           file_offset, byte_count);
751    file_offset += byte_count;
752  }
753}
754
755
756METHODDEF(JSAMPARRAY)
757access_virt_sarray (j_common_ptr cinfo, jvirt_sarray_ptr ptr,
758                    JDIMENSION start_row, JDIMENSION num_rows,
759                    boolean writable)
760/* Access the part of a virtual sample array starting at start_row */
761/* and extending for num_rows rows.  writable is true if  */
762/* caller intends to modify the accessed area. */
763{
764  JDIMENSION end_row = start_row + num_rows;
765  JDIMENSION undef_row;
766
767  /* debugging check */
768  if (end_row > ptr->rows_in_array || num_rows > ptr->maxaccess ||
769      ptr->mem_buffer == NULL)
770    ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS);
771
772  /* Make the desired part of the virtual array accessible */
773  if (start_row < ptr->cur_start_row ||
774      end_row > ptr->cur_start_row+ptr->rows_in_mem) {
775    if (! ptr->b_s_open)
776      ERREXIT(cinfo, JERR_VIRTUAL_BUG);
777    /* Flush old buffer contents if necessary */
778    if (ptr->dirty) {
779      do_sarray_io(cinfo, ptr, TRUE);
780      ptr->dirty = FALSE;
781    }
782    /* Decide what part of virtual array to access.
783     * Algorithm: if target address > current window, assume forward scan,
784     * load starting at target address.  If target address < current window,
785     * assume backward scan, load so that target area is top of window.
786     * Note that when switching from forward write to forward read, will have
787     * start_row = 0, so the limiting case applies and we load from 0 anyway.
788     */
789    if (start_row > ptr->cur_start_row) {
790      ptr->cur_start_row = start_row;
791    } else {
792      /* use long arithmetic here to avoid overflow & unsigned problems */
793      long ltemp;
794
795      ltemp = (long) end_row - (long) ptr->rows_in_mem;
796      if (ltemp < 0)
797        ltemp = 0;              /* don't fall off front end of file */
798      ptr->cur_start_row = (JDIMENSION) ltemp;
799    }
800    /* Read in the selected part of the array.
801     * During the initial write pass, we will do no actual read
802     * because the selected part is all undefined.
803     */
804    do_sarray_io(cinfo, ptr, FALSE);
805  }
806  /* Ensure the accessed part of the array is defined; prezero if needed.
807   * To improve locality of access, we only prezero the part of the array
808   * that the caller is about to access, not the entire in-memory array.
809   */
810  if (ptr->first_undef_row < end_row) {
811    if (ptr->first_undef_row < start_row) {
812      if (writable)             /* writer skipped over a section of array */
813        ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS);
814      undef_row = start_row;    /* but reader is allowed to read ahead */
815    } else {
816      undef_row = ptr->first_undef_row;
817    }
818    if (writable)
819      ptr->first_undef_row = end_row;
820    if (ptr->pre_zero) {
821      size_t bytesperrow = (size_t) ptr->samplesperrow * SIZEOF(JSAMPLE);
822      undef_row -= ptr->cur_start_row; /* make indexes relative to buffer */
823      end_row -= ptr->cur_start_row;
824      while (undef_row < end_row) {
825        FMEMZERO((void FAR *) ptr->mem_buffer[undef_row], bytesperrow);
826        undef_row++;
827      }
828    } else {
829      if (! writable)           /* reader looking at undefined data */
830        ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS);
831    }
832  }
833  /* Flag the buffer dirty if caller will write in it */
834  if (writable)
835    ptr->dirty = TRUE;
836  /* Return address of proper part of the buffer */
837  return ptr->mem_buffer + (start_row - ptr->cur_start_row);
838}
839
840
841METHODDEF(JBLOCKARRAY)
842access_virt_barray (j_common_ptr cinfo, jvirt_barray_ptr ptr,
843                    JDIMENSION start_row, JDIMENSION num_rows,
844                    boolean writable)
845/* Access the part of a virtual block array starting at start_row */
846/* and extending for num_rows rows.  writable is true if  */
847/* caller intends to modify the accessed area. */
848{
849  JDIMENSION end_row = start_row + num_rows;
850  JDIMENSION undef_row;
851
852  /* debugging check */
853  if (end_row > ptr->rows_in_array || num_rows > ptr->maxaccess ||
854      ptr->mem_buffer == NULL)
855    ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS);
856
857  /* Make the desired part of the virtual array accessible */
858  if (start_row < ptr->cur_start_row ||
859      end_row > ptr->cur_start_row+ptr->rows_in_mem) {
860    if (! ptr->b_s_open)
861      ERREXIT(cinfo, JERR_VIRTUAL_BUG);
862    /* Flush old buffer contents if necessary */
863    if (ptr->dirty) {
864      do_barray_io(cinfo, ptr, TRUE);
865      ptr->dirty = FALSE;
866    }
867    /* Decide what part of virtual array to access.
868     * Algorithm: if target address > current window, assume forward scan,
869     * load starting at target address.  If target address < current window,
870     * assume backward scan, load so that target area is top of window.
871     * Note that when switching from forward write to forward read, will have
872     * start_row = 0, so the limiting case applies and we load from 0 anyway.
873     */
874    if (start_row > ptr->cur_start_row) {
875      ptr->cur_start_row = start_row;
876    } else {
877      /* use long arithmetic here to avoid overflow & unsigned problems */
878      long ltemp;
879
880      ltemp = (long) end_row - (long) ptr->rows_in_mem;
881      if (ltemp < 0)
882        ltemp = 0;              /* don't fall off front end of file */
883      ptr->cur_start_row = (JDIMENSION) ltemp;
884    }
885    /* Read in the selected part of the array.
886     * During the initial write pass, we will do no actual read
887     * because the selected part is all undefined.
888     */
889    do_barray_io(cinfo, ptr, FALSE);
890  }
891  /* Ensure the accessed part of the array is defined; prezero if needed.
892   * To improve locality of access, we only prezero the part of the array
893   * that the caller is about to access, not the entire in-memory array.
894   */
895  if (ptr->first_undef_row < end_row) {
896    if (ptr->first_undef_row < start_row) {
897      if (writable)             /* writer skipped over a section of array */
898        ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS);
899      undef_row = start_row;    /* but reader is allowed to read ahead */
900    } else {
901      undef_row = ptr->first_undef_row;
902    }
903    if (writable)
904      ptr->first_undef_row = end_row;
905    if (ptr->pre_zero) {
906      size_t bytesperrow = (size_t) ptr->blocksperrow * SIZEOF(JBLOCK);
907      undef_row -= ptr->cur_start_row; /* make indexes relative to buffer */
908      end_row -= ptr->cur_start_row;
909      while (undef_row < end_row) {
910        FMEMZERO((void FAR *) ptr->mem_buffer[undef_row], bytesperrow);
911        undef_row++;
912      }
913    } else {
914      if (! writable)           /* reader looking at undefined data */
915        ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS);
916    }
917  }
918  /* Flag the buffer dirty if caller will write in it */
919  if (writable)
920    ptr->dirty = TRUE;
921  /* Return address of proper part of the buffer */
922  return ptr->mem_buffer + (start_row - ptr->cur_start_row);
923}
924
925
926/*
927 * Release all objects belonging to a specified pool.
928 */
929
930METHODDEF(void)
931free_pool (j_common_ptr cinfo, int pool_id)
932{
933  my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
934  small_pool_ptr shdr_ptr;
935  large_pool_ptr lhdr_ptr;
936  size_t space_freed;
937
938  if (pool_id < 0 || pool_id >= JPOOL_NUMPOOLS)
939    ERREXIT1(cinfo, JERR_BAD_POOL_ID, pool_id); /* safety check */
940
941#ifdef MEM_STATS
942  if (cinfo->err->trace_level > 1)
943    print_mem_stats(cinfo, pool_id); /* print pool's memory usage statistics */
944#endif
945
946  /* If freeing IMAGE pool, close any virtual arrays first */
947  if (pool_id == JPOOL_IMAGE) {
948    jvirt_sarray_ptr sptr;
949    jvirt_barray_ptr bptr;
950
951    for (sptr = mem->virt_sarray_list; sptr != NULL; sptr = sptr->next) {
952      if (sptr->b_s_open) {     /* there may be no backing store */
953        sptr->b_s_open = FALSE; /* prevent recursive close if error */
954        (*sptr->b_s_info.close_backing_store) (cinfo, & sptr->b_s_info);
955      }
956    }
957    mem->virt_sarray_list = NULL;
958    for (bptr = mem->virt_barray_list; bptr != NULL; bptr = bptr->next) {
959      if (bptr->b_s_open) {     /* there may be no backing store */
960        bptr->b_s_open = FALSE; /* prevent recursive close if error */
961        (*bptr->b_s_info.close_backing_store) (cinfo, & bptr->b_s_info);
962      }
963    }
964    mem->virt_barray_list = NULL;
965  }
966
967  /* Release large objects */
968  lhdr_ptr = mem->large_list[pool_id];
969  mem->large_list[pool_id] = NULL;
970
971  while (lhdr_ptr != NULL) {
972    large_pool_ptr next_lhdr_ptr = lhdr_ptr->hdr.next;
973    space_freed = lhdr_ptr->hdr.bytes_used +
974                  lhdr_ptr->hdr.bytes_left +
975                  SIZEOF(large_pool_hdr);
976    jpeg_free_large(cinfo, (void FAR *) lhdr_ptr, space_freed);
977    mem->total_space_allocated -= space_freed;
978    lhdr_ptr = next_lhdr_ptr;
979  }
980
981  /* Release small objects */
982  shdr_ptr = mem->small_list[pool_id];
983  mem->small_list[pool_id] = NULL;
984
985  while (shdr_ptr != NULL) {
986    small_pool_ptr next_shdr_ptr = shdr_ptr->hdr.next;
987    space_freed = shdr_ptr->hdr.bytes_used +
988                  shdr_ptr->hdr.bytes_left +
989                  SIZEOF(small_pool_hdr);
990    jpeg_free_small(cinfo, (void *) shdr_ptr, space_freed);
991    mem->total_space_allocated -= space_freed;
992    shdr_ptr = next_shdr_ptr;
993  }
994}
995
996
997/*
998 * Close up shop entirely.
999 * Note that this cannot be called unless cinfo->mem is non-NULL.
1000 */
1001
1002METHODDEF(void)
1003self_destruct (j_common_ptr cinfo)
1004{
1005  int pool;
1006
1007  /* Close all backing store, release all memory.
1008   * Releasing pools in reverse order might help avoid fragmentation
1009   * with some (brain-damaged) malloc libraries.
1010   */
1011  for (pool = JPOOL_NUMPOOLS-1; pool >= JPOOL_PERMANENT; pool--) {
1012    free_pool(cinfo, pool);
1013  }
1014
1015  /* Release the memory manager control block too. */
1016  jpeg_free_small(cinfo, (void *) cinfo->mem, SIZEOF(my_memory_mgr));
1017  cinfo->mem = NULL;            /* ensures I will be called only once */
1018
1019  jpeg_mem_term(cinfo);         /* system-dependent cleanup */
1020}
1021
1022
1023/*
1024 * Memory manager initialization.
1025 * When this is called, only the error manager pointer is valid in cinfo!
1026 */
1027
1028GLOBAL(void)
1029jinit_memory_mgr (j_common_ptr cinfo)
1030{
1031  my_mem_ptr mem;
1032  long max_to_use;
1033  int pool;
1034  size_t test_mac;
1035
1036  cinfo->mem = NULL;            /* for safety if init fails */
1037
1038  /* Check for configuration errors.
1039   * SIZEOF(ALIGN_TYPE) should be a power of 2; otherwise, it probably
1040   * doesn't reflect any real hardware alignment requirement.
1041   * The test is a little tricky: for X>0, X and X-1 have no one-bits
1042   * in common if and only if X is a power of 2, ie has only one one-bit.
1043   * Some compilers may give an "unreachable code" warning here; ignore it.
1044   */
1045  if ((SIZEOF(ALIGN_TYPE) & (SIZEOF(ALIGN_TYPE)-1)) != 0)
1046    ERREXIT(cinfo, JERR_BAD_ALIGN_TYPE);
1047  /* MAX_ALLOC_CHUNK must be representable as type size_t, and must be
1048   * a multiple of SIZEOF(ALIGN_TYPE).
1049   * Again, an "unreachable code" warning may be ignored here.
1050   * But a "constant too large" warning means you need to fix MAX_ALLOC_CHUNK.
1051   */
1052  test_mac = (size_t) MAX_ALLOC_CHUNK;
1053  if ((long) test_mac != MAX_ALLOC_CHUNK ||
1054      (MAX_ALLOC_CHUNK % SIZEOF(ALIGN_TYPE)) != 0)
1055    ERREXIT(cinfo, JERR_BAD_ALLOC_CHUNK);
1056
1057  max_to_use = jpeg_mem_init(cinfo); /* system-dependent initialization */
1058
1059  /* Attempt to allocate memory manager's control block */
1060  mem = (my_mem_ptr) jpeg_get_small(cinfo, SIZEOF(my_memory_mgr));
1061
1062  if (mem == NULL) {
1063    jpeg_mem_term(cinfo);       /* system-dependent cleanup */
1064    ERREXIT1(cinfo, JERR_OUT_OF_MEMORY, 0);
1065  }
1066
1067  /* OK, fill in the method pointers */
1068  mem->pub.alloc_small = alloc_small;
1069  mem->pub.alloc_large = alloc_large;
1070  mem->pub.alloc_sarray = alloc_sarray;
1071  mem->pub.alloc_barray = alloc_barray;
1072  mem->pub.request_virt_sarray = request_virt_sarray;
1073  mem->pub.request_virt_barray = request_virt_barray;
1074  mem->pub.realize_virt_arrays = realize_virt_arrays;
1075  mem->pub.access_virt_sarray = access_virt_sarray;
1076  mem->pub.access_virt_barray = access_virt_barray;
1077  mem->pub.free_pool = free_pool;
1078  mem->pub.self_destruct = self_destruct;
1079
1080  /* Make MAX_ALLOC_CHUNK accessible to other modules */
1081  mem->pub.max_alloc_chunk = MAX_ALLOC_CHUNK;
1082
1083  /* Initialize working state */
1084  mem->pub.max_memory_to_use = max_to_use;
1085
1086  for (pool = JPOOL_NUMPOOLS-1; pool >= JPOOL_PERMANENT; pool--) {
1087    mem->small_list[pool] = NULL;
1088    mem->large_list[pool] = NULL;
1089  }
1090  mem->virt_sarray_list = NULL;
1091  mem->virt_barray_list = NULL;
1092
1093  mem->total_space_allocated = SIZEOF(my_memory_mgr);
1094
1095  /* Declare ourselves open for business */
1096  cinfo->mem = & mem->pub;
1097
1098  /* Check for an environment variable JPEGMEM; if found, override the
1099   * default max_memory setting from jpeg_mem_init.  Note that the
1100   * surrounding application may again override this value.
1101   * If your system doesn't support getenv(), define NO_GETENV to disable
1102   * this feature.
1103   */
1104#ifndef NO_GETENV
1105  { char * memenv;
1106
1107    if ((memenv = getenv("JPEGMEM")) != NULL) {
1108      char ch = 'x';
1109
1110      if (sscanf(memenv, "%ld%c", &max_to_use, &ch) > 0) {
1111        if (ch == 'm' || ch == 'M')
1112          max_to_use *= 1000L;
1113        mem->pub.max_memory_to_use = max_to_use * 1000L;
1114      }
1115    }
1116  }
1117#endif
1118
1119}
Note: See TracBrowser for help on using the repository browser.